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cAMP-dependent protein kinase A and the dynamics of epithelial
cell surface domains: moving membranes to keep in shape

Abstract

Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A (PKA) are
evolutionary conserved molecules with a well-established position in the complex network of signal
transduction pathways. cAMP/PKA-mediated signaling pathways are implicated in many biological
processes that cooperate in organ development including the motility, survival, proliferation and
differentiation of epithelial cells. Cell surface polarity, here defined as the anisotropic organisation of
cellular membranes, is a critical parameter for most of these processes. Changes in the activity of
cAMP/PKA elicit a variety of effects on intracellular membrane dynamics, including membrane sorting
and trafficking. One of the most intriguing aspects of cAMP/PKA signaling is its evolutionary
conserved abundance on the one hand and its precise spatial-temporal actions on the other. Here, we
review recent developments with regard to the role of cAMP/PKA in the regulation of intracellular
membrane trafficking in relation to the dynamics of epithelial surface domains.
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Abstract 

Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A 

(PKA) are evolutionary conserved molecules with a well-established position in the 

complex network of signal transduction pathways. cAMP/PKA-mediated signaling 

pathways are implicated in many biological processes that cooperate in organ 

development including the motility, survival, proliferation, and differentiation of 

epithelial cells. Cell surface polarity, here defined as the anisotropic organisation of 

cellular membranes, is a critical parameter for most of these processes. Changes in the 

activity of cAMP/PKA elicit a variety of effects on intracellular membrane dynamics, 

including membrane sorting and trafficking. One of the most intriguing aspects of 

cAMP/PKA signaling is its evolutionary conserved abundance on the one hand and its 

precise spatial-temporal actions on the other. Here, we review recent developments 

with regard to the role of cAMP/PKA in the regulation of intracellular membrane 

trafficking in relation to the dynamics of epithelial surface domains.  
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An introduction to epithelial cell surface polarity and cAMP-dependent protein 

kinase A  

The ability of cells to establish a polarized phenotype, which includes an anisotropic 

organisation and asymmetry of their plasma membranes, is fundamental for organism 

development and functioning. While this includes many cell types including 

(migrating) fibroblasts, one of the best studied cases of cell surface asymmetry is that 

exhibited by the epithelium, one of the four primary body tissues. Epithelial cells line 

most body cavities and display structurally and functionally distinct cell surface 

domains (1). These include apical and basolateral surface domains which face the body 

exterior and underlying tissue, respectively (figure 1A). Apical and basolateral cell 

surface domains differ in protein and lipid composition, a feature that is vital for these 

cells to perform domain-specific functions such as the selective uptake and excretion 

of molecules and protection of the body against pathogens and toxic compounds. Cell 

surface polarity is generated and maintained in spite of continuous exo-, endo-, and 

transcytotic membrane fluxes between these domains and intracellular organelles 

(figure 1A). The intracellular sorting of newly synthesized and recycling proteins and 

lipids is therefore crucial to generate and maintain such specific plasma membrane 

compositions, as well as to tailor these to meet changing physiological needs (2,3). 

Predominant sorting stations for basolateral and apical plasma membrane components 

in epithelial cells are provided by the Golgi apparatus and/or the recently identified 

subapical compartment/ common recycling endosome (4-6) (Figure 1A).   

 Cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) have 

emerged as key signaling molecules that regulate the intracellular sorting and 

trafficking of basolateral and apical membrane components and, consequently, are 

involved in the functional dynamics of epithelial cell surface domains, in response to 

 3



extracellular cues. For example, in the renal collecting duct, the reabsorption of water 

is regulated by the antidiuretic hormone vasopressin which, upon binding to its 

receptor on the basolateral surface of kidney epithelial cells stimulates cAMP 

production and the PKA-mediated trafficking of water channels from the Golgi 

apparatus and/or endosomes to the apical membrane, thereby allowing water 

reabsorption from the pro-urine (7) (figure 1B). In the entero-hepatic circulation, 

peptide hormones that are secreted following a meal increase cAMP production in 

hepatocytes leading to increased PKA-mediated trafficking of ABC transporters from 

the Golgi apparatus and/or endosomes to the apical, bile canalicular domain. This 

stimulates the secretion of bile acids that, in turn, can help digest fats in the intestinal 

apical lumen (8) (figure 1B). One of the most important questions in this research field 

is how PKA activation, elicited by various extracellular stimuli, produces specific 

effects on the dynamics of distinct and spatially separated intracellular membrane 

systems. To address this question, insight in the structural and spatial-temporal 

dynamics of cAMP-PKA complexes is crucial.   

In mammalian cells, PKA is a holoenzyme (9) which consists of two regulatory 

and two catalytic subunits. Four different regulatory subunits are distinguished, RIα, 

RIβ, RIIα, and RIIβ, the expression of which is tissue-dependent and developmentally 

regulated by a protein kinase A inhibitor called PKI. Regulatory subunits of PKA bind 

to free catalytic subunits (α, β, γ, or PRkX) and their primary function appears to keep 

the catalytic subunits in an inactive state. Two molecules of cAMP, which is produced 

by any of the nine known mammalian adenylyl cyclases in response to activation of G 

proteins coupled to different membrane receptors, bind to each regulatory subunit of 

PKA and causes the subsequent release and activation of the catalytic subunits (10,11). 

These, in turn, can phosphorylate target proteins at serine and threonine residues. 
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cAMP phosphodiesterases (PDEs), which comprise eleven distinct families yielding a 

multitude of invariably expressed PDE isoforms (12), play an important part in 

regulating PKA activity by restricting local cAMP levels. In addition to the control of 

local cAMP concentrations by adenylyl cyclase and PDEs, a family of more than fifty 

A-kinase anchoring proteins (AKAPs) (13) control the spatial distribution of the 

different PKA holoenzymes and, thereby, focuss their access to substrate proteins. 

AKAPs interact with dimers of PKA regulatory subunits with a high but varying 

affinity (14) and anchor RII subunits at among others the nucleus, cytoskeleton, 

organelle membranes, and plasma membrane (15-17). While most AKAPs anchor RII 

subunits, so-called dual AKAPS have recently been identified which also anchor RI 

subunits. These include D-AKAPs at the endoplasmic reticulum and mitochondria (18), 

and BIG1 and BIG2 at the Golgi apparatus and recycling endosomes (19). Most 

AKAPs also contain regions for binding additional enzymes, e.g. PDEs, adenlyl 

cyclase, protein phosphatases, and other kinases (20-21). As unique signaling platforms 

AKAPs thus can create regulatory networks that ensure the coordinated propagation 

of PKA signals through different locations in the cell. Such a coordinated signal 

propagation may be of particular importance in directing the sequential steps involved 

in the sorting and vesicular trafficking of proteins and lipids through the cells, often 

bridging many micrometers. Indeed, AKAPs and PKA isoforms are found at many 

organelles that mediate the intracellular sorting and trafficking of membrane proteins 

and lipids, e.g. the microtubule-organizing center (MTOC) or centrosome (22), 

cytoskeleton (23), the plasma membrane (24), Golgi apparatus (19,25) and endoplasmic 

reticulum (18) (figure 2A), sometimes complexed with cargo proteins (see below). In 

the following sections, we will review the literature with regard to the role of 
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cAMP/PKA signaling in intracellular membrane trafficking and the dynamics of cell 

surface domains. 
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The role of cAMP/PKA in exocytosis 

The polarization of exocytosis is a fundamental mechanism for the targeted secretion 

of molecules and to localize plasma membrane components to specific regions of the 

cell surface in order to establish, maintain, and/or tailor functional cell surface 

domains. Elevation of the intracellular cAMP concentration enhances exocytic 

transport of proteins to the apical surface in among others pancreatic β-cells (26), 

kidney (27,28), intestine (29,30), hepatic (31,32), and principal (33-35) epithelial cells. A 

similar process is observed in neurons, where a rise in intracellular cAMP 

concentration enhances exocytic transport to and neurotransmitter release at the 

axonal synapse (36,37), the latter being considered the equivalent of the epithelial apical 

surface domain. Most of the effects of cAMP are mediated by PKA, although some 

are mediated by other cAMP effectors such as Epac, a guanine nucleotide exchange 

factor for the small GTPase Rap1, or calcium channels (38). While the cAMP/PKA 

system in mammalian cells is highly redundant with multiple genes encoding several 

PKA regulatory and catalytic subunits (see paragraph above), Drosophila have a 

single or predominant gene encoding the PKA catalytic subunit, DC0, which is 

preferentially expressed in mushroom bodies in the brain (39). Drosophila DC0 

mutants which lack PKA catalytic activity show defects in neurotransmitter release in 

response to extracellular cues including cAMP (40,41), and display learning and 

memory deficits (39,42,43), underscoring the involvement of PKA in the dynamics of the 

axonal surface and synaptic plasticity. Excellent review articles have recently 

addressed the role of cAMP/PKA in regulating exocytosis in neurons in relation to 

synaptic plasticity, learning, and memory (44,45). Here we will focus on epithelial cells.  

Studies with cultured primary cells and epithelial cell lines have demonstrated 

that stimulation of apical surface-directed trafficking in response to an elevated 
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intracellular cAMP concentration can be linked to signaling molecules that circulate 

outside epithelial cells. For instance, the peptide hormone secretin stimulates apical 

exocytosis of membrane vesicles in bile duct epithelial cells through elevation of 

cAMP levels and subsequent activation of PKA (46). A similar phenomenon is 

observed in hepatocytes stimulated by glucagon which activates adenylyl cyclase 

activity and cAMP production (47). In accordance with those observations, H89, an 

inhibitor that also inhibits the activity of the catalytic subunit of PKA, perturbs 

intracellular trafficking of apical secretory proteins, as shown for instance in lacrimal 

cells (48). It has been proposed that cAMP modulates the rate of 'constitutive' 

exocytosis (31), showing little specificity for the different apical membrane 

components. This may suggest that cAMP/PKA targets molecular machineries that 

control vesicular membrane flow in general. However, as will be discussed in the next 

paragraph, there are also examples in which PKA controls the intracellular flow of 

specific ‘cargo’ proteins and lipids. 

The involvement of cAMP/PKA signaling in the apical exocytosis of specific 

proteins has mostly focused on polytopic membrane transporter proteins. These 

include aquaporins, a class of integral membrane proteins that form water channels in 

the plasma membrane to selectively conduct water molecules, and important for the 

functioning of all fluid-transporting epithelia. In Madin-Darby canine kidney 

(MDCK) epithelial cells, PKA activity is required for the apical trafficking of 

vasopressin-controlled aquaporin (AQP)2 (49). AQP2 possesses a single consensus 

cAMP-dependent PKA phosphorylation site at Ser256. PKA phosphorylation 

modulates its distribution between plasma membrane and intracellular vesicular 

compartments (50,51). The role of PKA-mediated phosphorylation of AQP2 at Ser256 is 

somewhat obscured by the notion that AQP2 transition in the Golgi apparatus is 
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associated with a PKA-independent increase in AQP2 phosphorylation at Ser256, 

probably mediated by Golgi-associated casein kinase 2 (52). In renal collecting duct 

principal cells, cAMP/PKA-induced AQP2 translocation is sensitive to Ht31, a 

peptide that binds with high affinity to PKA type II regulatory subunits and in this 

way displaces the PKA-RII holoenzyme from its subcellular anchoring sites (37). A 

similar sensitivity of exocytosis to HT31 was earlier demonstrated for the cAMP-

responsive insulin secretion in clonal beta cells in response to the insulinotropic 

hormone glucagon-like peptide 1 (53). Localized activity of PKA type II at AQP2-

bearing vesicles thus appears responsible for the efficient trafficking of AQP2 to 

apical surface (37). Interestingly, PKA-RIIα is part of a multi-protein signalling 

complex located at endosomal membranes in inner medullary collecting duct (IMCD) 

cells (54). In this study, AQP2 is shown to be a substrate for protein phosphatase 2B 

which, in conjunction with PKA, is responsible for the phosphorylation status that 

controls AQP2 trafficking and steady state distribution. In addition, PDE4D interacts 

with PKA-RII on AQP2-bearing vesicles, and is activated in a PKA-dependent 

manner upon translocation of these vesicles to the apical cell surface to reduce 

osmotic water permeability (55). The responsible AKAP that mediates PKA-RII-

regulated AQP2 translocation in renal collecting duct principal cells is AKAP18delta 

(56,57). Although the consensus PKA phosphorylation site at Ser256 in AQP2 is clearly 

important for the subcellular distribution of AQP2, the mechanism by which 

phosphorylation of AQP2 by PKA controls its intracellular trafficking remains 

unclear. For instance, it remains to be verified that PKA type II, anchored to 

AKAP18delta in endosomal membranes, is responsible for the phosphorylation of 

AQP2 at Ser256. It can be speculated that phosphorylation of AQP2 masks or 

unmasks a signal that is recognized by molecular machineries that prevent or promote 
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apical surface delivery, respectively, similar as proposed for the adhesion protein 

NgCAM (58). 

In addition to controlling the apical exocytosis of aquaporins, PKA-RIIα 

anchoring controls the efficient trafficking of the polytopic multidrug resistance 

protein MDR-1 (or ABCB1) from the Golgi apparatus to the apical bile canaliuclar 

surface of hepatocytes, the prime epithelial cells of the liver (59). At the apical surface 

of hepatocytes, MDR-1 is necessary for the formation of bile and to reduce the body 

load of potentially harmful compounds (60). Wojtal et al. (59) displaced PKA-RIIα from 

Golgi-associated AKAPs in human hepatocytes using the small interfering AKAP-IS 

peptide designed by Scott and colleagues (61). Displacement of PKA-RIIα causes a 

delay of MDR-1 trafficking to the apical surface of hepatic HepG2 cells. This effect is 

specific for MDR-1 as other apical resident proteins such as the multidrug resistance 

protein MRP2, dipeptidyl peptidase IV and 5’-nucleotidase are unaffected. This 

suggests that PKA-RIIα anchoring is not required for membrane traffic to the apical 

domain per se. In addition to the delay in trafficking of MDR1, which in contrast to 

AQP2 lacks a consensus PKA phosphorylation site, the displacement of PKA-RIIα 

from Golgi-associated AKAPs inhibits the Golgi to apical surface-directed transport 

of newly synthesized glycosphingolipid analogues and instead reroutes these to the 

basolateral surface. This suggests that the trafficking of MDR-1 and 

glycosphingolipids are mechanistically linked in a manner that depends on PKA-RIIα 

anchoring at the Golgi. This is supported by the observation that treatment of HepG2 

cells with an inhibitor of glucosylceramide synthesis results in a delayed translocation 

of MDR-1, but not MRP2, to the apical surface, very similar as observed upon 

displacement of PKA-RIIα (59). Because of the known interrelation between 
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glycosphingolipids and MDR1 (62), it is proposed that the mistargeting of 

glycosphingolipids may be responsible for the delay in MDR1 exocytosis (59). 

As a final example, activation of PKA enhances the apical surface-directed 

transport of the cystic fibrosis transmembrane conductance regulator (CFTR) (63-64). 

CFTR activity functionally correlates to the interaction of PKA-RII with unspecified 

but Ht31 peptide-sensitive AKAPs (65). Also, the direct phosphorylation of CFTR by 

PKA affects its intracellular trafficking (66,67) and cAMP increases CFTR expression 

(67). Taken together, the evidence indicates that PKA-RII anchoring and activity at 

endosomes and organelles of the secretory pathway control the proper trafficking and, 

consequently, the steady state distribution of select polytopic apical plasma membrane 

transporter proteins. 

In addition to regulating the trafficking of specific ‘cargo’ proteins and lipids 

as described in the paragraph above, PKA targets molecular machineries that control 

vesicular membrane flow in general. For instance, PKA activity influences the rate of 

membrane vesiculation at the Golgi apparatus by stimulating the scission of 

membrane transport vesicles (68) (figure 2B). It has been proposed that PKA-RIIα 

controls this process and that the interaction of PKA-RIIα subunits with Golgi 

cisternae is modulated by trimeric G proteins (69). Increased PKA activity (isoform not 

specified) triggers the redistribution of the ADP-ribosylating factor Arf1 from cytosol 

to trans-Golgi membranes in a cell-free assay, and this is abolished with PKA 

inhibitory peptides or when cytosol is depleted of PKA catalytic subunits (70). Two 

Golgi-associated Arf-activating proteins, the Brefeldin A-inhibited guanine 

nucleotide-exchange proteins (GEPs) BIG1 and BIG2, are both AKAPs (19). Elevation 

of cAMP caused PKA-catalyzed phosphorylation of the BIGs and, in an in vitro 

assay, recombinant PKA altered their GEP activity (71). The involvement of PKA in 
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Golgi membrane dynamics was recently supported by the notion that the cell-wide 

downregulation of PKA-RIIα subunits by siRNA results in severe perturbation of 

Golgi morphology (72). Protein phosphorylation mediated by PKA affects Golgi 

morphology in yeast via phosphorylation of the t-SNARE (soluble N-ethylmaleimide-

sensitive fusion protein attachment protein receptors) protein Sed-5, which controls 

membrane fusion (73). Also in mammalian cells, several potential targets of PKA 

involved in vesicular trafficking act in membrane fusion. In polarized neurons for 

example, these include syntaphilin, a protein interacting with dynamin-1 and 

syntaxin-1 which, in turn, regulate the scission and fusion of secretory vesicles, 

respectively, at the axonal synapse (the neuronal equivalent of the epithelial apical 

plasma membrane domain (74)). The phosphorylation of syntaphilin by PKA on Ser43 

in isolated rat brain synaptosomes or syntaphilin-transfected HEK293 cells inhibits its 

interaction with dynamin- and syntaxin-1 (75), and annuls its inhibitory effect on 

synaptic vesicle exocytosis (figure 2B). In cultured superior cervical ganglion 

neurons, PKA phosphorylates tomosyn which, like synthaphilin, is a member of 

SNARE regulatory protein family that limits synaptic transmission. Thus, PKA-

mediated phosphorylation of tomosyn reduces its inhibitory interaction with syntaxin-

1 and promotes SNARE assembly, exocytic vesicle fusion, and the release of 

neurotransmitters in response to a potent biological mediator, the pituitary adenylate 

cyclase-activating polypeptide (26). Other molecular targets of PKA implicated in 

exocytosis include cystein string protein, rabphilin 3A, αSNAP (N-ethylmaleimide 

sensitive factor attachment protein), snapin, SNAP-25 and syntaxin 4 (38,76). The PKA-

mediated phosphorylation of these proteins changes their respective protein-protein 

interactions and, in this way, modulates the vesicle priming and/or fusion stages of 

exocytosis. PKA may thus control exocytosis at different steps of the pathway, e.g. 
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vesicle budding and scission from the donor membrane such as the Golgi apparatus or 

endosomes, and vesicle fusion with the target (plasma) membrane. 

The cytoskeleton network, including actin filaments and microtubules, are 

instrumental in directing transport vesicles to defined subcellular sites (77). 

Cytoskeleton-associated AKAPs have been reported (23). PKA regulatory subunits 

form complexes with dynein, and with kinesin II and myosin V, and in this way 

control the spatial organisation of pigment granules in melanophores (78). Also the 

epinephrine-induced clustering of secretory Weibel-Pallade bodies in endothelial cells 

involves a PKA-dependent regulation of the dynein-dynactin complex (79), and 

inhibition of PKA-RII anchoring in human hepatoma cells results in a (non-polar) 

repositioning of the centrosome and surrounding recycling endosomes (80). In the latter 

study, surprisingly, inhibition of catalytic PKA activity did not alter the position of 

the centrosome and recycling endosomes. It thus appears that regulatory PKA 

subunits, through their interaction with cytoskeleton motor proteins, can control the 

spatial distribution of secretory organelles. Whether and how this may influence the 

movement of transport vesicles remains to be investigated.    

 

 13



The role of cAMP/PKA in endocytosis 

Besides stimulating exocytosis, activation of the cAMP-dependent second messenger 

pathway causes a significant reduction in endocytosis in epithelial T84 cells as 

measured by uptake of fluid-phase markers (81). Furthermore, cAMP stimulates the 

exocytosis of CFTR but at the same time inhibits its apical endocytosis (82,83). In case 

of AQP2, PKA-mediated phosphorylation of Ser256 not only stimulates exocytosis of 

the water channel, but is also required for its subsequent reinternalization (84). This 

and other data underscore that the process of exocytosis is closely correlated to the 

endocytosis of membrane components, which provides an efficient way of controlling 

the size and composition of plasma membrane domains and, therefore, functional cell 

surface polarity. Perhaps therefore not surprisingly, there are numerous reports 

implicating PKA as a regulator of the endocytic process. In some instances, PKA 

directly phosphorylates the ‘cargo’ protein. Indeed, the low density lipoprotein-related 

protein LRP is phosphorylated by PKA at Ser76, and mutations of Ser76 result in a 

decrease in the initial endocytosis rate of LRP and a lower efficiency in delivery of 

ligand for degradation (85). While PKA activity may promote the endocytosis of LRP, 

the agonist-stimulated endocytosis of glutamate receptors is inhibited by PKA 

activation, which may reduce the interaction of glutamate receptors with G-coupled 

receptor kinase 2 and arrestins (87). Interestingly, inhibition of basal PKA activity 

induces clathrin-mediated endocytosis of unoccupied, inactive epidermal growth 

factor receptors (EGFR) and its accumulation into early endosomes without affecting 

the endocytosis of transferrin and µ-opioid receptors. It is proposed that the 

predominant distribution of inactive EGFR at the plasma membrane involves a PKA-

dependent restrictive condition resulting in receptor avoidance of endocytosis until it 

is bound and activated by a ligand (86). PKA may control endocytosis by associating 
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with compositionally and biophysically distinct plasma membrane domains. For 

instance, the PKA catalytic subunit interacts with caveolin-1, a key component of 

caveolar membranes domains (88), and PKA-mediated phosphorylation triggers the 

agonist-induced internalization of G-protein coupled beta1-adrenergic receptors via a 

caveolar pathway in non-polarized cells (89). PKA also controls protein recycling to 

the plasma membrane following endocytosis. For instance, AKAP79, which interacts 

with a PDZ domain in the beta1-adrenergic receptor, mediates the targeting of PKA-

RII to these receptors, and their subsequent PKA-mediated phosphorylation promotes 

recycling of the receptors from endosomal membranes back to the plasma membrane 

and, in this way, the functional resensitization of the receptor (90). Whether AKAPs, 

PKA, and receptors traffic as a complex and whether they can, in this way, direct their 

transit through the heterogeneous endosomal membrane system (as suggested by 

Stefan et al., (55)) remains to be investigated. In addition to the role of PKA in setting 

the trafficking itinerary of beta1-adrenergic receptors, AQP-4 in human gastric cells is 

phosphorylated by PKA subsequent to its endocytosis from the basolateral surface, 

and it is suggested that this phosphorylation is involved in retaining AQP4 in an 

endosomal recycling compartment (91). Downstream in the endocytic pathway, PKA-

RIIα regulates membrane traffic between endosomes and the Golgi apparatus and 

plays a pivotal role in endosome-to-Golgi transport of the plant toxin ricin upon 

stimulation with cAMP analogues (92). A similar stimulating effect is observed in case 

of retrograde transport of these proteins from the Golgi apparatus to the endoplasmic 

reticulum, where the toxin is eventually translocated to the cytosol where it blocks 

protein synthesis. In concert, overexpression of PKA-RIIα sensitizes cells to ricin. 

Intriguingly, non-hydrolyzable cAMP analogues stimulate non-clathrin-mediated 

endocytosis of ricin from the apical but not basolateral surface to the Golgi apparatus 
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in MDCK cells (93), suggesting that PKA-RIIα discriminates between different, i.e. 

apical versus basolateral populations of endosomes, and/or affects different endocytic 

pathways in different cell types. 

Also PKA-RI localizes to endosomes. The RIα subunit of PKA was found to 

localize on Rab7-positive late endosomes and on microtubule-associated protein light 

chain 3-positive autophagosomes in cultured cells. RIα was also shown to physically 

interact with the mTOR (mammalian target of rapamycin) kinase and affect its 

phosphorylation and activity (94). While the regulation of autophagocytosis by cAMP 

levels is highly conditional (95), in RIα downregulated mouse embryonic fibroblasts 

the number of autophagosomes is significantly reduced compared with wild-type 

cells. This suggests that PKA type I in a complex with mTOR modulates the rate of 

autophagocytosis and, possibly, the various autophagocytosis-related developmental 

processes and diseases including cancer and neurodegeneration. Taken all together, 

PKA activity is involved in the endocytosis and endocytic recycling of several 

proteins from both basolateral and apical surfaces in different cell types, and distinct 

PKA holo-enzymes may participate in the different endocytic routes. 
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The role of cAMP/PKA in transcytosis 

In epithelial cells, endocytic and exocytic membrane trafficking pathways converge to 

allow the transcellular trafficking (transcytosis) of proteins and lipids between 

basolateral and apical surfaces. Transcytosis is used by epithelia to move molecules 

across the cells in response to extracellular factors. It has been reported that Gαs 

stimulates transcytosis and apical secretion in MDCK cells through cAMP and PKA 

(29). PKA is implicated in cholesterol and caveolae-controlled transcytosis of 

basolaterally localized high-density lipoprotein scavenger receptor class B type I (SR-

BI), in MDCK cells (30). In this study, a scenario is proposed in which cholesterol-

based membrane microdomains, or rafts, promote internalization and basolateral 

recycling of internalized SR-BI whereas a PKA pool sensitive to cholesterol depletion 

mediates SR-BI transcytosis (30). The exact intracellular location at which PKA 

promotes SR-BI transcytosis is not clear. However, a switch from basolateral 

recycling to apical transcytosis of membrane components typically occurs in the 

endosomal system. This has been clearly demonstrated in polarized hepatocytes. In 

these cells, cAMP/PKA activates an apical surface-directed pathway exiting from a 

subapical compartment/ common recycling endosome (SAC/CE), and changes the 

trafficking of the fluorescently labelled sphingolipid analogues C6-NBD-

sphingomyelin and -galactosylceramide from a apical-to-SAC/CE-to-basolateral 

itinerary to a apical-to-SAC/CE-to-apical pathway (96,97). The activated SAC/CE-to-

apical pathway represents the final leg in the basolateral to apical transcytotic route 

(90). Indeed, the SAC/CE connects basolateral and apical endocytic routes and thus 

takes a prominent position in the transcytotic pathway (5,98,99). The PKA inhibitor H89 

prevents the cAMP/PKA-induced apical flow of the fluorescent lipids from the 

SAC/CE as well as that of transcytosing proteins (100). By contrast, the constitutive 
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apical recycling of C6-NBD-glucosylceramide from the SAC/CE is unaffected by 

PKA inhibition (100). Importantly, the stimulatory effect of cAMP/PKA on the apical-

directed flow of the sphingomyelin analogues from the SAC/CE strongly coincides 

with enhanced development of apical plasma membrane domains, suggesting that 

PKA-stimulated trafficking from the SAC/CE (i.e. the last step of the transcytotic 

pathway) and the biogenesis of apical plasma membrane domains are intimately 

linked. 

The downstream targets of cAMP/PKA that regulate trafficking between the 

SAC/CE and the apical surface are not yet known. Elevated cAMP promotes the 

turnover of the sphingoid base dihydro-sphingosine (sphinganine) to dihydroceramide 

by stimulating the activity of dihydroceramide synthase (101), and reduced and elevated 

levels of sphinganine promote and inhibit apical surface development, respectively. 

As a part of the underlying mechanism, dihydroceramide synthase activity and 

ensuing low sphinganine levels are required for cAMP/PKA-mediated activation of 

the apical-surface-directed trafficking pathway from the SAC/CE (101). Interestingly, a 

sphingosine kinase-interacting protein, SKIP, which mediates the phosphorylation of 

sphingoid bases, anchors PKA (102); supporting the notion that sphingoid base 

metabolism may be regulated by PKA. 

The correlation between PKA-stimulated trafficking from the SAC/CE and the 

biogenesis of apical plasma membrane domains is further corroborated by the 

observation that the interleukin 6 family cytokine oncostatin M (OSM), an important 

factor in fetal liver development, stimulates apical plasma membrane biogenesis in 

hepatocytes in a PKA-dependent manner (103). Stimulation of hepatocytes with OSM 

does not elevate cAMP levels or stimulate overall PKA activity but enhances the 

association of PKA-RIIα with centrosomes in an ERK1-dependent manner (80,103). 
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Displacement of PKA-RIIα from the centrosome, by means of a small interfering 

peptide (80) or by forcing synchronised hepatocytes into the S-phase of the cell cycle 

(104), prevents the stimulatory effect of OSM on apical membrane biogenesis. Given 

that OSM stimulates PKA-dependent membrane transport exiting from the SAC/CE 

to promote apical membrane biogenesis (103), the recruitment of PKA-RIIα at the 

centrosome may be an important factor in the regulation of polarized, apical surface-

directed membrane trafficking from the SAC/CE in response to extracellular 

cytokines. However, this remains to be investigated.  
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Conclusions and perspectives 

PKA holoenzymes play an important role in the polarized trafficking of membrane 

proteins and lipids, including exocytosis, endocytosis, and transcytosis. In this way, 

cAMP/PKA signalling contributes to the compositional and functional dynamics of 

epithelial cell surface domains and, accordingly, developmental processes and organ 

function. The dynamics of membrane protein trafficking can be regulated by PKA-

mediated phosphorylation of the cargo protein itself, such as in case of the aquaporins 

and other transporter proteins, or regulated by PKA-mediated phosphorylation of 

components of the molecular machineries that more generally control vesicular 

membrane trafficking. Furthermore, PKA can interfere with the morphology and, 

consequently, the functioning of organelles that control membrane trafficking, such as 

the Golgi apparatus or endosomes. One of the most intriguing developments may be 

the interaction of selected cargo with PKA scaffolds to create a multi-signal 

transduction module that controls its trafficking itinerary through the different 

organelles.     

 The specificity of cAMP/PKA signalling in the regulation of membrane 

trafficking in any given cell is dictated at multiple and interconnected levels. These 

include: i) the nature of the extracellular (ant)agonist and cellular receptor, ii) spatial-

temporal cAMP gradients, carefully controlled by a large family of adenylyl cyclases 

and PDEs, iii) the composition and spatial distribution of the PKA holoenzyme, 

mediated by different regulatory and catalytic subunits and a large family of AKAPs, 

and iv) the nature of the catalytic subunit’s substrate, which can be cargo itself or 

traffic regulatory proteins.  

Because the increase of exocytosis by cAMP/PKA signalling is observed in a 

wide variety of secretory cell types, this is likely an important and fundamental 
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mechanism. However, although this phenomenon has been recognized for more than a 

decade, it remains largely unexplained at the molecular level. This is primarily due to 

the increasingly apparent complexity of cAMP/PKA signaling. For instance, to date 

there are at least five AKAPs reported just in the secretory pathway. Each of these 

AKAPs anchor RI or RII subunits or, in case of D-AKAP-1 and BIG1/2, both, 

sometimes via distinct and/or multiple binding sites. These AKAPs in addition can 

bind PDEs, adenylyl cyclases, and other signalling molecules, thereby tuning and 

propagating local cAMP/PKA responses. It is for that reason that the use of non-

hydrolyzable cAMP analogues in combination with inhibitors of general PKA 

catalytic activity may be useful to reveal the general involvement of PKA activity in 

the exocytic process but, importantly, does not provide the necessary information with 

regard to the PKA isoenzymes involved and their precise subcellular location. This 

limitation also hampers the identification and analysis of relevant phosphorylation 

targets. The current development of novel and innovative tools, such as PKA 

holoenzyme-specific cAMP analogues (105), In vivo assays that measure the 

interaction of specific regulatory and catalytic subunits as a mesasure for PKA 

holoenzyme-specific activity (105), and peptide-based disruptors of specific PKA-

AKAP interactions (61; 106-109), used in combination with established biochemical and 

(live) cell biological assays, is expected to boost our understanding of the role of PKA 

signaling in membrane dynamics and the plasticity of cell surface domains, and the 

life-facilitating processes that are so critically dependent thereof. 

 21



References 

1. Yeaman C, Grindstaff KK, Nelson WJ. 1999. New perspectives on 

mechanisms involved in generating epithelial cell polarity. Physiol Rev. 

79:73-98. 

2. van der Wouden JM, Maier O, van IJzendoorn SC, Hoekstra D. 2003. 

Membrane dynamics and the regulation of epithelial cell polarity. Int Rev 

Cytol. 226:127-164. 

3. Rodriguez-Boulan E, Musch A, Le Bivic A. 2004. Epithelial trafficking: new 

routes to familiar places. Curr Opin Cell Biol. 16:436-442. 

4. van IJzendoorn SC, Hoekstra D. 1999. The subapical compartment: a novel 

sorting centre? Trends Cell Biol. 9:144-149.   

5. Hoekstra D, Tyteca D, van IJzendoorn SC. 2004. The subapical compartment: 

a traffic center in membrane polarity development. J Cell Sci. 117:2183-2192. 

6. Thompson A, Nessler R, Wisco D, Anderson E, Winckler B, et al.. 2007. 

Recycling Endosomes of Polarized Epithelial Cells Actively Sort Apical and 

Basolateral Cargos into Separate Subdomains. Mol Biol Cell. In press.  

7. Brown D. 2003. The ins and outs of aquaporin-2 trafficking. Am J Physiol 

Renal Physiol. 284:F893-F901. 

8. Wakabayashi Y, Kipp H, Arias IM. 2006. Transporters on demand: 

intracellular reservoirs and cycling of bile canalicular ABC transporters. J Biol 

Chem. 281:27669-27673. 

9. Kim C, Vigil D, Anand G, Taylor SS. 2006. Structure and dynamics of PKA 

signaling proteins. Eur J Cell Biol. 85:651-654. 

10. Taylor SS, Kim C, Vigil D, Haste NM, Yang J, et al. 2005. Dynamics of 

signaling by PKA. Biochim Biophys Acta. 1754:25-37.  

 22



11. Das R, Esposito V, Abu-Abed M, Anand GS, Taylor SS, et al. 2007. cAMP 

activation of PKA defines an ancient signaling mechanism. Proc Natl Acad 

Sci U S A. 104:93-98. 

12. Houslay MD, Adams DR. 2007. PDE4 cAMP phosphodiesterases: modular 

enzymes that orchestrate signalling cross-talk, desensitization and 

compartmentalization. Biochem J. 370:1-18. 

13. Smith FD, Scott JD. 2006. Anchored cAMP signaling: onward and upward - a 

short history of compartmentalized cAMP signal transduction. Eur J Cell Biol. 

85:585-592. 

14. Herberg FW, Maleszka A, Eide T, Vossebein L, Tasken K. 2000. Analysis of 

A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) 

regulatory subunits: PKA isoform specificity in AKAP binding. J Mol Biol. 

298:329-339. 

15. Singh AK, Tasken K, Walker W, Frizzell RA, Watkins SC, et al. 1998. 

Characterization of PKA isoforms and kinase-dependent activation of chloride 

secretion in T84 cells. Am J Physiol. 275:C562-C570.   

16. Constantinescu A, Diamond I, Gordon AS. 1999. Ethanol-induced 

translocation of cAMP-dependent protein kinase to the nucleus. Mechanism 

and functional consequences. J Biol Chem. 274:26985-26991.  

17. Alto NM, Soderling J, Scott JD. 2002. Rab32 is an A-kinase anchoring protein 

and participates in mitochondrial dynamics. J Cell Biol. 158:659-668. 

18. Huang LJ, Wang L, Ma Y, Durick K, Perkins G, et al. 1999. NH2-Terminal 

targeting motifs direct dual specificity A-kinase-anchoring protein 1 (D-

AKAP1) to either mitochondria or endoplasmic reticulum. J Cell Biol. 

145:951-959. 

 23



19. Li H, Adamik R, Pacheco-Rodriguez G, Moss J, Vaughan M. 2003. Protein 

kinase A-anchoring (AKAP) domains in brefeldin A-inhibited guanine 

nucleotide-exchange protein 2 (BIG2). Proc Natl Acad Sci U S A. 100:1627-

1632. 

20. Alto N, Carlisle Michel JJ, Dodge KL, Langeberg LK, Scott JD. 2002.  

Intracellular targeting of protein kinases and phosphatases. Diabetes. 51:S385-

S358.  

21. Michel JJ, Scott JD. 2002. AKAP mediated signal transduction. Annu Rev 

Pharmacol Toxicol. 42:235-257. 

22. Witczak O, Skalhegg BS, Keryer G, Bornens M, Tasken K, et al. 1999. 

Cloning and characterization of a cDNA encoding an A-kinase anchoring 

protein located in the centrosome, AKAP450. EMBO J. 18:1858-1868. 

23. Diviani D, Scott JD. 2001. AKAP signaling complexes at the cytoskeleton. J 

Cell Sci. 114:1431-1437. 

24. Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, et al. 2004. Identification 

of a novel A-kinase anchoring protein 18 isoform and evidence for its role in 

the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol 

Chem. 279:26654-26665.  

25. Shanks RA, Steadman BT, Schmidt PH, Goldenring JR. 2002. AKAP350 at 

the Golgi apparatus. I. Identification of a distinct Golgi apparatus targeting 

motif in AKAP350. J Biol Chem. 277:40967-40972. 

26. Yang S, Fransson U, Fagerhus L, Holst LS, Hohmeier HE, et al. 2004. 

Enhanced cAMP protein kinase A signaling determines improved insulin 

secretion in a clonal insulin-producing beta-cell line (INS-1 832/13). Mol 

Endocrinol. 18:2312-2320. 

 24



27. Hansen SH, Casanova JE. 1994. Gs alpha stimulates transcytosis and apical 

secretion in MDCK cells through cAMP and protein kinase A. J Cell Biol. 

126:677-687.  

28. Burgos PV, Klattenhoff C, de la Fuente E, Rigotti A, Gonzalez A. 2004. 

Cholesterol depletion induces PKA-mediated basolateral-to-apical transcytosis 

of the scavenger receptor class B type I in MDCK cells. Proc Natl Acad Sci U 

S A. 101:3845-3850. 

29. Brignoni M, Pignataro OP, Rodriguez ML, Alvarez A, Vega-Salas DE, et al. 

1995. Cyclic AMP modulates the rate of 'constitutive' exocytosis of apical 

membrane proteins in Madin-Darby canine kidney cells. J Cell Sci. 108:1931-

1943. 

30. Ameen NA, Marino C, Salas PJ. 2003. cAMP-dependent exocytosis and 

vesicle traffic regulate CFTR and fluid transport in rat jejunum in vivo. Am J 

Physiol Cell Physiol. 284:C429-C438. 

31. Zegers MM, Hoekstra D. 1997. Sphingolipid transport to the apical plasma 

membrane domain in human hepatoma cells is controlled by PKC and PKA 

activity: a correlation with cell polarity in HepG2 cells. J Cell Biol. 138:307-

321. 

32. Kipp H, Arias IM. 2000. Intracellular trafficking and regulation of canalicular 

ATP-binding cassette transporters. Semin Liver Dis. 20:339-351. 

33. Mordasini D, Bustamante M, Rousselot M, Martin PY, Hasler U, et al. 2005. 

Stimulation of Na+ transport by AVP is independent of PKA phosphorylation 

of the Na-K-ATPase in collecting duct principal cells. Am J Physiol Renal 

Physiol. 289:F1031-F1039. 

 25



34. Vinciguerra M, Hasler U, Mordasini D, Roussel M, Capovilla M, et al. 2005. 

Cytokines and sodium induce protein kinase A-dependent cell-surface Na,K-

ATPase recruitment via dissociation of NF-kappaB/IkappaB/protein kinase A 

catalytic subunit complex in collecting duct principal cells. J Am Soc Nephrol. 

16:2576-2585. 

35. Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W. 1999. 

Protein kinase A anchoring proteins are required for vasopressin-mediated 

translocation of aquaporin-2 into cell membranes of renal principal cells. J 

Biol Chem. 274:4934-4938. 

36. Baba T, Sakisaka T, Mochida S, Takai Y. 2005. PKA-catalyzed 

phosphorylation of tomosyn and its implication in Ca2+-dependent exocytosis 

of neurotransmitter. J Cell Biol. 170:1113-1125.  

37. Bouchard JF, Moore SW, Tritsch NX, Roux PP, Shekarabi M, et al. 2004. 

Protein kinase A activation promotes plasma membrane insertion of DCC 

from an intracellular pool: A novel mechanism regulating commissural axon 

extension. J Neurosci. 24:3040-3050. 

38. Seino S, Shibasaki T. 2005. PKA-dependent and PKA-independent pathways 

for cAMP-regulated exocytosis. Physiol Rev. 85:1303-1342. 

39. Skoulakis EM, Kalderon D, Davis RL. 1993. Preferential expression in 

mushroom bodies of the catalytic subunit of protein kinase A and its role in 

learning and memory. Neuron. 11:197-208 

40. Yoshihara M, Suzuki K, Kidokoro Y. 2000. Two independent pathways 

mediated by cAMP and protein kinase A enhance spontaneous transmitter 

release at Drosophila neuromuscular junctions. J Neurosci. 20:8315-8322. 

 26



41. Suzuki K, Grinnell AD, Kidokoro Y. 2002. Hypertonicity-induced transmitter 

release at Drosophila neuromuscular junctions is partly mediated by integrins 

and cAMP/protein kinase A. J Physiol. 538:103-119.  

42. Davis RL, Cherry J, Dauwalder B, Han PL, Skoulakis E. 1995. The cyclic 

AMP system and Drosophila learning. Mol Cell Biochem. 149-150:271-278 

43. Li W, Tully T, Kalderon D. 1996. Effects of a conditional Drosophila PKA 

mutant on olfactory learning and memory. Learn Mem. 2:320-333. 

44. Bauman AL, Goehring AS, Scott JD. 2004 Orchestration of synaptic plasticity 

through AKAP signaling complexes. Neuropharmacology. 46:299-310.  

45. Dell'Acqua ML, Smith KE, Gorski JA, Horne EA, Gibson ES, Gomez LL. 

2006 Regulation of neuronal PKA signaling through AKAP targeting 

dynamics. Eur J Cell Biol. 85:627-633. 

46. Kato A, Gores GJ, LaRusso NF. 1992. Secretin stimulates exocytosis in 

isolated bile duct epithelial cells by a cyclic AMP-mediated mechanism. J Biol 

Chem. 267:15523-15529. 

47. Banales JM, Prieto J, Medina JF. 2006. Cholangiocyte anion exchange and 

biliary bicarbonate excretion. World J Gastroenterol. 12:3496-3511. 

48. Robin P, Rossignol B, Raymond MN. 1998. PKA inhibitor, H-89, affects the 

intracellular transit of regulated secretory proteins in rat lacrimal glands. Am J 

Physiol. 274:C262-C271. 

49. Nejsum LN, Zelenina M, Aperia A, Frokiaer J, Nielsen S. 2005. Bidirectional 

regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 

phosphorylation. Am J Physiol Renal Physiol. 288:F930-F938. 

 27



50. Lande MB, Jo I, Zeidel ML, Somers M, Harris HW Jr. 1996. Phosphorylation 

of aquaporin-2 does not alter the membrane water permeability of rat papillary 

water channel-containing vesicles. J Biol Chem. 271:5552-5557. 

51. Kamsteeg EJ, Heijnen I, van Os CH, Deen PM. 2000. The subcellular 

localization of an aquaporin-2 tetramer depends on the stoichiometry of 

phosphorylated and nonphosphorylated monomers. J Cell Biol. 151:919-930. 

52. Procino G, Carmosino M, Marin O, Brunati AM, Contri A, et al. 2003. Ser-

256 phosphorylation dynamics of Aquaporin 2 during maturation from the ER 

to the vesicular compartment in renal cells. FASEB J. 17:1886-1888. 

53. Lester LB, Langeberg LK, Scott JD. 1997. Anchoring of protein kinase A 

facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci U S A. 

94:14942-14947. 

54. Jo I, Ward DT, Baum MA, Scott JD, Coghlan VM, Hammond TG, et al. 2001. 

AQP2 is a substrate for endogenous PP2B activity within an inner medullary 

AKAP-signaling complex. Am J Physiol Renal Physiol. 281:F958-F965. 

55. Stefan E, Wiesner B, Baillie GS, Mollajew R, Henn V, et al. 2007. 

Compartmentalization of cAMP-dependent signaling by phosphodiesterase-

4D is involved in the regulation of vasopressin-mediated water reabsorption in 

renal principal cells. J Am Soc Nephrol. 18:199-212. 

56. McSorley T, Stefan E, Henn V, Wiesner B, Baillie GS, Houslay MD, et al. 

2006. Spatial organisation of AKAP18 and PDE4 isoforms in renal collecting 

duct principal cells. Eur J Cell Biol. 85:673-678.  

57. Klussmann E, Rosenthal W. 2001. Role and identification of protein kinase A 

anchoring proteins in vasopressin-mediated aquaporin-2 translocation. Kidney 

Int. 60:446-449. 

 28



58. Anderson E, Maday S, Sfakianos J, Hull M, Winckler B, et al. 2005. 

Transcytosis of NgCAM in epithelial cells reflects differential signal 

recognition on the endocytic and secretory pathways. J Cell Biol. 170:595-

605. 

59. Wojtal KA, de Vries E, Hoekstra D, van IJzendoorn SC. 2006. Efficient 

trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes 

in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide. Mol 

Biol Cell. 17:3638-3650. 

60. Dietrich CG, Geier A, Oude Elferink RP. 2003. ABC of oral bioavailability: 

transporters as gatekeepers in the gut. Gut. 52:1788-1795. 

61. Alto NM, Soderling SH, Hoshi N, Langeberg LK, Fayos R, et al. 2003. 

Bioinformatic design of A-kinase anchoring protein-in silico: a potent and 

selective peptide antagonist of type II protein kinase A anchoring. Proc Natl 

Acad Sci U S A. 100:4445-4450. 

62. Klappe K, Hinrichs JW, Kroesen BJ, Sietsma H, Kok JW. 2004. MRP1 and 

glucosylceramide are coordinately over expressed and enriched in rafts during 

multidrug resistance acquisition in colon cancer cells. Int J Cancer. 110:511-

522. 

63. Chang SY, Di A, Naren AP, Palfrey HC, Kirk KL, et al. 2002. Mechanisms of 

CFTR regulation by syntaxin 1A and PKA. J Cell Sci. 115:783-791.  

64. Huang P, Gilmore E, Kultgen P, Barnes P, Milgram S, et al. 2004. Local 

regulation of cystic fibrosis transmembrane regulator and epithelial sodium 

channel in airway epithelium. Proc Am Thorac Soc. 1:33-37. 

 29



65. Seibert FS, Chang XB, Aleksandrov AA, Clarke DM, Hanrahan JW, et al. 

1999. Influence of phosphorylation by protein kinase A on CFTR at the cell 

surface and endoplasmic reticulum. Biochim Biophys Acta. 1461:275-283. 

66. Kleizen B, Braakman I, de Jonge HR. 2000. Regulated trafficking of the 

CFTR chloride channel. Eur J Cell Biol. 79:544-556. 

67. Taouil K, Hinnrasky J, Hologne C, Corlieu P, Klossek JM, et al. 2003. 

Stimulation of beta 2-adrenergic receptor increases cystic fibrosis 

transmembrane conductance regulator expression in human airway epithelial 

cells through a cAMP/protein kinase A-independent pathway. J Biol Chem. 

278:17320-17327. 

68. Muniz M, Martin ME, Hidalgo J, Velasco A. 1997. Protein kinase A activity is 

required for the budding of constitutive transport vesicles from the trans-Golgi 

network. Proc Natl Acad Sci U S A. 94:14461-14466. 

69. Martin ME, Hidalgo J, Vega FM, Velasco A. 1999. Trimeric G proteins 

modulate the dynamic interaction of PKAII with the Golgi complex. J Cell 

Sci. 112:3869-3878. 

70. Martin ME, Hidalgo J, Rosa JL, Crottet P, Velasco A. 2000. Effect of protein 

kinase A activity on the association of ADP-ribosylation factor 1 to golgi 

membranes. J Biol Chem. 275:19050-19059. 

71. Kuroda F, Moss J, Vaughan M. 2007. Regulation of brefeldin A-inhibited 

guanine nucleotide-exchange protein 1 (BIG1) and BIG2 activity via PKA and 

protein phosphatase 1gamma. Proc Natl Acad Sci U S A. 104:3201-3206. 

72. Bejarano E, Cabrera M, Vega L, Hidalgo J, Velasco A. 2006. Golgi structural 

stability and biogenesis depend on associated PKA activity. J Cell Sci. 

119:3764-3775. 

 30



73. Weinberger A, Kamena F, Kama R, Spang A, Gerst JE. 2005. Control of 

Golgi morphology and function by Sed5 t-SNARE phosphorylation. Mol Biol 

Cell. 16:4918-4930. 

74. de Hoop MJ, Dotti CG. 1993. Membrane traffic in polarized neurons in 

culture. J Cell Sci 17:85-92. 

75. Boczan J, Leenders AG, Sheng ZH. 2004. Phosphorylation of syntaphilin by 

cAMP-dependent protein kinase modulates its interaction with syntaxin-1 and 

annuls its inhibitory effect on vesicle exocytosis. J Biol Chem. 279:18911-

18919. 

76. Evans GJ, Morgan A. 2003. Regulation of the exocytotic machinery by 

cAMP-dependent protein kinase: implications for presynaptic plasticity. 

Biochem Soc Trans. 31:824-827. 

77. Apodaca G. 2001. Endocytic traffic in polarized epithelial cells: role of the 

actin and microtubule cytoskeleton. Traffic 2:149-159. 

78. Kashina AS, Semenova IV, Ivanov PA, Potekhina ES, Zaliapin I, et al. 2004. 

Protein kinase A, which regulates intracellular transport, forms complexes 

with molecular motors on organelles. Curr Biol. 14:1877-1881. 

79. Rondaij MG, Bierings R, Kragt A, Gijzen KA, Sellink E, et al. 2006. Dynein-

dynactin complex mediates protein kinase A-dependent clustering of Weibel-

Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol. 26:49-55. 

80. Wojtal KA, Hoekstra D, van IJzendoorn SC. 2007. Anchoring of PKA-

RII{alpha} to subapically positioned centrosomes mediates apical bile 

canalicular lumen development in response to oncostatin M but not cAMP. 

Mol Biol Cell. In press. 

 31



81. Bradbury NA, Bridges RJ. 1992. Endocytosis is regulated by protein kinase A, 

but not protein kinase C in a secretory epithelial cell line. Biochem Biophys 

Res Commun. 184:1173-1180. 

82. Lukacs GL, Segal G, Kartner N, Grinstein S, Zhang F. 1997. Constitutive 

internalization of cystic fibrosis transmembrane conductance regulator occurs 

via clathrin-dependent endocytosis and is regulated by protein 

phosphorylation. Biochem J. 328:353-361.  

83. Prince LS, Workman RB Jr, Marchase RB. 1994. Rapid endocytosis of the 

cystic fibrosis transmembrane conductance regulator chloride channel. Proc 

Natl Acad Sci U S A. 91:5192-5196. 

84. Katsura T, Gustafson CE, Ausiello DA, Brown D. 1997. Protein kinase A 

phosphorylation is involved in regulated exocytosis of aquaporin-2 in 

transfected LLC-PK1 cells. Am J Physiol. 272:F817-F822. 

85. Li Y, van Kerkhof P, Marzolo MP, Strous GJ, Bu G. 2001. Identification of a 

major cyclic AMP-dependent protein kinase A phosphorylation site within the 

cytoplasmic tail of the low-density lipoprotein receptor-related protein: 

implication for receptor-mediated endocytosis. Mol Cell Biol. 21:1185-1195. 

86. Salazar G, Gonzalez A. 2002. Novel mechanism for regulation of epidermal 

growth factor receptor endocytosis revealed by protein kinase A inhibition. 

Mol Biol Cell. 13:1677-1693. 

87. Mundell SJ, Pula G, More JC, Jane DE, Roberts PJ, et al. 2004. Activation of 

cyclic AMP-dependent protein kinase inhibits the desensitization and 

internalization of metabotropic glutamate receptors 1a and 1b. Mol Pharmacol. 

65:1507-1516. 

 32



88. Razani B, Rubin CS, Lisanti MP. 1999. Regulation of cAMP-mediated signal 

transduction via interaction of caveolins with the catalytic subunit of protein 

kinase A. J Biol Chem. 274:26353-26360 

89. Rapacciuolo A, Suvarna S, Barki-Harrington L, Luttrell LM, Cong M, et al. 

2003. Protein kinase A and G protein-coupled receptor kinase phosphorylation 

mediates beta-1 adrenergic receptor endocytosis through different pathways. J 

Biol Chem. 278:35403-35411. 

90. Gardner LA, Naren AP, Bahouth SW. 2007. Downregulation of bone 

morphogenetic protein 4 expression in coronary arterial endothelial cells: role 

of shear stress and the cAMP/protein kinase A pathway. Arterioscler Thromb 

Vasc Biol. 27:776-782. 

91. Carmosino M, Procino G, Tamma G, Mannucci R, Svelto M, et al. 2006. 

Trafficking and phosphorylation dynamics of AQP4 in histamine-treated 

human gastric cells. Biol Cell. 99:25-36. 

92. Birkeli KA, Llorente A, Torgersen ML, Keryer G, Tasken K, et al. 2003. 

Endosome-to-Golgi transport is regulated by protein kinase A type II alpha. J 

Biol Chem. 278:1991-1997. 

93. Eker P, Holm PK, van Deurs B, Sandvig K. 1994. Selective regulation of 

apical endocytosis in polarized Madin-Darby canine kidney cells by 

mastoparan and cAMP. J Biol Chem. 269:18607-18615. 

94. Mavrakis M, Lippincott-Schwartz J, Stratakis CA, Bossis I. 2007. mTOR 

kinase and the regulatory subunit of protein kinase A (PRKAR1A) spatially 

and functionally interact during autophagosome maturation. Autophagy. 

3:151-153. 

 33



95. Holen I, Gordon PB, Stromhaug PE, Seglen PO. 1996. Role of cAMP in the 

regulation of hepatocytic autophagy. Eur J Biochem. 236:163-170. 

96. van IJzendoorn SC, Zegers MM, Kok JW, Hoekstra D. 1997. Segregation of 

glucosylceramide and sphingomyelin occurs in the apical to basolateral 

transcytotic route in HepG2 cells. J Cell Biol 137:347-357.  

97. van IJzendoorn SC, Hoekstra D. 1998. (Glyco)sphingolipids are sorted in sub-

apical compartments in HepG2 cells: a role for non-Golgi-related intracellular 

sites in the polarized distribution of (glyco)sphingolipids. J Cell Biol. 

142:683-696. 

98. van IJzendoorn SC, Hoekstra D. 1999. Polarized sphingolipid transport from 

the subapical compartment: evidence for distinct sphingolipid domains. Mol 

Biol Cell. 10:3449-3461. 

99. Tuma PL, Hubbard AL. 2003. Transcytosis: crossing cellular barriers. Physiol 

Rev. 83:871-932. 

100. van IJzendoorn SC, Hoekstra D. 2000. Polarized sphingolipid transport 

from the subapical compartment changes during cell polarity development. 

Mol Biol Cell. 11:1093-10101. 

101. van IJzendoorn SC, van Der Wouden JM, Liebisch G, Schmitz G, 

Hoekstra D. 2004. Polarized membrane traffic and cell polarity development is 

dependent on dihydroceramide synthase-regulated sphinganine turnover. Mol 

Biol Cell. 15:4115-4124. 

102. Lacana E, Maceyka M, Milstien S, Spiegel S. 2002. Cloning and 

characterization of a protein kinase A anchoring protein (AKAP)-related 

protein that interacts with and regulates sphingosine kinase 1 activity. J Biol 

Chem. 277:32947-32953. 

 34



103. van der Wouden JM, van IJzendoorn SC, Hoekstra D. 2002. 

Oncostatin M regulates membrane traffic and stimulates bile canalicular 

membrane biogenesis in HepG2 cells. EMBO J. 21:6409-6418. 

104. van IJzendoorn SC, Théard D, van der Wouden JM, Visser W, Wojtal 

KA, et al. 2004. Oncostatin M-stimulated apical plasma membrane biogenesis 

requires p27(Kip1)-regulated cell cycle dynamics. Mol Biol Cell. 15:4105-

4114. 

105. Prinz A, Diskar M, Erlbruch A, Herberg FW. 2006. Novel, isotype-

specific sensors for protein kinase A subunit interaction based on 

bioluminescence resonance energy transfer (BRET). Cell Signal. 18:1616-

1625. 

106. Burns-Hamuro LL, Ma Y, Kammerer S, Reineke U, Self C, et al. 2003. 

Designing isoform-specific peptide disruptors of protein kinase A localization. 

Proc Natl Acad Sci U S A. 100:4072-4077. 

107. Carlson CR, Lygren B, Berge T, Hoshi N, Wong W, et al. 2006. 

Delineation of type I protein kinase A-selective signaling events using an RI 

anchoring disruptor. J Biol Chem. 281:21535-21545.   

108. Hundsrucker C, Rosenthal W, Klussmann E. 2006. Peptides for 

disruption of PKA anchoring. Biochem Soc Trans. 34:472-473. 

109. Stokka AJ, Gesellchen F, Carlson CR, Scott JD, Herberg FW, et al. 

2006. Characterization of A-kinase-anchoring disruptors using a solution-

based assay. Biochem J. 400:493-499.  

 

 35



Legends 

 

Figure 1. Organization of and trafficking pathways in epithelial cells. A. 

Illustration of trafficking pathways serving the apical (blue) and basolateral 

(green) surface domains in polarized epithelial cells. Red, blue and black arrows 

and circles indicate exocytic, endocytic, and transcytotic transport routes, 

respectively. RE: recycling endosomes. B. examples of stimulated apical 

exocytosis in renal collecting duct cells and hepatocytes in response to a 

cAMP/PKA-stimulating agonist/ligand.  

 

Figure 2. The involvement of PKA-AKAP in vesicular transport. A. PKA and 

AKAPs localize to the different organelles that make up the exocytotic pathaway 

including the endoplasmic reticulum, the Golgi apparatus, endosomes, and the 

plasma membrane. Thick grey lines represent cytoskeleton fibers. B. Possible 

molecular roles of PKA in the budding and scission of transport vesicles from a 

donor organelle, in this case the Golgi apparatus, and in the fusion of transport 

vesicles with the acceptor membrane, in this case the plamsa membrane. Note that 

the distinct contributions of each PKA isoenzyme (I and II) in the regulation of 

vesicular transport pathways by D-AKAP1 or BIG2 has not been experimentally 

addressed. 
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