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Abstract

The robustness of the following four tests for homo-

geneity of variance was investigated: Cochran's, Hartley's,

Miller's Jackknife and Scheffe's. Both Type I and Type II

error was determined under conditions of non-normal data

and unequal sample sizes. All tests were on two samples

and sample sizes ranged from 10 to 30. The results are

based on Monte Carlo calculations of one thousand points.

Cochran's, Hartley's and Miller's tests were found to per-

form well. Scheffe's test had poor power, but this may

have been caused by the number of samples and their small

size

.
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CHAPTER I

INTRODUCTION

Statistical Tests

Statistical tests form the basis of much of the "hard"

research in education. The principle on which these tests

operate is the following. Given some data, for example

student test scores, one views it as a sample from all the

possible data that might have been collected, i.e. the

scores from all students that could have been tested.

(Properly the population must be determined first and then

a random sample taken from it. But in practice this is often

not feasible and as a result the randomness of the sample is

open to doubt. ) The goal is to extract from the sample evi-

dence on which to make inferences about the larger parent

distribution. If the data is from two or more distinguish-

able groups and the aim is to infer that the groups are in

some respect different, then a statistical test is performed.

Each group of data is viewed as a sample from a parent popu-

lation and the samples are compared, not to find out if

there are differences in the samples, but rather to find if

it is probable that there are differences between the popu-

lations from which the samples were supposedly drawn.

Parent populations are distributions whose mean and

other moments may be unknown. Statistical tests are usually

designed to distinguish these distributions on the basis of
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probable differences in their means or occasionally on dif-

s specific higher moment. In the standard con-

trolled experiment a hypothesis has been formulated which

will indicate what changes the treatment will effect on the

parent population. To validate the hypothesis it must be

shown that the distributions differ in a particular charac-

teristic, for example the mean, and not just in some unknown

combination of mean and moments. While statistical tests

usually claim to be specific to a particular factor, many

respond to additional moments. In particular some tests

for differences in means also measure differences in vari-

ance and may upon occasion report two populations different

when their means are identical but their variances are not.

Two of the most popular tests in educational research, the

analysis of variance (ANOVA) and the T test, are in this

category. For such tests it is necessary to be certain that

all the populations used in the study have the same vari-

ance. This is usually done by assumption; but it may also

be checked through a preliminary test that compares sample

variances

.

Test Assumptions and Robustness

The assumptions behind a test are carefully delineated

by the statistician and then frequently ignored by the ex-

perimenter. There are two situations in which the assump-

tions may be violated without destroying the validity of
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the test The first is when the experimenter has reason to

believe that the violation is of minor proportion, such as

in the case of the assumption of random samples where care-

fully chosen nonrandom samples may differ very little from

truly random ones. The other is when the test is robust to

violation of the assumption.

The term "robustness" is used to refer to the in-
sensitivity of a statistical test to one or more
of the assumptions underlying the test. The term
is often used qualitatively, and the conditions
under which a test exhibits a specified amount of
robustness is stated vaguely or not at all. Bradley
(1963, 1964) has taken issue with these practices,

demonstrating very clearly that the degree to which
a statistical test is robust depends on a rather
large number of factors. In the light of Bradley's
work, it is clear that any statement about robust-
ness should include the conditions under which the
test is said to be robust and some indication of
the actual Type I and II errors.

(Donaldson 1968)

The realities of experimental work often force the re-

searcher to choose between using a test in violation of its

assumptions or using no test at all. To make this decision

intelligently it is essential that some knowledge of test

robustness be available. The purpose of this study is to

investigate the robustness of some of the tests for equal-

ity of variance. At present, little is known about this

area and most competent researchers recommend that the tests

be used only when the experimenter is confident that all the

test assumptions are met. (See, for example. Box 1953.)
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Tests for Homogeneity of Variance

The statistical tests used most frequently in educa-

tional research, the T test and ANOVA, are tests on means;

both assume the equality of population variances. This is

known as the assumption of homogeneity of variance; a de-

tailed account of the importance of this assumption to ANOVA

will be given in the next section. After the mean the most

interesting population parameter is the second moment about

the mean, i.e. the variance. Tests on this parameter are

known as tests for homogeneity of variance; currently, they

are rarely used by themselves and are mainly of interest as

preliminary tests for ANOVA.

Three instances in which testing for heterogeneity
of population variances is worthwhile come to mind:
a) when one wishes to make inferences about popula-
tion variances because they are of scientific in-
terest, b) when one suspects heterogeneity of vari-
ance in an analysis of variance in which not all of
the factors have fixed effects, c) when one suspects
heterogeneity of variances* in a fixed effects anal-
ysis of variance in which the numbers of observa-
tions in the groups are widely disparate.

(Glass 1965)

Unfortunately the assumptions underlying most tests for

homogeneity of variance are inconsistent with their use as

preliminary tests. To understand why this is so it is nec-

essary to review the situations in which ANOVA is not robust

to violation of the homogeneity of variance assumption; that

is, those situations in which a preliminary test can be of

value

.
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The Robustness of ANOVA

Homogeneity of variance is one of the basic assump-

tions underlying the use of ANOVA as a test for differences

in means. Yet in many cases ANOVA is unaffected by viola-

tion of this assumption. There is an extensive literature

describing the effects on ANOVA of violating each of its

assumptions but much of this robustness literature does not

meet the standards given by Donaldson ( 1968) . In particular

little attention is given to the subject of the robustness

of Type II error rates. This is clearly seen, for example,

in a paper by Box (1954) which is one of the standard ref-

erences on the robustness of ANOVA to violation of the homo-

geneity of variance assumption. The paper briefly refers

to the existence of a few power studies (Type II error) but

includes data only on shifts in the observed percentile

levels (Type I error). Yet most discussions of the homo-

geneity of variance problem (see for example Winer p. 92)

are based on the results of Box or similar papers such as

Welch (1938) and Newton (Lindquist, 1953).

The Type II error robustness studies that have been

conducted (see Tang (1938), Hsu (1938), Hsu (1941) and

Gronow (1951)) indicate that the power of ANOVA is robust

to violation of the homogeneity of variance assumption.

Studies by Davids and Johnson (1951), Donaldson (1968) and

Clynch and Myers (Myers, 1971) have considered both Type I

and Type II error rates. These papers conclude that ob-
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served percentile changes are the limiting factor in the

robustness of ANOVA and that Type II error effects can be

safely ignored.

Thus discusions on the robustness of ANOVA that are

based soley on Type I error information do in this case

reach valid conclusions. Table I summarizes the results of

the Type I error studies. The table entries are the observed

Type I error probabilities at the 95^^ percentile. If ANOVA

were completely robust all the entries would be .05; this,

in fact, is the case if R, the ratio of sample sizes, is one

or if V, the ratio of variances, is one. The latter case

is to be expected since equality of sample size is not one

of the assumptions of ANOVA and V=1 correspondes to there

being no violation of assumptions. But the extreme robust-

ness of ANOVA to violation of the homogeneity of variance

assumption (V?^l) under the condition of equal sample size

(R=1) is surprising. This robustness deteriorates rapidly

if R?^l as the bottom left and right corners of the table

show. Errors in the right half of the table would appear

to create a conservative test; but, since it is rarely known

which sample represents the population of larger variance

•t;h0 i70 is no way of determining in which half of the table a

particular experiment will lie. Errors in the left half

create liberal tests. In summary ANOVA is robust to viola-

tions of homogeneity of variance if sample sizes are equal.
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Therefore a preliminary test of variance is of value only

in cases where the sample sizes are unequal.

One more robustness characteristic of ANOVA is of in-

terest to this study. General discussions on the robustness

of ANOVA, such as Eisenhart (1947), Cochran (1947) and

Scheffe (1959), show that the test is remarkably robust to

violations of the normality assumption. Thus a preliminary

test that is sensitive to this characteristic may reject

data that is acceptable to ANOVA. Box (1953) compared the

use of a normality sensitive preliminary test to "putting

to sea in a rowing boat to find out whether conditions are

sufficiently calm for an ocean liner to leave port 1 "

)

The Robustness of Tests for Homogeneity of Variance

The implication of ANOVA ' s robustness characteristics

to preliminary tests is that: 1) they must also be robust

to deviations from the normality assumption since if they

are not they may reject data that is perfectly acceptable

to ANOVA and 2) tests for homogeneity of variance need only

be employed when samples are of varying size. Thus if a

test for homogeneity of variance assumes normal data and

equal sample sizes, as most do, then it is a useful prelim-

inary test for ANOVA only when it is robust to violation of

these two assumptions. At present there is little to in-

dicate that any of these tests have such robustness charac-

teristics and the safest procedure is to avoid their use as
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preliminary tests.

Faced with this situation two solutions are possible:

1) create a new test whose assumptions are consistent with

the conditions under which it is to be used; or 2) investi-

gate whether any of the existing tests are robust with re-

spect to violation of the troublesome assumptions. The

latter course was chosen for this study. Four tests of

homogeneity of variance were investigated; two that held

special promise as tests robust to violation of their nor-

mality assumption and two that held less promise but were

of interest because of their popularity. These tests were

subjected to a Monte Carlo analysis (see chapter III) of

their robustness with respect to two factors nonnormality

and unequal sample size. No formal hypotheses were formu-

lated because the point of the study was not to validate a

theory but rather to discover whether or not any of the

four tests were usable as preliminary tests. There was,

however, an expectation that Cochran's and Hartley's tests

would be shown to be inadequate and that the evidence from

this report would discourage their use in the future. This

prediction was found to be false.
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CHAPTER II

REVIEW OF THE LITERATURE

The following tests of homogeneity of variance have

appeared in the literature: Cochran (1941), Hartley (1950),

Bartlett (1937), Wald (1947), Box-Andersen (1955), Levene

(1960), Miller (1968), Moses (1963), Scheffe" (1959), and

Bartlett—Kendall (1946). Box (1953) showed that the M^

statistic upon which the Bartlett test is based is distri-

buted as ( l+( 1/2) rather than as ^2 ^ meas-

ure of Kurtosis and thus the test is sensitive to departures

from normality. Box (1955) further argued that the tests

of Bartlett, Cochran, Hartley and Wald are sensitive to non-

normality because they "tacitly compare some measure of var-

iation among the variances with a theoretical value which

is correct only for the normal distribution." Durand (1969)

compared the robustness and power of Levene ' s test with

Cochran's, Hartley's, and Bartlett's; he found that for

small samples Levene ' s test did not have an advantage over

the other two.

t

^The Bartlett-Kendall test is a special case of Scheff^'s

test

.



11

Miller (1968) compared the power of the following

tests; F, Box-Andersen, Jackknife with k=5^, Jackknife with

)^=1, Levene, Box, and Moses. He also analysed their robust-

ness with respect to violations from normality (see tables

II & III) and drew the following conclusions.

i) The F test is extremely non-robust
ii) Box-Andersen and the Jackknife (k=l) are about
equally powerful...
iii) The observed significance levels under the
null hypothesis for the Jackknife and Box-Andersen
are more sensitive for small samples to the form of
the distributions than in the case of larger sample
sizes

.

iv) The Leven s test is quite robust, but lags far
behind the Jackknife and Box-Andersen in power.

(Miller, 1968)

Unfortunately all Miller's data is for samples of equal size.

The evidence to date indicates that only three tests

are likely candidates in the search for a test robust to

deviations from normality. These are the Scheffd", the

Miller Jackknife and the Box-Andersen. All of these tests

are difficult to compute. Furthermore, Scheffe' does not

state how samples should be divided into the subsamples

needed for his test; nor has there been a study that com-

pares the various possible methods.

^k defines the manner in which samples are divided into

subsamples; specifically, it is the size of the subsamples.



Table
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This study expands on the present literature in three

ways: 1) it considers the problem of unequal sample sizes

that Miller ignored; 2) it investigates the issue of how to

subdivide samples for Scheff^'s test; and 3) it examines

three tests that have so far received little attention in

the robustness literature. These are the Scheffe'', a test

that is claimed to be robust to deviations from normality,

plus Cochran's and Hartley's tests both of which are popular

but not necessarily very robust. Techniques used for the

study were not derived from any particular previous inves-

tigation but do share a great deal in common with some of

those used by Miller (1968). As a result the data given in

Chapter IV, tables XI to XV, can be easily compared to

Miller's results given in tables II and III. Chapter III

will describe the procedures used in this study and compare

them to those of Miller.
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CHAPTER III

PROCEDURE

The Range of Investigation

The following five tests were included in this study:

Cochran’s, Hartley's, Miller's, Scheffe with J^=2-V<and

Scheffe with J^=5Vl(see appendix III). The Box-Andersen

test was not included for two reasons: 1) Miller included

it in his study; 2) it does not submit to the type of anal-

ysis used in this investigation. The Box-Andersen test is

a corrected F test; but rather than altering the F distri-

bution the correction alters the degrees of freedom. This

means that corresponding to any particular test configura-

tion there are a great many test statistic distributions.

To experimentally generate each of these distributions

would have been a very tedious and expensive task.

The investigation was simplified by considering only

the case of two samples while sample sizes were restricted

to the values 10, 20, 30. It was felt that considering

tests on three or more samples would only complicate the

issue without adding substantially to our understanding of

the behavior of these tests. Small samples were used be-

cause they are the ones most frequently encountered in

educational research and because tests on them are far more

sensitive to violation of assumptions. Both simplifications
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also had the virtue of conserving computer time. (Despite

the simplifications, this study was far from thrifty, about

ten hours of computer time were used at a cost of $2,500.)

On the other hand, the restricted range of the study does

not give the Scheffe'" test a fair trial because it was de-

signed primarily for use with more than two samples as well

as for larger ones.

The original plan had been to investigate the effects

of non-normality by independently varying the skewness and

the kurtosis over a range of values; however, these two

measures are not completely independent. It is not possible

to obtain highly skewed distributions with normal values

for kurtosis (see appendix I). Within this limitation one

can obtain a wide range of distributions by using the prop-

erty of linear additivity of moments. From a distribution

f with moments ••• and a distribution f with moments

A^l' t
^'2 ’** construct a distribution

F = nf + n' f

n + n

whose moments are

n/Af + n
^

+ n
^ ^ ^

n + n'" n + n

Since the mean, variance, skewness and kurtosis are simple

combinations of the first four moments it is possible to

obtain a set of distributions with smoothly varying values

of these parameters. Kurtosis, for example, can be varried

over the values 2, 3, 4, 5, 6 while the skewness variance
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and mean are held constant. Skewness, on the other hand,

cannot be varied much from zero unless the kurtosis is

maintained at a high value. If Kurtosis is held at six

then skewness can be varied between roughly 0 and 2. It

turns out that there exists a set of common distributions

whose parameters closely resemble some of those given above

(see table IV). The kurtosis values are 1.8, 3, 6; those

for skewness are 0 and 1.3. Two reasons for using this set

are simplicity and the fact that Miller used it; thus any

investigation doing likewise can be easily compared to his

work. The chief disadvantage is that it is difficult to

tell exactly what contributions the kurtosis and skewness

make to the effects caused by non-normality. Since this

investigation was interested in roughly determining the

magnitude of the non-normality effects the above disadvan-

tage was discounted.
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The Monte Carlo Calculation

The term Monte Carlo calculation is used to refer to

any experiment where the data are synthetically generated

through some sort of a random number generator rather than

by real world events. With this technique it is possible

to submit to a statistical test samples that come from pop-

ulations whose parameters are known, in fact determined, by

the experimenter. Repeating this process many times creates

a histogram of the statistical test results which is an ex-

perimentally generated test statistic distribution. This

distribution may be compared with the theoretical statistic

distribution to determine how certain parameters in the

population from which the samples were drawn effect the

test statistic. In Miller's work the statistic distribution

was never explicitly displayed; instead each test result

was compared with a particular percentile in the theoretical

distribution and the number exceeding that value was re-

corded. In this study the computer output included both a

histogram of the test statistic distribution and a display

of information calculated from the histogram. The nature of

this information will be explained in the next section.

The advantages of plotting the histogram will be discussed

in chapter V.
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The Computer Program

The data presented in this study were generated with

a computer program written to investigate robustness prob-

lems by means of a Monte Carlo calculation. The main program

(Program Robust) utilizes various subroutines and calculates

basic sample statistics. By changing the subroutines it is

possible to investigate the robustness of any test and under

any set of conditions for which subroutines can be written.

Thus to investigate the robustness of Cochran's test for

data from a Laplacian distribution it is necessary to have

two subroutines, one to calculate Cochran's C statistic and

one to generate random data from a Laplacian distribution.

The output of Program Robust is a histogram plot of the test

statistic distribution. For the above example the histogram

would be a frequency distribution of Cochran's C statistic,

calculated from Laplacian data, with sample sizes determined

in the data cards. From the histogram it is possible to

calculate several items of interest. The (l-^<) percentile

is calculated by finding a point on the test statistic axis

above which ><% of the points lie. A confidence interval

about this point can also be calculated by counting a cer-

tain number of points to each side of the experimentally

determined critical value. (See appendix II). When Program

Robust is used to calculate power the reverse of the above

procedure is employed. A point on the test statistic axis

is marked corresponding to the percentile found for the
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null hypothesis distribution and the number of points lying

above that point is recorded. All of the above measures

can be performed automatically by the computer program.

Program Robust is composed of five sections; 1) The

first section reads in data cards which include information

on the number and size of samples. 2) The second section

determines the range of the histograms; it must be altered

if the number of histograms is changed or if the range of

a histogram is altered. 3) The next section calls data

from the distribution program and calculates the basic sta-

tistics of each sample. The call statement is changed when-

ever a different distribution is to be investigated. 4) The

fourth section calls the testing programs (Cochran, Hartley,

etc. ) and enters their results in the appropriate histo-

grams. This section requires extensive revision each time
\

a test is added or dropped from the program. 5) The final

section calls the plot function, plots the histograms, and

calls the programs that calculate statistics on these histo-

grams (i.e. percentiles and Type II error rates). This

section requires revision if the number of histograms is

altered or if the histogram parameters are changed.
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Distribution Subroutines

Most computer systems include a random number gener-

ator that gives sample points from a uniform distribution

over the range 0. - 1.. There are several techniques for

generating other distributions from this given one. Uni-

form distributions of different variance and mean can be

generated by multiplication and subtraction.

Normally distributed random variables can be generated by

using the following rule. The sum of n uniformly distri-

buted numbers (on the interval 0. - 1.) behaves like a

number from a normal population of mean n/2 and variance

n/12. Thus to generate the population N(0,1)

For the other distributions the acceptance rejection tech-

nique was employed. (See Handbook of Mathematical Functions

p.952). This requires that the distribution's density func-

tion f(x) be in a calculable form and that its maximum F be

known. Two uniform random numbers are generated, x^ and

x^ is transformed to x^
,

a variable whose range is large

enough to cover at least 99% of the f(x) distribution and

f(x^) is calculated. If X
2
< f(x^)/F then f(x^) is accepted

as a random deviate from the f distribution; otherwise it

is not and the process is repeated until an acceptable

/
ax - bX

12
X

(see Tocher, 1963)

number is obtained.
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In every case once a program had been written to pro-

duce a given distribution it was checked by generating an

emperical distribution of 1,000 points. The mean, variance,

skewness and kurtosis of this distribution was calculated

and compared with the expected values. Absolute agreement

was neither anticipated nor found; because 1) the distribu-

tion generation techniques are approximate and 2) even for

samples of size 1,000, n is too small to expect perfect

agreement. Nevertheless, only three of the values in table

V differ significantly from the expected values given in

table IV; these are the kurtosis for the Laplacian and the

doubly exponential distributions and the skewness for the

doubly exponential distribution. With the information

presently available it is impossible to tell whether the

values in table V are better estimators of the computer

generated distribution parameters than those given in table

IV. This uncertainty does limit the interpretations that

can be drawn from this study but it does not effect the

conclusions given in Chapter V.

The Test Programs

The programs written to calculate Cochran's, Hartley's,

Miller's and Scheffe's tests were tested by solving problems

with precalculated answers and by comparing distribution

generated percentiles with those given in the standard
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tables. Three comparisons are possible from the data in-

cluded in tables VI - X (the top three cells of row two);

several other cases using more than two samples were also

tested.



Experimentally Generated Values

for the Parameters of the Four

Distributions used in the Study

Type of Distribution Mean Variance Skewness Kurtosis

Laplace .020 .952 .035 5.076

Doubly
Exponential .014 1.027 .903 3.794

Normal -.008 0.999 -0.038 3.037

Rectangular -0.012 0.987 -0.005 1.787

Table V
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CHAPTER IV

DATA

The Monte Carlo calculations produced over 250 graphs

a few of which have been included in this paper (see figures

1-8). Approximately half of these graphs were statistic

distributions with valid null hypotheses; that is distribu-

tions generated by samples from populations of equal vari-

ance. The rest of the distributions were generated by sam-

ples from populations of unequal variance.

This chapter will start by using the equal variance

data to investigate Type I error robustness. Tables VI to

X report observed percentiles and show how these change as

a function of non-normality and as a function of varying

sample size. Next the robustness of Type II error is con-

sidered. Tables XI to XV give values for power (under an

alternative hypothesis (^2=5) and show how power is effected

by non—normal data and by unequal sample sizes. At the end

of the chapter a few crude power curves are presented and

some of the statistic distributions are examined to show

how they relate to the tables.
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Robustness of the Type I Error Probability

The valid null distributions were used to determine

percentiles (see tables VI - X). By comparing the percen-

tiles generated under different conditions it is possible

to gain some measure of the Type I error robustness. When

examining the tables notice first that column two presents

the percentiles generated from normally distributed data.

The first three cells of this column are for data consis-

tent with all the assumptions of the test and can be di-

rectly compared to the values given in standard tables.

Reading across the table one can see the effect of violating

the normality assumption. Columns 1, 2 and 3 permit a com-

parison of the effect of three different values for kurtosis

while columns 2 and 4 allow a check on the effect of skew-

ness. Reading down the table reveals the effects of changes

in sample size; with the second half of the table containing

data on samples of unequal size. For Cochran's, Hartley's

and Miller's tests, percentiles are a function of sample

size. For Scheffe'^'s test the degrees of freedom are de-

termined by the manner in which the samples are divided

into subsamples and are independent of the original sample

sizes. Therefore no change in the percentiles is to be ex-

pected while progressing down the two Scheffe'^ tables.



Observed Percentiles for Cochran's Test

Ni

10 10

20 20

a
a.

1 = 1 -2 = 1

^1 = 0 Vi = 1.3

^2 = 1.8 3 II
CM

6 (^2 = 5.4

. 99 . . 794 .815
. 784 .880 .920

.856 .907 . 9.30

.895 .882 .896
.873

.95 . 728 . 718
.740

.803 .814
. 792

.854 .865
.845 .835 .846

.827
.90 .692 .684

. 702 . 763
.774
.754 .818 .830

.810 .799 .812
.790

.99 . 700
.720
.686 . 768 . 778

. 760
.850 .870

.837 .816 .834
. 799

.95 .646
.658
.638 .725 . 737

. 716
.792

.806

. 782 . 763 . 774
.751

.90 .623
.630
.618

.691 . 701
.682

. 752
.765
. 739

. 719 . 732
.710

.99 .660
.680
.652

. 717
.733
. 711

. 797
.827
. 783

. 771
.792
. 758

30 30 .95 .621 .630
.616

.671 .681
.663 . 743

. 757

.731
.713 .728

. 700

.90 .604 .610
.599

.645
.653
.639 . 706

.715

.697 .681 .690
.671

.99 .689 . 710
.676 .754 . 780

. 744
.818

.845

.807 . 789
.820
.778

20 30 .95 .636
.695
.630 . 703

.717

.693
. 763

.774

.751 . 730
.745
. 718

.90 .615
.620
.611

.669
.678
.661

.726 . 735
.718

.696 . 705
.689

.99 . 755
.800
.737

.830
.853
.818

.908
.920
.897

.880
.900
.869

10 20 .95 .693 . 708
.608

.769 . 780
.758

.840
.860
.830

.815
.830
.805

.95 .655
.663
.649

.728
.739
. 718

.801
.813
.788

.772 . 783
.762

.99 .745
.770
.731 .820

.837

.795
.880

.900

.866
.849

.858

.842

10 30 .95 .677
.689
.668

.746
. 758
.735

.814
.829
.199' .788

.808

. 776

.90 .649
.656
.643

.711 . 719
. 704

. 776
. 786
.768 . 754

. 764

. 743

Table VI



Observed Percentiles for Hartley's Test

= 0 Vi = 1-3

I-CX <^2 = 1.8 '^2 ': 3 ^^2 ' 6 >2 = 5 .4

.99 3.93
3.70
4.20 6.70 8.15

5.80
11.40 15.00

10.50 7.45 8.00
6.45

10 10 .95 2.67 2.53
2.89

4.08 4.29
3.86

6.96 7.53
6.68 5.05 5.38

4 . 74

.90 2 . 22
2.17
2.29 3.22 3.42

3.09 4.86 5.25
4.55 3.99 4.30

3.75

.99 2.33 2.57
2.22 3.30 3.53

3.16 5.60 6.45
5.05 4.18 5.10

3.90

20 20 .95 1.83
1.93
1.77 2.63

2.80
2.53

3.68 4.10
3.59 3.22 3.40

3.02

.90 1.65
1.69
1.62

2.22
2.33
2.14

3.04
3.28
2.83

2.57 2.74
2.44

.99 1.93
2.10
1.86

2.50
2.75
2.42

3.90
4.70
3.60

3.40
3.80
3.15

30 30 .95 1.64
1.67
1.60

2.05
2.14
1.98

2.88 3.10
‘

2.71
2.40 2.71

2.33

.90 1.53
1.56
1.50 1.82

1.88
1.77 2.42

2.51
2.31

2.14 2.23
'

2.04

.99 2.18
2.40
2.07

2.94
3.50
2.86

4.50
5.50
4.20 3.70

4.40
3.45

20 30 .95 1.76
1.84
1.70

2.36
2.52
2.25

3.20
3.45
3.00

2.68
2.90
2.56

.90 1.59
1.64
1.57

2.02
2.10
1.95

2.64
2.78
2.53

2.30
2.42
2.22

.99 3.15
4.00
2.80

4.95
5.47
4.40

8.80 9.50
8.20

2.73
3.50
2.62

10 20 .95 2.26
2.39
2.13

3.28
3.55
3.14

4.68
5.04
4.47

1.76
1.96
1.59

.95 1.90 1.97
1.84

2.70
2.83
3.55

3.67
3.81
3.52

1.37
1.46
1.29

.99 2.90
3.85
2.68

4.40
5.10
3.87

7.20
8.00
6.30

5.60
6.15
5.30

10 30 .95 2.10
2.24
2.01

2.90
3.12
2.78

4.37
4.80
4.07

3.68
4.10
3.45

.90 1.85
1.91
1.80

2.45
2.54
2. 18

3.49
3.78
3.36

3.05
3.24
2.90

Table VII



Observed Percentiles for Miller's Test

(based on the absolute value
of Miller '

s

T) O
1

= 1 C"' _
2

~ 1

= 0 1.3

l-o< = 1.8 = 3
'h

= 6 ‘^2 = 5.4

.99 2.50 2.95
2.36

2.97 3.40
2.87 3.30

3.60
3.20

3.38
3.60
3.30

.95 1.75 1.85
1.70

2.03
2.15
1.94

2.44 2.56
2.36 2.50 2.60

2.42

.90 1.40 1.46
1.36

1.65 1.72
1.59

1.90 2.00
1.83 1.93

1.98
1.88

.99 2.45 2.57
2.35

2.85 3.05
2.77

2.85
3.00
2.70 3.20

3.55
2.97

.95 1.77
1.84
1.73

2.08
2.18
2.04

2.12 2. 20
2.06

2.31
2.39
2.23

.90 1.45
1.50
1.41

1.76
1.83
1.70

1.75
1.81
1.70

1.91 1.95
1.82

.99 2.37 2.60
2.28

2.72
2.80
2.55

3.20 3.50
3.05

2.83
3.03
2.70

.95 1.85
1.93
1. 78

1.98
2.09
1.91

2.17
2.32
2.10

2.15
2.23
2.10

.90 1.49
1.54
1.45

1.58
1.63
1.54

1.84
1.91
1.78

1.81
1.86
1.77

.99 2.33
2.50
2.23

2.63
3.00
2.55

2.87
3.05
2.75

3.00
3.30
2.80

.95 1.80
1.85
1.76

2.03
2.12
1.94

2. 21
2.32
2.14

2.16
2.24
2.08

.90 1.52
1.57
1.47

1.70
1.74
1.66

1.83
1.89
1.77

1.78
1.85
1.73

99 2.80
2.98
2.40

3.10
3.33
3.00

3.60
4.23
3.35

3.35
3.70
3.17

95 1.77
1.82
1.72

2.15
2.24
2.06

2.36
2.44
2.30

2.44
2.53
2.37

95 1.49
1.53
1.45

1.68
1.75
1.62

1.99
2.08
1.92

1.93
2.02
1.87

99 2.80
3.00
2.70

2.80
3.00
2.70

3.50
4.03
3.37

3.97

95 1.88
2.04
1.82

2.08
2.15
2.00

2.39
2.55
2.33

2.30

90 1.49
1.56
1.44

1.66
1.71
1.61

1.91
1.98
1.85

1.90

4.20
3.80
2.53
2. 24
1.98
1.83

Table VIII
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Observed Percentiles for Scheffe's Test

with two Subsamples

^1 ^2

10 10

20 20

30 30

.-'-X II
CM

Ci • 00

99 83.00 100.00
72.00

95 20.00 22.67
17.00

90 00
9.50
6.82

= 0

= 3 = 6

Yl = 1.3

^2 = 5.4

100 .

20.00

8.80

79.00
27.00
16.00
9.90
7.33

80.00

20.43

10.14

100 .

69.00
22.50
18.67
11.80
8.75

90.00

23.33

9.11

100 .

68.00
28.00
21.00
10.33
7.70

,99

,95

,90

100 .

17.50

8.18

24.20
14.75
9.11
7.20

83.00

19.00

8.46

100 .

66.00
21.83
16.40
9.60
7.14

100 .

22.00

7.87

89.50
26.40
17.00
9.00
7.20

100 .

19.00

8.09

22.50
15.50
9.00
7.18

99 81.00 100 .

59.00 100 .

83.00 65.00 100 .

57.00 84.00

95 18.50 23.00
15.75 18.00 24.00

15.00 15.00 18.00
13.88 18.3 3

90 8.33 9.50
7.00 7.82 9.29

7.24
8.09 9.00

7.18 7.70

100 .

72.00
22.75
15.33
8.47
6.82

.99 77.00
100 .

61.00 82.00
100 .

67.00 100 . 80.00
100 .

65.00

20 30 .95 14.60 17.00
12.80

14.00 18.00
13.30

23.67
31.50
20.67

19.40 23.50
16.00

.90 7.50 8.39
6.74 7.25

8.33
6.38

9.56 10.67
8.38

8.29 9.63
7.11

.99 41.00 51.50
38.00

100 . 91.33
100 . 71.00 69.00

94.00
60.00

10 20 .95 13.50 15.00
12.40

21.29
24.00
17.25

19.2
22.33
16.67

17.75
24.67
15.00

.90 7.59
8.18
7.00

8.89
10.00
7.88

7. 29
8.00
6.54

7.07
7.79
6.55

.99 100 . 76.00
87.00

100 .

79.00
100 . 100 . 66.00

10 30 .95 19.67
23.00
17.00

17.00
21.33
15.71

24.00
36.00
21.33

21.00
23.67
18.00

.90 8.80
9.78
8.13

8.30
9.43
7.00

12.25
14.00
11.11

8.67
10.40
7.86

Table IX
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Observed Percentiles for Scheffe's Test

with F ive Subsamples = 1 g; = 1

^1 = 0 X
1

- ]L. 3

"'2 l-X P
2

= 1.8 P 2
= 3 '*2 = 6 ^2 - 5*4

.99 8.60 11.20
7.70 9.25 15.25

8.00 10.30 12.00 .

9.40 10.80 L5.00
8.80

10 10 .95 5.06 5.68
4.40 4.71 5.00

4.44 5.40 6.73
4.75 5.10 5.60

4.46

.90 3.27 3.66
2.95

3.10 3.30
2.92

3.43 3.80
3.21

3.18 3.64
2.83

.99 13.17 13.50
12.50

12.60 15.00
10.00

10.80 15.00
9.80

11.40 14.40
9.30

20 20 .95 5.17 5.50
4.85 6.10 7.08

5.30 5.40 6.60
4.97 5.50 6.35

4.80

.90 3.58
3.77
3.36 3.68

4.08
3.34

3.72 4.17
3.35

3.48
4.00
3.00

.99 10.40 15.00
8.80 9.60

11.60
8.07 11.30

15.00
10.13 11.60

14.60
9.13

30 30 .95 4.92 5.70
4.38

5.17
6.08
4.34

4.80
5.67
4.28

4.80
5.70
4.10

.90 3.07
3.47
2.76

3.47
3.89
3.20

3.23
3.52
3.05

3.10
3.49
2.86

.99 11.50
15.00
10.60

10.60
15.00
9.40

11.40
15.00
9.40

11.00
15.00
9.30

20 30 .95 5.70
6.75
4.94

5.30
6.70
4.56

5.77
6.40
5.37

5.80
7.20
5.45

.90 3.74
4.20
3.38

3.31
3.83
3.00

3.65
4.28
3.20

3.59
4.12
3.35

.99 14.50
22.00
13.00

13.40
15.00
11.60

14.00
18.00
13.25

14.00
18.50
13.00

10 20 .95 8.22
8.71
7.70

8.00
8.50
7.07

7.50
8.21
6.75

7.18
7.46
6.83

.95 5.17
5.44
4.91

5.47
6.23
4.98

4.91
5.20
4.62

4.83
5.09
4.61

.99 20.00
26.25
19.17

17.17
18.00
16.50

15.00
20.00
14.75

15.00
19.50
14.00

10 30 .95 10.10
10.50
9.75

9.60
10.56
8.63

10.60
11.25
10.13

8.78
9.20
8.42

.90 7.76
8.14
7.31

5.91
6.25
5.59

7.00
7.50
6.55

6.25
6.58
5.92

Table X
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Cochran's test. Examining the first row of table VI,

one can see that the 95th percentile of the normal hypoth-

esis has a value of 0.8 - 0.01 which is close to the value

given for the 99th percentile when = 1-8 (0.79) and

just less than the value given for the 90th under '^^2 = 8

(0.82). Thus if the value 0.8 is used in a situation where

the data is rectangularly distributed the test will prove

to be conservative; however, if the data is from a distri-

bution with high kurtosis the test will be quite liberal.

For cases in which the kurtosis is unknown a liberal test

may be formed by using 0.8 as the 99th percentile and a

conservative test made by using 0.8 as the 90th, or perhaps

even 85th percentile.

If the experimenter has access to only the standard

tables then he may estimate the effects of non-normal data

by creating an uncertainty band about the table value of

+ 5 percentiles. Or he may create a consistently conserva-

tive test by using the table value five percentiles below

the percentile he desires. The above discussion just con-

cerns the effect of kurtosis but since skewness (see column

four) does not appear to effect the percentiles signifi-

cantly the argument holds for non-normality in general.

The 99th and 90th percentiles are similar to the 95th in

robustness and may be handled in the same manner . Of

course the upper end for the confidence interval of the

99th percentile cannot be determined by adding five per-
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centiles, but for a conservative test only the lower end

is important. Sample size and inequality of sample size

do not effect the degree of robustness; the "rule" of i 5

percentiles holds down the entire table.

Since the standard tables do not include the per-

centiles for samples of unequal size some rule has to be

for converting the unequal sample size case to an

equal sample size situation.

From the data in table VI it would appear that the

average sample size will result in a liberal test. The

95th percentile for the case n^ =10 = 30 is .75 which

slightly exceeds the value 0.73 found for the 95th when

n^ =20 n
2

= 20. On the other hand choosing the smallest

sample size results in a conservative test, the 95th per-

centile for the case n^ =10 ^2 “ 0.8. Since the

above effects are less than those caused by violations of

the normality assumption, they may be ignored in most

cases, and either system may be used.

Hartley's test . The analysis of Hartley's test,

table VII, is essentially the same as for Cochran's test.

The effect of high kurtosis (*^2 = is a bit larger than

for Cochran's test, but skewness seems to decrease this

effect. To form a conservative test it is probably neces-

sary to use the 85th percentile instead of the 95th. There

would appear to be some interaction between the use of

differing sample sizes and violations from normality. The
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bottom half of the table, especially the case = 10

^2 ~
'
shows far more variation than does the top part

(3.2, 5.0, 8.8, 2.7 for the 99th percentile).

The situation concerning a method for finding an

equal sample size percentile appropriate for the unequal

sample size case is the same as it was for Cochran's test.

Miller's test . Miller's test, table VII, would appear

to be more robust than either Cochran's or Hartley's. In-

stead of shifting 'X levels by 5 or 10 percentiles a shift

of 2 to 5 would seem adequate. However, unlike Cochran's

and Hartley's tests. Miller's test is sensitive to skew-

ness. As was the case with Cochran's test, unequal sample

sizes do not affect the robustness to non-normality. Using

the average sample size is definitely the proper preceedure

for this test. The percentiles for the case n^ = 10 n^ = 30

and n^ =20 = 20 are identical within experimental error.

Scheffe's test . The two subsample version of Scheffe's

test, table IX, is robust both to deviations from normality

and to unequal sample size. Percentiles need not be changed

by more than 1. The five subsample version, table X, is

almost as robust but is less stable for situations with un-

equal sample sizes. The changes that do occur are true

across the table, that is they are robust with respect to

non-normality and are a function only of sample size.

If the experimenter has access to a table such as

table X he should use the data given there rather than that
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in the standard tables. Thus the 95lh pc'rcentile Cor the

case n^ = 10 = 30 would bo 10. rather than 5..

Robustness of the Type II Error Probability

Althougli the invalid null distributions can be ana-

lysed in terms of percentiles it is usually more informa-

tive to use them for a measure of power. Tables XI to XV

give power values for the particular alternative hypothesis

= 1 ^''2 “ ^ (the null liypothesis being 0^ = 1 “ 1 ) •

Since this alternative is quite far from the nul]
,
power

ratings should be higli. The numbers given in tlie tables

XI to XV are the proportion of the alternative distribution

that lies above the critical value for normally distributed

data. An example is given in figure 9 wliere both the normal

null hypothesis valid distribution and the laplacian null

hypothesis invalid distribution are plotted together. The

double cross hatched area is the 5% of the null valid dis-

tribution that falls above the C value 0.725. 'J’he single

cross hatched area (including the double cross hatched) is

the 56.5% of the laplacian distribution that falls above

C = 0.725.
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The tests . Both Cochran's and Hartley's tests are

reasonably powerful under most conditions. High kurtosis

weakens power, but skewness appears to counteract this

effect. For the smallest sample sizes, n^ = 10
'

the 99th percentile has low power but the 95th is con-

siderably better. In cases such as this where the power

is low. Hartley's test is a bit better than Cochran's.

Miller's test is nearly as powerful as Cochran's and

Hartley's. While it is less affected by low kurtosis than

the other two tests, it is more affected by high kurtosis

and in a few cases it has very little power.

The two versions of Scheffe's test are rather similar

in their power with the five subcell version holding a

slight edge. In general the test is much less powerful

than the previous three. For most cases only the 90th per-

centile has respectable power. Furthermore the unequal

sample size situation results in a lower power than might

be expected. Here power seems to be a function of the

smallest sample rather than (as was the case in the previous

three tests) the average sample size. Once again high kur-

tosis results in the lowest power and while skewness does

counteract this effect, it does so to a considerably lesser

extent than it did for the other tests.



Monte Carlo Generated Power Values for Cochran's Tests

The alternative distribution = 5 is com-
pared with the = 1 from normal data.

Yi = 0 Yl = 1-3

"'2 p2 = 3 p2 = 6 ^2 = 5.4

.99 . 204 . 262 . 116 .903

10 10 .95 .683 .590 .329 .982

.90 .842 . 721 .437 .994

.99 .939 .828 .406 .999

20 20 .95 .984 .910 .565 1.000

.90 .997 .964 .694 1.00

.99 1.000 .976 .651 1.000

30 30 .95 1.000 .990 .791 1.000

.90 1.000 .995 .836 1.000

.99 .979 .917 .515 1.000

20 30 .95 .995 .965 .644 1.000

.90 1.000 .988 . 771 1.000

.99 .601 .586 . 297 .971

10 20 .95 .892 .799 .488 .988

.95 .967 .891 .606 .991

.99 .600 .587 . 297 .975

10 30 .95 .957 .861 .557 .995

.90 .994 .936 .663 .998

Table XI



Monte Carlo Generated Power Values for Hartley's Test

The alternative distribution = 5 is compared
with the 't/c z= 1 distribution from normal data.

Vi = 0 >1 = 1.3

l-< CO•

1
—1II

Cvl ^'2
= 2

2
= 6 ^2 - 5.4

.99 . 274 .325 . 143 .927

10 10 .95 .683 .590 .329 .982

.90 .837 . 713 .428 .994

.99 .934 .820 . 399 .999

20 20 .95 .984 .906 .561 1.000

.90 .996 .961 .673 1.000

.99 .999 .971 .627 1.000

30 30 .95 1.000 .989 . 766 1.000

.90 1.000 .994 .832 1.000

.99 .982 .923 .523 1.000

20 30 .95 .992 .979 .682 1.000

.90 1.000 .986 . 754 1.000

.99 .542 .547 . 278 .966

10 20 .95 .887 . 797 .483 .988

.95 .964 .889 . 599 .991

.99 .698 .646 . 343 .978

10 30 .95 .961 .867 .568 .995

.90 .990 .929 .643 .998

Table XII



Monte Carlo Generated Power Values for Miller's Test
1

The alternative distribution ^ = 5 is
composed with the = 1 distribution from
normal data. ‘

= 0
1 - 1.3

«2

1
CO

•
(
—

t

II
CM ?2 ^ (^2 = 6 p 2 "

.99 .501 . 248 .090 .679

10 10 .95 .896 .540 . 234 .874

.90 .914 .682 . 346 .935

.99 .972 .667 . 204 .976

20 20 .95 .997 .890 .409 .994

.90 .997 .940 .503 .998

.99 1.000 .931 . 340 .999

30 30 .95 1.000 .987 . 599 1.000

.90 1.000 .997 . 727 1.000

.99 .999 .853 . 288 .997

20 30 .95 1.000 .941 .452 1.000

.90 1.000 .972 .588 1.000

.99 .636 . 361 .152 . 792

10 20 .95 .917 . 644 . 286 .960

.95 .979 .800 .428 .991

.99 .824 .489 .195 .924

10 30 .95 .966 . 716 . 337 .990

.90 .987 .819 .454 .995

Table XIII
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20

30

20

10

10

Monte Carlo Generated Power Values for Scheffe's Test

with two Subsamples

The al^ternative distribution 5 is compared with
the = 1 distribution from normal data.

oII
1
—

1

V2 = ^-3

•^2
1 —.X ro

II
• CD roII

CNJ 02 = 6 •
LOII

(No
.99 . 104 .046 .030 . 119

10 .95 . 347 . 211 . 119 .464

.90 .553 .413 . 224 . 726

.99 . 255 .127 .048 . 293

20 .95 .677 .419 . 189 . 765

.90 .887 .665 . 349 .938

.99 . 315 .190 .064 .333

30 .95 .883 .630 . 308 .896

.90 .987 .890 .504 .989

.99 . 319 .174 .079 . 336

30 .95 .852 .629 . 307 .902

.90 .950 .818 .441 .971

.99 . 132 .070 .036 .134

20 .95 .454 . 294 . 183 .455

.95 .768 .579 . 348 . 760

.99 . 178 .099 .064 .179

30 .95 .607 .416 . 221 .594

.90 .821 .622 . 375 . 798

Table XIV



10

20

30

20

10

10

Monte Carlo Generated Power Values for Scheffe's Test

with Two Subsamples
^ J

The alternative distribution ' = 5 is compared with
the (-Ti = 1 distribution from normal data

0II
(
—

1

Vl
= 1-3

«2 i P 2 ^ = 3 II
CM Pi = 5.4

.99 .085 .095 .045 .332

10 .95 . 235 . 256 .141 .575

.90 . 347 .373 . 229 . 709

.99 .481 . 295 .079 .799

20 .95 .753 .589 . 293 .953

.90 .880 . 767 .454 .989

.99 .885 .732 . 279 .990

30 .95 .961 .914 .526 1.000

.90 .985 .961 . 683 1.000

.99 . 789 .604 . 241 .866

30 .95 .943 .862 .542 .971

.90 .976 .938 .694 .991

.99 . 261 . 226 . 132 . 200

20 .95 .527 .455 . 294 .356

.95 . 711 .655 .453 .481

.99 . 262 . 202 .100 . 125

30 .95 .587 .453 .300 . 272

.90 .844 . 721 .540 .436

Table XV
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Power curves . Ideally a discussion of power should

include a power curve illustrating how power changes as a

function of the alternative hypothesis. These curves are

expensive to generate through a Monte Carlo technique like

the one used in this study. Tables XVI and XVII present,

for Cochran's and Hartley's tests, three points from each

of a series of such curves. Column one is simply the con-

fidence level since that is the power when the alternative

hypothesis is no different from the null. Column two is

2 2the power for the alternative hypothesis
^

= 1 C
^

= 2

and column three is the data given in tables XI and XII

^-2 2
for the alternative'

^
= 1 ^ = 5. These points are for

the case of normal data only and do not reflect the robust-

ness of the power function. In all situations substancial

drops are found in the power rating when the alternative

hypothesis changes from ^
' 2

” ^ 1
~ ^ 2

~

Thus one cannot expect the performance of Hartley's and

Cochran's tests to be excellent for any alternative hypoth-

esis 5. At the same time, since the power at = 5

is usually close to 1.0 little improvement can be expected

for alternative distributions with Figure (10)

is an attempt to guess at the shape of the power curve; it

is based on the three points given in table XVI. It should

be remembered, however, that several other curves will also

fit the data.



Power Curves for Cochran's Test

>Cr ^

Sample Sizes 1 2 5

.01 .026 . 262

10 10 .05 . 136 .590

.10 . 236 .721

.01 . 168 .829

20 20 .05 . 308 .910

. 10 .448 .964

.01 .331 .976

30 30 .05 .529 .990

. 10 . 640 .995

.01 . 187 .917

20 30 .05 . 350 .965

. 10 .528 .988

.01 .090 .586

10 20 .05 . 231 . 799

O1
—

1

• . 346 .891

.01 .091 .587

10 30 .05 .312 .861

.10 .427 .936

Table XVI



Power Curves for Hartley's Test

Sample Sizes 1 2 5

.01 .035 . 325

10 10 .05 . 136 . 590

o1
—

1

• . 227 . 713

.01 . 165 .820

20 20 .05 . 299 .906

. 10 .422 .961

.01 . 294 .971

30 30 .05 .494 .989

. 10 .621 .994

.01 . 172 .923

20 30 .05 . 361 .979

O
1
—1• .495 .986

.01 .073 .547

10 20 .05 . 224 . 797

. 10 . 341 .889

.01 . 109 .646

10 30 .05 . 322 .867

o1
—

I

• .409 .929

Table XVII



Power Curves for Cochran's Test

Three Significance Levels

n
^
=10 ^2 “

Power

1.0

0.5

0

Three Sample Sizes

significance level = .01

Figure 10
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A Glance Behind the Tables

It is instructive to examine how shifts in the test

statistic distributions cause the effects noted in the

above tables. The only distributions that are displayed

in this paper are for Cochran's test with both samples of

size 20. These are the distributions from which the second

rows of tables VI and XI were derived. Figures 1 to 4

present a simple situation; increasing kurtosis lengthens

the right hand tail and thus the observed percentiles in

table VI increase with kurtosis. Tables 5 to 8 illustrate

a much more complicated situation. Increasing kurtosis

flattens the distributions increasing both tails. In addi-

tion kurtosis values either above or below that for the nor-

mal (3) drive the distribution mean to the left. In figure

5 the short tail is more significant than the leftward

drift of the mean and thus the power under the rectangular

distribution is higher than under the normal (see table XI).

Figure 8 shows that the effect of skewness is very signifi-

cant. The flat distribution of figure 7 has been changed

into a highly peaked short tailed distribution and the left-

ward drift of the mean has been completely reversed into

a considerable rightward shift, as a result the power is

very high.
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A Note on Miller's Test

^illsr's T test is a two tailed test; for this study

the absolute value of Miller's T was used, creating a one

tailed test. If the two tailed version is used a cautionary

note about power is necessary. The Miller T distributions

generated from data of unequal variance and rectangular,

normal or Laplacian origin all fall to the left of the

equal variance distribution but that generated from the

doubly exponential distribution falls to the right. If the

two tailed version is incorrectly used as a one tailed test

then that test may have zero power and the probability of

making an incorrect decision will be extremely high

(probability of Type I error = 0 but probability of Type

II error = 1 )

.
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CHAPTER V

CONCLUSIONS

A Warning

The results of this study provide strong evidence of

the importance of knowing both the Type I and the Type II

error probabilities. Scheffd's test is clearly superior

if only Type I error is considered but it fails completely

when Type II error is weighed.

The price that has been paid for the Type I robust-

ness of the Scheffe test is that the power is uniformly

low; too low for the test to be useful. Nor is this a sur-

pi'ising circumstance since it is often neccessary to sacri-

fice one test characteristic in order to improve another.

One of the more dangerous traditions of statistical

researchers is to pick the most powerful test available

without checking whether that test has adequate power for

the particular application. The logic apparently is that

since the test is the best available it is the one to use.

However, if the power is sufficiently low then it may make

far more sense to employ no test at all. In the case of

preliminary tests, for example, accepting the null hypoth-

esis permits one to proceed to the main test. It is there-

fore important that the null hypothesis not be accepted

when it is false, i.e. that the Type II error probability
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be low. Consider the case of a test with power 0.1 at the

10% significance level. In this case both the null valid

distribution and the alternative hypothesis distribution

have nine tenths of their areas below the 90th percentile.

If the test statistic falls below the 10% cut off and if

the null hypothesis is accepted then there is a 50/50

chance that the correct decision has been made. (This

assumes that there is no pretest information; i.e. the

a priori probability of true is 1/2. ) In brief a coin

flip would have been as useful. If the power is still

lower, then the test is biased against the correct decision

and is worse than a coin flip. Nor is this a fictitious

example: the power of Scheffe's test with = 2, n^ = 10,

= 10 and data from a distribution of high kurtosis is

0.12 at the 10% significance level, which is just barely

above the coin flip level.

Comparison of the Tests

Miller's test is better in overall performance than

either Cochran's or Hartley's. However, this difference

is slight compared to its vastly greater computational

difficulty. Cochran's and Hartley's tests are very similar

in performance and also in difficulty of computation.

Cochran's test may be superior when sample sizes are un-

equal and when kurtosis is high; it is therefore preferable
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in spite of the slightly greater computation.

Thus based on the results of this study, and for the

ranges of sample sizes considered, one can recommend

Cochran's test for most situations with Miller's test a

possibility for those cases in which a little more power is

worth the price of much greater computation. (The power of

the two tests is of course essentially the same but if

Cochran's test is corrected for its lack of robustness in

the confidence levels, then it loses some power.) For re-

gions beyond the range of this study, in particular for

larger n's or greater numbers of samples, or both, Scheffe's

test may have sufficient power to become the preferable

test. However, it is much more difficult to calculate than

is Cochran's and it would hold an advantage only in those

few cases where its greater Type I error robustness was of

real value.

Two tests not considered in this study should also

be mentioned, the Box - Andersen and the Bartlett. Miller

(1968) studied the Box-Andersen test and found it very

similar to the Miller Jackknife (see tables II & III). His

study did not include unequal sample sizes so the perfor-

mance under these conditions is unknown. Since Miller s

test performs very well for unequal sample sizes it is un-

likely that the Box-Andersen is better and it could be con-

siderably worse. Thus until further information is gained

it is safer, and probably at least as effective, to use the
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Miller Jackknife rather than the Box-Andersen

.

Bartlett's test was not considered in this study be-

cause it was believed to be sensitive to non-normality and

it did not share Cochran's and Hartley's ease of calcula-

tion. However, the unexpectedly good performance of Cochran's

and Hartley's tests suggests that Bartlett's may not be as

poor as had been anticipated. It certainly should be in-

vestigated in future studies as a potential candidate for

an improvement over Cochran's test at a reasonable calcula-

tional cost. My own guess is that it will actually prove

to be very similar to Cochran's test in Type I error robust-

ness and only slightly, if at all, more powerful.

Educational Implications

Surprisingly this study is not completely devoid of

educational implications and applications. The Monte Carlo

method of reproducing test statistic distributions gives a

far more convincing demonstration of how statistical tests

work than has ever been possible before. A student may

design any experiment, formulate any series of conditions,

consistent or inconsistent with the test assumptions, and

then by use of a set of programs such as those .included

in the appendix he may literally watch the laws of chance

construct a test statistic distribution. Next he may

measure percentiles and power functions or observe how
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distributions change under the influence of various factors.

Such manipulations give the student a far better grasp of

the meaning of confidence level and power than can a few

sample problems and several hours of flipping through a set

of tables whose origin is obscure. Furthermore the con-

cepts of test robustness and power take on a more intuitive

meaning, at least for the tests he has investigated. In-

stead of viewing the field of statistical testing in terms

of number tables whose values change in some random fashion

he may form a dynamic picture of a distribution gradually

changing shape and drifting either to the left or right

along a test statistic axis. Figures 1 to 8 show for

Cochran's test how the C distribution changes under the in-

fluence of non-normal data and violation of the null hypoth-

esis. A brief study of these graphs is enough to generate

an intuition as to how the curve would look for situations

not considered. True similar results may be obtained from

tables through interpolation or extrapolation, but these

results lack some of the pictorial richness that begining

students usually require.

The chief advantage of the Monte Carlo approach as

a teaching tool is that it allows the student to compare

rival tests in a pictorial manner and for a single test

to compare situations in which it works to those in which

it does not. As regions are reached in which the test's

power becomes low it is graphically clear that the null
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distribution cannot be separated from the alternative

hypothesis. Since the student is likely to encounter sit-

uations in which standard well known tests fail miserably

in their performance, he will learn to exercise a greater

degree of caution in his use of statistics than is pre-

sently the norm.

In addition to an increased awareness of the weakness

of tests, the student may also gain an increased awareness

of the weakness of numbers, or to use a more conventional

phrase, significant figures. The malpractice of viewing

experimentally derived numbers as absolute exact quantities

whose value can be reported to any arbitrary accuracy has

reached epidemic proportions in educational and psycholo-

gical practice. There is some reason to hope that ex-

perience with Monte Carlo generated confidence levels can

help to correct this problem by showing the student examples

of the varying significance of numbers. One example is the

error band that surounds each percentile, (see appendix II).

A little familiarity with tables VI to X will convince one

that the numbers reported there contain more digits than

is really useful. In the first entry of table VI (0.794)

the 4 contains no useful information at all and mearly

serves to confuse. Tables XI to XV do not give error bars

and may easily mislead the reader into believing in the

significance of numbers that differ only in their third

decimal place.
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Related to the problem of significant figures is the

effect that thin tails have on the significance of exact

percentiles. In Scheffe ' s test where the tail is very long

and thin, changing the cut off by 10% makes virtually no

difference to the o< level; but in Cochran's test a 10%

change in the cut off changes the confidence level consid-

erably. Thus while it is useful to know the Cochran cut

offs to three significant figures, two are more than

adequate for Scheffe's test.
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Appendix I

Skewness ( ) and kurtosis (^2^ related in such

a way that the value of
2

limits the value of In

particular for the case mean zero = 0) one can show

that

?2- 1

Proof . Let X be a random variable with/A^(x) = 0 and let

2
y = X . From the Cauchy Swartz inequality we know that

2 2 2
O" xy"- ^x^y

where : ^ xy = E ( xy

)

+ E>k ) E(y) = E(x ) =/'^3

O'y = E(y^) - (E(y)

= E(x"^) - (E(x^) - /t2

Thus;

Subtituting: 9 9 -d o

Vt = '2
=

4'r2

^1 \ 2

we get:
1
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Appf’iHlix 11

'I'lu' Coni Idonco bnnd nboul I lio Conlitlono^ bov.'l

1 hoi (' ,u*(' two major wourci'K oi; (Mior .unsoc i .» I I'd with

each conf idonco lovol. Oiu' dt'rivos I rom I ho i\.\lui o ol llu'

raiulom numbor cionoralor and I ho approximati' l»>ohniqnos u;a>il

t;o simnlalo t ho v.irious dlntr i but Loiih . This (‘rror has bi'on

icjnorod b('caus(' 1) it i bolia'vod to bi' smal 1 and 2) it is

not sicjn if leant to this stiuly since' it liar, t ho ('li(>ct of

on ly shill i iui tho monu'nts in I lu' pare'nl. d i s t r i lint i on

slightly. 'I’lu' socond sourco of ('rror stesns I rom t lu' linil(>

sizo of tlu' .statistic d i s tr ilntt i on
,
one t honr.and fioints, and

is readily ('sti mated.

Two l i'chniquos for ca 1 cul at. i mi p(' i c.('n t i 1 (' coni idisico

intervals <ir<' presontod. 'I'lu' 1 irst is b.isod on t lu' theory

of ord('r sl .it. 1st ics ,ind m.iy be' be'yoiul the' mat hom.iLic.i I

sophist ic.i t i on of many ri'.ute'rs. 'I'lu' .se'cond is .in intuitive

.irciumi'iit th.it .ivoids t he' comp 1 i c.it i ons of the' fir.sL le'ch-

nieiuo by solving .i different problesu .uid t he'ii dr.iwing .in

an.iloejy. 1 .im inde'bt.od to Roln'rt Kle'yle' tor showimi me' the'

first .irgumont. .iiul le^ Kich.ird Kol ie'r lor e'xpl.lining t lit'

st'cond

.
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Let F(x) be the cumlative frequency distribution

(c.d.f.) of some arbitrary distribution f(x). Define Ep

th
as the p percentile where P(x - Ep) = E(Ep) = p.

Let x^, X
2 » •••, denote a random sample from a

continuous distribution F(x). Then if Y. = F(x.), i = 1.

n, Y^, Y^ are independent and uniformly distributed

on (0,1). Furthermore, since c.d.f. 's are non-decreasing,

Y/,v4Y,„v< .... <^Y, V are the order statistics of a ran-

dom sample (size n) from the uniform distribution. Thus

the joint pdf of
^(n)^

g(Yl Yj,) = nl 0 y^'-. y2 . . . < y^^
< 1

0 elsewhere

.*. The joint pdf of < k
2

is
0],

^
i , Y 2 ^

(n

k,-l k,-k.-l n-k2

y/ (y2-yi>

(kj^-D! (k2-k^-l>! (n-k2>

!

_ Q elsewhere

(See Hogg & Graig pp. 179-180)

Now notice that since F is strictly increasing.

’‘(k,)
< ‘'p-'

F(x,k )) < P - f(X(k2)>-
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,1 p

“Vo ®k^kVi^2>'^yi'^y2

0
yj^

®k^k2(y^,y2)dY2dY^

P
^2

0 0 ‘^k^k2(Y;L,Y2)dy^dY2

)

^2

(0,p)

To evaluate the first integral,

let Y]^ = u, = 1 - v(l - u)

J
1 0

V -(1 - u

)

-(1 - u)

j| = 1 - u
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p k,-l n-k,l n-k,n

'

^ 1 ri-^n

(k -1)1 (k -k -1)1 (n-k.)i i
^ jv ( 1-v)>>/. 1 - Z 0 n

dvdu

n< P k^-1 n-k^

TT|j^-l).‘ (n-k^);

= Ip(k^, n-k^ + 1)

where I^^(a,b) denotes the incomplete beta function,

I^(a,b) =
r( a)p(b)

Q

r( a + b) r a-1 , , vb-1
J X (1-x) 'dx

a,b>0 6(0,1).

To evaluate the second integral let

Yl = uv, Y2 = V.

J =

P y-

V u

0 1

= v>0

) <3^ ^ (Yt ,Yo)dy,dY2
0 0 12

n

(k^-l)| (k2-k^-l)
!
(n-k2)|

p k^-1 n-k^

J V ^ (1-v)
0

1 k.-l
^ u (1-u)
0

k2-ki-l

n-k.p k,-l ..--o

dudv
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= Ip(k2,n-k2 + 1 ) .

= Ip(k^,n-k^ + 1 )-Ip(k
2 ,

n-k
2

+ D,

and (

X

(k^)
X

^
) forms a confidence interval for Ep with

confidence coefficient

^ (k. k2) = Ip(k. n - k^ + 1) - Ip(k
2 ,

n - k
2 + D.

Asymptotic Intervals

Recall that

= Ip(k^, n-k^+1) - Ip(k
2 ,

n-k
2
+D

kj-l
/ n \

^
n-x

-p)

(1
IIX \ x/

Thus if T has the binominal (n, p) distribution,
n

. Ep. = P(k^- T^ .kj-l \p).

But since

T - np
n

J np( 1-p

y

N(0, 1)
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it is clear that for sufficiently large

P(ki i k2-l) P(k^-l/2 , . k2-l/2)

where has the normal distribution with parameters p = np

2and t'’ = np( 1-p ) .

Note: The 1/2 added to k
2

- 1 and subtracted for k^ is the

correction for continuity. i.e. the correction used when

approximating a discrete distribution with a continuous

distribution. .*. For large n, it' denotes the c.d.f.

of N(0, 1)

P(X(k^) < EP

-j

~ ~

l vl np( 1-p)

•

^

- 1/2 - np^

no ( 1-D

)
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We will now calculate the confidence coefficient for

the three percentiles used in this study using predetermined

values for and k
2

« For the origin of these values see

the next section. In all cases n = 1000. For the values

of 4’ ( t

)

refer to table XVIII.

4* Vk

The 99 percentile . p = .99 k^ = 987 k
2

= 993

P(Xgg,< Ep < Xggj

993 - 1/2 - 990

V 990 X .01

({.'(.79) -C|;(-l.ll) = . 7852 - . 1335

.65

The 95^^ percentile p = .95 k^ = 943 k
2

= 957

P(^943 ^ ^ ^957^ ^

957 - 1/2 - 950

J 950 X . 05 :)

- *(.
943 - 1/2 - 950

J 950 X .05

^ (-1.09)

.69

The 90^^ percentile p = .90 k^ 890 k
2

P P < ^910

910
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‘f''

910 - 1/2 - 90 0

900 X n -n7
890 - 1/2 - 900

900 X .1

= 9.50
9.49

f-10.50 )

9.49/

= cj/ ( 1.00) - (j'(-l. 11)

= .71

An Intuitive Estimate of the Confidence

Interval for Percentiles

Let X be the number of points in the bin falling to

the right of the percentile and n - x the number of points

falling to the left. x is distributed as a binomial B(n, p

where p is the probability of an event occuring in the

right bin. The central limit theorem states that the x dis

tribution can be approximated by a normal

N( i^x= np, o'= np(l-p)). This approximation is good when

ever the minimum of np and n(l-p) -1 5 which for n = 1000

and p 1 .01 is the case. Thus

or

P(-1 4 < I)':; .68

sTnp( 1-p)

P(np - J
np(l-p) X - np + np( 1-p ) ^ 68

np may be replaced by its estimator x. Since x n
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Thus if X points are found in a bin there is a 68% proba-

that the true value of np falls within an interval

X + Jx.

When dealing with experimentally generated confidence

levels one is faced with a slightly different problem than

that just solved. Rather than defining the limits of a bin

and then counting the number of points, a number of points

is counted to define the lower limit of a bin; the bin

being that bin that contains ( l-iX)% of the total number of

points and is bounded by on the upper end and the cut

off on the lower. Suppose that the true value of the

confidence level were known and several finite distributions

were generated to test this level. One would then expect

that 68% of the time the experiment would find ( 1 -!t^)N+ J(
1-x)n

points above the confidence level. This information can

be turned around to say that if one finds the points

associated with bins of size (l-./)N + J(
1- ot ) N and of size

(l_--x:)N - j ( 1-,'X)N then one has made a best estimate of a

region within which the ik confidence level lies with a

probability of 68%.

The values given in tables VI to X are the lower

limits for the bins containing (1 - <-<)N points, i.e. the

cut offs. To the right and above each such number is the

lower limit for the bin containing (1 )N + Jil - -/ )

N
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points and below that the lower limit of the bin containing

(l-o^)N - j ( 1- fX )N points. Between these two limits is

the region in which the true level cut off lies with

probability r\j 68%.

It may now be noted that the values for and k
2

given in the previous section are (l-'X)N + y( 1- x )n .



# of
points

Parent Distribution

# of times
value of X
is recorded

Statistic Distribution

# of
points

N points

{ i_ .A )N + ^{1- U )N

(l-'X )N

/

U- 'X Tn

region in which C.L. lies
to a probability of 68%

Statistic
value

Figure 11



( ses an/ basic statistics text f«r a
table of the area under tne Normal
distribution )

Table XVIII
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Appendix III

The Tests

Cochran's Test . Cochran's test is described in Winer

(1962) p. 94.

2For J samples with variance s^ and all size n.

^ s^ largest

s .

j=l ^

A table of C values appears in Winer p. 654, parametrized

2
by df . s and J. All samples are supposed to be of equal

2size and the df. associated with s is n-1.

Hartley's Test . Hartley's test is described in Winer

(1962) p. 93 - 94.

_ the largest of the cell variances
^max “ the smallest of the cell variances

A table of F appears in Winer p. 653, parametrized by
max

df . s^ and the number of cells. Each cell is of size n

2
and the df . for s is n-1.

Miller's Test . Miller's test for the two group com-

parison is described in Miller (1968). Two samples x and

y of size N and M are divided into subsamples of size k

(k = 1 gives the most power).

n = N/k m = M/k

is the variance of group x with the i subgroup
x-i

deleted.

is the variance of group x
X
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.^2
X

O “ is the variance of the population from which group x

is drawn.

©X =
®x

— 2 ?
0 . = n log S - (n-1) log S^ XI ^ X ^ x-i

o2 (n-1)?, ^20 = n log S - / log S
X* ^ X n x-i

Then: (0 - O ) - ( 0 - 0 )

X • X V' ^ y

n(n-l) (0 . _ © )"-
0 , XI X. m( m-1

)

1=1

m
( e - 0 )

i='l

is distributed as t with n + m - 2 degrees of freedom.

2
For the situation considered in this paper (T can be set

equal to 1 and 0 = 0 = 0.
X y

Scheffe's Test . Scheffe's test is described in

Scheffe'' ( 1959) p. 83-87.

Given I samples the test is for the hypothesis

'r ^0 , = t
'

2 = ... Uj. Divide each sample into subsamples.

z
Each subsample is of size n^^j and has variance s^^

ID

Define

:

V . . = log s . .

^iD ID

n . = n . .

1 DID
\i

. . = n . . - 1
* ID ID

y = l(J.-l)
^ e 1

7 ‘ -
)

^'i
= V

ID

V = ^ 1'^
c

K 'L;
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Then
V-'e

1

1 V'.

'1. 'Z V ( y . - o')

C
I -j L W

is distributed as F with I - 1 df. numerator and V df.

denominator

.

Box-Andersen Test . The Box-Andersen test (for the

two group comparison) is described in Box and Andersen (1955)

It is a standard F ratio

2

Y = i=l ^li
n..2 2

n-i Z X

j = l
2j

but the degrees of freedom are dn^ and dn
2
instead of

n^-1 and ^
2
“!

d = 1 + 1/2
N+2

N-l-(b2"3)
(b2-3)

-1

and

where N = n^ + n
2

n n.

^2

(N+2) ( x^. + X2-
i=l j = l ^

j = l

n.
2 /‘2 2 ,2

>"11
jTi

’'2j’

For given sample sizes, n^ and n
2 ,

there are a large number

of possible degrees of freedom, the proper set being deter-

mined by d. Thus there is no unique F distribution for any

given n^ and n
2

*



Appendix IV

Definitions of Moments and Coefficients

Mean:

th ,

n central

m = ^
xf ( x) dx

moment

:

hn = - m)^f (x)dx

Variance

:

Skewness

:

Kurtosis

;

- m)^f(x)dx

or =

or =
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Appendix V

This appendix includes listings of the programs used

in the study and instructions on their use. The programs

were deliberately written to make it impossible for the

totally nieve user to run them. The philosophy behind this

perversness was developed from observation of the miss-use

of packaged programs such as the BMD series, where it is

possible for a user to enter data and receive results with-

out having any understanding of the programs. Frequently

the result of this simplicity is that the user is not aware

of program malfunctions or that the program may be solving

a different problem from the one intended. To avoid these

errors it is necessary for the user to have at least a

partial understanding of any program he uses. The instruc-

tions given for the enclosed programs assume that the user

will read and study the programs themselves as well as the

instruction sheets.
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I Program Name

Program DISTEST

II Purpose

To test distributions generation programs, plot the

distributions and calculate their mean, variance,

skewness and kurtosis.

III How to use

The distribution program is added as a subroutine; the

call statement (CALL RECTANG (x)) is changed to fit

the subroutine.

1) Dictionary of terms

A - the number of points in the distribution.
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PROGRAM DISTFST

DIMENSION DATA(IOOOO)

COMMON/H I STGRAM/NH 1ST » XM I N « XM AX » DLLX » NB 1 NS

TYPE real KURT

A= 1 000 .

0

KA = A

T=T I MEF ( T

)

CALL RANFSET(T)

NHI ST=

1

XM 1 N=-A .

0

XMAX=4 •

0

DELX=0 .

1

NB 1 NS=0

CALL SETL I M( X, 1 .

)

DO 10 J= 1 ,KA

CALL RECTAnG(X'

NH 1 ST=

1

CALL HISTSUMS(X)

10 DATA(J)=X

XT0T=0 .

0

DO 20 J= 1 » KA

20 XTOT=XTOT+DAT A ( J

)

XM=XTOT/A

ZA=0.

0

Z3=0.

0

Z2=0.0
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DO 30 J=1,kA

Z2=(DATA(J)-Xm;**2+ZP

Z3=(DATA(J)-XM)->i-*3-:Z3

30 Z4= ( DATA ( J ) -XM ) +

VAR=Z2/( A-1 .0)

STD = SQRT ( Z2/ ( A - 1 .0 ) )

KURT=Z4/ ( A* ( STD**4 )

)

SKEW=Z3/( A* ( STD**3 )

)

PRINT 90

90 FORMAT (25H MEAN VAR SKEW

PRINT 1 00 « XM , VAR , SKEW , KURT

100 FORMAT ( 1X« 4F6, 3

)

NH I ST=

1

CALL HISTPLOT

KURT )

END



90

I Program Name

Program ROBUST

II Purpose'

To run Monte Carlo simulations of test statistic

distributions. Several test statistics may be inves-

tigated at the same time.

III How to use.

Internal statement changes are required during set

up. The program can only be run by a user who has

read and understood the flow of the program. Refer to

section three of Chapter III.

1) Dictionary of common variables

NRUNS - number of program runs

CL — confidence level or percentile of normal test

distribution

NS - number of samples

NSAMP - sample size

NSCHRUN - number of Scheffe' tests to be performed

NNK - number of subcells in each Scheffe test

Z, tt - dummy variables

K — number of points in test statistic distribution

2) Choice of configuration

Two listings for Program ROBUST are included to illus-

trate the wide variety of configurations available,

they are refered to as P
^

and P
2

‘
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a) If samples are all from the same distribution use

set up P^.

b) If samples are from different distributions use

set up P^. The statements just prior to #12

determine how samples are selected.

c) If power is to be calculated the C.L. array must

be read in, see P
2

. A call to POWER is also added.

d) If only one test statistic is to be investigated

use set up P^.

e) If several test statistics are to be investigated

refer to P
2

. CALL statements are added after

statement 30. The plot loop after #40 may need

modification. Additional calls to Histgram must

be set up after #5.

3) Data cards are used to determine the number of samples

to be used (2 for all cases in this study) and the

number of observations in each sample. They also de-

termine the number of subsamples used in Scheffe's

test. When power is calculated the percentiles against

which the power is measured are read in on data cards.



92

DATA CARDS

COLUMN FORMAT

1 number of PROGRAM RUNS [ ± 9 ) 11

1-50 CONFIDENCE levels for
null hypothesis

5(F8.

1-50 II

1-50 " USE IN POWER

1-50 " VERSION ONLY

1-50 II

1-50 II

1 number of samples { - 5) 11

1-10 size of each sample 12

1 number of Scheffe Test 11

1-10 k value for each sample 12

• repeat one card for each
Scheffe"' test

s t
repeat all except 1 card
one set for each program
run.
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Sample Data Cards for a Type I

Error Run

93

2

10 10

2

0202

0505

2

2020

2

0202

0505

2

3030

2

0202

0505

2

2030

2

0202

0505

2

1 020

2

0202

0505
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2

1 030

2

0202

0505
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Sample Data Cards for a Type II Error Run

.880 6.70 2.97 1 00. 9.25

.907 1 1 .40 3.3 80. 10.3

.803 CDc• 2.03 20. 4.7 1

.854 6.96 2 .44 20.43 5. 4

.763 3.22 1 .65 8.80 3. 1 0

.818 4.86 1 .9 10.14 3.43

1 0 1 0

0202

0505

768 3.30 2.85 83. 12. 60

85 5.6 2.85 1 00. 10. 8

725 2.63 2.08 19.0 6. 1 0

792 3.68 2.12 22. 5. 4

691 2.22 1 .76 8.4 6 3. 68

,752 3.0 4 1 .75 7.87 3. 72

2020

0202

0505

7 1 7 2.5 2.72 1 00. 9.6

797 3.9 3.2 65. 11.3

67 1 2.05 1 .98 18.0 5. 17
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.743 2.88 2.17 15 . 4 . 8

.645 1 .82 1 .58 7.02 3 . 47

. 706 2.42 1 .84 8.09 3.23

2

3030

2

0202

0505

.754 2.94 2.63 82 . 10.6

.818 4.5 2.87 1 00 . 11.4

. 703 2.36 2.03 14 . 5.30

.763 3.2 2.21 23.67 5.77

.669 2.02 1 .70 7.25 3.31

.726 2.64 1 .83 9.56 3.65

2

2030

2

0202

0505

.830 4.95 3.10 1 00 . 13.40

.908 8.8 3.6 1 00 . 14 .

.769 3.28 2.15 2 1 .29 8.0

.04 4.68 2.36 19.2 7.5

. 728 2.70 1 .68 8.89 5.47

.80 1 3.67 1 .99 7 . 29 4.9 1

2
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1 o?n

2

0202

.820 4.40 2.80 87 . 17.17

.38 7.2 3.5 1 00 . 15 .

.746 2.90 2.08 17 . 9.60

.814 4.37 2.39 24 . 10.6

.71 1 2.45 1 .66 8.30 5.91

. 776 3.49 1.91 12.25 7.0

2

1 030

2

0202

0505

(«)(a
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PROGRAM ROBUST
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COCHRAN
HARTLEY
MILLER
SCHEFFE

STOP
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PROGRAM ROBUST

DIMENSION NSAMn(5) ,DATA(5,30) , SM ( 5 ) ,SSQ(5) ,VAR(b) ,STOT(S)

dimension NK ( 5 ) .NNK ( 5 »5

)

COMMON/H I STGRAM/NH I ST . XM I N » XM AX , DELX . NB I NS

COMMON DAT A « NS AMP » VAR « NS » NK , SM « SSD

TYPE REAL MILLERT

T=TIMEF(T)

CALL RANFSET(T)

READ 50«NRUNS

DO 46 NPAS5= 1 , NRUNS

READ BO»NS

READ 60< (NSAMP ( I ) , I = 1 ,NS

)

READ BOiNSCHRUN

DO 5«NSCH= 1 .NSCHRUN

READ 60 « ( NNK ( NSCH , I ) » I = 1 »NS

)

5 CONTINUE

NHI ST=

1

XM I N=0 .

0

XMAX= 100.0

DELX= 1 ,

0

NB I NS=0

CALL SETLIM(Z.O)

DO 40 K= 1 1 1 000

DO 10 J= 1 « NS

SM ( J) =0.

0

SSO ( J) =0.0
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STOT ( J ) =0.

0

10 VAR(J)=0.0

DO 21 J=1,NS

NNSAMP=NSAMP
( j

)

DO 20 1=1, NNSAMP
CALL NORMAL
data ( j, I

) =x

STOT ( J ) =STOT ( J ) +X

20 CONTINUE

SM ( J ) =STOT ( J ) /NNSAMP

21 CONTINUE

DO 30 J=1»NS

NNSAMP =N SAMP ( J

)

DO 25 1=1 , NNSAMP

SSQ ( J ) = (DATA ( J , I ) -SMC J ) ) ^^*2 + SSQ ( J)

25 CONTINUE

30 VAR ( J 1 =SSQ ( J ) / ( NSAMP ( J ) -1 . 0

)

DO 41 NSCH= 1 ,NSCHRUN

DO 42 M=1,NS

NK ( M ) =NNK ( NSCH » M

)

42 CONTINUE

CALL SCHEFE(FsCHEF,DFM,DFD)

NH I ST=

1

CALL HI STSUMSC^SCHEF

)

41 CONTINUE

40 CONTINUE

NPLOT=

1
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DO 45 I=1»NPL0T

CALL CONLEV( I

)

NH I ST=

I

CALL HISTPLOT

45 CONTINUE

46 CONTINUE

50 FORMAT (II)

60 F0RMAT(5I2)

66 format ( 3F 1 0.2

)

END
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PROGRAM ROBUST

DIMENSION NSAM"^(5) »DATA(5»30) * SM ( 5 ) *SSQ(5) »VAR(5) .ST0T(5)

D I MENS ION NK ( 5 ) « NNI, ( 5 « 5 )

COMMON/H I STGRAM/NH I ST , XM I N . XM Ax , DELX , NB I NS

COMMON D AT A , NSAMP , VAR , NS « NK , SM , SSQ

COMMON CL (30)

TYPE REAL MILLERT

T=T IMEF( T)

CALL RANFSET(T)

READ 50«NRUNS

DO 46 NPASS= 1 . NRUNS

READ 70» ( CL ( I ) « I = 1 » 30

)

70 F0RMAT(5(F8.3,2X)

)

READ 50«NS

READ 60 (NSAMP ( I ) « I = 1 ^ NS

)

READ 50«NSCHRUN

DO 5,NSCH= 1 ^NSCHRUN

READ 60» (NNK(NSCH» I ) , I = 1 »NS)

5 CONTINUE

NHI ST=

1

XM I N=0 •

0

XMAX= 1 •

0

DELX=0.02

NB I NS=0

TT= 1 .

CALL SETLIM(Z,TT)
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NH I ST=2

XM I N=0 .

0

XMAX= 15.

DELX=0.2

NB I NS=0

CALL SETLIM(Z)

NH I ST=3

XM I N=0 .

0

XMAX=8.0

DELX=0 .

1

NBI NS=0

CALL SETLIM(Z)

NH I ST=4

XM I N=0 .

0

XMAX= 100.0

DELX= 1 .

0

NB I NS=0

CALL SETLIM(Z)

NH I ST=5

XM I N=C .

0

XMAX=50.

0

DELX=0 .5

NBI NS=0

CALL SETLIM(Z)

NH I ST=6

XM I N=-4 .

0



XMAX=4.0

DELX = 0 . 1

NB I NS=0

call SETLIM(Z)

DO 40 K= I , 1 000

DO 10 J=i,Njs

SM( j) =0,0

SSQ( J) =0,0

STOT ( j ) =0,

0

10 VAR(j)=o,o

DO 21 J=l,NS

nnsamp=nsamp
( J

)

DO 20 I=1«NNSAMP

IF(j,lq,2) Go tq 11

CALL LAPLACE(X)

GO TO 12

1 1 CALL LAPlAC2(X

)

12 CONTINUE

DATA( J, I )=x

STOT ( J)=STOT( j)+x

20 CONTINUE

SM { J ) =STOT ( J ) /NNSAMP

21 CONTINUE

DO 30 J=1,NS

NNSAMP=NSAMP
( J

)

DO 25 1=1, NNSAMP
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SSQ(J) = (DATA(J, 1 )-SM(J) ) **2 +SSQ ( J

)

25 CONTINUE

30 VAR ( J ) =SSQ ( J ) / { NSAMP( J ) - 1 , 0 )

CALL COCHRAN(VAR,NS« VARMAX,C)

NHI ST=

1

CALL HISTSUMS(C)

CALL hartley ( VAR «NS , VARMAX , FMAX

)

NH I ST=2

CALL HISTSUMS(FMAX)

CALL M ILLER ( TM I LLER «M I LLERT

)

NH I ST=3

CALL HI STSUMSI TMILLER)

NH I ST=6

CALL HI STSUMSI MILLERT

)

DO 41 NSCH= 1 .NSCHRUN

DO 42 M=1«NS

NK(M) =NNK(NSCH«M)

42 CONTINUE

CALL SCHEFE(FsCHEF,DFM«DFD)

NH I ST = NSCH-f3

CALL H I STSUMSI FSCHEF

)

41 CONTINUE

40 CONTINUE

NPL0T=NSCHRUN+3

DO 45 I=l«NPLOT

CALL CONLEVI I

)



CALL POWER ( I

)

NH I ST=

I

CALL HISTPLOT

45 CONTINUE

NH I ST=6

CALL HISTPLOT

46 CONTINUE

50 FORMAT (II)

60 F0RMAT(5i2)

66 FORMAT ( 3F1 0 .2

)

END
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SUBROUT I NE CONLEV ( I H

)

COMMON/999/ I FREQ( 1 02 » 1 0 ) . 1 COUNT ( 1 02 ) < XL ( 1 0 ) . XH { 1 0 ) * DX ( 1 0 ) NB ( 1

0

X I RJCT ( 1 0 ) « I USE ( 1 0 ) » 1 P ( 1 00 ) » 1 X ( 1 00 ) » FERR ( 1 02 , 1 0

)

DIMENSION FREQ(102«I0)

EQUIVALENCE! lFREQ»FREO)

DIMENSION N( 100) «VAL( 3) ,L( 3)

B=DX( IH)

X=XH( IH)

NBB=NB ( I H

)

NR=FREQ(NBB« IH

)

I ND=NB ( I H) -

1

DO 30 J= 1 * I ND

I =NB ( 1 H ) -

J

N( J) =FREQ( 1 » IH)

30 CONTINUE

NL = 3

L ( 1 ) = 1 0

L(2)=50

L ( 3 ) = 1 00

LOC= 1

120 LIM=L(L0C)

LAB=LOC

CALL PO I NT ( NR « N ,L I M « VAL »LABi X » B

)

LAB=L0C+

1

AL=L ( LOC

)

L 1 M= AL+SORTF ( AL

)
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CALL P01NT(NR,N%LIM»VAL»LAB»X*B)

LAB=L0C+2

AL=L(LOC

)

L I M=AL-SORTF ( AL

)

CALL POlNT(NR,N«LlM»VAL»LAB»X»B)

CALL PRINKLOC. VAL)

LOC=LOC+

1

I F ( LOC .GT.NL ) GO TO 250

GO TO 120

250 CONTINUE

RETURN

END



SUBROUT INE POINT ( NR, N«LIM.VAL»LAB.X«B)

DIMENSION N ( 1 00 ) » VAL ( 3

)

NSUM=NR

DO 370 J= 1 , 1 00

NSUM=NSUM+N ( J

)

INDEX=

J

IF(NSUM.GT.LIM) go to 385

370 CONTINUE

PRINT 400

385 ALIM=LIM

ASUM=NSUM

AN=N( INDEX

)

ADEX= I NDEX-

1

VAL (LAB ) =X-B*ADEX- ( ( AL IM+AN-ASUM ) /AN ) *B

400 FORMAT! 12H PO I T4T ERROR)

RETURN

END



SUBROUTINE PR I NT ( LOG , V AL

)

DIMENSION VAL(3)

PRINT 590«LOC

PRINT 600 ^ VAL ( LOG ) » VAL (LOG+ 1 ) VAL ( LOG + 2

)

590 FORMAT (5H THE ,II»20H GONF I DENGE LEVEL IS)

600 FORMAT (F8. 3, 2H +»F8.3,2H -,F6.3)

RETURN

END
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SUBROUT I NE POWER ( 1 H

)

COMMON/999/ I FREQ ( 1 02 » 1 0 ) I COUNj ( 102) * XL ( 10) » XH ( 10) « DX ( 10) . NB ( 10 )

X 1RJCT( 10) » IUSE( 10) » 1P( 100) » IX( 100) » FERR ( 1 02 » 1 0

)

COMMON DATA »NSAMPt VAR ,NS»NK» SM, SSQ

COMMON CL (30)

D I MENS I ON NSAmp

(

5 ) « DATA( 5, 30 ) . SM ( 5 ) , SSQ ( 5) V AR ( b ) , STOT ( 5

)

DIMENSION NK(5) «NNK(5,5)

DIMENSION FREQ(102,10)

EQUIVALENCE( IFREQ.FREQ)

NBB=NB( IH)

I ND=NBB-

1

DO 40 K= 1 » 6

BL=XH( IH)

I C= I H+5* ( K- 1

)

CLEV=CL ( I C

)

NSUM=FREO( NBB, I H

)

DO 10 I = 1 * I ND

J=NBB-

1

NSUM = NSUM+FREQ ( J i I H )

BL=BL-DX ( I H

)

I F ( BL .LT.CLEV ) GO TO 20

10 CONTINUE

20 BETA=NSUM/ 1 000

•

120 PRINT 30»CLEV»BETA

30 F0RMAT(15H POWER AT CL =«F8»3»4H IS«F5.3)

40 CONTINUE
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RETURN

END



114

Program Name.

PROGRAM HISTGRAM (x, WT

)

II Purpose.

The program accepts data for a maximum of 10 histo-

grams and plots them on line on the printer.

Ill How to use.

1. Required non-executable statements COMMON /

HISTGRAM / NHIST, XMIN, XMAX
,
DELX, NBINS

COMMON / TITLE / I TITLE

TYPE MANY 7(7) I TITLE

2. Dictionary of common variables.

NHIST - the number of the histogram 1 £ NHIST .£ 10

XMIN - minimum bin limit

XMAX - maximum bin limit

DELX - bin size

NBINS - number of bins

ITITLE - histogram title, use 56 H ....

3. Determination of bin size and number of bins. The

users have two options.

a) Specify the bin size. Set NBINS = 0. The program

will calculate the number of bins. If the number of

bins is greater than 102, the bin size is adjusted if

possible until the number of bins is less than or equal

to 102.

NBINS
XMAX XMIN

2
DELX
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b) Specify the number of bins and set DELX = 0.

The program will calculate DELX by:

,, XMAX - XMIN
= NBINS - 2

4. Calling Sequence

To set the limits for each histogram, give the

appropriate /HISTGRAM/ common variables, then call

SETLIM (X, WT ) . Repeat for each histogram. To insert

an element x into a histogram, specify the histogram

number (NHIST = n), then call HISTSOMS (X, WT ) ; default

for the weighting factor gives WT = 1. To plot the

histogram number (NHIST = n), give the title, if any

(ITITLE = 56 H ...), then call HISTPLOT (X, WT )

.

Repeat for each histogram.

IV Deck Set Up

TIME

JOB

FTN,L,X

CALLING PROGRAM

SUBROUTINE HISTGRAM

SCOPE

LOAD

RUN

V Space Required

Program length

COMMON /999/

1332 (octal)

2534 (octal)
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SUBROUTINE H I STGRAM ( X , WT

)

COMMON/T I TLE/ 1 T I TLE ( 7

)

COMMON/H 1 STGRAM/N , XM I N , XMAX » DELX , NB 1 NS

EQUIVALENCE ( I » I B I NS ) » ( I L ARG, I I 1 ) » ( XX , I I ) , ( I USE , I RJCT

)

COMMON/999/ I FREQ( 1 02 W 0 ) ^ I COUNT ( 1 02 ) » XL ( 1 0 ) » XH ( 1 0 ) • OX ( 1 0 ) « NB ( 1 0

X I RJCT ( 1 0 ) » I USE ( 1 0 ) » I P ( 1 00 ) 1 I X ( 1 00 ) » F ERR ( I 02 i 1 C

)

DIMENSION FREQ(102»10) S EQU I VALENCE ( I FREQ , FREQ

)

DATA ( I T I TLE = 7 ( BH ) )

DATA ( I A=0

)

ENTRY SETLIM S WT=1.0

IF ( I A.NE.O ) GO TO 3

DO 1 11=1.100

1 I X ( I 1 ) = ( )

DO 2 11=1. 1270

2 I FREQ ( I I ) = 0 S I A= 1 0

3 IF( N.LE.IO .AND. N.GT.O 1 GO TO 10

5 WR I TE < 6 1 . 1 000 ) N T RETURN

1000 FORMAT ( ///I OX, * HISTOGRAM NUMBER * 18,* NOT IN RANGE l-lO OR 1

IS PREVIOUSLY BEEN USED * /// )

10 IF ( IUSE(N).EQ. ARUSED ) GO TO 5

1 USE ( N ) =ARUSED SXL(N)=XMIN J,XH(N)=XMAX SDX(N)=DELX

NB(N) = NRINS

IF ( NB ( N ) ) 50.20.40

20 IBIN = 0

1 F ( XM I N« LT . XMAX ) GO TO 21

WRITE(61 . 19)XMIN.XMAX $ GO TO 30
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19 FORMAK * XMIN(*E12.3») XM AX ( *E 1 2 . 3* ) ^< )

21 NB(N)=(XH(N) - XL(N))/DX(N) + 2.Q

IF( NB (N) .LE. 1 02 ) RETURN

IF( I BIN - 10 ) 25, 30 » 30

25 IRIN =1BIN +1 S DX(N)= DX(N)-K-2.0 GO TO 21

30 IRJCT(N) = 6RREJECT

WR I TE ( 6 1 , 1 005 ) N,DELX S RETURN

1005 FORMAT(///lOX, ^HISTOGRAM * 18, * REJECTED ,DLLX= # E 1 2 . 4 , » TOO

lALL ^ ///)

40 1F(NBINS.GT. 100) GO TO 50

DX(N) = ( XH ( N ) -XL (N ) ) / ( NR ( N ) -2 ) T, RETURN

50 IRJCT(N) = 6RREJECT

WR 1 TE ( 6 1 , 1 0 1 0 ) N,NBINS S RETURN

10 10 FORMAT ( /// 1 OX I STOGRAM 18, Mr REJECTED, NB 1 NS = * 18,///)

ENTRY HISTSUMS

IF ( N.LE.IO .AND. N.GT.O ) GO TO 1 00

WR I TE ( 6 1 , 1 0 1 5 ) N

10 15 FORMAT (///,! OX,* HISTSUMS CALLED WITH NH 1 ST = * I8,*0UT OF RAN(

1 * , ///

)

100 IF ( IRJCT(N) .EO. 6RREJECT ) RETURN

I
= ( ( X - XL(N) ) / DX(N) ) +

IF( I -1 ) 105, 105,115

1 05 I 1 S GO TO 125

1 15 I F ( I
- NB ( N ) ) 125,125, 1 20

120 I =NB( N)

125 FREQ ( I , N )
= FREQ ( I ,N) + WT
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FERR ( 1 N ) =FERR ' I < N ) •fWT^^ WTf. WT=1.0 T- RETURN

ENTRY HISTPLOT

IF ( N.LE.IO .AND. N.GT.O ) GO TO 200

WR 1 TE ( 6 1 , 1 020 ) N S RETURN

1020 FORMAT (/// 1 OX , * HISTPLOT CALLED WITH NH I ST = OUT OF p/

IE * ///)

200 IF( IRJCT(N) .EQ. 6RREJECT ) GO TO 260

I COUNT (1) = ILARG = FREO(l«N)

K = NB(N)

DO 210 I = 2» K

ICOUNT(I) = FRE0(1»N)

IF ( ILARG .GE. FREO(l.N) ) GO T O 2 1 0 '

ILARG = FREQ( I»N)

210 CONTINUE
,

J

IF ( ILARG .LE* 100 ) GO TO 225 ^

11= I LARG / I 00 +1

111= 1

I

DO P15 1 = 1 .K

215 1FREQ(I»N) = FREQ(I*N) / II

GO TO 2A0

225 IF ( ILARG .GT»50 1 GO TO 238

11= 100/ ILARG

DO 230 1 = 1»K

230 1FREQ( I «N) = FREQ(I»M) * II

III =11

I I 1
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GO TO 240

238 11=1 S 111=1

DO 239 1 = 1 ,K

239 1FREQ( 1 .N) =FREQ( 1 .N)

240 WR 1 TE ( 6 1 1 1 025 ) N i XL ( N ) , DX ( N ) » Nb ( N ) , XH ( N

)

1025 FORMAT { IH 1 , 40X HISTOGRAM PLOT NH 1 ST = * 1 3/ 1 3X , *XM 1 N= E12.A

Z5X»*DELTX= *»E12.4, m- B1NS= * » I 4 , 5X , -k XMAX= •»L12.4)

WR1TE(61 , 1030) 111*11

1030 FORMAT!/ 20X * 18* ASTERISKS = * ,18 *« COUNTS MULTIPLY

ID IV IDE accordingly *)

WRl TE ( 6 1 * 1 03 1 ) 1 T 1 TLE

1031 FORMAT (/, 20X , 7A8

)

WR1TE(61 * 1035)

1035 FORMAT!/ 23X * 1 HO * 4X * 1 H5 .. 4X * 2 ! 1 H 1 * 4X ) * 2!lH2, 4X )* 2 ! 1 H3 , 4X)
^

12!1H4*4X) * 2! 1 H5 * 4X) * 2!1H6* 4X), 2!lH7* 4X )* 2!lH8, 4X)

12!1H9*4X) *1H1*/ 33X * 9 ! 1 HO * 4 X . 1 H5 * 4X ) * 1 HO * / 1 OX * 113X*lH0*7X)

WR 1 TE ! 6 1 * 1 040

)

1040 FORMAT ! 3X* 1 OHERROR * 1 OH COUNT * lOO(lH-))

XX = -IO.E-299

WRITE! 61 * 1045) XX

1045 FORMAT ! 1 1X*E1 1 .3*X* IH- )

XX = XL!N) - DX!N)

1 SUM=0

DO 270 1 = 1 ,K * 1

DO 245 111 =1*100

245 1 P ! 1 I 1 ) = ( BR )
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err = SQRTF(FERR( I ,N) )

111= I FREQ ( I * N

)

I FREQ ( I « N ) = 0

FERR ( I » N ) = 0

DO 248 J= 1 , I I 1

248 IP(J) = IX(J)

I SUM = I SUM + 1 COUNT ( I)

WR I TE ( 6U 1 056 ) ERR , I COUNT (I)<(lP(lin, 111 = 1, IQO)

I COUNT ( 1 ) = ( 8R )

IF(K,GE.40) GO TO 253

WR I TE ( 6 1 » 1 059 ) (IP(Ill), 111 = 1, 100)

1059 FORMAT(23X, 1H-, lOORl )

1056 FORMAT ( IXfFlO. 3, I 1 1 , 2H -, lOORl )

253 XX=XX+DX(N)

1F( 1*EQ.K) XX =l.E+300

WR1TE(61 , 1057 )XX» ( 1P( 1 1 1 ) . I 1 1 = 1 « 100)

1057 FORMAT! IIX, E 1 1 . 3 « 2H - , 1 OOR 1 )

270 CONTINUE

WR 1 TE ( 6 1 < 1 060 ) 1 SUM

1060 FORMAT ( /3X , *TOTAL COUNT=* 1 1 0

)

DO 1058 1=1.7

1 058 I T I TLE ( 1 ) =8H

280 1 USE ( N ) =OSRETURNTEND



SUBROUT INE COCHRAN ( VAR , NS » VARM AX ,C

)

DIMENSION VAR(5)

VARMAX=VAR ( 1

)

SUMVAR=0.0

NNS=NS-

1

DO 120 I=1»NNS

I F ( VARMAX-VAR ( I + 1 ) ) 110»120*120

1 1 0 VARMAX=VAR ( I + 1

)

120 CONTINUE

DO 130 I = 1 »NS

130 SUMVAR = SUMVAR +VAR ( I )

c=varmax/sumvar

RETURN

END



SUBROUT INE HARTLEY ( VAR , NS . VARM AX * FMAX

)

DIMENSION VAR(5)

VARM I N=VAR ( 1

)

NNS=NS-

I

DO P.20 I = 1 ,NNS

I F ( VARM I N-VAR ( I + 1 ) )

2 I 0 VARM I N = VAR ( I + 1 )

220 CONTINUE

FMAX= VARMAX/VARM I

N

RETURN

2?0«2I0«210

END
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SUBROUT I NE MILLER ( TMl LLER . M I LLERT

)

DIMENSION NK ( 5 ) » SM ( 5 ) » SSO ( 5

)

DIMENSION NSAMP(5) <DATA(5,30) .VAR (5) .DATAJkOO) . JLGV AR ( 5 , 3 0 )

D I MENS I ON SJLGVAR (5).TXI(30).TYI(30)

DIMENSION SJVAR(B.30)

COMMON D AT A. NS AMP. VAR. NS. NK. SM . SSCJ

COMMON CL (30)

TYPE REAL MiLLERT

TYPE REAL JLGvAR

TYPE real N.M

TYPE real NN

DO 30 1=1. NS

SJLGVAR( I ) =0.0

NNSAMP=NSAMP ( I

)

DO 30 K= 1 . NNSAMP

JLGVAR ( I .K ) =0.0

SJVAR( I .K) =0.0

DO 2 J J= 1 . NNSAMP

2 DATAJK( JJ) =0.0

SSQTX=0.

0

SSQTY=0.

0

NA = 0

SUMDJK=0.0

AVJKD=0.0

L = 0

5 DO 20 J=1 .NNSAMP
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IF( J-K) 15,10,15

10 NA=-1

GO TO 20

15 L=J+NA

DATAJK (L) =DATA ( I ,J)

SUMDJK = SUMDJK4-DATA JK ( L )

20 CONTINUE

NN I =NNSAMP-

1

NN=NN

I

AVJKD=SUMDJK/NN

DO 25 J=1,NNI

SJVAR( 1 ,K)=( ( (DATAJK( J)-AVJKD)**2)/NN)+SJVAR( I ,K)

JLGVAR( 1 ,K) =L0GF(SJVAR( I ,K )

)

25 CONTINUE

SJLGVARC I
) =SJLGVAR{ I )+JLGVAR( I ,K

)

30 CONTINUE

N=NSAMP ( 1

1

M=NSAMP ( 2

)

NNN=NSAMP( 1

)

MMM=NSAMP( 2

)

TXP0P=0.0

TYPOP=0.0

TX=L0GF ( VAR ( 1 )

)

TY=LOGF ( VAR ( 2 )

)

TDX=N*TX-( (N-1,0) /N ) -W-S JLGVAR ( 1 )

TDY=M*TY-( (M-1 »0)/M) -X-S JLGVAR ( 2 )
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DO 40 J= 1 , NNN

TX I ( J ) =N*TX- (N- 1 . 0 ) JLGVAR ( 1 , J )

40 CONTINUE

DO 50 J= 1 « MMM

TYI (J)=M*TY-(M-1.0) *JLGVAR ( 2 , J

)

50 CONTINUE

DO 60 J=1.NNN

SSQTX=SSQTX+ ( TX I ( J)-TDX)**2

60 CONTINUE

DO 70 J=1.MMM

SSQTY = SSQTY+ ( TY I ( J ) -TDY )
»-*2

70 CONTINUE

A= ( TDX-TXPOP ) - ( TDY-TYPOP)

B=( 1.0/(N*(N-1*0) ) )*SSOTX+( ) )*SSQTY

MILLERT=A/SQRT (B)

TM I LLER= AB5F ( M I LLERT

)

RETURN

END



126

SUBROUTINE SCHEFE ( FSCHEF . DFN ^ VE

)

COMMON data , NS AMP « V AR , NS « NK SM « DUM

DIMENSION VAR(5 ) ,SM(5) .DUM(5)

DIMENSION data ( 500) < NSAMP (5) «SDATA(5000) , NK ( 5 ) KCS(5,5)

D I MENS I ON SUMX ( 5O ) , SSQ ( 5 . 5 ) « Y ( 5 . 5 ) , AT Av ( 5 ) , CCSV ( 5

)

DO 30 1=1 «NS

L= 1

NNSAMP=NSAMP (
1

'

annsamp=nnsamp

ANK=NK ( I

)

NR= ( ANNSAMP/ANK ) +0 .5

DO 30 J=1«NNSAMP

NTEST= ( J) -NR*L

IF (NTEST) 2000« 10

10 L=L+1

20 M= ( J ) -NR* (
L-

1

)

SDATA ( I ,L0)=DATA( I O)

30 KCS ( I O ) =M

DO 40 I = 1 « NS

NNK=NK ( I

)

DO 40 J= 1 » NNK

SUMX ( I O ) =0 .

0

SSQ( I O)=0.0

40 CONTINUE

DO 70 1 = 1 « NS

NNK=NK ( I

)
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DO 70 J=1,NNK

KKCS = KCS( I , J )

DO 50 K=1,KKCS

SUMX ( I » J ) =SDATA ( I , J ,k ) +SUMX ( 1 , J

)

50 CONTINUE

DO 60 K= 1 .KKCS

Q— ( (SDATA( I SUMXC I «J)/KCS( I «J) )**2)/(KCS( I »U)~1»0)

SSQ( I » J)=SSQ( I « J)+Q

60 CONTINUE

Y ( I , J ) =LOGF ( SSQ ( I » J ) )

ATAV ( I
) =0.

0

CCSV( I
) =0.0

70 CONTINUE

VE=0.0

SUMVY2=0.0

SUMVN2=0,0

CCSS=0.

0

ATAS=0.0

AMAX=NS

DO 90 I = 1 . NS

AJMAX=NK ( I

)

VE=VE+AJMAX- 1 .

0

NNK=NK ( I

)

DO 80 J= 1 . NNK

CCSV( I )=CCSV( I )+KCS( I . J)-l .0

SUMVY2=SUMVY2+ ( KCS (I.J)-1.0)«Y(I^J)**2
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80 CONTINUE

DO 85 J= 1 . NNK

ATAV( I )=ATAV( I ) + (KC5( 1 « J)-l .0)*Y( I , J ) /CCSV ( 1 )

85 CONTINUE

CCSS=CCSS+CCSV (

I

)

90 CONTINUE

DO 95 I=1«NS

ATAS= ATA5+ATAV ( I )*CCSV( I )/CCSS

SUMVN2 = SUMVN2 +CCSV ( I ) ( ATAV ( I ) **2 )

95 CONTINUE

FSCHEF= ( VE* ( 5UMVN2-CCSS*ATAS**2 ) ) / ( ( AMAx- 1 . 0 ) * ( SUMVY2-SUMVN2 ) )

DFN=AMAX- 1 •

0

RETURN

END
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SUBROUTINE BOXAND(D)

dimension data (5,30) ,NSAMP(5) , SM ( 5 ) , SSQ ( 5 ) ,VAH(5)

dimension NK(5)

COMMON DAT A , NSAMP , VAR , NS , NK , SM , SSO

TYPE REAL N

DO 10 1=1,2

DEV4 ( I ) =0.

0

NNSAMP=NSAMP ( I

)

DO 10 J=1,NNSAMP

DEV4 ( I
) = ( DATA ( 1 , J ) -SM ( 1 ) ) **4+DE V4 ( 1

)

10 CONTINUE

A=DEV4 ( 1 ) +DEV4

(

2 )

R= ( SSQ ( 1 ) +SSQ ( 2 ) ) -K *2

N=NSAMP ( 1 ) +NSAMP ( 2

)

B2= ( N+2 ) * ( A/B

)

D = 1 .0 / ( 1 .0 + .5* ( ( N+2 ) / ( N- 1 . 0- ( B2-3 . 0 ) ) )
«

( B2-3 . 0 ) )

R= VAR ( 1
) -VAR ( 2

)

IF(R) 20,20*30

20 F=VAR ( 2 ) /VAR ( 1

)

DFN=D* ( NSAMP ( 2 ) - 1

)

DFD=D* ( NSAMP ( 1
) - 1

)

GO TO 40

30 F=VAR( 1 ) /VAR(2

)

DFN =D* ( NSAMP ( 1 ) - 1)

DFD =D* ( NSAMP ( 2 ) - 1 >

, DEV4 ( 5

)

40 CONTINUE



130

I DFN=DFN+.

5

I DFD=DFD+.5

PUNCH 60,F , IDFN, IDFD

60 FORMAT ( 3X 2HF= ,F6. 3 , 6H DFN=*13,6H

RETURN

END

60 FORMAT(3X»2HF= ,F6.3,6H DFN=»I3,6H

RETURN

DFD= « 1 3

)

DFD= . I 3

)

END
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SUBROUTINE NORMAL ( X

)

X = 0 .0

DO 90 1=1,12

90 X=RANF ( - 1) +X

X=X-6.0

RETURN

END

SUBROUTINE NORMALS(X)

X = 0 .0

DO 90 1=1,60

90 X=RANF { - 1 ) +X

X =X-30 .

0

RETURN

End
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SUBROUTINE RECTANG(X)

X = 0 .0

U=RANF ( - 1

)

•73p4-3«Ato4'^U

RETURN

END

SUBROUTINE RECT2(X)

X = 0.0

U=RANF ( - 1

)

X — “"3# 0734-7 • 7A0-)<-U

RETURN

END



SUBROUTINE LAPLACE (X)

ALPHA=-4.0

BETA=4.0

B= 1 . 0/ 1 . 4 1 42

F= 1 .0/ ( 2*B

)

X = 0 .0

1 U1 =RANF( -1

>

U2=RANF(-1

)

X = ALPHA+ ( beta-alpha ) ifU2

I F ( X ) 2 . 3« 3

2 Y =-X

GO TO 4

3 Y = X

4 FY=(1.0/(2.0*B))*( EXPF (
( -Y ) /B )

)

1F( (FY/F)-U1 ) ’ ,

1

5 CONTINUE

RETURN

END
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SUBROUTINE LAPLAC2(X)

ALPHA=-4 .0

BETA=4.0

B=1 .581 139

F= 1 .0/ ( 2*B

)

X = 0.0

1 U1 =RANF ( -1

)

U2=RANF ( -1

)

X= ALPHA + ( BETA-ALPHA ) ^(J2

IF(X) 2«3«3

2 Y = -X

GO TO 4

3 Y = X

4 FY=(1.0/(2.0^fB))*( EXPF ( ( -Y ) /B ) )

IF( (FY/F)-U1 ) 1 , 1 <5

5 CONTINUE

RETURN

END



SUBROUTINE DEXP ( X

)

R 1 =-4 .

0

R2=4.

0

8=2.449490/3. 141893

A=-0.5772156*B

F = ( 1 .0/B)->^ 0.3678794 4

1 U 1 =RANF ( - 1

)

U2=RANF ( - 1)

X=R 1+ ( R2-R 1 ) *UP

Y= ( X-A ) /B

DE= ( 1 /B ) *EXPF ( -Y-EXPF ( -Y )

)

IF( (DE/F)-U1 ) 1 . 1 .5

5 CONTINUE

RETURN

END
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subroutine DEXP5(X)

R 1 =-4 .

0

R2=4.0

B = 5 • /3 • 1 4 1 593

A=-0.57721 56*B

F=( 1 *0/B)*o. 36787944

1 U 1 =RANF ( - 1

)

U2 =RANF ( - 1 )

X=R1+(R2/R1 )*U2

Y=(X-A)/B

DE= ( 1 /B ) *EXPF { -Y-EXPF ( -Y )

)

I F ( { DE/F ) -U 1 ) 1 , 1 ,

5

5 CONTINUE

RETURN

END
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