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1
Unsolved Mystery

The Hedgehog Signaling Pathway:
Where Did It Come From?
George Hausmann1, Christian von Mering1,2*, Konrad Basler1*

1 Institute of Molecular Biology, Universität Zürich, Zürich, Switzerland, 2 Swiss Institute of Bioinformatics, Universität Zürich, Zurich, Switzerland

Complex body plans require sophisticated cell–cell signaling

pathways. How these pathways evolved is often not very well

understood. Here, we argue that the Hedgehog (Hh) signaling

pathway may have arisen from systems that were originally

designed for the transport and homeostasis of certain bacterial

sterol analogs—the hopanoids. We propose a possible scenario for

the evolution of Hh signaling and discuss how evolutionary

considerations can shed light on the mysterious communication

between the membrane-bound Hh transducers Patched (Ptc) and

Smoothened (Smo).

The importance of the Hh signaling pathway has long been

documented, even in Greek mythology; the tale of the one-eyed

Cyclops was likely inspired by rare birth defects related to reduced

Hh signaling [1,2]. Whereas reduced Hh signaling can cause these

and other developmental defects, inappropriate activation of Hh

signaling contributes to certain forms of cancer, including basal

cell carcinoma, the most commonly occurring form of skin cancer

[3]. Both effects reflect the essential role of Hh in the control of

patterning and growth during development and in the adult

animal (for more detailed reviews, see [4–6]).

The current model for the production, transport, and transmis-

sion of the Hh signal is summarized in Figure 1. Two important

components acting at the cell membrane are Ptc, which is the likely

receptor for Hh, and the seven-pass transmembrane protein Smo,

which acts downstream of Ptc. In the absence of Hh, Ptc blocks Smo

activity. How this repression is achieved, and subsequently

overcome by the Hh ligand, remains a mystery. One key to solving

it may lie in understanding the multiple connections of the Hh

pathway to lipid metabolism (reviewed in [7]). In addition, we argue

that evolutionary considerations can identify a possible scenario for

the origin of Hh signaling. To begin addressing both aspects, we

start with a detailed look at Ptc and Smo.

Evidence for Ptc-Like Proteins in Bacteria

Ptc proteins are members of a large superfamily that includes

bacterial and archaeal resistance-nodulation division (RND)

transporters [8] (Figure 2). RND transporters are proton

antiporters that catalyze the active transmembrane efflux of

numerous substrates from the cell ([9]; proton antiporters, or

‘‘counter-transporters,’’ use the physiological proton gradient at

the membrane to pump out their substrates in exchange for

protons that are allowed to flow inside). Ptc-family proteins have

12 transmembrane segments and have been described as hybrids

of an RND-derived domain and a second domain, the so-called

‘‘sterol-sensing domain’’ (SSD) [10,11]. However, our re-analysis

of this family suggests that this classification of two distinct protein

domains is somewhat arbitrary. Most eukaryotic and prokaryotic

members of the family can be aligned over their entire length

(Figures S1 and S2), with two well-conserved central blocks—of

five transmembrane regions each—clearly visible. While these

blocks roughly correspond to the suggested SSD and RND

domains, we propose that they most likely stem from an ancient,

internal duplication within the gene (this is also evident from the

internal symmetry in the three-dimensional RND protein structure

[12]). Some eukaryotic proteins in the superfamily have lost one of

these two halves (the C-terminal half), and the remaining N-

terminal half has been shown to have a role in sensing sterols [10].

For this reason, the first half of the protein can indeed be defined

as a SSD, but it is as much of RND origin as is the second half.

Other full-length members of the Ptc superfamily in eukaryotes

(Figure 2) include Niemann-Pick C1 protein (NPC1) and

Dispatched (Disp) [10]. The former is thought to be involved in

cholesterol homeostasis, whereas the latter acts in Hh signaling to

facilitate the release of the cholesterol-modified Hh protein from

Hh-secreting cells (Figure 1). Taken together, a parsimonious

interpretation of the available sequence data is that all current Ptc-

family proteins are indeed of ancient origin over their entire

length, and that they represent the oldest traceable components of

Hh signaling.

Might eukaryotic Ptc-family members still act as proton

antiporters today (we think so) and, in that case, what is their

substrate? In bacteria, the actual substrates of RND transporters

are often not known, and they are generally assumed to be quite

diverse. However, one particular RND subfamily, having

unusually high sequence similarity to eukaryotic Ptc-family

proteins, has been tentatively linked to an intriguing substrate:

hopanoids (Figure 2A–2C).

Hopanoids are the structural and functional analogs of sterols

and, like sterols, are synthesized from squalene precursors.

Accordingly, members of this particular subfamily of RND

transporters have been termed ‘‘hopanoid biosynthesis-associated

RND transporters,’’ or ‘‘hpnN’’ [13]. Further strengthening this

link is the observation that hpnN genes can sometimes be found

immediately adjacent to hopanoid biosynthesis genes, presumably

forming co-transcribed transcription units (operons; Figure 2D and

2E). Remarkably, most of these hpnN-type RND genes have a
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reciprocal–best-match relationship with Ptc-family proteins in

eukaryotes (Figure S3), i.e., they show up with the highest sequence

similarity in homology searches extending across the eukaryote/

prokaryote division. This makes the hpnN-type transporters the

best candidates for functional counterparts of Ptc-like proteins

outside eukaryotes. While this observation of course does not

establish any current or past substrate(s) for the eukaryotic proteins,

it does imply that structural analogs of sterols can be substrates.

From this, a prediction might be that transporting/sensing such

molecules (or rather, cyclic terpenoids in general) might still be the

conserved function of eukaryotic Ptc-family proteins.

The Origins of Smo

In contrast to Ptc, Smo-like proteins cannot be traced beyond

the eukaryotes. Smo is a member of the eukaryote-specific

superfamily G-protein–coupled receptors (GPCRs) [14]; ligands

for this superfamily are typically small molecules. Given that Ptc

might act by transporting/extruding a lipophilic molecule, could

Smo’s ligand be a lipophilic molecule as well? The majority of

described GPCRs do not have strongly lipophilic ligands, but some

examples exist—for example, the opsin/retinal pair in the eye [15]

and the leukotriene receptors [16]. Of note with respect to Hh

signaling is that some GPCRs can even sense steroids, for example,

the putative estradiol receptor GPR30 [17,18].

As Smo seems to be a much more recent innovation than Ptc,

what conceivable chain of events might have connected Smo to

Ptc activity and led to Hh signaling as it appears today? Below, we

present a possible, minimal evolutionary path that could have

generated today’s setup, including an explanation for the observed

unusual double-inhibition in the pathway, in which Hh acts by

inhibiting Ptc, and Ptc in turn functions by inhibiting Smo.

A Possible Evolutionary Scenario

We assume that the original function of Ptc was simply to

transport an unwanted lipid molecule out of the cell. Smo, on the

other hand, derives from a protein family whose main function is

to sense and to transduce extracellular signals (i.e., the GPCR

family). Therefore, we propose the following scenario: let us

imagine that, in primitive eukaryotes, Smo was initially a receptor

sensing lipid molecules and was acting upstream of the primitive

Ptc transporter (Figure 3). The two molecules would have formed

a simple homeostasis system; Smo would sense the abundance of a

certain lipid and would transcriptionally induce Ptc whenever this

lipid was in excess and needed to be removed from the membrane

(i.e., pumped away). We propose that when multicellular

organisms arose, this system was available and was recruited for

a new purpose: cell-to-cell signaling.

There is evidence indicating that this repurposing could have

been made possible via the fortuitous action of an intein. Inteins

are a class of protein-coding genes that can insert themselves into

other genes, and ‘‘splice’’ themselves out again after translation,

joining the two fragments of the host protein together to restore its

function. In the case of the Hh protein (whose C-terminal half

encodes such an intein [19]), let us suppose that one of the two

fragments to be joined happened to be a lipid moiety instead of a

protein. The result would have been a lipid with a nonspecific,

bulky protein domain (in this case, the future Hh N-terminal

domain referred to as HhN) attached to it, and while that lipid

would still have been a substrate for Ptc, the protein domain might

now have blocked the transport mechanism, sterically, and

prevented Ptc from pumping its normal substrate.

A consequence of this would have been that cells were now

provided with a way to control the activity of the Ptc/Smo system

in a neighboring cell. Simply by expressing and secreting Hh, they

could sterically block Ptc in the neighboring cell. In other words,

Ptc would sense and bind the cholesterol moiety of the secreted Hh

(mistaking it for its ligand), but this binding would inhibit its

exporter function due to the bulky protein attached to the

cholesterol. This would in turn lead to the accumulation of the

non-modified, normal ligand for Smo, because Ptc would no

longer be available for depleting it. Importantly, this does not

require any specific protein interface between Hh and Ptc (at least

not initially). In the receiving cell, the only change that would have

been necessary is the gradual addition of new target genes to the

existing Smo pathway, in order to exploit this fortuitous new

intercell ‘‘communication channel.’’ It should be noted that, from

the outset, the new system would have been capable of graded

(quantitative) responses; the original homeostasis system already

had been capable of sensing different levels of the lipid, and the

new ligand Hh would also be able to interfere to various extents,

depending on the amounts produced and secreted.

Figure 1. Schematic overview of the Hedgehog signaling pathway. Signal-secreting cells (left) release the morphogen protein Hh after
modifying it through the addition of two lipid molecules. A C-terminal cholesterol moiety is added via the activity of an intein domain within Hh itself,
whereas the protein Ski/Rasp attaches an N-terminal palmitic acid. Lipid-modified Hh is released from the producing cell with the aid of the Disp
protein. Signal-receiving cells (right) bind Hh via the transmembrane protein Ptc, perhaps with the assistance of the iHog/Boi family of proteins. Hh
binding to Ptc leads to the de-repression of the GPCR-related protein Smo. Smo subsequently initiates intracellular signal transduction events, which
involve proteins such as Cos2, Fu, and Su(fu), that lead to changes in target gene expression. The inhibition of Smo by Ptc is of particular interest
here; it occurs nonstoichiometrically, in a manner that appears to rely on a catalytic activity in Ptc.
doi:10.1371/journal.pbio.1000146.g001
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Predictions of This Evolving Model and How To
Test Them

Our model is parsimonious, since only a few simple steps are

required, and at each step a selectable advantage for the organism

is conceivable. However, the model is also speculative—how can it

be tested?

First, we propose that Ptc-family proteins are not only derived

from RND transporters, but actually still work through the RND

molecular mechanism. RND transporters are thought to function

as trimers (three identical proteins are needed to form a functional

unit in the membrane), and this arrangement is actually essential

for the proposed molecular mechanism of pumping [20]. This is

consistent with the proposition that catalytically active forms of Ptc

are trimeric as well [21] and suggests they also require a proton

gradient. Our model would predict that any prevention of

trimerization should completely abolish repression of Smo by

Ptc, while Hh binding might still be possible.

Figure 2. Ptc and Disp, two key proteins the Hh pathway, in their evolutionary context. (A) A phylogenetic tree of proteins related to
Patched, limited to proteins that are full-length (i.e., those that contain all 12 transmembrane segments), is shown. The tree is color-coded according
to the taxonomy of the organisms in which the respective proteins are found. Note one particular family of deeply branching bacterial Ptc homologs,
the HpnN family, which encodes a transporter that is predicted to be associated with hopanoid biosynthesis. (B) A typical hopanoid is shown, next to
cholesterol, a typical sterol. (C) Sequence alignment of selected HpnN family members with the most common reciprocal-best-match, the Disp family,
is shown. Only six sequences are shown (three bacterial and three eukaryotic proteins); the alignment is restricted to transmembrane segments 2 to
6, which form the so-called SSD. (D) and (E) Evidence is shown for a functional association between HpnN-family transporters and HpnF; the latter
being the enzyme that catalyzes the first step of hopanoid biosynthesis. Both genes tend to be either present or absent together in a given genome
in proteobacteria and occasionally occur in direct chromosomal proximity.
doi:10.1371/journal.pbio.1000146.g002
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Second, we propose that at least some RNDs should be

sterically inhibited by the covalent addition of bulky protein

domains to their substrates; we think this is the case, because the

substrate is generally thought to move ‘‘through’’ the RND and is

extruded via an inner channel. This could be tested by adding

bulky domains to RND substrates in bacteria or by replacing

Figure 3. A parsimonious scenario for the evolution of the Ptc/Smo system. We hypothesize that during the transition to multicellularity, a
pre-existing lipid homeostasis system took on a new function in signaling. Initially, an ancient lipid transporter diversified; one of its descendents
came under the transcriptional control of a GPCR that sensed the same lipid (i.e., forming a negative homeostatic feedback loop). Then, the fortuitous
addition of a protein moiety to the lipid in question brought the system under the control of gene expression; a neighboring cell could now secrete
the lipid at will (by coupling it to the protein moiety). Because the combined lipid–protein molecule would block the transporter, this meant that the
sending cell was capable of changing the perceived homeostatic state of the receiving cell, which would have established a graded (quantitative)
mode of cell–cell communication.
doi:10.1371/journal.pbio.1000146.g003
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much of Hh with an unrelated but similarly sized protein domain

which might still show (partial) activity in Hh signaling.

Third, we predict that the binding mode of Hh to Ptc was

originally such that the cholesterol moiety would sterically fit into

the original RND substrate pocket, and this might still be the case

today. This could be tested by co-crystallizing an RND/hopanoid

pair, as well as a Hh/Ptc pair, and comparing their binding

modes. However, it is worth noting that, today, the cholesterol

modification of Hh is no longer essential, so we assume that Ptc

and Hh have evolved a specific protein interface in the meantime.

Fourth, our model makes predictions with respect to the

surprising observation that Caenorhabditis elegans, while still having a

clear ortholog of Ptc (Figure 2), lacks a homolog of Smo. As such,

nematodes seem to represent an incomplete state of the pathway,

and it might be tempting to try to use them to reconstitute aspects

of signaling in organisms such as Drosophila. Would the C. elegans

Ptc molecule, when introduced into Drosophila, show any effect on

Drosophila Smo? From our model, we would predict that it might

indeed be able to repress Smo (since we propose that it transports a

ubiquitous lipid), but importantly, it should not specifically bind

Hh—at least not when Hh is devoid of cholesterol.

Fifth, our model posits that Ptc works by transporting an agonist

away from Smo (as opposed to transporting an ‘‘antagonist’’

towards Smo). This predicts that the action of Ptc on Smo is

strictly cell-autonomous, and that Ptc and Smo need to co-localize

for Ptc to function, at least in all those subcellular structures where

Smo would otherwise be competent to signal.

Lastly, the communication between Ptc and Smo would happen

via locally restricted lipid/sterol level fluctuations; we are

essentially proposing that Ptc creates a local depletion of a specific

membrane component. Perhaps this could be tested using

lipidomics approaches on fractionated membrane samples,

searching for changes in lipid abundances in response to Hh

signaling or in response to Ptc overexpression. For this, interesting

subcellular compartments would include lipid rafts, vertebrate cilia

[22], or the late endosomes where Ptc and Smo co-localize [23]. It

seems generally imperative that the location, movement, and site

of action of Ptc and Smo are mapped with as much detail as

possible, using the endogenous proteins at normal levels.

Conclusions

The intriguing homology between components of lipid

homeostasis pathways and components of the Hh signaling

pathway leads to the hypothesis that the central membrane–

players of the Hh signaling cascade—Smo and Ptc—evolved from

a pre-existing lipid-sensing/homeostasis pathway. We propose a

model of simple evolutionary steps, which posits that Ptc acts by

pumping an activator of Smo, rather than an inhibitor. This

scenario is compatible with most experimental data so far. The

step-wise construction of pathways from older, pre-existing

modules is turning out to be a general theme in developmental

biology [24]. The simple evolutionary model we propose here may

be a good starting point, but of course the evolution of the

pathway could easily have been much less straightforward, taking

leaps and bounds that we have not envisioned. To generally think

more along evolutionary lines may nevertheless help to explain

some of the more ‘‘exotic’’ findings—here and elsewhere in

developmental biology.

Supporting Information

Figure S1 Phylogeny of Patched-family proteins and
related proteins. This is the detailed version of the Ptc tree; a

simplified summary of this tree is shown and discussed in Figure 2.

Tree lines are colored according to the taxonomic classification of

the organism that encodes the protein. The protein accessions (as

used in the STRING database, version 7.1) as well as the protein

annotations are indicated. To construct the tree, all proteins

annotated as containing the Pfam-domain Patched were extracted

from STRING. Furthermore, homology searches with these

proteins as queries yielded about 30% additional proteins (remote

homologs). This search was conducted with the Smith-Waterman

algorithm; homologs were maintained if they either had an

alignment score above 100 bits or showed a reciprocal–best-hit to

human Disp1. Sequences that were not full length, as well as a

handful that showed unusually derived sequences (long branches),

were removed manually. Sequences were aligned using Probcons,

blocked using Gblocks and then used for tree reconstruction by

PhyML. This figure can be magnified to improve readability.

Found at: doi:10.1371/journal.pbio.1000146.s001 (3.17 MB TIF)

Figure S2 Multiple sequence alignment of eukaryotic
Dispatched proteins and bacterial HpnN-type proteins.
The alignment shown here is a reduced version of the full

alignment supporting the phylogenetic tree in Figure 2. Three

representative Disp1 proteins and three representative HpnN-type

were chosen and extracted from the full alignment. All aligned

positions were maintained, but positions that showed gaps for all

six sequences were removed. Putative transmembrane sections are

shown, as predicted by PolyPhobius (PolyPhobius was run with the

reduced alignment shown here as input).

Found at: doi:10.1371/journal.pbio.1000146.s002 (9.77 MB TIF)

Figure S3 Close relatives of Patched/NPC1/Disp in
Proteobacteria have a link to hopanoid biosynthesis.
Hopanoids are bacterial analogs of sterols—with a similar function

in the membrane—and, like sterols, are synthesized from

squalene. The most important enzyme for their biosynthesis is

squalene-hopene cyclase (shc/hpnF), which catalyzes the first step

of the biosynthesis pathway. In proteobacteria (out of which

eukaryotic mitochondria originated), this enzyme gene co-occurs

with a specific member of the RND superfamily. This co-

occurrence pattern is complex (i.e., it is not dictated by the

phylogenetic tree; even close relatives tend to vary, having either

both genes or none). In addition, three independent instances of

gene neighborhood can be observed (operons). Invariably, the

partnered RND gene has a best–reciprocal-hit relation to

eukaryotic members of the Patched/NPC1/Disp family in

homology searches. Note that most of the bacterial genomes

shown have several other RND-family genes besides hpnN, but

these usually do not have such a best–reciprocal-hit relation to

eukaryotes.

Found at: doi:10.1371/journal.pbio.1000146.s003 (1.91 MB TIF)
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