
University of Zurich
Zurich Open Repository and Archive

Winterthurerstr. 190

CH-8057 Zurich

http://www.zora.uzh.ch

Year: 2009

Malignant Catarrhal Fever of Cattle Is Associated with Low
Abundance of IL-2 Transcript and a Predominantly Latent

Profile of Ovine Herpesvirus 2 Gene Expression

Meier-Trummer, C S; Rehrauer, H; Franchini, M; Patrignani, A; Wagner, U;
Ackermann, A

Meier-Trummer, C S; Rehrauer, H; Franchini, M; Patrignani, A; Wagner, U; Ackermann, A (2009). Malignant
Catarrhal Fever of Cattle Is Associated with Low Abundance of IL-2 Transcript and a Predominantly Latent Profile
of Ovine Herpesvirus 2 Gene Expression. PLoS One, 4(7):1-12.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
PLoS One 2009, 4(7):1-12.

Meier-Trummer, C S; Rehrauer, H; Franchini, M; Patrignani, A; Wagner, U; Ackermann, A (2009). Malignant
Catarrhal Fever of Cattle Is Associated with Low Abundance of IL-2 Transcript and a Predominantly Latent Profile
of Ovine Herpesvirus 2 Gene Expression. PLoS One, 4(7):1-12.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
PLoS One 2009, 4(7):1-12.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZORA

https://core.ac.uk/display/11260335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Malignant Catarrhal Fever of Cattle Is Associated with Low
Abundance of IL-2 Transcript and a Predominantly Latent

Profile of Ovine Herpesvirus 2 Gene Expression

Abstract

Background: Malignant catarrhal fever (MCF) is a lethal disease of cattle, characterized by vasculitis,
necrosis, and accumulation of activated, dysregulated cytotoxic lymphocytes in various tissues. Ovine
gamma herpesvirus 2 (OvHV-2) is a causative agent of MCF, which may trigger the disease through
immunopathogenic pathways. Lymphocytes are the main target of the virus. However, the pathogenic
basis of the disease is still mysterious. Methods/Findings:We hypothesized that the gene expression
patterns of OvHV-2 and the relative abundances of host cell transcripts in lymphnodes may be used to
identify pathways that help to explain the pathogenesis of MCF. Therefore, viral and host cell gene
expression patterns in lymph nodes of animals with MCF and healthy controls were analyzed by
microarray. Two regions on the viral genome were transcriptionally active, one encoding an orthologue
to the latencyassociated nuclear antigen (ORF73) of other gamma herpesviruses, the other with no
predicted open reading frame. A vast number of transcripts related to inflammatory processes,
lymphocyte activation, cell proliferation and apoptosis were detected at different abundances. However,
the IL-2 transcript was eminent among the transcripts, which were, compared to healthy controls, less
abundant in animals with MCF. The ratio between CD4- and CD8-positive T-lymphocytes was
decreased in the lymphnodes of animals with MCF compared to healthy controls. In contrast, the same
ratio was stable, when peripheral blood lymphocytes were analyzed. Conclusions/Significance:The
phenotype of mice with a deficient IL-2-system almost perfectly matches the clinical signs observed in
cattle with MCF, which feature a significantly decreased IL-2 transcript abundance, compared to healthy
cattle. This supports the hypothesis that immunopathogenic events are linked to the pathogenesis of
MCF. IL-2-deficiency may play an important role in the process. Therefore, this work opens new
avenues for research on MCF.
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Introduction

Malignant catarrhal fever (MCF) is a mysterious and lethal

immunopathological disease of cattle and other cloven hoofed

animals. Etiologically, MCF can be instigated by at least two

distinct members of the Macavirus genus within the subfamily

gammaherpesvirinae, i.e. alcelaphine herpesvirus 1 (AlHV-1) and

ovine herpesvirus 2 (OvHV-2)[1]. Both viruses undergo subclinical

infections in their natural reservoir hosts, whereas so-called

indicator hosts, i.e. cattle, deer, bison, swine, succumb to MCF

[2,3,4,5,6,7,8,9,10,11]. OvHV-2 is asymptomatically endemic

worldwide in all breeds of sheep, giving cause to the occurrence

of sheep-associated MCF (SA-MCF), wherever sheep and

indicator hosts are kept in close vicinity [12,13,14]. In contrast,

AlHV-1 is asymptomatically endemic in African ungulates, for

example wildebeest, and MCF due to AlHV-1 is restricted to

African countries or may occur on other continents upon contact

of susceptible animals with infected Zoo animals [15].

The disease is characterized by the infiltration and accumula-

tion of large numbers of CD8-lymphocytes, causing vasculitis and

necrosis in a variety of tissues [10,16,17,18]. Various clinical

patterns can be discriminated, i.e. a head-and-eye form, an

intestinal form, and a cutaneous form [10,19,20]. The clinical

findings may include combinations of ocular and nasal discharge,

opacity of the cornea that may lead to blindness, diarrhea,

haematuria, erosions of the muzzle, lymphnode swelling and

eventually erosions on the skin [10,16,17]. However, the

symptoms are often not clearly attributable to one of the clinical

patterns, e.g. diarrhea occurs in nearly all affected animals.

While AlHV-1 has been isolated in the 1960ies and can be

serially propagated in cell cultures, there is no suitable monolayer

cell culture system to serially propagate OvHV-2 [2,3]. Therefore,
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it has been difficult to study OvHV-2 and its underlying

pathogenesis in either sheep or cattle. However, much progress

has been achieved in recent years due to advances in molecular

biological techniques. Initially, it was the detection and analysis of

herpesvirus-like DNA in tissues from animals with MCF, which

allowed consecutive establishment and improvement of various

PCR detection and quantification methods for OvHV-2

[6,21,22,23]. These technical developments allowed for studies

on virological, epizootological, and pathogenetical aspects of

OvHV-2 in various animal species and also for the establishment

of a very useful rabbit model of the disease [24,25,26].

OvHV-2 exhibits typical features of a gamma herpesvirus,

which has been confirmed through the recent completion of its

genomic DNA analysis [27]. OvHV-2 has a double stranded DNA

genome, which can be divided into a unique long fragment of

approximately 130 kbp and multiple copies of approximately

4 kbp terminal repeat elements. The genome encodes for at least

73 open reading frames (ORFs), 62 of which show homology to

known gamma herpesvirus genes. Among others, a gene encoding

for a latency-associated nuclear antigen (LANA), a key feature of

gamma herpesviruses, was predicted in ORF73. The other genes

are either shared with AlHV-1 or unique to OvHV-2 (Table 1).

Among this second set of genes, there are several candidates that

could provide explanations for the disease phenotype, which

includes uncontrolled multiplication of lymphocytes in various

tissues. For example, a spliced homolog of cellular interleukin 10

(vIL-10, Ov2.5) has been described, which may serve as a growth

factor for the host’s lymphocytes and which also may act

differently, depending on the animal species infected. Further-

more, two homologs to Bcl-2 (Ov4.5 and Ov9) have been

identified. These might contribute to the protection of infected

cells against intrinsic or extrinsic apoptosis, which is induced in the

course of a normal immune reaction to prevent uncontrolled

multiplication of activated lymphocytes (reviewed by [28]).

The major sites harboring high amounts of viral DNA in the

course of MCF comprise blood lymphocytes and organs of the

immune system, including spleen and lymphnodes. However, the

presence of viral DNA in each single dysregulated cell, which

contributes to the disease picture, has been a matter of debate.

Some authors believe that only a fraction of lymphocytes is

infected, whereas others argue that the frequency of virus positive

cells in vivo is being underestimated due to the lack of sensitive

methods for detection [6,24,25,29,30].

Based on these arguments, we set out to test the following two

hypotheses:

(i) Development of MCF is associated with increased survival

and multiplication of latently infected lymphocytes, which

are protected from apoptosis through functions of a specific

set of viral proteins, including Ov2.5, Ov4.5, and Ov9

(Table 1). The expression of the corresponding viral genes in

diseased animals can be measured by a viral microarray.

Survival levels of infected cells could be increased through

direct interaction of viral proteins with cellular proteins,

which regulate apoptosis in activated lymphocytes. In this

case, the gene expression patterns of the infected cells would

not necessarily be different from those of uninfected cells. In

the same assay, a predominantly lytic type of viral gene

expression was expected to be recognizable.

(ii) Alternatively, viral proteins or micro RNAs could influence

the cellular gene expression patterns, which can be

recognized through a microarray analysis of cellular gene

expression. In this case, the pathogenesis of MCF could also

be based on a dysfunctional interplay between the cells

involved in immune functions. In such a model, only a

fraction of relevant cells needs to be infected to allow for this

type of pathogenesis. Furthermore, the pattern of viral gene

expression may be distinct from that proposed in the first

hypothesis.

While a lytic type of virus infection would be difficult to explain,

in both alternative cases, the normal pathways to restrict

multiplication of activated lymphocytes by induction of apoptosis

would be disturbed, which could result in dysregulated multipli-

cation of lymphocytes as a basis for the disease phenotype.

To test these hypotheses, we generated a microarray for the

semi-quantitative detection of viral transcripts. Labeled cRNAs

were tested on the viral microarray as well as on a cattle

microarray comprising the relevant genes for analyzing the general

features of the host’s status of immune response. Important

findings were corroborated by alternative methods. We found that,

indeed, MCF was associated predominantly with a latent type of

viral gene expression and, furthermore, we may have detected an

important clue to understand and, possibly, treat MCF in the

future.

Results

Lymphnodes are one of the main sites for diagnosis of MCF and

lymphocytes are the main carriers of OvHV-2 DNA in cattle with

MCF. In order to get insight into the pathogenesis of this disease,

an effort was undertaken to analyze the cellular and viral

transcription profiles in such lymphnodes and to compare the

cellular transcription profiles of animals with MCF to those of

uninfected animals. For this purpose RNA was extracted from

OvHV-2-positive lymphnodes of cattle with MCF as well as from

OvHV-2-negative, healthy control animals. Consecutively, Cya-

nin- and biotin-labeled cRNA was produced for use in microarray

analysis and standardized as described in Materials and Methods.

Presence and quantity of selected viral RNAs was additionally

assayed by qRT-PCR.

Analysis of viral transcripts
Microarray. In a first set of experiments, the Cy3- and Cy5-

labeled cRNA was used for hybridization with an array, which

represented the entire OvHV-2 genome. Specifically, 8730 60mer

oligonucleotides were used as viral targets. These oligonucleotides

Table 1. Unique OvHV-2 genes.

Unique gene Possible function

Ov2 Regulation of transcription; leucine zipper protein

Ov2.5 Viral IL-10 (vIL-10)

Ov3 Intracellular signaling; semaphorin family

Ov3.5 No prediction, unknown

Ov4.5 Cell death regulator; Bcl-2 family

Ov5 Intracellular signaling; G-protein coupled receptor

Ov6 Viral transactivator; similarity to Zta of EBV

Ov7 Glycoprotein

Ov8 Glycoprotein

Ov9 Cell death regulator; Bcl-2 family

Ov10 Transcriptional regulation; nuclear localization signal

doi:10.1371/journal.pone.0006265.t001

MCF and Low IL-2 RNA Abundance
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represented both strands of the viral genome twice (tiling probes).

To generate a second type of screening for transcriptional activity,

two additional oligonucleotides per each predicted viral open

reading frame (ORF) were used as targets, which had been

selected for optimal hybridization under the conditions used (ORF

probes). The array was hybridized and analyzed as described in

Materials and Methods. The resulting data were deposited in the

GEO database (GSE13853). Figure 1 compares the hybridization

signals obtained from cells of infected and control animals. The

points represent the expression signal of the probes targeting the

viral genome. The majority of the probes (gray and black points)

did not show any differential signal. Only two regions on the virus

genome showed transcriptional activity. The first one covered

ORF73, which is located on the reverse strand spanning the region

119046 bp to 120533 bp and represents a LANA orthologue. In

this region 31 consecutive tiling probes showed differential signals

in the infected animals (see Figure 2). The same was also observed

by the two probes that were optimized to target the ORF73 (cyan

dots in Figure 1). Thus, transcription from ORF73 was detected

using two alternative methods.

The second region for viral transcriptional activity spanned

nucleotides 115184 to 115364 bp on the forward strand of the

viral genome and was represented by four consecutive tiling

probes. This region corresponds to an intergenic region, located

between ORF69 and ORF Ov8. This observation was unexpected

and invites for further analysis.

qRT-PCR. The present microarray was designed only to

provide relative information towards viral transcriptional activity

throughout MCF. In order to validate the presence of the

transcripts predicted by the viral microarray and to explore the

sensitivity of the present assays, a number of quantitative reverse

transcription real-time PCR (qRT-PCR) assays were established

(see Materials and Methods) and used for detection and

quantitation of selected viral RNAs in lymphnodes of cattle with

MCF. The results are summarized in Table 2. Briefly, the

sensitivity of the assay to detect ORF25 template was comparable

to that for detecting the intergenic target, whereas the tests to

detect ORF73 and Ov9 were more sensitive. Under these

conditions, the ORF25 transcript, encoding the major capsid

protein of OvHV-2, remained undetectable in our materials,

Figure 1. Hybridization signals. Comparison of the hybridization signals of infected (MCF-diseased) and control animals on the viral microarray.
The tiling and ORF specific probes are plotted in gray and black. We have highlighted the probes matching the LANA homologue (blue/cyan) and 4
consecutive tiling probes targeting the region 115250 bp on the forward strand (red).
doi:10.1371/journal.pone.0006265.g001

Figure 2. OvHV-2 gene expression. Expression pattern in the region 119 kB to 121 kB of the virus. The plot shows the expression changes
measured by the probes tiled across the genome and the predicted location of the LANA gene. Probes above (below) the dividing line match the
forward (reverse) strand. Significant consistent induction is measured by the probes matching the reverse strand at the locus of ORF73 (LANA
orthologue).
doi:10.1371/journal.pone.0006265.g002

MCF and Low IL-2 RNA Abundance
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whereas the intergenic transcript was present at high numbers.

Similarly, between 100 and 1.000 copies of the ORF73 transcript

were detected using the same amount of template that did not

reveal any transcriptional activity over Ov9. Calculating

conservatively, the microarray used throughout our experiments

had a detection limit of less than 100 copies per assay.

From all of the above experiments we conclude that no

transcripts corresponding to structural viral proteins were

detected. These results supported the notion that MCF was

associated with a predominantly latent OvHV-2 infection.

However, they also clearly, contradict hypothesis 1, which

predicted that several viral genes would be expressed, which are

unique to OvHV-2 or shared with AlHV-1 (see Table 1). Indeed,

no significant transcriptional activity in any of those genes was

detected under the present experimental conditions.

Analysis of host transcripts in animals with and without
MCF

The biotin-labeled cRNAs were also used for hybridization with

an Affymetrix Bovine Genome array, which consisted of 24.072

probe sets, each comprising 11 oligonucleotides, covering over

23.000 bovine transcripts. 15.425 probe sets were considered as

present by our filtering. The subsequent statistical analysis

revealed significant expression differences (p,0.05) between

infected and uninfected animals for 6.300 probe sets. The resulting

data were submitted to the GEO database (GSE13852).

Apparently 4.538 transcripts were significantly more abundant

in diseased animals as compared to healthy animals. Furthermore,

1.770 transcripts were significantly less abundant in animals with

MCF. 1.238 transcripts were found to be more than twice as

abundant in diseased than in healthy animals. The highest value of

higher abundance (256-fold) was found with a transcript for

granzyme-2, a T-cell serine protease, which is transcriptionally

activated during cytotoxic T-lymphocyte maturation. The detailed

data were deposited in the GEO database (GSE13852).

Inflammation and T-cell activation. As expected from the

etiology and the clinical disease picture, primarily transcripts

related to inflammatory processes, lymphocyte activation, catalytic

processes, immune response, cell proliferation and apoptosis were

detected at different abundance. Unexpectedly, the IL-2 transcript

was eminent among the transcripts of low abundance. Since IL-2

is strictly regulated on the transcriptional level [31] and because it

occupies a pivotal role in the regulation of the immune response

and due to the fact that IL-2 deficient mice show a similar

phenotype to cattle with MCF, i.e. accumulation of lymphocytes in

the intestine and ulcerative colitis [32,33], we suggest that its low

abundance in the context of inflammation and T-cell activation

may represent a key feature of MCF.

The transcripts for the IL-17 receptor, MHC-I heavy chain, IL-

6 receptor alpha chain, insulin receptor, and IL-16 receptor were

among the most strongly reduced transcripts. On the other hand,

the expression of IL-10 and its receptor were slightly increased. An

interesting phenomenon was observed with various clusters of the

T-cell receptor (TCR). While the TCR beta cluster (Bt63956) was

in low abundance, other beta clusters as well as the gamma cluster

were significantly increased (Table 3). A number of transcripts

belonging to the effector molecules of cytotoxic T-cells, e.g.

granzymes and perforin, as well as transcripts indicating the

lymphocytes to be activated, e.g. CD2, CD3, CD8 were detected

at higher abundance. The Interferon gamma transcript itself was

6.4 times more abundant in animals with MCF, and in accordance

with this we observed that among 21 interferon-related transcripts,

20 were found to be more abundant and only 1 was less abundant.

The outstanding higher abundance of transcripts belonging to

catalytic processes may be explained by the predominance of

cytotoxic T-cells in MCF lesions.

Cell cycle/Apoptosis associated transcripts. Several cell

cycle and apoptosis related transcripts were present at different

abundance in healthy and MCF-diseased cattle, respectively

(Table 4). Interestingly, the transforming growth factor beta

(TGF beta) as well as its receptor (TGFbR), which together control

proliferation and differentiation of many cell types, was less

abundant in animals with MCF. This is noteworthy since TGF

beta is, similar to IL-2, important in the context of regulatory T-

cells. The complexity of the present situation may be explained by

the simultaneous influence of the virus and host control

mechanisms on affected lymphocytes.

Overall, these results were consistent with hypothesis 2, which

claimed that the host gene expression of animals with MCF was

affected in a manner that could be detected by microarray analysis

and that could explain the disease phenotype without all

dysregulated cells being infected. However, it remains to be

clarified, whether these observations are caused by differential

gene expression regulation of the cells or by their mere numbers

and abundances.

CD4/CD8 ratios
The relative abundance of transcripts in a given compartment

may be explained either by downregulation/upregulation of

transcriptional activity or by loss/proliferation of the major

producer cells of a particular transcript. To address this issue as

far as possible, CD4/CD8 ratios were determined in the

peripheral blood as well as in the lymphnodes of cattle with

MCF and healthy controls. As shown in Fig. 3., the CD4/CD8

ratios in the bloodstream did not significantly differ between

healthy animals and such with MCF (p = 0.97). In contrast, the

same ratios were significantly lower in cattle with MCF compared

to healthy controls (p = 0036), when assayed in lymphnodes. Due

to the nature of the lymphnode, absolute counts of the relevant

cells could not be generated. Therefore, the observed low

abundance of IL-2 transcripts in lymphnodes of cattle with

MCF might be interpreted either as due to (1) over-proportional

proliferation of CD8+ cells and downregulation of IL-2 transcrip-

tion in CD4 cells or (2) strong decline of the CD4+ cells, which are

the main IL-2 producers, or (3) a combination thereof. However, it

was obvious that the number and fate of lymphocytes in the

lymphnodes may differ from the situation in the periphery.

In any event, our results strongly suggest that the low

abundance of IL-2 transcripts in lymphnodes of cattle with

Table 2. qRT-PCR for selected viral RNAs in lymphnodes.

Target DNAa Melting peakb RNA (MCF)c RNA (healthy)d

ORF25 100–1000 n.a. Not detected Not detected

ORF73 .10 81uC 100–1.000 Not detected

Ov9 .10 81uC Not detected Not detected

Intergenic .100 83uC 500–10.000 Not detected

adetection limit (number of template copies) using DNA template.
bdetermined following qPCR using SYBR-green technology; not applicable (n.a.)

to conventional PCR, which was detected by EtBR staining after agarose gel
electrophoresis of the PCR product.

c25 ng RNA template (from lymphnodes of animals with MCF) before reverse
transcription. Numbers in the column refer to copy number detected.

d25 ng RNA template (from lymphnodes of healthy animals) before reverse
transcription.

doi:10.1371/journal.pone.0006265.t002

MCF and Low IL-2 RNA Abundance
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MCF may lead to IL-2 deficiency and be an important factor in

the pathogenesis of the disease.

Discussion

Malignant catarrhal fever (MCF) in cattle is a frequently lethal

disease, which proceeds with fever, depression, conjunctivitis and

keratitis, as well as with hyperemic to ulcerative lesions in the

mucosa of the respiratory, genital and digestive tract, which lead to

ocular and nasal discharge and diarrhea [11]. Viral DNA can be

detected in buffy coat cells of cattle with MCF as well as in most

organs. In contrast, demonstration of viral antigen in cattle with

MCF has, thus far, been largely unsuccessful [2,3].

At least two agents, AlHV-1 and OvHV-2, are known to cause

MCF in cattle and it would be of interest to know, whether or not

their disease is actually based on the same pathogenetical

principles. In this work, we concentrated exclusively on OvHV-

2. Similar to other gamma herpesviruses, OvHV-2 has two sets of

genes, i.e. (1) a set of common viral genes that are conserved

among the herpesviruses and (2) a set of unique genes that often

have homologues in their host cells. Twelve (Table 1) of its 73

predicted ORFs encode for unique genes, nine (Ov2, Ov3, Ov4.5,

Ov5, Ov6, Ov7, Ov8, Ov9, Ov10) have orthologues in AlHV-1

and three are exclusive for OvHV-2 (Ov2.5, Ov3.5, Ov8.5).

It is well known from other gamma herpesviruses that the viral

gene expression pattern may correlate to the present state of the

infection or the associated disease. For example, the latency II

program of EBV drives the differentiation of activated B-cells into

memory cells [34,35] or vGCR of HHV-8 is known to induce

transformation and angiogenesis, both features, which are

required for the development of Kaposi’s sarcoma [36,37,38,39].

Although the pattern of viral gene expression in infected cells of

animals with MCF has previously not been analyzed in detail, a

recent report described the detection of the ORF25 transcript,

which encodes for the OvHV-2 major capsid gene, in animals with

MCF [40]. This observation spoke for lytic replication of OvHV-2

in diseased animals, at least upon infection with an American

OvHV-2 strain. In contrast, we were unable to detect the ORF25

transcript throughout our work, which, though, was done in the

context of European strains of OvHV-2. Interestingly, the ORF25

transcript was also not detected, when analyzed by others in the

rabbit model for AlHV-1-associated MCF [41]. The latter authors

explicitly did not detect any ORF25 (capsid protein) or ORF9

(DNA polymermase) transcripts in spleens or lymphnodes of

rabbits with AlHV-1-induced MCF. They concluded, therefore,

that AlHV-1-induced MCF is associated with a predominantly

latent infection. This view is also shared by others working with

European OvHV-2 [42]. Indeed, mainly intact circular OvHV-2

genomes have been found in T-lymphocytes derived from cattle

with MCF, which speaks for a dominating latent infection.

Furthermore, detection of structural viral antigens in the lesions of

cattle with MCF was, hitherto, unsuccessful. Moreover, OvHV-2

is rarely, if at all, naturally transmitted from one cattle to another

and it has been difficult to recover infectivity at all from cattle with

MCF [43,44,45]. Conversely, a mixture of OvHV-2 transcripts

has been detected in cultured peripheral T-lymphocytes from

cattle with MCF [29]. Those authors concluded that, at least in the

periphery, latently infected cells may co-exist with cells harboring

productively replicating OvHV-2. This view is supported by a

recent publication on OvHV-2-induced MCF in the rabbit model,

where structural OvHV-2 proteins were detected exclusively in

epithelial cells and M-cells of the appendix, while other tissues

Table 3. Transcripts associated with inflammation and T-cell activation affected in lymphnodes of MCF affected cattle.

Transcript Fold abundance p-value Function

Granzyme A 8.6 0.000372 Cytotoxic T-cell effector

Granzyme B precursor 256.2 0.0175 Cytotoxic T-cell effector

Granzyme H precursor 27.2 0.000431 Cytotoxic T-cell effector

Perforin 4.8 0.00517 Cytotoxic T-cell effector

CD2 2.4 0.00569 Adhesion molecule involved in T-cell activation

CD3e 1.7 0.00517 Essential role in TCR signal transduction and cell-surface expression of
the TCR

CD3d 1.7 0.00837

CD3c 1.5 0.00838

CD8a 3.9 0.00598 Coreceptor for MHC class I restricted T-cell s

CD28 2.2 0.00161 Costimulation of T-cell proliferation and cytokine production upon
binding CD80 or CD86

TCR, gamma cluster 4.8 0.0457 Recognition of antigen presentation

TCR, beta cluster (Bt63956) 0.4 0.0364 Recognition of antigen presentation

TCR, beta cluster (Bt1978) 1.4 0.0126 Recognition of antigen presentation

TCR, beta cluster (Bt1978) 1.4 0.00852 Recognition of antigen presentation

Interferon gamma 6.4 0.00958 Affects activation, growth, and differentiation of T-cells, B-cells and
macrophages as well as Nk cells. Upregulates MHC expression on APCs.
Antiviral and anti-proliferative activities

Interleukin 2 0.14 0.00268 Involved in propagation and establishment of self tolerance of T-cells

Interleukin 7 0.6 0.0277 Growth factor for T-cell progenitors

Interleukin 10 2.9 0.0132 Anti-inflammatory cytokine

IL-10 receptor 1.3 0.007 Anti-inflammatory response

doi:10.1371/journal.pone.0006265.t003
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contained viral DNA at detectable levels but not the correspond-

ing mRNAs or proteins [26].

However, in lymphnodes of cattle with MCF, as demonstrated

throughout our experiments, neither genes encoding for structural

proteins nor any one of the unique genes of OvHV-2 were

detected above threshold levels. Indeed, the only active gene

seemed to be ORF73. Detection of this RNA was confirmed in our

work by three different approaches. Interestingly, ORF73 (LANA)

transcripts were also detected in rabbits with AlHV-1-induced

MCF [41]. Thus, our data with OvHV-2 in cattle match very well

with the observations described for AlHV-1 in rabbits. Together,

these data imply that MCF, independent of its individual agent or

host, is associated with a predominantly latent viral gene

expression pattern, at least in certain tissues.

In addition, we detected by microarray a transcriptional

activity in a region without any predicted ORF. The existence

of this transcript was confirmed by qRT-PCR over the same

region (Table 2). Although the sensitivity of the qRT-PCR for

this transcript was below that for ORF73, the number of

molecules covering the intergenic region was higher than the

number of ORF73 transcripts. Since the detection limits of the

assays for ORF25 and intergenic RNA were comparable, the

detection of the latter RNA also corroborates the absence of the

former.

While a latency pattern, rather than a replicative pattern, of

viral gene expression could be expected in the context of MCF, the

lack of expression from the atypical genes argued against our first

hypothesis, which claimed that some of those genes and their

products might directly drive survival of the dysregulated cells.

One might predict that those genes and their products have a

function in protecting their original host from developing MCF.

Absence of their expression in cattle could even be one of the

major reasons for the development of MCF. Unfortunately,

OvHV-2 gene expression could not yet be determined in ovine

cells, primarily due to the scarcity of infected cells in sheep (own

unpublished observations).

Table 4. Cell cycle and apoptosis related transcripts affected in MCF in cattle.

Transcript Protein family Fold induction p-value

Cyclin A2 Cyclins 4.2 0.000587

Cyclin B1 7.3 0.000159

Cyclin B2 5.3 0.00247

Cyclin E2 3.7 0.0015

Fas ligand Membrane bound cytokine 5.1 0.0031

Fas Tumor necrosis factor 1.4 0.0045

Cyclin dependent kinase 2 2.2 0.00114

Cyclin dependent kinase 5 1.7 0.00458

Cyclin dependent kinase 7 1.5 0.0158

Cyclin dependine kinase 11 1.4 0.0375

BH3 domain interacting death agonist (BID) B-cell lymphoma type 2 (Bcl2) 2.2 0.000862

Bcl2-associated X protein (BAX) 2.9 0.00503

Bcl2-like 7 (BAK) 2.3 0.00275

Bcl2 1.6 0.00159

Voltage-dependent anion channel (VDAC) (3 probe sets) 2.2 Probe set 1 = 0.00077

2.0 Probe set 2 = 0.00142

1.6 Probe set 3 = 0.00186

Baculoviral IAP repeat containing 5 (survivin) Inhibitors of apoptosis (IAP) 6.3 0.00326

Siva 2.1 0.000791

T-cell specific tyrosine-protein kinase (LCK) Tyrosine-protein kinase 1.9 Probe set 1 = 0.000703

2.0 Probe set 2 = 4.2361025

1.8 Probe set 3 = 3.2861025

Apoptosis-associated speck-like protein containing a CARD
(caspase recruitment domain)

2.4 0.00248

Hsp10 Heat shock proteins (Hsp) 2 0.00158

Hsp70 0.34 0.00833

Hsp90 1.8 8.261025

Retinoblastoma protein (Rb) (2 probe sets) 2.2 9.9661025

1.5 0.004

E2F Transcription factor 2.2 5.7610

p53 Transcription factor 1.3 0.00134

TGF beta TGF beta family 0.29 0.006

TGF beta receptor 0.35 0.01

doi:10.1371/journal.pone.0006265.t004
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Host gene expression
The host gene expression profile was markedly disturbed by the

effects of the disease. One may argue, whether or not the

lymphnodes are the ideal tissue to look for viral and host gene

expression throughout MCF. They were selected for the present

study because they are known to harbor plenty of OvHV-2 infected

cells, which play an important role in the host’s immune defense

[10,22]. Moreover, the vasculitis and necrosis in affected tissue have

been attributed to the function of riotous cytotoxic lymphocytes. It

was not surprising to find a complex pattern of differences in

transcript abundances upon comparison of transcriptomes in

lymphnodes from healthy cattle and cattle with MCF.

High abundance of Cyclin and Cdk transcripts
The state of cell proliferation can be monitored through analysis

of gene expression and was reflected on the present microarray. As

the cells progress through the reproductive cycle, cyclins are

synthesized and degraded. Cyclins bind to and, thus, activate

cyclin-dependent kinases (Cdks). Activated Cdks induce expression

of more cyclins as well as degradation of the Cyclin-Cdk inhibitor

of the consequent step in the cell cycle. In contrast to cyclins, Cdk

levels remain, under normal conditions, constant throughout the

cell cycle. However, cyclin-dependent kinases are frequently

upregulated in malignancies due to overexpression of their cyclin

partners [46]. Thus, as a first marker of malignancy, a significant

higher abundance of several cyclins as well as Cdk was detected in

the lymphnodes of cattle with MCF (Table 4). This finding could

be expected since histology of lymphnodes in MCF diseased cattle

is dominated by a marked increase in lymphocytes [47], although

foci of necrosis are concurrently detected [16,17].

Activation of T-cells and unbalanced expression of
regulators of apoptosis

T lymphocyte activation can be expected upon a viral infection

of an organism or during defense against uncontrolled cell growth.

Indeed, several markers of T lymphocyte activation were more

abundant in cattle with MCF as compared to healthy animals

(Table 3). To avoid accumulation of excessive amounts of

activated T-cells, both the extrinsic and the intrinsic apoptosis

pathways will usually be induced, simultaneously with T-cell

activation. Both pathways lead to the activation of a family of

cystein proteases called caspases. Caspases are constitutively

present in most cells as inactive proenzymes and are activated

by specific proteolytic cleavage. On a transcriptomic microarray,

changes in apoptosis levels will therefore likely be reflected by

changes in the levels of transcripts of apoptosis regulatory proteins

without directly affecting the transcript levels of the caspases

themselves. In the present study, the expression of antiapoptotic

members of the Bcl-2 family as well as other inhibitors of apoptosis

(IAP), were more abundant in cattle with MCF than in healthy

animals (Table 4).

However, opposing forces, stimulating cell death, were also

observed in lymphnodes of cattle with MCF. Death receptors are

cell surface receptors that send apoptosis signals to the inside of the

cell when they are bound by death ligands. Death receptors are

members of the tumor necrosis factor (TNF) receptor gene

superfamily. They all contain a homologous cytoplasmic sequence

named death domain. The best characterized death receptors and

corresponding death ligands are Fas (Fas and its ligand FasL, also

called CD95 and CD95L) and TNF (TNFR1 and its ligand TNF)

[48]. T-cell receptor (TCR) engagement, i.e. activation of T

lymphocytes leads to the expression of Fas (CD95) on the surface

of the activated T-cell, a prerequisite to undergo activation

induced cell death (AICD) [49,50]. Binding of FasL to Fas results

in trimerization of Fas, which includes the approximation of death

domains in the cytoplasmic tails of Fas. In the present study, the

FasL as well as Fas transcripts were detected at significantly higher

abundance in cattle with MCF (Table 4). FasL activity was

previously described to be induced predominantly at the

transcriptional level [51,52,53]. CD27 is another member of the

Figure 3. CD4 to CD8 ratios. The CD4 to CD8 ratios (y-axis) in blood (left panel) and inguinal lymphnodes (right panel) of healthy animals and cattle
with MCF are shown. Open circles indicate individual values, horizontal bars give median values, and standard deviations are shown by vertical brackets.
doi:10.1371/journal.pone.0006265.g003
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TNF receptor family expressed on B and T-cells. Siva, which was

found to be highly abundant in the context of MCF (Table 4), is an

intracellular ligand of CD27. It is expressed in lymphoid cells and

exhibits proapoptotic activity [54,55].

In addition, some tumor suppressor genes, i.e. retinoblastoma

protein (Rb) and LCK as well as the proapoptotic p53 were more

abundant in lymphnodes of cattle with MCF than in healthy cattle

(Table 4). Rb is known to arrest cells in the G1 phase of the cell

cycle by binding to E2F transcription factors (Reviewed by [56],

while free E2F factors are important for the induction of S phase

entry. Complexes of Rb family members and E2Fs recruit histone

deacetylase and other chromatin remodeling factors to E2F-

responsive promoters and therefore inhibit transcription from the

same [57,58,59]. However, E2F transcripts were also more

abundant, which might counter balance the arresting effect of Rb.

In T lymphocytes protein tyrosine kinases (LCK) play an

integral role in the activation of cells through various immunor-

eceptor molecules [60,61]. Apart from the activation of the cell

cycle, LCK have been shown to be involved in programmed cell

death of T lymphocytes. Gonzalez-Garcia et al showed an

induction of CD95 ligand through LCK [62]. Samraj et al

showed a positive regulation of the mitochondrial apoptosis by

LCK [63]. In our experiment LCK was highly more abundant in

the context of MCF.

Thus, both pro- and anti-apoptotic forces seemed to be induced

in cattle with MCF, which might lead to a pathogenic alteration in

the natural balance between cell survival and cell death.

Low abundance of the IL-2 transcript may explain the
disease phenotype

IL-2 is used as an essential factor for the propagation of T-cells

in culture [64]. Based on this property, IL-2 was also used for the

augmentation of T-cell responses in vivo in cancer or AIDS

patients [65,66]. Importantly, IL-2 is strictly regulated at the

mRNA level, which depends on signaling from the TCR and

CD28. The suitability of both, microarray and real-time RT-PCR,

for determining the levels of IL-2 mRNA in bovine cells and the

good correlation of the two methods has been confirmed in a

different context by others [67]. In our analysis, a significant low

abundance of the IL-2 transcript was noticed in cattle with MCF,

while CD28 and TCR transcripts were present at higher than

normal abundance. Since stimulation through CD28 in addition

to the TCR can provide a potent co-stimulatory signal to T cells

for the production of various interleukins (IL-2 and IL-6 in

particular), these observations imply that MCF is associated with a

low abundance of the IL-2 transcript.

However, the low abundance of the IL-2 transcript might be

due either to down regulation of its expression or to the loss of IL-2

producer cells. It was, therefore, interesting to note that the ratio of

CD4+ to CD8+ T-cells in lymphnodes of cattle with MCF was

decreased when compared to healthy controls. Interestingly, this

same change has been observed in the AlHV-1-based rabbit model

[41]. Yet, there, the change was associated to an increased growth

of CD8+ T-cells, which in turn cannot explain any low abundance

of the IL-2 transcript. Therefore, we like to speculate that down

regulation of IL-2 transcription may at least be partially

responsible for low abundance of the IL-2 transcript in cattle

with MCF.

Of note, the ratios between CD4+ and CD8+ T-cells were

unaffected in the periphery, when analyzed in the bloodstream of

cattle. This was in contrast to the observations made in rabbits

with AlHV-1-induced MCF [41]. This is inasmuch important that

the ratio measured in the periphery does not necessarily reflect the

picture that is found in the lymphoid organs.

Interestingly, mice lacking a functional IL-2 system develop

largely normal until the age of 4 to 6 weeks, where they start to

suffer from polyclonal expansion of T- and B-cells. This expansion

causes enlargement and non-purulent inflammation of lymph

nodes, spleen, and gut-associated lymphoid tissue due to

accumulation of activated T-cells. Similarly, a human patient

with IL-2 receptor deficiency showed also signs of T-cell

abnormalities as evidenced by lymphadenopathy, chronic inflam-

matory disorders, and lymphocytic infiltration of multiple organs

[68]. Furthermore, T-cells from mice lacking either IL-2 or the IL-

2 receptor have been reported to be resistant to activation-induced

cell death in vitro and in vivo. Alternatively, it has been proposed

that the abnormal growth rate of T-cells in association with IL-2

deficiency may be due to tolerogenic properties of IL-2, mediated

through interactions with regulatory T-cells (Treg)[69,70,71].

Since IL-2 in the lymphnode is critical for the development and

peripheral expansion of Treg (CD4+CD25+), which promote self-

tolerance by suppressing autoreactivity of T-cells as well as limiting

T-cell replication in vivo (reviewed by [31], decreased IL-2 levels

may explain the accumulation and autoreactivity of the T-cells in

MCF. In any event, the disease signs and abnormal T-cell

properties seen in mice and men without functional IL-2 system

are very reminiscent of the phenotypes associated to MCF in

cattle. Thus, it seems that lack of IL-2 may play an important, if

not central role in the development of MCF.

These observations instigate hope that it might be possible to

treat MCF in cattle by supplementing IL-2. One might argue that

it would be desirable to measure the peripheral IL-2 concentra-

tions in order to support or reject this hypothesis. However, it has

to be kept in mind that IL-2 functions mainly in the lymphnodes

and peripheral IL-2 concentrations do not necessarily correctly

reflect the micro situation in the lymphnode. Indeed, it has been

shown by others that IL-2 supplementation may have considerable

effects on the immune responses, while measurement of peripheral

IL-2 expression and applied amount of external IL-2 were not a

good indicators for its function in vivo [72,73].

Potential roles of OvHV-2 proteins and transcripts in the
development of MCF

Latency-associated nuclear antigens (LANA of HHV-8 or

SaHV-2 and EBNA-1 of EBV) have been shown to play important

roles in the development of gamma herpesvirus-associated

neoplastic diseases in humans and other primates. However, their

mode of action is associated with the expression levels or the

functions of some major protooncogenes. For example, LANA of

HHV-8 may either repress transcription of p53 [74] or direct the

p53 protein to proteasomal degradation [75]. Furthermore, it can

bind and inactivate retinoblastoma protein (Rb), thereby transac-

tivating E2F transcription [76]. Similarly, SaHV-2 LANA can

interfere with p53 or Rb functions, while EBV EBNA-1 interferes

with p53 and HAUSP (Herpesvirus associated ubiquitin-specific

protease) [77].

OvHV-2 ORF73 has been predicted to encode for a LANA

orthologue, although its function has not yet been demonstrated [27].

LANAs are supposed to bind to the origin of latent viral DNA

replication (oriP) and tether the viral DNA to the host’s chromosome

in order to allow co-replication of the viral genome with the cellular

genome upon mitosis. For this purpose, any typical LANA orthologue

needs to have DNA-binding properties, which might explain

interference with the host’s gene expression profile. Thus, binding

of the LANA protein to any locus within the host’s chromosome,

including the IL-2 locus, might affect the patterns of gene expression,

including IL-2 expression. Alternatively, the LANA protein might

undergo interactions with host proteins, similar to the interactions
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described for its orthologues in other viruses. It will be interesting to

analyze these possibilities in the future.

The second transcriptionally active region detected in cattle

with MCF spanned nucleotides 115184 to 115364 bp on the

forward strand of the viral genome. At present, one may only

speculate about the nature and significance of this transcript.

According to our results from qRT-PCR, this signal is attributable

to one transcript that may even further extend into both directions.

Although no STOP codon is evident in the +3 reading frame

within the minimal boundaries of this transcript, it does not

necessarily represent a hitherto undetected gene. According to its

sequence, it may form a hairpin structure, which can be found in

micro RNAs. Thus, it may be similar to BARTs and EBERs of

EBV or to micro RNAs, which have been described for other

viruses, including many herpesviruses [78,79,80,81]. Such RNAs

might interfere with the host’s gene expression through mecha-

nisms like siRNA or other means of silencing.

It will be interesting to address these issues in consecutive studies.

Furthermore, it remains to be established, whether or not these

observations are also true for MCF in animals other than cattle.

Conclusions
We have determined the major viral gene expression pattern in

lymphnodes of cattle with MCF. Only two sites were transcrip-

tionally active, one with the potential to express ORF73, a LANA-

orthologue, the other with some likelihood to represent a thus far

unrecognized OvHV-2 gene or, maybe, miRNAs. Overall, this

viral gene expression profile is similar to the one found in the

context of AlHV-1-associated MCF in the rabbit model [41]. The

prominent counterpart to this latent gene expression pattern on

the host’s side was a significantly lower abundance of IL-2

transcripts, an increase in lymphocyte activation, as well as

increase and decrease in apoptosis associated transcripts in

lymphnodes of cattle with MCF as compared to the same tissue

from healthy animals. Taken as a whole, these results were

consistent with one of our hypotheses, which claimed that the host

gene expression of animals with MCF was affected in a manner

that could be detected by microarray analysis and that could

explain the disease without all dysregulated cells being infected.

Since the phenotype of mice with deficient IL-2-system almost

perfectly matches the colitis observed in cattle with MCF, we

suggest that OvHV-2-linked low abundance of IL-2 transcripts

may be a key to further study the pathogenesis of MCF. Clearly, in

the present study, we did not discriminate between intracellular

regulation of IL-2 mRNA expression and relative depletion of the

lymphnode to harbor IL-2 producing cells. This important

differentiation will have to be addressed in future studies.

However, MCF may be looked at as an infectious form of IL-2-

deficiency, which occurs as a natural disease of animals.

Materials and Methods

Animals
Mediastinal lymphnodes were taken from cattle at the slaughter

house (11 healthy controls) and from 6 naturally diseased animals

originating from conventional Swiss cattle farms, which had to be

euthanized due to MCF. In addition, EDTA blood samples as well

as inguinal lymphnodes were collected from 10 cows with and 8

cows without MCF.

Construction of the OvHV-2 Agilent custom 11 k
microarray

Based on the published sequence of OvHV-2 [27] we designed

an oligonucleotide microarray for the analysis of viral gene

expression in MCF. 60mer probes were chosen to match stretches

along the entire genome [27] starting at genomic position 823 with

an interval of 30 nucleotides, such that every position was covered

by two probes. This was done for the forward as well as for the

reverse strand. Further, we selected two more probes for each

predicted open reading frame (ORF) of OvHV-2. These probes

were designed using the software Arraydesigner (Premier Biosoft,

Palo Alto, USA) and chosen such that the probe length was

between 55 and 60 nucleotides and the predicted melting

temperature was between 75uC and 80uC. The chip description

was deposited at GEO database (GPL7746). Only probes with a

quality score of ‘good’ were used. Altogether, we designed 8.876

probes targeting the viral genome. Additionally, we included 1500

oligonucleotides corresponding to known cattle genes for primary

normalization of the hybridization intensities. Using our probe

sequences, we ordered 11 k custom microarrays from Agilent.

Microarrays were produced by Agilent by in situ synthesis

technology.

Affymetrix microarray for bovine transcription profile
We used the GeneCHIPH Bovine Genome array (Affymetrix.,

P/N 900561) for the analysis of the host gene expression profile.

Total RNA preparation
Total RNA was isolated from lymph nodes of 9 cattle, two of

which were sacrificed due to MCF, the others were MCF negative.

Virus status of all animals was confirmed by real-time PCR.

Lymph node tissue was frozen in liquid nitrogen and homogenized

using a mortar and pistil. Total RNA was isolated using the

RNeasy Kit by Qiagen (order number 74106, RNeasy, Qiagen,

Hombrechtikon, Switzerland). Immediately upon homogenization

the samples were taken up in RLT buffer with 1% b-

mercaptoethanol (Sigma, Buchs, Switzerland). DNA was digested

using RNase-free DNase (Qiagen, order number 79254) at room

temperature for 15 minutes. RNA concentration was measured

using a Nanodrop 1000 (NanoDrop Technologies, Delaware,

USA). The quality of each sample was checked by a Bioanalyzer

2100 (Agilent, Waldbronn, Germany). Only those samples with

260 nm/280 nm ratio between 1.89–2.13 and a 28 S/18 S ration

within 1.5–2 were further processed.

For the purpose of RT-PCR and qRT-PCR, the extracted

RNAs were additionally subjected to removal of contaminating

DNA using the Ambion Turbo DNA-free Kit (Applied Biosystems,

Rotkreuz, Switzerland).

Fluorescent cRNA preparation for the Agilent microarray
(viral gene expression profile)

1.6–5 mg of total RNA were reverse transcribed to cDNA and

amplified and labeled to cRNA with the Agilent Low RNA Input

Linear Amplification Kit PLUS (order number 5184–3525,

Agilent). Briefly, 1.2 ml T7 Promoter Primer and 1 to 5 mg of

total RNA in a total volume of 11.5 ml were denatured at 65uC for

10 minutes. Then the reaction was placed on ice for five minutes.

After that 8.5 ml cDNA master mix consisting of 4 ml 56 first

strand buffer, 2 ml 0.1 M DTT, 1 ml 10 mM dNTP mix, 1 ml

MMLV reverse transcriptase and 0.5 ul RNaseOUT were added

to each sample and incubated at 40uC for 2 hours. Subsequently

the enzyme was heat inactivated at 65uC for 15 minutes. Then the

samples were placed on ice for five minutes. For the synthesis of

fluorescent cRNA 2.4 ml Cyanine 3 or Cyanine 5-CTP (10 mM)

and 57.6 ml transcription master mix consisting of 15.3 ml nuclease

free water, 20 ml 46 transcription buffer, 6 ml 0.1 M DTT, 8 ml

NTP Mix, 6.4 ml 50% PEG, 0.5 ml RNaseOUT, 0.6 ml inorganic
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pyrophosphatase and 0.8 ml of T7 RNA Polymerase were added

and the reaction was incubated at 40uC in the dark for 2 hours.

Labeled cRNA samples were isolated again with the RNeasy Kit

(Qiagen).

Hybridization of Agilent microarrays
From each positive animal, a Cy3- and a Cy5-labeled RNA

sample, respectively, was co-hybridized with a reference sample

with the opposite labeling and used as dye-swap pairs. As reference,

the pool of the seven OvHV-2 negative samples was used. The

specific activity of all samples as concentration of dye (pmol/ml)

divided by concentration of RNA (mg/ml) was calculated. For

fragmentation and hybridization we used the Agilent Gene

Expression kit for oligo microarrays (Agilent, order number 5188–

5242, protocol G4140-90050). Before hybridization the chips were

blocked using the 106blocking agent provided with the kit. 350 ng

of Cy3 labeled RNA and 350 ng of Cy5 labeled RNA were mixed

with 20 ml 106blocking solution (provided with the kit), 4 ml 256
fragmentation buffer and toped up with nuclease-free water to

100 ml. Fragmentation was performed at 60uC in a hybridization

oven (Agilent, G2545A) in the dark for 30 minutes. 100 ml 26
hybridization buffer was added to each tube and the microarray and

gasket slide were assembled. The slides were hybridized at 65uC, for

17 hours at 4 rpm in a hybridization oven. After the hybridization,

slides were washed twice for 1 minute in wash solution 1 (66SSPE

(Sigma, order number S2015), 0,5% N-lauroylsarcosine (Sigma,

order number L7414) in de-ionised, nuclease-free water). Then the

slides were transferred to wash solution 2 (0.066 SSPE, 0.5% N-

Lauroylsarcosine) and incubated 1 minute. After this, the slides were

transferred to an acetonitrile bath (Sigma, order number A3396)

and incubated for 1 minute. At last the rack was transferred to

Agilent stabilization and drying solution (Agilent, order number

5185–5979) and incubated for 30 seconds.

Scan and Data analysis of Agilent microarrays
Microarray slides were scanned with an Agilent microarray

scanner and the scans were quantified with the Agilent Feature

Extraction software 8.5.1.1. Background subtraction and dye

normalization for each array was performed within the Agilent

Feature Extraction software with default settings. The quantified

data was subsequently loaded into GeneSpring 7.3.1 for further

analysis. Expression data from the dye-swap pairs were averaged in

order to eliminate any potential gene-specific dye effect. Probes with

signals close to background (average signal,500) as well as probes

which were flagged as saturated by the Agilent Feature Extraction

Software were excluded. From the remaining probes the average

ratio of MCF positive vs MCV negative animals was computed.

Real-time PCR
The Taqman real-time PCR for detection of OvHV-2 DNA in

animal samples was used essentially as described previously [23].

Primers and probe are listed in Table 5.

qRT-PCR
Quantitative two-step RT-PCRs were established (specificity,

sensitivity, efficiency) for ORF73, Ov9, and intergenic RNA as

described previously [82]. Briefly, RNA was extracted and purified

from contaminating DNA as described above. The QScript cDNA

Supermix (Quanta Biosciences, VWR International, Dietikon,

Switzerland) was used for cDNA synthesis (30 min at 42uC before

inactivating the RT at 85uC for 5 min) in a volume of 20 ml. For

control reactions the same amounts of RNA template were diluted

to the same volume in RNase/DNase-free water and kept on ice

during the RT cycle. In the second step, 1 ml of cDNA (or RNA)

was mixed with 10 ml Perfecta SYBR Fastmix (Quanta) and

appropriate amounts of primers (100 nM final concentration;

Table 5) before being brought to a volume of 20 ml. The following

cycles were run to yield a detection limit of between 10 and 100

copies per sample: 10 min at 95u, 40 cycles of 5 sec at 95u and

20 sec at 60u (only 58.3u for ORF73). The melt curve was run

immediately after amplification, starting at 50uC and increasing

the temperature for 80 cycles by 0.5uC every 10 seconds.

Sensitivity and efficiency were established by using decreasing

concentrations of cloned DNA templates, whereas controls for

specificity included templates from unrelated viruses [82,83].

Conventional RT-PCR
Conventional RT-PCR for ORF25 was performed as described

by others [40]. The templates and controls used here were the

same as for qRT-PCR described above.

cRNA preparation for the Affymetrix microarray
Total RNA samples (2 mg) were reverse-transcribed into double-

stranded cDNA, in vitro transcribed in presence of biotin-labeled

nucleotides using a IVT Labeling Kit (Affymetrix Inc., P/N

900449, Santa Clara, CA), purified and quantified using BioRobot

Gene Exp–cRNA Target Prep (Qiagen AG, Switzerland). The

labeled cRNA quality was determined using a Bioanalyzer 2100.

Hybridization of the Affymetrix microarray
Biotin-labeled cRNA samples (10 mg) were fragmented ran-

domly to 35–200 bp at 94uC in Fragmentation Buffer (Affymetrix

inc., P/N 900371) and were mixed in 300 ml of Hybridization Mix

(Affymetrix Inc., P/N 900720) containing Hybridization Controls

and Control Oligonucleotide B2 (Affymetrix Inc., P/N 900454),

before hybridization to GeneCHIPH Bovine Genome arrays

(Affymetrix Inc., P/N 900561) for 16 hours at 45uC was

performed. Arrays were then washed using an Affymetrix Fluidics

Station 450 (FS450_002 protocol. An Affymetrix GeneChip

Scanner 3000 (Affymetrix Inc.) was used to measure the

fluorescent intensity emitted by the labeled target.

Statistical analysis of the Affymetrix microarray
Raw data processing was performed using the Affymetrix

GCOS 1.4 software (Affymetrix Inc.). After hybridization and

scanning, probe cell intensities were calculated and summarized

Table 5. Oligonucleotides used.

Oligonucleotide Sequence (59 to 39)

OvHV-2 forward TGG TAG GAG CAG GCT ACC GT

OvHV-2 reverse ATC ATG CTG ACC CCT TGC AG

OvHV-2 probe [6FAM]-TCC ACG CCG TCC GCA CTG TAA GA

LANA2-F GTG GAG CGT TAG GAT TGA GC

LANA2-R CAG GGC AAA ACG TAA AAA GC

Ov9-F CGG GAC CAT TAC AAG AAG

Ov9-R GCA TAA CAG AAG CAT AGC

Intergenic-F GTG TGG TGA CAC ATT CCC AG

Intergenic-R ATG TAA GAC CCC TTA GCC CC

ORF25-F ACT GCG GAC GTG GCC TAC TT

ORF25-R GTC CAG GAG GGC TCG GTG TG

doi:10.1371/journal.pone.0006265.t005
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for the respective probe sets by means of the MAS5 algorithm

[84]. To compare the expression values of the genes from chip to

chip, global scaling was performed, which resulted in the

normalization of the trimmed mean of each chip to a target

intensity (TGT value) of 500 as detailed in the statistical algorithms

description document of Affymetrix (Affymetrix, 2002, see also

[85]). Quality control measures were considered before perform-

ing the statistical analysis. These included adequate scaling factors

(between 1 and 3 for all samples) and appropriate numbers of

present calls calculated by application of signed-rank call

algorithm [86]. The efficiency of the labeling reaction and the

hybridization performance was controlled with the following

parameters: present calls and optimal 39/59 hybridization ratios

(around 1) for the housekeeping genes (GAPDH and ACO7), for

the poly A spike in controls and the prokaryotic control (BIOB,

BIOC, CREX, BIODN).

Differential transcript abundance was identified as follows: Probes

that were absent in the uninfected and the infected animals were

excluded. We considered a probe absent if it had more than one

absent call among the infected animals and more than one absent call

among the uninfected animals. Student’s t-test was applied to test the

present probes for significant infection-induced higher or lower

abundance. The magnitude of the change was computed from the

averaged values of the infected and uninfected animals.

Isolation of lymphocytes
For the isolation of lymphatic cells from lymphnodes, fat and

connective tissue were removed and the remaining tissue was cut

into small pieces and filtered through a sieve with a mesh size of

1 mm before being suspended in phosphate buffered saline solution

(PBS). After washing tree times with 50 ml PBS, low speed

centrifugation, and re-filtering for removal of aggregates, the cells

were resuspended in 10 ml PBS and filtered trough a cell strainer

with a mesh size of 100 mm (BD Falcon, Bedford, MA, USA).

Fluorescence-activated flow cytometry
CD4 and CD8 subsets were determined in combination with

CD2 staining. Anti bovine CD4 (CACT138A), anti bovine CD8

(CACT80C) and anti bovine CD2 (16-1E10) were from VMRD,

Inc, Pullmann, WA, USA). For staining, 100 ml EDTA blood or

100 ml isolated lymphnode cells (106) were added to 5 ml of pre-

diluted antibody (1/100). After incubation for 30 min at 4uC, 2 ml

of erythrocyte lysing solution (8.29 g/l NH4Cl, 1 g/l KHCO3,

37 mg/l Na2 EDTA) were added. After 3 minutes at ambient

temperature, cells were pelleted by centrifugation (3506g). The

supernate was discarded and the cells resuspended in 200 ml of

PBS supplemented with 1% fetal calf serum (FCS) and the

secondary antibodies (APC labeled anti mouse IgG1 from BD

Pharmingen, BD Biosciences, San Jose, CA, USA and goat anti

mouse IgG2a-FITC from Southern Biotech, Birmingham, AL,

USA) diluted 1/1000. After 30 min at 4uC, cells were washed with

2 ml PBS and resuspended in 250 ml PBS with 1% FCS. Finally,

cells were analyzed in a FACScalibur (BD Biosciences, San Jose,

CA, USA). A gate was set to the region corresponding to the

lymphocytes, based on the forward and side scatter diagram. A

minimum of 1000 gated events were acquired and analyzed. FL1

and FL4 double positive cells were counted.
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