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A cell–ECM screening method to predict breast cancer metastasis† 

L. E. Barney,a E. C. Dandley,b L. E. Jansen,a N. G. Reich,c A. M. Mercuriod and 

S.  R. Peyton*a
 

Breast cancer preferentially spreads to the bone, brain, liver, and lung. The clinical patterns of this tissue-

specific spread (tropism) cannot be explained by blood flow alone, yet our understanding of what 

mediates tropism to these physically and chemically diverse tissues is limited. While the micro- 

environment has been recognized as a critical factor in governing metastatic colonization, the role of     

the extracellular matrix (ECM) in mediating tropism has not been thoroughly explored. We created a 

simple biomaterial platform with systematic control over the ECM protein density and composition to 

determine if integrin binding governs how metastatic cells differentiate between secondary tissue sites. 

Instead of examining individual behaviors, we compiled large patterns of phenotypes associated with 

adhesion to and migration on these controlled ECMs. In combining this novel analysis with a simple 

biomaterial platform, we created an in vitro fingerprint that is predictive of in vivo metastasis. This   rapid 

biomaterial screen also provided information on how b1, a2, and a6 integrins might mediate metastasis in 

patients, providing insights beyond a purely genetic analysis. We propose that this approach of screening 

many cell–ECM interactions, across many different heterogeneous cell lines, is predictive of in vivo 

behavior, and is much simpler, faster, and more economical than complex 3D environments or mouse 

models. We also propose that when specifically applied toward the question of tissue tropism in breast 

cancer, it can be used to provide insight into certain integrin subunits as therapeutic   targets. 

Introduction 

Breast cancer is the most common cancer in women,  and  meta- 

stasis is responsible for 90% of all cancer deaths. The microenviron- 

ment  is  a critical  regulator  of  metastasis,1  and  in vivo studies   have 

provided insight into many microenvironment-mediated 

mechanisms.2–6 However, these studies lack features of human 

physiology, contain uncontrolled variables, and are often not 

comparable across different mouse models. Thus, it is difficult   

to parse the varying contributions of each factor, limiting the 

broad applicability of these results. In contrast, in vitro models 

can be either oversimplified,7 or highly complex, expensive, low-

throughput, and limited to highly specialized laboratories.8 

Because metastasis remains both largely incurable and poorly 

understood, there is a need for quick, cost-efficient  in  vitro 

model systems with enough complexity to recapitulate certain 

aspects of in vivo biology, while maintaining affordability and 

efficiency. 

Two-dimensional in vitro disease models are appropriately 

low cost and simple, however, it is now generally appreciated 
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Insight, innovation, integration 
We developed a high-throughput method to rapidly screen cell adhesion, motility, and growth factor responses on biomaterial surfaces. This approa ch is 

analogous to systems biology, relying on cell phenotypes in lieu of genetics. We used this technique to reveal patterns of phenotypes associated with breast 

cancer metastasis to possible tissue sites (bone, brain, lung). By comparing the phenotypic patterns between cell lines that metastasize to only one tissue site 

with heterogeneous cell lines, we provide the first method to connect in vitro phenotype to in vivo fate. This method is successful without genetic analysis, yet it 

also predicts outcomes related to integrin gene expression, potentially identifying new targets for tissue-specific metastasis.  
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that two-dimensional cell behaviors are usually not conserved   

in a three-dimensional context. One recent example of this is 

work by Meyer et al., which showed that only two-dimensional 

growth-factor induced membrane protrusion, but not any other 

measured 2D motility parameter, accurately predicts 3D moti- 

lity.9 This suggests that individual two-dimensional measure- 

ments will also not be predictive of even more complex in vivo 

cell phenotypes. We suggest that a better approach may be to 

avoid measurements of single, likely non-predictive  metrics,  

and instead, measure patterns of many phenotypes across 

several conditions  and  several cell  sources.10
 

Breast cancer metastasis is a clear candidate for this type of 

approach because of its striking, yet unexplained, clinical 

patterns of metastatic spread (tropism) to  the  bone,  brain,  

liver, and lung, but not to tissues such  as  the  skin,  heart,  

uterus, or spleen.11,12 This tropism is hypothesized to depend 

upon an unknown relationship between metastatic cells (the 

seeds) and hospitable microenvironments (the soils).12 Because 

the tissues often colonized by breast cancer cells each have a 

distinct ECM, we posit that integrin binding to the ECM is one 

feature that plays a critical role in the early stages of tissue- 

specific colonization and fate of extravasated cancer cells. It is 

known that secondary site colonization requires activation of 

integrin-mediated signaling,10,13–16 and several individual 

integrins  have  been  implicated  in  breast  cancer  metastasis   

in vivo.17–20  However,  this  research  is  limited  to  metastasis  at 

a single tissue site, or to the effect of a single integrin, which is 

not representative of the variety of cell–matrix interactions 

simultaneously occurring in vivo during cell adhesion to a 

secondary  tissue  site post-extravasation. 

To this end, we created a novel biomaterial platform com- 

prised of complex ECMs that can present any combination of full-

length proteins with high fidelity, reproducibility, and is 

permanent during the cell culture period. We used this bio- 

material to quantify how different metastatic breast cancer cell 

lines differentiate between secondary sites via integrin binding. 

We compiled sixty-six distinct cell phenotypes associated with 

cell adhesion and motility, both with and without epidermal 

growth factor (EGF)  stimulation. By collating all the responses  

to each biomaterial ECM surface together, we created a pheno- 

typic  fingerprint  of  bone,  brain,  and  lung  metastasis,  which  is 

tropic cell subpopulations, as well as predictive of the in vivo 

metastasis of several other more heterogeneous cell lines, 

thereby predicting in vivo fate with a quick in vitro screen. Taken 

together, we propose this comprehensive analysis of cell–matrix 

interactions as a tool to predict in vivo fate, as well as understand 

the roles of integrins in tropism, thus providing insight toward 

integrins as druggable targets for metastatic disease. 

Results 
Rapid biomaterial screening of cell–ECM interactions 

The ECMs present in secondary tissues often recipient of breast 

cancer colonization are each strikingly complex and distinct,21 

suggesting that cell–matrix interactions play a role in mediating 

metastasis. Our goal here was to create a simple in vitro 

biomaterial system to investigate  the  role  of  integrin  binding 

in breast cancer tropism. These biomaterial surfaces are glass 

coverslips, modified via straightforward silane chemistry. They 

present covalently coupled ECM proteins, and they remain  

stable throughout the cell culture period (at least 72  hours). 

This method can be used to couple any combination of full- 

length proteins or peptides of interest, providing control over 

cell–matrix interactions in a highly robust (Fig. S1, ESI†), 

scalable, and facile process. It is particularly well suited to 

observe integrin-mediated phenotypes of adherent cell lines,  

and   allows   for   functional   investigation   of   real-time binding 

to the  ECM. 

We used this approach to create three ECM microenviron- 

ments containing combinations of ECM  proteins  inspired  by  

the biochemical cues found at the in vivo  tissues  to  which  

breast cancer commonly spreads (Table 1). ECM at these tissues 

has significant patient-to-patient variability,21 and can be remodelled 

by both tumor and stromal cells over time.5,6 Our approach was 

to determine if integrin binding alone, at early time points 

(directly after extravasation), was sufficient to direct or predict 

tissue-specific spread. Therefore, we created three biomaterial 

surfaces containing combinations of ECM proteins that isolate 

distinct integrin heterodimers, independently of the in vivo 

heterogeneity, inspired by the ECM protein content of healthy 

tissues  at  these sites.6,22–26
 both  capable  of  distinguishing  between   genetically related 

Table 1     Composition  of  tissue-inspired  biomaterial ECMs 

ECM  1 (bone) ECM  2 (brain) ECM  3 (lung) 

In  vivo  ECM density High Low Moderate 

Fibronectin6
 

Collagens laminins elastin tenascin C proteoglycans26
 

In vivo ECM proteins Collagen I 
Fibronectin22 

Osteopontin23
 

5 mg cm-2
 

99%  collagen I 
1% osteopontin 

Laminin fibronectin collagen IV tenascins 
proteoglycans24

 

Hyaluronic acid25
 

1 mg cm-2
 

50% fibronectin 
25% vitronectin 
20% tenascin C 
5% laminin 

2 mg cm-2
 

33% laminin 
33%  collagen IV 
15%  collagen I 
15% fibronectin 
4% tenascin C 

In  vitro  ECM density 

In vitro ECM proteins 

 

 

 

 



Fig. 1 Biomaterial platform for integrin-mediated phenotyping. (a) Breast cancer cell lines with their known in vivo metastatic tropisms.2–4,28–33 (b) 

Three distinct ECM microenvironments regulate integrin binding. (c) Adhesion and motility phenotypes of the MDA-MB-231 cell line. Black: ECM 1; blue: 

ECM 2; green: ECM  3. 

As a first attempt to capture the heterogeneity of breast 

cancer, we screened phenotypes associated with adhesion and 

motility across a large panel of human cell lines that span the 

clinical subtypes27 and metastatic specificity to the bone, brain, 

and lung sites2–4,28–33 (Fig. 1a). We first  measured  spreading  

and polarization of cells during initial adhesion to the ECMs, 

quantifying time-dependent cell area, spreading rate, and 

polarization of the population (Fig. 1c top and Fig. S2a–c, ESI†). 

Next, we observed long-term motility, and quantified cell 

migration speed, displacement, and chemotactic index (ratio of 

displacement to path length, quantifies migration straightness) 

(Fig. 1c bottom, Fig. S2d–f, ESI†). Altogether, 550 individual cell 

observations were made per cell line on average (Fig.  1c and  

Fig. S2, ESI†). In combination with an ELISA characterization of 

the protein coupling (Fig. S1, ESI†), these measurements validate 

the biomaterial platform as being able to elicit differential cell 

line responses via integrin binding  alone  (Fig.  S2, ESI†). 

We immediately noticed that for each different measure- 

ment we took, the tropic cell lines were sensitive to the ECMs in 

some cases, while insensitive in others. As an example, when 

we quantified cell speed, the bone and brain tropic cell lines 

had very different cell speeds on each ECM surface, whereas the 

lung tropic cells had similar cell speeds on all three ECMs. To 

quantifiably demonstrate this, we applied a statistical tool 

called the coefficient of variation (CoV) to each set of measure- 

ments for a given cell line. This measurement quantifies 

dispersion of a data set, and is computed by dividing the 

standard deviation of a set of measurements by their mean.  

In its application here, higher CoV values identify adhesion or 

motility measurements where a cell line is highly sensitive to 

the different ECM surfaces (i.e., the relative standard deviation 

of the measurements across each ECM is at least 10%). Because 

these cell lines were created to exhibit strong in vivo metastasis 

to one site, we first wanted to validate that this in vivo selectivity 

was reflected in the in vitro cell–ECM screen. This CoV analysis 

showed that each of the tropic cell subpopulations was signifi- 

cantly more sensitive to the ECMs than the parental cell line in 

each of the adhesion and motility phenotypes we quantified 

(Fig. S4a, ESI†), validating this approach. 

Given that tropic  cell  lines  have  heightened  sensitivity 

to growth factors,34 we then quantified the change in each 

adhesion and motility metric in response to EGF stimulation, 

and found that the patterns of adhesion and motility across the 

ECMs under normal and EGF-stimulated conditions varied 

significantly between the tropic cell lines (Fig. S3, ESI†). The 

effect of EGF stimulation was especially striking in the tropic 

cell adhesion. EGF slowed spreading and polarization of the 

bone tropic cell line, while it increased the spreading rate of the 

brain and lung tropic cell lines in an ECM-dependent fashion 

(Fig.  S3a–f,  ESI†).  Growth  factor  sequestration  and growth 

Phenotypic screen predicts tissue tropism in  vivo 

We hypothesized that an in vitro analysis of integrin-mediated 

phenotypes would be capable of differentiating cell lines with 

different tropisms in vivo, reflecting the functional binding 

interactions required for successful metastatic outgrowth. We 

began by phenotyping three highly tropic subpopulations of the 

MDA-MB-231 parental cell line, which were selected from in vivo 

metastases by Massagué and colleagues.2–4 These geneti- cally 

distinct MDA-MB-231 subpopulations each display strong 

tropism to either the bone (‘‘bone tropic’’),2 brain (‘‘brain 

tropic’’),4  or lung (‘‘lung tropic’’)3  in mice, and have been used    

to identify genetic determinants of tissue-specific metastasis.  

We found that these tissue-specific cell lines each responded to 

the ECMs in unique ways (Fig. S3, ESI†). 

 

 



Fig. 2 Phenotypic fingerprint predicts bone, brain, and lung metastasis. Development of phenotypic fingerprints of bone, brain, and lung tropism from 

patterns of integrin-mediated behavior. The (a) CoV, (b) EGF response, and (c) measurement ordering features were measured for each tropic cell line to 

create a fingerprint. (d, e) Phenotypic fingerprints of tropic behavior (rows), with unique identifiers distinguished in dark colors. (d) Coefficient of variation 

for  both  the  normal  and  EGF-stimulated  conditions.  Blue:  high  CoV  (40.1);  grey:  low  CoV  (o0.1).  (e)  EGF  response  on  each  ECM.  Red:  increase 

(fold change 4 1.15); grey: no change; green: decrease (fold change o 0.85). Pairwise ordering is provided in Fig. S4b (ESI†). Abbreviations: 1: ECM 1; 2: 

ECM 2; 3: ECM 3; SR: spreading rate; A: area; P: polarization; S: speed; D: displacement; CI: chemotactic index. (f) Fingerprint of heterogeneous cell lines 

overlaid onto tropic fingerprints allows for quantification of similarity to each tropic subpopulation. Colored boxes in overlaid cell lines identify features 

shared with each tropic cell line. Black: bone tropic, red: brain tropic, blue: lung tropic. (g) In vitro tropism of the MDA-MB-231, SUM1315 MO2, BT549, 

MDA-MB-468, HCC 1954, MDA-MB-361, SkBr3, and MCF7 cell lines. Black: bone tropic, red: brain tropic, blue: lung tropic. Bars represent the percentile 

of the null distribution where each heterogeneous cell line lies, with error bars displaying the range of the respective percentile. High percentiles indicate 

cell lines that are highly phenotypically tropic to a tissue site. Statistics shown above bars indicate that the cell line is significantly higher or lower than the 

null distribution for the indicated tropism. Top labels: known in vivo tropism. Bottom labels: clinical subtype   designation. 

factor   signalling   both   depend  on   the  composition   of the All the adhesion and motility measurements were organized 

across three separate classes of observable responses to the 

ECMs (coefficient of variation, response to EGF, and pairwise 

ordering  across  ECMs,  Fig. 2a–c). 

As the first feature of these collective tropic phenotypes, 

measurements in which the cell line was either highly sensitive 

or insensitive to changes in the ECM were identified (Fig. 2a). 

ECM,35,36 which, in addition to the  differences in the     tropic 

subpopulations, is likely one reason for the differences in EGF 

responses. 

With this collection of measurements, we sought to identify 

all the phenotypes unique to cells metastasizing to the bone, 

brain, or lung by compiling them en masse into a heat map. 

 

 



For example, the lung tropic line has a high spreading rate CoV, 

whereas the brain tropic cell line has a low chemotactic index 

CoV under EGF stimulation (Fig. 2a). We then quantified 

whether each phenotype measured increased, decreased, or 

remained unchanged in response to EGF stimulation on each 

of the three ECMs (Fig. 2b). As examples, the lung tropic cells 

increased their displacement with EGF stimulation, the bone 

tropic cell line spreading area was unchanged, and the brain 

tropic cell speed decreased upon EGF stimulation (Fig. 2b). 

Finally, a pairwise statistical test was used to compare each 

phenotype measured across each of the ECM surfaces, resulting 

in an ‘‘ECM ordering’’ (Fig. 2c). As an example, the lung tropic 

cell line has the statistically highest spreading rate on ECM 3, 

followed by ECM 1, and is lowest on ECM 2 (Fig. 2c). In 

contrast, the chemotactic index of the brain tropic cell line 

was statistically equivalent on all ECMs. 

We computed each of these features for all phenotypes and 

compiled this into a heat map, creating a row for each tropic    

cell line (Fig. 2d, e and Fig. S4b, ESI†). The color of each box 

identifies the value of the phenotype for the respective cell line. 

For   the   CoV   measurement,   highly   sensitive    measurements 

(CoV 4 0.1) are identified with a blue box, while insensitive 

measurements (CoV o 0.1) are identified with a grey box 

(Fig. 2d). In Fig. 2e, EGF changes are determined via fold 

change from the normal measurement. An increase (fold 

change 4 1.15) is red, a decrease (fold change o 0.85) is green, 

and no change (0.85 o fold change o 1.15) is grey (Fig. 2e).    In 

Fig. S4b (ESI†), for each pairwise comparison, a blue box indicates 

that the first measurement is greater than the second, a grey box 

indicates that they are equal, and a red box indicates that the  

second measurement is greater than the first. Altogether, greater 

than 1000 individual cell observations per tropic cell line were 

quantified and compiled together to create sixty-six features of 

integrin-mediated phenotypes for each tropic cell subpopulation 

(Fig.  2d,  e and  Fig.  S4b,  ESI,† rows). 

Looking down each column in Fig. 2d, e and Fig. S4b (ESI†),  

we then identified behaviors that were specific to only one of the 

three tropic cell lines. These instances are identified by a dark 

shaded box of the appropriate color. Looking across each row, 

thirteen measured phenotypes are unique to bone tropism, a 

separate thirteen features are unique to lung tropism, and fifteen 

to brain tropism (Fig. 2d, e and Fig. S4b, ESI†). Although no 

singular adhesion or motility-associated phenotype was predic- 

tive of breast cancer tropism (not shown), this collective analysis 

of many cell responses to ECMs combined to create phenotypic 

fingerprints of bone, brain, and lung metastasis (Fig. 2d, e and  

Fig.  S4b, ESI†). 

We repeated all these measurements using more hetero- 

geneous cell lines with  known,  literature-reported  metastasis 

in vivo (Fig. 1a), and overlaid each cell line’s  pattern  of 

behaviors onto the three fingerprints of tissue-specific meta- 

stasis we created (Fig. 2f). The measurements  from  each  cell 

line can be compared to the tissue-specific fingerprints gen- 

erated from the tropic cell lines, resulting in a  fractional 

similarity value that represents the amount of unique pheno- 

typic   features   shared   with   the   cell   lines   that    specifically 

metastasize to either the bone, brain, or lung (Fig. S5a, ESI†).     

As a control, a null distribution of 10 000  cell  lines  with  

random phenotypes was generated in silico to represent ‘‘ran- 

dom metastasis’’ (Fig. S5a–d, ESI†).  We  determined  how  

similar the patterns were between each of the heterogeneous  

cell lines and the  bone,  brain,  and  lung  tropic  fingerprints  

(Fig. S5a, ESI†), and represented this as a percentile of the 

respective  null  distribution  (Fig.  2g). 

With this in vitro method, we predicted the in vivo metastasis 

of seven out of the eight heterogeneous cell lines tested. First, 

the SUM1315 MO2 cell line, which metastasizes highly to 

bone,37 most highly matches the bone fingerprint and is clearly 

anti-brain and anti-lung tropic. Both the MDA-MB-46833 and 

BT54928 cell lines metastasize to the lung in vivo, and are clearly 

lung tropic by our fingerprint. The HER2+ cell line HCC 1954 is 

lung metastatic32 and phenotypically lung tropic. The HER2+ 

MDA-MB-361 cell line was derived from a brain metastasis, 

metastasizes to the brain in mice,38 and is comparatively brain 

tropic by our fingerprint. The parental MDA-MB-231 is sponta- 

neously metastatic to many sites upon orthotopic implantation 

into the mammary fat pad39 and intracardiac injection,4,40 and 

metastasizes to the bone more than to the brain or lung 

through the latter technique.40 Our fingerprint identified this 

cell line as highly bone tropic (0.62 fractional similarity, 90th 

percentile of the randomly generated bone tropism null dis- 

tribution), significantly greater than the similarity to the brain 

and lung fingerprints, reflecting this feature of in vivo behavior 

(Fig. 2g and Fig. S5a, ESI†). We focused on this particular aspect 

of MDA-MB-231 behavior, as this is the parental cell line from 

which the bone, brain, and lung tropic cell lines were derived 

by  Massagué.  As  a  non-tropic  control,  the  MCF7  cells  are  only 

moderately metastatic, and not tissue-specific,29,30 and were 

not tropic to any one tissue based on our fingerprint. Finally, 

the HER2+ SkBr3 cells were identified as brain tropic in our 

approach, but they are not highly tumorigenic or metastatic to 

the brain or other sites in vivo.31 HER2-overexpressing tumors 

often spread to the brain in humans,11 which may explain the 

prediction we obtained. However, we would argue that this 

example shows that this approach, although highly predictive, 

is not 100% accurate, and is only a predictor of tissue selectivity, 

not metastatic capability. 

When looking more closely, we discovered that the unique 

features making up each fingerprint are primarily comprised of 

differential responses to EGF stimulation. In fact, all of the 

features in the bone tropic fingerprint are related to EGF 

stimulation, 80% for the brain fingerprint, and 62% for the 

lung fingerprint. Concurrently, we found that the cell lines with 

higher EGFR mRNA expression displayed stronger matching to 

just one of the tropic fingerprints than the cell lines with lower 

EGFR expression (Fig. 2g and Fig. S5e, ESI†). Using published 

proteomic data,41 we discovered a strong correlation between 

basal  EGFR  expression  in  our  cell  lines  and  the  CoV  of  the  

in vitro tropism (Fig. S5f, ESI†), confirming this  qualitative  

trend. Although outside the scope of this study, we speculate  

that   a   more   exhaustive   screen   of   additional   growth factor 

responses, or across different ECM protein combinations, could 

 



lend even more specificity for this fingerprinting approach, 

potentially resolving the inconsistency we observed in the SkBr3 

cell line. 

In sum, we compiled sixty-six features of integrin-mediated 

phenotypes observed in bone, brain, and lung tropic cell lines 

into an in vitro fingerprint, which predicted the in vivo meta- 

stasis of other more heterogeneous cell lines. We  stress  that 

this result was impossible to achieve using any single adhesion  

or motility measurement, and  instead  required  quantification 

of patterns of behavior. Because only some singular features of 

two-dimensional cell behavior can predict responses in a more 

realistic  three-dimensional  environment,9   this   requirement 

was perhaps not surprising. The divergence between two and 

three-dimensional phenotypes necessitated this new method of 

analysis to accurately connect measurements made in a two- 

dimensional  context  to  in  vivo outcomes. 

caused an increase in ECM sensitivity in these cells. Specifi- 

cally, the SkBr3 cells migrated faster and farther on the 

collagen-rich ECM 1 (Fig. 3c and d, arrows) in the presence of 

both of these function-affecting antibodies. Looking more 

closely at videos of the cell behaviors, we determined that the 

increase in motility was caused by complete detachment of 

individual SkBr3 cells, which would then re-adhere at different 

locations, essentially hopping along the surface of the bioma- 

terial (Fig. 3e, f and Fig. S6a, Movie S1, ESI†). This behavior 

resulted in a small population of cells that had abnormally 

fast migration speeds and long displacements (Fig. 3e, f and 

Fig. S6a, ESI†). This phenotype was observed most often on 

ECM 1 in the presence of the b1 and a2 integrin antibodies, and 

rarely in the three other conditions (Fig. S6b, ESI†). This was 

never observed  in the  MDA-MB-231 cells. 

This behavior did not resemble traditional adherent cell 

motility, and we suspected that these weakly-to-non adherent 

cells might be highly invasive in a 3D context, perhaps resem- 

bling an amoeboid-type motility.44 When these same b1 and a2 

integrin antibodies were administered to SkBr3 cells that were 

seeded onto ECM 1 overlaid with a 3D collagen gel, we  observed 

increased upward 3D invasion by three to four fold compared to 

the control (Fig. 3g and Fig. S6c, ESI†). The SkBr3 cell line has 

lower integrin protein expression of each of these integrin 

subunits in comparison to the MDA-MB-231 cell line,45,46 which  

is potentially responsible for the detachment and invasion 

phenotypes. However, there were no differences in b1 integrin 

mRNA expression (Fig. S7a, ESI†), suggesting that a proteomic, 

but not a genomic analysis could have predicted this result. We 

propose that the motility and invasion of some cancer cell lines 

can actually be increased when targeting integrins,47 potentially 

limiting the efficacy of this class of therapeutics  in  some 

patients. The  striking  differences in  antibody responses of    the 

triple negative MDA-MB-231 and HER2+ SkBr3 cell lines high- 

light the heterogeneity in response to integrin therapeutics 

observed across different breast cancer clinical subtypes, poten- 

tially explaining the limited efficacy of these drugs thus far. 

Targeting integrin binding on in vitro ECMs reveals the need 

for subtype-specific analysis 

Integrins have been explored as cancer therapeutics in pre- 

clinical and clinical trials, but many of these drugs have only 

shown limited success.42 We hypothesized that this lack of 

clinical efficacy may be in part from differential responses 

across the heterogeneity of breast cancer subtypes. Because 

we are controlling for integrin-binding on our ECM protein- 

coupled surfaces, our predictive phenotyping platform provides 

a unique opportunity to investigate integrins as therapeutic 

targets for metastatic disease. We focused on triple negative 

and HER2+ cancer, which both have particularly poor pro- 

gnosis. As proof of concept, we chose MDA-MB-231 as a 

representative triple negative cell line, and used the SkBr3s to 

examine HER2+ breast cancer. We focused on integrin subunits 

with various affinities to the proteins on each of our ECMs: b1, 

which is involved in  binding  to  many  proteins  across  all  the 
in vitro ECMs; a2, which binds primarily to collagens but also to 

laminin (collagen is present on ECMs 1 and 3;  laminin  is  
present on ECMs 2 and 3); and a6, which specifically binds 

laminin (present on ECMs 2 and     3).43
 

We performed the same adhesion and motility experiments 

from Fig. 1c in the presence of function-affecting antibodies to 

these three integrins. Targeting the function of each integrin 

reduced both cell adhesion and migration of the MDA-MB-231 

cell line on the three ECMs. When cell adhesion measurements 

were plotted against cell migration measurements for each 

antibody of interest (as well as without antibody and with 

EGF stimulation), the responses clustered together (Fig. 3a 

and b). This revealed that the MDA-MB-231 cells were overall 

more sensitive to the antibody treatments and EGF stimulation 

than they were to the three ECMs. Each antibody had a different 

potency, resulting in a strong correlation between two measure- 

ments of cell adhesion (spreading rate and maximum area) and 

motility (migration speed and displacement, Spearman correla- 

tions and p-values shown in Fig. 3a and  b). 

This same clustering of responses around each ECM was not 

observed in the HER2+ SkBr3 cell line. Most surprisingly, 

treatment   with   the   b1    and   a2    integrin   antibodies   actually 

Integrin binding and expression dictates  tropism 

The b1, a2, and a6 integrin subunits each have a reported role in 

cancer: high expression of both b1 (ref. 48) and a6 (ref. 49) 

integrins drives tumorigenicity and metastasis, while a2 integ- 

rin is a tumor suppressor.50 Although all three integrins appear 

important in overall patient prognosis, none have been directly 

connected with tissue-specific metastasis. Given the results in 

Fig. 2, where tropic cells shared similar integrin-mediated 

phenotypes,  and  Fig. 3, where  the  triple negative MDA-MB-231 

and HER2+ SkBr3 cell lines had divergent responses to integrin 
targeting, we hypothesized that targeting b1, a2, and a6 integrins 

could shift the observed in vitro tropism of these cell lines. 

We compiled the adhesion and motility measurements for the 

MDA-MB-231 and SkBr3 cell lines that were performed in the 

presence of integrin antibodies  into  our  predictive  fingerprint. 

This treatment with integrin antibodies, which lowers the binding 

ability with these integrin subunits, shifted the tropism  predic-  

tions  of  both  cell  lines  (Fig.  4a and  b).  In the  MDA-MB-231 cells, 

 



Fig. 3 Correlations between adhesion and migration responses identify potent integrin antibodies in vitro. Pairwise comparisons between adhesion and 
migration measurements in the (a, b) MDA-MB-231 and (c, d) SkBr3 cell lines across normal, EGF-stimulated, and integrin antibody conditions. Arrows 
highlight conditions where integrin antibodies increased migration metrics. Spearman correlations are indicated on each plot with two-tailed p-values. 
Circle: ECM 1; square: ECM 2; triangle: ECM 3; black: normal; green: EGF; blue: anti-b1 integrin; red: anti-a2 integrin; orange: anti-a6 integrin. (e, f) SkBr3 

migration mechanisms are displayed via 10 random cell paths under (e) normal and (f) anti-b1 conditions. Red paths identify cells detaching and adhering 

elsewhere on the surface. Inset: representative images of cell morphology. Scale bar is 25 mm. (g) Individual cells that invaded into an overlaid 3D collagen 

gel from the ECM 1 surface after 48 hours. Bar indicates mean distance invaded of all invading cells. Inset: schematic of cells invading upward from the 
ECM surface into an overlaid  gel. 

treatment with any of the integrin antibodies shifted the tropism 

from bone to brain (Fig. 4a). In other words, blocking binding via 

b1, a2, or a6 integrins made the MDA-MB-231 cells less similar to 

the bone tropic fingerprint, and instead, they more resembled the 

brain tropic cell subpopulation (compare the tropism category 

containing the highest black bar with the tropism category 

containing the highest colored bars for each integrin). The SkBr3 

cells shifted from brain to bone tropic upon b1 integrin inhibition, 

they became equally brain and lung tropic when a2 integrin  was 
blocked, and a6 integrin targeting  had  no effect  (Fig.  4b).  Just  as 

we found in Fig. 3, the MDA-MB-231 cell line was far less sensitive 

to differences in ECM during  integrin  targeting  than  the  SkBr3  

cell line. Interestingly, the only response that was shared between 

the  MDA-MB-231  and  SkBr3  cell  lines  was  the  ‘‘null  effect’’      of 

targeting  a2  and  a6  integrins  on  lung  tropism.  Overall,    these 
results   suggest   that  targeting   any  one   of   these   integrins   may 

effectively prevent bone metastasis in the triple negative cell line, 
while b1 integrin may be an efficacious therapeutic  target  to 

prevent brain and lung (but not  bone)  metastasis  in  the  HER2+ 
cell  line. 

For this approach to have significant impact, it must be 

compared with clinical patient outcomes. We analyzed gene 

expression data from 630 breast cancer patients with known 

metastatic outcomes (combined from GSE 2034, GSE 2603, GSE 

5327, GSE 12276; includes 214 bone metastases, 35 brain 

metastases, 101 lung metastases). We first determined whether 

expression of these integrin genes was associated with tissue- 

specific metastasis in the clinic (Fig. 4c–e),  and then     compared 

 

 



Fig. 4 Integrin binding and gene expression predict breast cancer metastasis. Integrin antibodies shift tropic fingerprinting of (a) MDA-MB-231 and (b) 
SkBr3 cell lines. Compare the tropism containing the highest black bar (normal) with the category containing the highest value for each colored bar (blue: 
b1, red: a2, orange: a6 integrin). (c–e) Magnitude of integrin gene expression dictates (c) bone, (d) brain, and (e) lung metastasis clinically (analysis of GSE 

2034, GSE 2603, GSE 5327, GSE 12276). (f) Left, effect of b1, a2, and a6 integrin gene expression on clinical metastasis in all patients, only triple negative 

patients, and only HER2+ patients. Right, effect of b1, a2, and a6 integrin antibodies on tropic fingerprint in the MDA-MB-231 (triple negative) and   SkBr3 

(HER2+) cell lines. Red: high expression or binding predicts for increased metastasis; blue: low expression or binding predicts for increased metastasis; 

white: no effect. (g) Heat map displaying integrin genes that significantly predict for tissue-specific metastasis in patients. Blue: low expression of the 

gene predicts for increased risk of metastasis; red: high expression of the gene predicts for increased risk of metastasis; white: no effect on metastasis. 

Asterisks indicate statistically significant relationships, but other clearly visible trends are included for completeness. Abbreviations: Bo: bone metastasis; 

Br: brain metastasis; Lu: lung metastasis. 

using published annotations,4,51 and survival  analysis  is 

repeated in these smaller, specific patient populations, the 

subtype-specific trends in tropism match the behavior of 

corresponding the cell line we examined (Fig. 4f). We want to 

stress that this latter result was only one of two shared out- 

comes we found between the triple negative and HER2+ cell 

lines, highlighting  the need for individual analysis of subtypes,  

as  demonstrated  in  Fig. 3. 

Interestingly, when this clinical analysis is expanded to 

examine all integrin subunits, many are associated with meta- 

stasis to the brain, bone, or lung, but these same genes are not 

conserved   within   the   triple   negative   and   HER2+   subtypes 

this with the results predicted from our in vitro fingerprinting 

approach when targeting integrin binding (Fig. 4a and b). As 

one example, the gene expression data sets revealed that low a2 

integrin expression in the primary tumor correlates with higher 
rates of brain metastasis, and, similarly, decreasing a2 integrin 

binding significantly increased the MDA-MB-231 brain tropic 
phenotype in vitro (compare Fig. 4a, increase in brain tropism 

from black to red, with Fig. 4d, increased risk of brain meta- 

stasis from black to red). As another example, a6 integrin has 

no effect on lung metastasis, in both clinical patient outcomes 

and the tropism of both cell lines (Fig. 4a and b). In this case, 
when these same patients are classified into clinical  subtypes 

 

 



(Fig. 4g and Fig. S7b, ESI†). Strong examples are a1, a3, and   b2 

integrins, where altered expression of these genes is correlated 

with tropism to a specific tissue across breast cancer broadly, 

but they are not correlated with tropism within these two 

subtypes. Instead, different integrin subunit genes are corre- 

lated  with  tissue-specific  metastasis  within  each  of  these sub- 

types. As two examples, low a8  integrin expression is   correlated 
with bone metastasis in the HER2+ subtype, and high b1 

integrin expression is correlated with lung metastasis in the 

triple negative subtype. 

When we compared our in vitro phenotyping approach to this 

existing gene data set, we found that our in  vitro  tropism  

responses imperfectly correlated with  these  genetic  indicators. 

High b1 expression is associated with poor prognosis,48  and in    our 

work,  targeting b1 integrin makes the MDA-MB-231 cell line    much 

less bone tropic, matching this result (Fig. 4a). However, the SkBr3 

cell line significantly increased in bone tropism upon targeting b1 

integrin, (Fig. 4b), and our clinical analysis surprisingly  showed  

that the magnitude of b1 integrin gene expression is not predictive  

of bone metastasis in patients (Fig. 4c). However, the divergent 

responses of the two candidate cell lines, from different clinical 

subtypes, combine to match the clinical pattern. Although our b1 

integrin targeting results were not predictive of these clinical 
outcomes, we emphasize that this highlights the divergence 

expected between a genetic-focused approach  and  a  protein- 

based,  functional  approach,  as  we  have  taken here. 

In sum, we have used a simple integrin-mediated pheno- 

typing approach to predict breast cancer metastasis in a large 

panel of cell lines, and we implicate b1, a2, and  a6  integrin  

binding in tissue-specific spread distinctly across several dis- 

ease subtypes, a phenomenon that is prevalent across many 

integrin gene-tissue combinations in clinical patient popula- 

tions  (Fig.  4g  and  Fig.  S7b,  ESI†).  Importantly,  our      integrin 

targeting results provide many insights not apparent in gene 

expression data, highlighting the need for functional, protein- 

centric screens of cell behaviors. We emphasize the utility of this 

phenotyping approach as quick, bench-top screening tool that 

can be used to predict in vivo outcomes. Here, we have illustrated 

this functionality by predicting metastatic outcomes and identi- 

fying biomarkers potentially overlooked when analyzing gene 

data sets  from heterogeneous  clinical  patient populations. 

either used end-point analyses or have included multiple con- 

voluted microenvironmental factors. The biomaterial platform 

we designed overcomes these limitations by mimicking some of 

the biochemical complexity present in in vivo ECMs, while 

limiting microenvironmental cues to only those ECM proteins 

presented by the system, with growth factors supplemented as 

desired. This can then be used for observing differences in 

adhesion and motility resulting from differential  binding  to 

these  multi-protein ECMs. 

We propose this system as a potential bridge between the 

overwhelming complexity of in  vivo  observations  and  simple  

in vitro cell biology, without the need for expensive or lab- 

specific 3D models. The first challenge we noted was that 

genomics is the increasingly popular approach for identifying 

cancer biomarkers due to its ease and increasingly low cost, 

facilitating large-scale patient-specific analysis. However, gene 

expression does not necessarily correlate with protein expression 

or function. Therefore, we attempted to connect gene-centric 

patient data with a protein-centric cell screening approach. 

Breast cancer was a suitably complex target to study, as it is a 

notoriously heterogeneous disease.11 This heterogeneity may be 

why integrins were not consistently strong genetic biomarkers 

across large, diverse patient populations (Fig. 4). Our protein- 

centered approach mirrored this inconsistency between the 

SkBr3 and MDA-MB-231 cell lines (Fig. 3 and 4), and we 

quantified significant differences in cell adhesion and motility 

between the three MDA-MB-231 tropic subpopulations (Fig. S3, 

ESI†), which have minimal differences in integrin gene expres- 

sion (Fig. S7a and c, ESI†).2–4
 

The immediate conclusion is that differences in gene expres- 

sion of integrin subunits alone is not sufficient to mediate 

metastasis to different tissues. This remains an open question, 

as gene expression of several integrins was strongly correlated 

with tropic metastasis in patients (Fig. 4g), but most of these 

integrins have not yet been functionally examined in vivo. For 

those that have, the in vivo reports we found did not match the 

clinical correlations in our analysis of the gene data sets.    For 

example,  a3b1   integrin  binding   is  known   to  mediate   lung 

mice.18,19 metastasis  in  rats and However,  high  a3  integrin 

gene expression showed only a non-significant correlation    with 

lung metastasis, and only when we isolated the analysis to 
triple negative patients. Across all subtypes of patients, high a3 

integrin gene expression actually more highly correlated with 
bone metastasis (Fig. 4g). As another example, avb3 integrin has 

been linked to bone metastasis in rats,17 however, b3 integrin 

gene expression in these data sets does not predict for bone 
metastasis, and av integrin gene expression is only more 

strongly associated with bone metastasis in the triple negative 

and HER2+ subtypes than across all patients (Fig. 4g). It is 

important to note that clinical tumor samples contain stroma, 

are often contaminated with immune cells, fibroblasts, and 

epithelial cells,55 and even the best dissection techniques only 

produce tumor contents near 70%,3 which could skew genetic 

analysis. We stress that based on this conflict between our data 

and the genetic analysis we performed, alongside obvious 

conflicts between these gene data sets and literature  reports, 

Discussion 

Extracellular matrix (ECM) properties, such as tissue stiffness,7 

local growth factors,52 stromal cells,6,53 and ECM  proteins,5,10,54 

can each individually promote metastasis. However, we are only 

beginning to understand the role of each of these properties in 

tissue-specific metastatic colonization.5,6,52,54 To truly understand 

the microenvironmental factors that mediate metastasis, each 

factor must be systematically isolated from other cues, and 

investigated functionally in a controlled system that closely repre- 

sents the in vivo microenvironment. While others have used 

adhesion phenotyping to differentiate metastatic and non- 

metastatic cells,10 and tropic subpopulations,34 these studies have 

 



successful risk assessments of tropic metastasis require an 

integrated  proteomic  and  genetic approach. 

Our results suggest that tropism depends more upon how 

cells are able to use their integrins to bind to the ECM, rather 

than variations in gene expression, even in genetically similar 

cell lines. We propose that this type of functional screen, across 

many heterogeneous cell lines, and many phenotypes, is inde- 

pendent of these conflicts observed between genetic and pro- 

teomic analyses. This is demonstrated by the fact that the bone, 

brain, and lung tropic phenotypes we obtained were well- 

conserved across cell lines that share the same preferred 

metastatic site, but that have very different integrin gene and 

protein expression (Fig. 2g). As an example, the MDA-MB-231 

and SUM1315  MO2 cells are both bone metastatic in mice,2,37  

and   both   matched   our   bone   fingerprint,   even   though   the 

MDA-MB-231 cell line has significantly higher surface expres- 
sion of a2 and a5 integrins, and lower expression of avb3, than 

the SUM1315 MO2 cell line.56  Others have shown that    meta- 

stasis depends upon activation, rather than simply expression, 

of integrins.57–59 It is known that splicing variation of a single 

integrin can initiate cancer stem cell plasticity and likely 

impact tropism.16 Taken together, this suggests that under- 

standing the true role of integrins in mediating tropism 

requires a functional analysis of how metastatic cells interact 

with the tissue site, as we have taken here, rather than a limited 

view of only gene expression profiles. 

One study took a similar approach to ours and examined 

cancer cell behavior on different biomaterial surfaces, but 

focused on stiffness as the driving force.7 They found that 

measurements of cell area were not predictive  of  metastasis, 

but there was a weak correlation between both migration and 

proliferation with metastatic site preference.7 Upon our own 

closer examination, their data shows that tropic subpopulation 

cell areas were more sensitive to the biomaterial environments 

than the non-tropic subpopulations, consistent with our results 

(Fig. S4a, ESI†). This suggests that applying our approach to 

other microenvironment cues, such as material stiffness, would 

provide further insight into the biophysical regulation of tropism 

and  add another  dimension to the  fingerprint reported here. 

Integrins are attractive therapeutic targets for metastasis 

because they mediate adhesion to the tissue microenvironment, 
can confer resistance to treatments, and drive disease progression 

and stemness.16,60,61 However, integrin-targeted therapeutics have 

experienced limited clinical success,42 and some potentially 

dangerous outcomes have been reported.62,63 Others have 

shown that inhibiting b1 integrin can reduce primary tumor 

growth, but this subsequently promotes lung metastasis by 

switching the migration mode of triple negative 4T1 mouse 

breast cancer cells from collective to single cell migration, 

observed both via knockdown and antibody targeting.63 Similar 

to these results, we saw both efficacious and dangerous cell 

adhesion and motility phenotypes when we targeted integrin 

binding on our ECMs. b1 and a2 integrin antibody treatment on 

ECM 1 prevented spreading, but increased both 2D motility and 

3D invasion of the SkBr3 cell line (Fig. 3c–g). In the highly 
metastatic MDA-MB-231 cell line, our b1, a2, and a6 integrin 

antibodies each reduced adhesion and motility (Fig. 3a and b), 

but also dangerously increased the phenotypic similarity to 

brain tropism (Fig. 4a). These dangerous phenotypes may result 

from plasticity and adaptability of metastatic cells when integ- 

rins are targeted,62,64 which is potentially responsible, in part, 

for the lack of clinical success of integrin  therapeutics. 

These results highlight the  known  heterogeneity  challenge 

in breast cancer, and there is a ground swell toward persona- 

lized therapeutics. As proof of concept toward using our plat- 

form for discovery of treatments for metastasis in this 

heterogeneous disease, we examined cell lines from two clinical 

subtypes with poor prognosis, and found that they displayed 

striking differences in response to integrin antibodies. In our 

fingerprinting results, these cell lines only shared two of nine 

possible    responses    to    the    integrin    antibodies,  suggesting 

subtype-specific roles for b1, a2, and a6 integrins in bone, brain, 

and lung metastasis. The MDA-MB-231 tropism was equally 
affected by each of these integrin antibodies, while the SkBr3 
cell line was much more sensitive to b1 integrin targeting than 

to  targeting  a2  or  a6  integrins.  Supporting  the subtype-specific 
responses we observed, there is in vivo evidence for distinct 

roles of the same integrin in tumorigenesis and metastasis in 

different types of breast cancer.64 In PyV-MT tumors, b1 integrin 

is required for tumor initiation. However, in mice that also 

express active erbB2 (HER2), b1 integrin is only necessary to 

mediate lung metastasis, while  tumorigenesis  is  independent  

of b1 integrin.64 In our work, b1  integrin targeting had  no effect 

on the MDA-MB-231 lung tropism, but significantly decreased 

lung tropism in the HER2+ SkBr3 cell line. However, of the  

eleven cases where integrin gene expression predicts for tropic 

metastasis in the clinic, only two were conserved for both the 

triple negative and HER2+ patient subpopulations (Fig. 4). This 

indicates that integrins are not conserved biomarkers  across  

the entire heterogeneous patient population, necessitating 

subtype- or even tumor-specific screening to identify successful 

integrin therapeutics. We suggest that this type of functional 

screening  would  be  capable  of  identifying  efficacious    tumor- 

specific therapeutics, providing additional insight in combi- 

nation  with  current  genetics-based approaches. 

Conclusions 

Here, we developed a simple, yet robust in vitro biomaterial 

platform that allowed us to quantify many different cell pheno- 

types associated with adhesion and motility in order to take a 

comprehensive view of how integrin–ECM interactions regulate 

bone, brain, and lung metastasis. Importantly, these results 

would not have been realized by simply looking at individual 

measurements, and required us to instead quantify patterns of 

measurements. This compiled pattern of measurements created 

a phenotypic fingerprint, which is dependent only on integrin 

binding to the ECM, and can predict integrin-mediated meta- 

static spread in cell lines. Our results suggest that targeting 

integrins across the heterogeneous breast cancer clinical sub- 

types is not appropriate (Fig. 3 and 4), potentially explaining  the 

 



lack of success of integrin-targeted therapeutics thus far. Impor- 

tantly, our results are largely independent of integrin gene or 

protein expression, highlighting the need for this type of func- 

tional approach, particularly when comparing among different 

breast cancer subtypes. We emphasize the utility of this bio- 

material platform to screen integrin–ECM interactions rapidly 

and reproducibly, and by collectively quantifying patterns of 

phenotypes en masse, the ability to predict in vivo fate with a 

simple  in vitro approach. 

33% collagen IV, 15% collagen I, 15% fibronectin, and 4% 

tenascin C (all weight%). Rat-tail collagen I and natural mouse 

laminin were purchased from Life Technologies; human tenas- 

cin C, human vitronectin, and human osteopontin from R&D 

Systems (Minneapolis, MN, USA); human collagen IV from 

Neuromics (Edina, MN, USA); and human plasma fibronectin 

from EMD Millipore (Billerica, MA, USA). Coverslips were incu- 

bated with proteins at room temperature for three hours, then 

with  10  mg  cm-2  MA(PEG)24  (Thermo  Scientific,  Rockford,  IL, 

USA) for two hours to block non-specific protein adsorption on 

any remaining surface area. 

An ELISA was used to quantify coupling of collagen III (Fig. 

S1, ESI,† 0, 1, 10 and 50 mg cm-2; Fibrogen, San Francisco, CA,  

USA).  Surfaces  were  blocked  with  10  mg  ml-1  BSA  (Fisher 

Scientific) for 1 hour, reacted with 1 : 200 primary antibody 

(Santa Cruz Biotechnology, Dallas, TX, USA) for 1.5  hours, 

and then 1 : 200 HRP-conjugated secondary antibody (Abcam, 

Cambridge, MA, USA) for 1 hour at room temperature, rinsing 

four times with PBS in between each step. Coverslips were 

incubated with 0.1 M sodium acetate (pH 5.5) containing 1  

mg  ml-1  3,3 0,5,50-tetramethylbenzidine  (Sigma-Aldrich)  and 

0.05 wt% hydrogen peroxide (Fisher Scientific) and the reaction 

proceeded for 30 minutes, then was stopped with 1 M H2SO4 

(Sigma-Aldrich). The absorbance at 450 nm was read immedi- 

ately (Biotech  ELx800,  Winooski,  VT, USA). 

Materials and methods 
Cell culture 

Human breast cancer cell lines MDA-MB-231,  BT549,  MCF7,  

and SkBr3 were generous gifts from Shannon Hughes at the 

Massachusetts Institute of Technology. Highly metastatic MDA- 

MB-231 variants, isolated from in vivo selection, were kindly 

provided  by  Joan  Massagué.2–4  These  cell  lines  preferentially 

metastasize to the bone (1833 BoM), brain (831 BrM2a) or lung 

(4175 LM2). All were routinely cultured in Dulbecco’s Modified 

Eagle’s Medium supplemented with 10% fetal bovine serum 

(FBS), 1% penicillin–streptomycin (P/S), 1% L-glutamine, and 

1% non-essential amino acids. The MDA-MB-361, SUM1315  

MO2, MDA-MB-468, and  HCC  1954  cell  lines  were  provided  

by  Mario   Niepel  at   Harvard  Medical   School.   SUM1315  MO2 

cells were cultured in Ham’s F-12 medium supplemented with 

5  mg  ml-1  insulin,  10  ng  ml-1  EGF,  10  mM  HEPES,  10%  FBS, 

and 1% P/S. MDA-MB-361 cells were cultured in Leibovitz’s L-15 

medium with 20% FBS and 1% P/S. MDA-MB-468 cells   were 

cultured in Leibovitz’s L-15 medium with 10% FBS and 1% P/S. 

HCC 1954 cells were cultured in RPMI medium with 10% FBS 

and  1%  P/S. With the exception  of the MDA-MB-361 and MDA- 

MB-468 cells, which were cultured without supplemental CO2, all 

cell lines were cultured at 37 1C and 5% CO2. All cell culture 
supplies were purchased from Life Technologies (Carlsbad, CA). 

Cell adhesion and polarization 

Cells  were  seeded  at  4000  cells  per  cm2  in  growth   medium, 

ml-1 medium   supplemented   with   40  ng epidermal  growth 

factor (EGF, R&D Systems) immediately, or with antibody pre- 

treatment, which occurred for 30 minutes prior to seeding. Anti-
b1    integrin   (clone   P5D2,   R&D   Systems)   was   used    at 

0.83  mg  ml-1,  and  anti-a2  and  anti-a6  integrins  were  used  at 

3.3  mg  ml-1  (a2:  clone  P5E6,  a6:  clone  NK1-GoH3,  both  from 

Millipore). Cell adhesion was captured through imaging cells 

beginning 10 minutes after seeding in an environment- 

controlled Zeiss Axio Observer Z1 microscope (Carl Zeiss, 

Oberkochen,   Germany)  using  an   AxioCam  MRm  camera   and Preparation of ECMs 

Glass coverslips (15 mm and 18 mm diameter, Fisher Scientific, 

Agawam, MA, USA) were oxygen plasma treated (Harrick  

Plasma,  Ithaca,  NY,  USA),  and  silanized  through  vapor   phase 

deposition of  (3-aminopropyl)triethoxysilane  (Sigma-Aldrich, 

St. Louis, MO, USA) at  90  1C  for  a  minimum  of  18  hours.65  

The coverslips were rinsed sequentially in toluene (Fisher 
Scientific), 95% ethanol (Pharmco-AAPER,  Brookfield,  CT,  
USA), and water, and dried at 90 1C for one hour. They were 

then functionalized with 10 g L-1 N,N-disuccinimidyl carbonate 

(Sigma-Aldrich) and 5% v/v diisopropylethylamine (Sigma- 

Aldrich) in acetone (Fisher Scientific) for two hours.66 Cover- 
slips were rinsed three times in acetone and air-dried. ECM 
protein cocktails were then covalently bound to the glass 

coverslips through reactive amines,67 using cocktails that were 
inspired by the ECM of secondary sites as follows: ECM 1 (bone): 

5 mg cm-2 of 99% collagen I and 1% osteopontin; ECM 2 (brain): 

1 mg cm-2 of 50% fibronectin, 25% vitronectin, 20% tenascin C, 

and 5% laminin; and ECM 3 (lung): 2 mg cm-2 of 33% laminin, 

an  EC  Plan-Neofluar  20x  0.4  NA  air  objective.  Images     were 

taken using AxioVision (Carl Zeiss) at five-minute intervals for a 

minimum of 2 hours until cells  had  reached  steady-state. 

ImageJ  (National  Institutes  of  Health,  Bethesda,  MD,  USA) 

was used to trace cell areas using the built-in measurement 

function. Spreading rate was defined as the slope of the linear 

portion of the area versus time graph during initial adhesion. 

Individual cells were marked when they had polarized, and the 

fraction of cells that had polarized at 2 hours post-seeding was 

quantified  for  comparison   across  conditions.  Cells  that     con- 

tacted other cells, underwent division or apoptosis, or were not 
fully in frame were excluded. N Z 2 independent biological 

replicates, N Z 40 cells per condition. 

 

Cell migration 

Cells were seeded at 4000 cells per cm2 and given 18 hours to 

adhere in growth medium. Seeded cells were treated with a live- 

cell   fluorescent   dye   (CMFDA,   Life   Technologies),   and   then 

 



provided fresh medium or medium supplemented with EGF 

and/or integrin antibodies (as described above) 4 hours prior to 

microscopy.  Brightfield  and  fluorescent   images   were   taken 

at 15 minute intervals for 12 hours using an EC Plan-Neofluar 

similarity in the appropriate null distribution. Because our 

distributions were comprised of 10 000 cells with only 13 or 

15 possible discrete values, each percentile for a cell line had a 

range, illustrated via the error bars in Fig. 2g. Cell lines in the 

top or bottom 5% of the ordered distributions were considered 

to be significantly higher or lower than the null distribution. 

Specifically, the lowest and highest 500 randomly generated 

cells had p r 0.05. 

Collagen gel invasion 

Cells were seeded at 600 cells per cm2 in normal growth medium 

and  given  12  hours  to  adhere.  Collagen  gels  (2  mg  ml-1)  were 

made by mixing 5% v/v 1 M NaOH (Fisher Scientific), growth 

medium and type I collagen (Life Technologies) on ice. The 

medium was removed from the seeded coverslips, and gel 

solutions were overlaid onto the cells. Gelation proceeded for 

30 minutes at 37 1C and 5% CO2, then 250 ml growth medium 

was added to each well. EGF and integrin antibodies were 

included in the gel solution and the supernatant medium as 

described above. For accurate comparisons, an equal number 

of randomly selected positions were observed in all conditions. 

N = 2 independent biological replicates, each with three techni- 

cal replicates, and 25 positions were imaged per technical 

replicate. 

10x 0.3  NA air  objective  (Carl  Zeiss).  Cells  were  tracked using 

Imaris (Bitplane, St. Paul, MN, USA) to generate individual cell 

paths. Individual cell speeds were determined by calculating a 

speed at every 15 minute time interval, then averaging these 

over the entire 12 hours. Displacement was defined as the net 

change in position of the cell over the total time. Chemotactic 

index is the ratio of a cell’s net displacement to path length. 

Individual cell average speeds, net displacements, and chemo- 

tactic indices were then averaged to determine a mean popula- 

tion value. Cells that contacted other cells, underwent division 

or apoptosis, or were not fully in frame for the entire 12 hours 
were excluded. N Z 2 independent biological replicates, N Z 90 

cells per condition. 

Fingerprinting 

We  quantified  adhesion and   migration   phenotypes   for  the 

three tropic subpopulations, both under normal and EGF- 

stimulated conditions. To create phenotypic fingerprints, first, 

we calculated the CoV (standard deviation divided by average, 

calculated for final mean values for one  measurement  across 

the three ECMs) for each tropic cell line to determine their ECM-

sensitivity in each parameter (a CoV greater than 0.1 was 

considered ECM-sensitive; Fig. 2a and d). Second, we  quanti- 

fied the fold-change in these metrics in response to EGF 

stimulation on each ECM (fold-changes greater than  1.15  or  

less than 0.85 were defined as significant; Fig.  2b  and  e).  

Finally, we did all pairwise statistical comparisons across ECMs 

(via a one-way ANOVA, described below), and quantified order- 

ing of values (i.e., for normal speed measurements, was ECM 1 

greater than, equal to, or less than ECM 2; Fig. 2c and Fig. S4b, 

ESI†). We then compiled this data to create a fingerprint of the 

66 phenotypes associated with a specific tissue preference 

(Fig. 4d and e and Fig. S4b, ESI†). Upon comparison of each 

phenotype across the three tropic subpopulations, only those 

phenotypes which were identified in just one tropic cell line 

were retained, and all phenotypes shared in two or three of the 

cell lines were ignored (Fig. 4b–e, and Fig. S4b, ESI,† dark 

colors). To validate these fingerprints, we calculated these same 

criteria for other cell lines with  known  in  vivo  metastasis. 

We  then  overlaid  these  patterns  onto  each  tropic fingerprint, 

Gene expression analysis 

Gene expression data from primary breast tumors (GSE 2034, 

GSE 2603, GSE 5327, and GSE 12276) was retrieved from the 

NCBI Gene Expression Omnibus (GEO)  database.  Each  was 

RMA normalized using the R platform (Vienna, Austria).68 

Datasets were  cross-mapped  based  upon  common  probes, 

and batch effects were corrected with an Empirical Bayes 

method using the ComBat algorithm in R.69  Genes represented 

by more than one probe were collapsed to the probe with the 

highest mean value. For metastasis-free survival analysis, 

patients with known metastasis and clinical subtype informa- 

tion were classified into groups of high and low gene expres- 

sion based upon median expression. Published survival and 

clinical subtype information was used.4,51 Survival was analyzed 

in Prism v6.0b (GraphPad Software, La Jolla, CA, USA), and 

significance was evaluated using a log-rank (Mantel–Cox) test. 

To analyze integrin expression in the tropic cell lines, GSE 2603 

and GSE 12237 were retrieved from the NCBI GEO database, 

RMA normalized, combined using the ComBat algo- rithm as 

previously described, and data corresponding to the cell 

subpopulations used here (1833, BrM2a, and 4175) were 

extracted. Individual integrin genes were extracted, values were 

collapsed to the probe with the highest expression, and a heat 

map  was  generated  in R. 

and   quantified   the  fractional   similarity   between   each   cell line 

and the unique phenotypes within these fingerprints (Fig. 2g and 

Fig. S5a, ESI†). 

Null distributions of bone, brain, and lung tropisms were 

generated via a custom code written in MATLAB R2012a (The 

MathWorks, Inc., Natick, MA). 10 000 random cell line pheno- 

types were generated and were compared with the unique 

features of the bone, brain, and lung fingerprints to obtain 

tropism similarity values. The distributions were ordered, 

percentiles assigned, and then the heterogeneous  cell  lines  

were compared with each of these null distributions, matching 

their  similarity  with  the  percentile  associated  with  this  same 

Reverse-transcriptase PCR 

Cells were seeded at 40 000 cells per cm2 and allowed to adhere 

to coverslips or tissue culture plastic for a minimum of 18 hours. 

Coverslips or wells were washed with PBS prior to detaching cells 

with 0.05% trypsin–EDTA (Life Technologies). Total RNA was 

extracted using the Genelute Mammalian Total RNA kit    (Sigma) 

 



followed by cDNA synthesis using the RevertAid reverse tran- 

scriptase protocol, with the exception of using RNasin 40 U mL-1, 

(Promega, Madison, WI) as the RNase inhibitor. The amplifica- 

tion was carried out with Jumpstart Taq polymerase according to 

the manufacturer’s instructions using a BioRad MJ Mini Perso- 

nal thermal cycler (Hercules, CA). Primer sequences (Integrated 

DNA Technology, Coralville, IA) were as follows: 

GAPDH (NM_001256799.1) forward 50-CACTGACACGTTGGC 

AGTGG-30
 

reverse 50-CATGGAGAAGGCTGGGGCTC-3 0
 

Integrin    b1:    (NM_002211.3)    forward    50-CTGGGCTTTAC 

GGAGGAAGT-30
 

reverse 50-GTCTACCAACACGCCCTTCA-30
 

Integrin    a2:    (NM_002203.3)    forward    50-CTGGTGTTAGC 

GCTCAGTCA-30
 

reverse 50-CCAGGGTGAACCAACCAGTA-30
 

Integrin  a6:  (NM_001079818.1)  forward  50-CGAGGACAAGC 

GGCTGTT-30
 

reverse 50-TGACCCCCATCCACTGATCT-30
 

EGFR: (NM_005228.3) forward 50-CTTCGGGGAGCAGCGATG-30 

reverse 50-CAGCTCCTTCAGTCCGGTTT-30
 

Each reaction was analyzed on a 1% agarose gel with 

ethidium bromide staining, then visualized under ultraviolet 

light using the IN Genius Syngene Bioimaging platform 

(Frederick, MD). GAPDH was used as a housekeeping gene. 

N Z 2 independent biological replicates. 
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867–874. 

R.  N.  Kaplan,  R.  D.  Riba,  S.  Zacharoulis,  A.  H.   Bramley, 

L. Vincent, C. Costa, D. D. MacDonald, D. K. Jin, K.   Shido, 

S. A. Kerns, Z. Zhu, D. Hicklin, Y. Wu, J. L. Port, N. Altorki, 

E. R. Port, D. Ruggero, S. V Shmelkov, K. K. Jensen, S. Rafii 

and D. Lyden, Nature, 2005, 438, 820–827. 

A. Kostic,  C.  D. Lynch  and M.  P. Sheetz,  PLoS One,   2009, 

4, e6361. 

M. H. Zaman, Nat. Rev. Cancer, 2013, 13, 596–603. 

A.  S.  Meyer,  S.  K.  Hughes-Alford,  J.  E.  Kay,  A.     Castillo, 

A. Wells, F. B. Gertler and D. A. Lauffenburger, J. Cell Biol., 

2012, 197, 721–729. 

N.   E.   Reticker-Flynn,   D.   F.   B.   Malta,   M.   M. Winslow, 

J.  M.  Lamar,  M.  J.  Xu,  G.  H.  Underhill,  R.  O.      Hynes, 

T. E. Jacks and S. N. Bhatia, Nat. Commun., 2012, 3, 1122. 

H.  Kennecke,  R.  Yerushalmi,  R.  Woods,  M.  C.  U. Cheang, 

D. Voduc, C. H. Speers, T. O. Nielsen and K. Gelmon, J. Clin. 

Oncol., 2010, 28, 3271–3277. 

S. Paget, Lancet, 1889, 133, 571–573. 

T. Shibue and R. A. Weinberg, Proc. Natl. Acad. Sci. U. S. A., 

2009, 106, 10290–10295. 

D.  Barkan,  H.  Kleinman,  J.  L.  Simmons,  H.       Asmussen, 

A.  K.  Kamaraju,  M.  J.  Hoenorhoff,  Z.  Liu,  S.  V       Costes, 

E.  H.  Cho,  S.  Lockett,  C.  Khanna,  A.  F.  Chambers  and   

J. E. Green, Cancer Res., 2008, 68, 6241–6250. 

M. Abdel-Ghany, H.-C. Cheng, R. C. Elble and B. U. Pauli, 

J. Biol. Chem., 2002, 277,  34391–34400. 

H. L. Goel, T. Gritsko, B. Pursell, C. Chang, L. D. Shultz, 

D. L. Greiner, J.  H. Norum,  R. Toftgard, L. M. Shaw and      

A. M. Mercurio, Cell Rep., 2014, 7, 747–761. 

S. Takayama, S. Ishii, T. Ikeda, S. Masamura, M. Doi and 

M. Kitajima, Anticancer Res., 2005, 25, 79–83. 

2 

3 

4 

5 

6 

Statistical analysis and correlations 

Statistical  analysis  was  performed  using  Prism v6.0b.  Data are 

reported as mean ± standard error. Statistical significance was 
7 evaluated using a one-way analysis of variance, followed by a 

Tukey’s post-test for pairwise comparisons. Significance 

between proportions (i.e., fraction of cells polarized) was evaluated 

with a Fisher’s exact test with two-tailed p-values. To determine 

significance between slopes (i.e., spreading rate), an analysis of 

covariance was used, with a one-way analysis of variance for 

multiple comparisons, defining the sample size as the degrees    

of freedom plus one. Spearman correlations were calculated from 

mean values paired by condition, and significance was deter- 

mined using two-tailed p-values. p o 0.05 was considered statis- 

tically  significant.  p  o  0.05  is  denoted  with  *,  r0.01  with  **, 

r0.001 with ***, and r0.0001 with ****; p Z 0.05 is considered 

not significant (‘ns’). 

8 

9 

10 

11 

12 

13 

Acknowledgements 

We are grateful to Shannon Hughes, Doug Lauffenburger, Jeffrey 

Blanchard, and Aaron Meyer for helpful intellectual discussions, 

Wei Chen for guidance with silane chemistry, Thomas McCarthy 

and the UMass MRSEC for use of equipment, and Isaac Han, 

Matthew Crotty, Elyse Hartnett, and Patrick Colleton for technical 

assistance.   We   thank   Joan   Massagué,   Shannon   Hughes,   and 
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E.   Grünewald,   T.   Cheng,   D.   Dombkowski,   L.   M.   Calvi, 

S. R. Rittling and D. T. Scadden, J. Exp. Med., 2005, 201, 

1781–1791. 

E. Ruoslahti, Glycobiology, 1996, 6, 489–492. 

A. Bignami, M. Hosley and D. Dahl, Anat. Embryol., 1993, 

188, 419–433. 

P. R. A. Johnson, J. K. Burgess, P. A. Underwood, W. Au, 

M.  H.  Poniris,  M.  Tamm,  Q.  Ge,  M.  Roth  and  J.  L. Black, 

J. Allergy Clin. Immunol.,  2004,  113, 690–696. 

R.  M.  Neve,  K.  Chin,  J.  Fridlyand,  J.  Yeh,  F.  L.   Baehner, 

T. Fevr, L. Clark, N. Bayani, J.-P. Coppe, F. Tong, T. Speed, 

P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W.-L.   Kuo, 

J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, 

F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, 

S. Ethier, A. Gazdar and J. W. Gray, Cancer Cell, 2006, 10, 

515–527. 

A. Banerjee, Z.-S. Wu, P. Qian, J. Kang, V. Pandey, D.-X.   Liu, 

T. Zhu and P. E. Lobie, Breast Cancer Res., 2011, 13,  R112. 

N. Rucci, E. Ricevuto, C. Ficorella, M. Longo, M. Perez, C. Di 

Giacinto, A. Funari, A. Teti and S. Migliaccio, Bone, 2004, 34, 

697–709. 

S. M. Shafie and L. A. Liotta, Cancer Lett., 1980, 11,   81–87. 

M.   Tarragona,   M.   Pavlovic,   A.   Arnal-Estapé,   J.   Urosevic, 
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