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Abstract 

Silver-nanoparticles-decorated reduced graphene oxide (rGO) was electrodeposited on 

indium tin oxide (ITO) by a cyclic voltammetry method. The results of X-ray diffraction, 

Fourier-transform infrared transmission spectroscopy and Raman spectroscopy confirmed the 

simultaneous formation of cubic phase silver nanoparticles and reduction of GO through the 

electrodeposition process. Field emission scanning electron microscope images showed a 

uniform distribution of nanometer-sized silver nanoparticles with a narrow size distribution on 

the RGO sheets, which could only be achieved using silver ammonia complex instead of silver 

nitrate as precursor. The composite deposited on ITO exhibited notable electrocatalytic activity 

mailto:huangnayming@um.edu.my
http://ees.elsevier.com/carbon/viewRCResults.aspx?pdf=1&docID=26499&rev=1&fileID=635787&msid={150254D3-1E8D-4CA8-880E-CACCA05F989A}
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for the reduction of H2O2, leading to an enzymeless electrochemical sensor with a fast 

amperometric response time less than 2 s. The corresponding calibration curve of the current 

response showed a linear detection range of 0.1 mM to 100 mM (R
2 

= 0.9992) while the limit of 

detection was estimated to be 5 µM. 

 

1. Introduction 

Graphene, a one-atom-thick planar sheet of sp
2
-bonded carbon atoms, has attracted 

tremendous attention due to its unique electrical, mechanical, thermal, and optical properties [1-

4]. These unique properties hold great promise for potential applications in many advanced 

technologies such as nanoelectronics, sensors, capacitors and composites [5-8]. At present, 

graphene sheets have been prepared by a variety of techniques, including micromechanical 

exfoliation of graphite, chemical vapour deposition, electrochemical reduction of graphene 

oxide, epitaxial growth and thermal or chemical reduction of graphite oxide [1; 9-13]. Among 

these methods,  electrochemical reduction of graphene oxide has the distinctions of being a 

simple, fast and environmentally-friendly approach. 

  Graphene’s favorable characteristics such as high electrical conductivity, large surface-

to-volume ratio and excellent chemical tolerance make it an attractive matrix for composites. In 

view of this, metal nanoparticle-decorated graphene composites have thus been the focus of 

research for scientists in recent years due to their multifunctional abilities. Among them, silver-

nanoparticle (AgNP)-decorated graphene composites consistently remain a frequently researched 

composite since they are effective for various applications such as surface-enhanced Raman 

scattering (SERS) substrate, glucose sensors and hydrogen peroxide sensors [14-16]. 

Immobilization of AgNPs on graphene can be accomplished using a myriad of methods 

including photochemical strategies, rapid thermal treatment, microwaves, etc. [17-21] which is 
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desirable as this indicates versatility. Several types of nanoparticles have been electrodeposited 

on graphene [22; 23], but to the best of our knowledge, there are no published articles on silver 

nanoparticles. As such, we report herein, an easy, fast, one-step, cost-effective and 

environmentally-friendly synthesis of AgNP-decorated graphene nanosheets on ITO coated glass 

slides using a cyclic voltammetry (CV) method that does not involve a chemical reducing agent.   

 

2. Experimental 

 

2.1. Materials 

Graphite flakes were purchased from Ashbury Inc. (NJ,USA). Sulphuric acid (H2SO4, 

98%), potassium permanganate (KMnO4, 99.9%), hydrogen peroxide (H2O2, 30%), hydrochloric 

acid (HCl, 37%) and sodium hydroxide (NaOH, 99.99%) were purchased from Merck. Silver 

nitrate (AgNO3, 99.7%) was purchased from Systerm, Malaysia. Ammonia solution (NH3, 25%) 

was obtained from Sigma-Aldrich. Distilled water was used throughout the sample preparation. 

2.2 Fabrication of AgNPs-rGO/ITO  

GO was prepared by a simplified Hummers’ method [24]. The electrodeposition of 

AgNPs-rGO was conducted in a three-electrode electrochemical cell. Silver–ammonia 

[Ag(NH3)2OH] solution was prepared by adding ammonia (1 wt%) to silver nitrate solution (50 

mM) until complete absence of precipitates was observed. The concentration of the obtained 

Ag(NH3)2OH was approximately 40 mM. The freshly prepared Ag(NH3)2OH solution was mixed 

with an aqueous solution of GO (1.0 mg/mL) at GO-to-Ag(NH3)2OH volume ratios of 12, 6, and 

3 (the samples were labelled as AgNPs-rGO-1, AgNPs-rGO-2 and AgNPs-rGO-3, respectively) 

and stirred for 2 min to ensure homogeneity. Cyclic voltammetry was performed in the solutions 
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on a potentiostat/galvanostat (Versastat 3 Applied Research Princeton, USA) using a three-

electrode system: an ITO (with active area of 0.25 cm
2
) as the working electrode, a platinum foil 

as the counter electrode and a saturated calomel electrode (SCE) as the reference electrode. The 

scan was performed between –1.5 and 0 V at a rate of 25 mV s 
− 1

 while the loading amount of 

deposits was controlled by five potential cycles. After deposition, the working electrode was 

washed with double-distilled water. For comparison, AgNPs-rGO-4 was prepared in the same 

conditions as AgNPs-rGO-1 using AgNO3 solution (0.04 M) instead of Ag(NH3)2OH solution 

(0.04 M). 

2.3. Characterization 

The crystal phase, morphology and microstructure of the samples were characterized by 

X-ray powder diffraction (XRD; Philips X’pert system using Cu Kα radiation), field emission 

scanning electron microscope (FESEM; FEI Nova NanoSEM 400 operated at 10.0 kV), a Fourier 

transform infrared spectrometer (FTIR; Perkin Elmer System 2000 series spectrophotometer, 

USA), and a Raman spectrometer (Renishaw inVia Raman microscope using laser excitation at λ 

= 514 nm). 

 

 

 

3. Results and Discussion  

Figure 1 shows that the electrodeposition method gives rise to brown and uniform thin 

films on ITO after five potential cycles. The CV analysis proved the presence of Ag and rGO on 

ITO, implying the formation of AgNPs/rGO composites. The CV profiles of GO:Ag(NH3)2OH 

show three cathodic peaks in the negative scan of the first cycle regardless of the volume ratio 
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(Figure 2). The first peak (I) may be identified with the reduction of electrochemically active 

oxygen-containing groups on the graphene planes [25]. The second peak (II) is attributed to the 

reduction of Ag
+
 to form metallic Ag [26; 27]. The third cathodic peak (III), which started at ca 

0.9 V is attributed to the irreversible electrochemical reduction of GO [10; 25]. Moreover, the 

reduction current increases with the increase of [Ag(NH3)2]
+
 ions indicating the presence of an 

increasing amount of loading material on the surface of the ITO. The inset of Figure 2 compares 

the CV profile of the solutions containing Ag(NH3)2OH and AgNO3. The reduction peak of Ag
+
 

ions shifted to positive direction in relation to that of [Ag(NH3)2]
+ 

since [Ag(NH3)2]
+ 

had a higher 

stability and therefore resisted the reduction of the complex ions [27].  

 

Fig.1 Photo image of AgNPs/rGO composites on ITO. 
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Fig.2 The first cycle of the CV profile of ITO in the solution of GO (1.0 mg/mL) and 

Ag(NH3)2OH (0.04 M) with different volume ratios of 12, 6, and 3 (a–c), respectively, and in the 

solution of GO (1.0 mg/mL) and AgNO3 (0.04 M) with a volume ratio of 12 (d). The inset 

highlights the CV profile of the solutions containing Ag(NH3)2OH (a) and AgNO3 (d). 

Figure 3 shows the XRD patterns of pristine GO (a), ITO (b), AgNPs-rGO deposited on 

ITO with different volume ratios of GO (1.0 mg/mL) to Ag(NH3)2OH (0.04 M) (c–e) (AgNPs-

rGO-1, AgNPs-rGO-2, and AgNPs-rGO-3, respectively). Pristine GO has a sharp peak at 10.8
o
 

which is assigned to the (002) inter-planar spacing of 0.82 nm [28]. All the electrodeposited 

AgNPs-rGO exhibit some peaks associated with ITO. AgNPs-rGO-1 exhibits a relatively 

marginal peak at 38.1
o
. As the amount of Ag(NH3)2OH increases, new peaks appeared at 44.3

o
, 

64.4
o
, and 77.4

o
. The peaks at 38.1

o
, 44.3

o
, 64.4

o
, and 77.4

o
 can be indexed to the cubic phase of 

Ag (PDF card no: 00-001-1167). The increased intensity of the peaks is in agreement with the 

enhanced signals of the CV profiles. Meanwhile, the (002) peak of GO disappeared after the 
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electrodeposition process. This is attributed to the growth of AgNPs on the surface of graphene 

nanosheets which prevents the restacking of graphene nanosheets [28; 29]. 

 

Fig.3 XRD patterns of pristine GO (a), ITO (b), and AgNPs-rGO deposited on ITO with 

different volume ratios of GO (1.0 mg/mL) to Ag(NH3)2OH (0.04 M) of 12, 6, and 3, 

respectively (c–e). 

Figures 4a and 4b show the FTIR spectra of pristine GO and AgNPs-rGO composite, 

respectively. For GO, the broad peak centred at 3227 cm
-1

 is attributed to the O-H stretching 

vibrations while the peaks at 1734, 1622, 1367, and 1225 are assigned to C=O stretching, sp
2
-

hybridized C=C group and O-H bending, C-OH stretching and C-O-C stretching, respectively 

[30]. In addition, the peaks at 1161 and 1041 cm
-1

 can be attributed to C-O vibration of epoxy or 

alkoxy groups [31]. For the AgNPs-rGO composite, the peaks at 1642, 1418, 2853, and 2925 cm
-

1
 are assigned to the sp

2
-hybridized C=C group and O-H bending, O-H deformation, as well as 

symmetric and asymmetric stretching vibration of CH2 groups, respectively [30]. The peak at 
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1734 cm
-1

 for GO is absent for AgNPs-rGO, which indicates that the carbonyl group was 

removed upon the electrochemical reduction [10]. The noticeable decrease in the intensity of the 

peak at 1642 cm
-1

 implies that a large fraction of the O-H groups was removed [31]. The broad 

peak at 3300 cm
-1

 for AgNPs-rGO composite might be attributed to the O-H stretching vibration 

of absorbed water molecules. 

 

Fig.4 FTIR spectra of pristine GO (a) and AgNPs-rGO composite (b). 

Figures 5a and 5b show the Raman spectra for pristine GO and the AgNPs-rGO 

composites, respectively. The Raman spectra of GO show two peaks at 1349 and 1600 cm
-1

, 

which correspond to the D and G bands, respectively. The D band is assigned to the breathing 

mode of A1g symmetry involving phonons near the K zone boundary. Meanwhile, the G band is 

assigned to the E2g mode of sp
2
-bonded carbon atoms [32]. In comparison to the GO, the Raman 

spectrum of AgNPs-rGO indicates that the D and G bands shifted to lower wavenumbers at 1347 

and 1596 cm
-1

, respectively. This is due to the reduction of GO during the electrodeposition 

process [33; 34]. In addition, the Raman spectrum of AgNPs-rGO shows a slightly greater 

I(D)/I(G) intensity ratio (0.95) than that of GO (0.87). The embedment of AgNPs on graphene 
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nanosheets may reduce the average size of in-plane sp
2
 domains as they encompass a larger 

degree of surface area of nanometer size when compared to the molecular-sized oxygenous 

groups of GO. Moreover, the intensity peaks of the D and G bands were enhanced in the case of 

AgNPs-rGO due to the surface-enhanced Raman scattering effect of AgNPs, which is about 

1700% greater than that of GO [35]. 

 

Fig.5 Raman spectra of pristine GO (a) and the AgNPs-rGO composites (b). The inset highlights 

the peaks of pristine GO. 

Figure 6 shows the typical FESEM images and size distribution diagram of AgNPs-rGO 

prepared by using the solution with GO (1.0 mg/mL) to Ag(NH3)2OH (0.04 M) volume ratio of 

12 (a and b), 6 (c and d), 3 (e and f) as well as the solution with GO (1.0 mg/mL) to AgNO3 

(0.04 M) volume ratio of 12 (g and h). As shown in Figures 6a and 6b, the silver nanoparticles 

with a mean size of 20 nm and a narrow size distribution have been anchored and well 

distributed on the surface of graphene nanosheet. As can be seen in Figures 6(c-f), as the 

concentration of Ag(NH3)2OH increased, the mean size and number of particles also increased, 

and the size distribution broadened. The types of Ag precursors appear to affect the size and 
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coverage density of nanoparticles on the graphene surface. When AgNO3 was used as a 

precursor of Ag, the mean particle size increased to 48 nm and the size distribution widened, as 

shown in Figures 6g and 6h. The two plausible reasons are that: 1) the negatively charged GO 

are enhanced through neutralization by the alkaline Ag(NH3)2OH to attract more [Ag(NH3)2]
+
 

ions than AgNO3, leading to creation of more initial nucleation sites [17], and 2) Ag(NH3)2OH 

has a higher stability than AgNO3 and resists reduction, hindering the growth of Ag into large 

particles [27].  
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Fig.6 FESEM images and size distribution diagram of AgNPs-rGO prepared by using the 

solution with GO (1.0 mg/mL) to Ag(NH3)2OH (0.04 M) volume ratios of 12 (a and b), 6 (c and 

d), and 3 (e and f) and using the solution with a GO (1.0 mg/mL) to AgNO3 (0.04 M) volume 

ratio of 12 (g and h). 

The formation mechanism of AgNPs-rGO via electrodeposition is shown in Figure 7. 

Dispersed GO sheets in water are negatively-charged due to the ionization of carboxyl and 

hydroxyl groups on the surface of GO [36] (Figure 7a). This causes the positively-charged 

[Ag(NH3)2]
+
 ions to be adsorbed on the negatively-charged GO sheets by electrostatic attraction 

(Figure 7b). The GO nanosheets with the adsorbed [Ag(NH3)2]
+
 ions are deposited on the surface 

of ITO and reduced to graphene nanosheets and AgNPs by applying a negative potential. 

Simultaneously, the [Ag(NH3)2]
+
 ions in the aqueous solution are deposited and reduced on the 

formed AgNPs or on the surface of graphene nanosheets, which lead to the growth of the initially 

formed AgNPs or nucleation of new AgNPs.  This explains the reason behind the increased 

density of AgNPs on the graphene sheets when the concentration of [Ag(NH3)2]
+
 ions multiplied. 
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Fig.7 Schematic illustration of the formation mechanism of AgNPs-rGO via electrodeposition. 

AgNPs are typically known to exhibit high catalytic activity for the reduction of 

hydrogen peroxide. As a proof-of-concept demonstration of the enzymeless electrochemical 

sensing application of AgNPs-rGO electrodeposited on ITO, CV of bare ITO and AgNPs-

rGO/ITO electrodes was conducted in a 0.2 M phosphate buffer solution (PBS) at pH 6.5 in the 

presence of 1 mM H2O2. As shown in Figure 8, all the AgNPs-rGO/ITO electrodes exhibit a 

notable cathodic peak for the reduction of H2O2 in comparison to the bare ITO. Figures 8b and 

8e show the comparison between the catalytic activities of AgNPs-rGO-1/ITO and AgNPs-rGO-

4/ITO electrodes prepared under similar conditions using different precursors, i.e. Ag(NH3)2OH 

and AgNO3, respectively. The reduction activity of the AgNPs-rGO-1/ITO electrode is markedly 

better than that of the AgNPs-rGO-4/ITO electrode. A plausible reason is that AgNPs-rGO-1 
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consists of smaller AgNPs formed on the surface of graphene nanosheets, which results in higher 

surface area and higher catalytic activity. Among all the AgNPs-rGO/ITO electrodes prepared by 

using Ag(NH3)2OH complex, the AgNPs-rGO-2/ITO electrode demonstrates the highest catalytic 

activity. The plausible reason is that the AgNPs-rGO-2/ITO electrode has higher particle density 

than AgNPs-rGO-1/ITO electrode and although it has lower particle density than AgNPs-rGO-

3/ITO electrode, it consists of smaller AgNPs. These results are consistent with a previous study 

[37], which implies that electrocatalytic activity of silver nanoparticles decreases with increasing 

particle size and increases with increasing particle density.  The reduction peak of all the AgNPs-

rGO/ITO electrodes increases in current and shifts to the positive potential as the size and 

density of AgNPs are increased [37; 38]. Therefore, the CV profiles corroborate the observations 

from the above FESEM images.  

 

 

Fig.8 CVs of various electrodes in 0.2 M PBS (pH 6.5) in the presence of 1.0 mM H2O2: bare 

ITO (a), AgNPs-rGO/ITO prepared by using different volume ratios of GO (1.0 mg/mL) to 
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Ag(NH3)2OH (0.04 M) of 12, 6, and 3, respectively (b–d), and  AgNPs-rGO/ITO prepared by 

using the solution with GO (1.0 mg/mL) to AgNO3 (0.04 M) volume ratio of 12 (e). 

Figure 9 shows the amperometric response of the AgNPs-rGO-2/ITO electrode at –0.3 V 

in N2-saturated 0.2 M PBS buffer (pH: 6.5) upon a successive step change of H2O2 

concentrations. When an aliquot of H2O2 is added, the reduction current changes rapidly to attain 

a steady-state value and achieve 95% of steady-state current within 2 s, indicating a fast 

amperometric response behaviour. The inset shows the corresponding calibration curve of the 

AgNPs-rGO-2/ITO electrode. The current response of the AgNPs-rGO-2/ITO electrode is 

estimated to be linear within the H2O2 concentration range from 0.1 to 100 mM (R
2 

= 0.9992) 

while the limit of detection is estimated to be 5 µM based on a signal-to-noise ratio of 3. The 

electrode-to-electrode reproducibility is approximated to be in the presence of 1.0 mM H2O2 in 

0.2 M PBS (pH 6.5) at four electrodes (AgNPs-rGO-2/ITO) prepared in the same conditions, 

which yields a relative standard deviation (RSD) of 4.5%. Based on the comparative analysis 

between different types of electrodes shown in Table 1, the present AgNPs-rGO/ITO electrode is 

capable of affording favorable detection limit and linear range for sensing of H2O2. 
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Fig.9 Steady-state response of the AgNPs-rGO-2/ITO electrode to successive injection of H2O2 

into the stirred 0.2 M PBS (pH 6.5) with an applied potential of –0.3 V. The inset is the 

corresponding calibration curve. 

 

 

  

Table 1. A comparison of this work with works in the literature regarding the performance of the 

H2O2 assays. 

Type of electrode Limit of detection 

( ) 

Linear range 

( ) 

References 

Ag NPs-NFs/GCE 62 0.1–80 [39] 

Ag NPs-GN-R/GCE 28 0.1–40 [40] 

Ag NPs-MWCNT/Au electrode 0.5 0.05–17 [41] 

AgNPs/collagen/GCE 0.7 0.005–40.6 [42] 

AgNP/rGO-benzylamine/GCE 31.3 0.1–100 [15] 

AgNP/GO/ssDNA/AuE 1.9 0.1–20 [43] 

AgNP-PMPD/GCE 4.7 0.1–30 [44] 

PQ11-AgNPs/GCE 33.9 0.1–180 [45] 

ERGO-Ag/GCE 1.6 0.1-3 [16] 

AgNPs-rGO/ITO 5 0.1–100 This work 
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4. Conclusion 

Silver-nanoparticle (AgNP)-decorated reduced graphene oxide (rGO) was successfully 

electrodeposited on ITO coated glass slides by a CV method without using any reducing agent. It 

was established that the silver ammonia complex was the key component to achieving well-

distributed AgNPs with small and narrow size distribution decorated on reduced graphene sheets. 

Our method essentially provides an easy, one-step, environmentally-friendly and cost-effective 

fabrication of AgNPs-rGO/ITO electrodes as an enzymeless electrochemical sensor of hydrogen 

peroxide. 
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Figure captions 

Figure 1. Photo image of AgNPs/rGO composites on ITO. 

Figure 2. The first cycle of the CV profile of ITO in the solution of GO (1.0 mg/mL) and 

Ag(NH3)2OH (0.04 M) with different volume ratios of 12, 6, and 3 (a–c), respectively, and in the 

solution of GO (1.0 mg/mL) and AgNO3 (0.04 M) with a volume ratio of 12 (d). The inset 

highlights the CV profile of the solutions containing Ag(NH3)2OH (a) and AgNO3 (d).  

Figure 3. XRD patterns of pristine GO (a), ITO (b), and AgNPs-rGO deposited on ITO with 

different volume ratios of GO (1.0 mg/mL) to Ag(NH3)2OH (0.04 M) of 12, 6, and 3, 

respectively (c–e). 

Figure 4. FTIR spectra of pristine GO (a) and AgNPs-rGO composite (b). 

Figure 5. Raman spectra of pristine GO (a) and the AgNPs-rGO composites (b). The inset 

highlights the peaks of pristine GO.  

Figure 6. FESEM images and size distribution diagram of AgNPs-rGO prepared by using the 

solution with GO (1.0 mg/mL) to Ag(NH3)2OH (0.04 M) volume ratios of 12 (a and b), 6 (c and 

d), and 3 (e and f) and using the solution with a GO (1.0 mg/mL) to AgNO3 (0.04 M) volume 

ratio of 12 (g and h). 

Figure 7. Schematic illustration of the formation mechanism of AgNPs-rGO via 

electrodeposition.  
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Figure 8. CVs of various electrodes in 0.2 M PBS (pH 6.5) in the presence of 1.0 mM H2O2: 

bare ITO (a), AgNPs-rGO/ITO prepared by using different volume ratios of GO (1.0 mg/mL) to 

Ag(NH3)2OH (0.04 M) of 12, 6, and 3, respectively (b–d), and  AgNPs-rGO/ITO prepared by 

using the solution with GO (1.0 mg/mL) to AgNO3 (0.04 M) volume ratio of 12 (e). 

Figure 9. Steady-state response of the AgNPs-rGO-2/ITO electrode to successive injection of 

H2O2 into the stirred 0.2 M PBS (pH 6.5) with an applied potential of –0.3 V. The inset is the 

corresponding calibration curve.   

Table 1. A comparison of this work with works in the literature regarding the performance of the 

H2O2 assays. 

 



  

Table 1. A comparison of this work with literature works regarding the performance of the H2O2 

assays. 

Type of Electrode Limit of Detection 

( ) 

Linear range 

( ) 

References 

Ag NPs-NFs/GCE 62 0.1-80 [34] 

Ag NPs-GN-R/GCE 28 0.1-40 [35] 

Ag NPs-MWCNT/Au electrode 0.5 0.05-17 [36] 

AgNPs/Collagen/GCE 0.7 0.005-40.6 [37] 

AgNP/rGO-benzylamine/GCE 31.3 0.1-100 [15] 

AgNP/GO/ssDNA/AuE 1.9 0.1-20 [32] 

AgNP-PMPD/GCE 4.7 0.1-30 [33] 

PQ11-AgNPs/GCE 33.9 0.1-180 [31] 

AgNPs-rGO/ITO 5 0.1-100 This work 
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