1

—\F

A 4

Murdoch

UNIVERSITY

MURDOCH RESEARCH REPOSITORY

This is the author’s final version of the work, as accepted for publication following
peer review but without the publisher’s layout or pagination.
The definitive version is available at
http://dx.doi.org/10.1007/s10207-013-0199-4

Schreuders, Z.C., Payne, C. and McGill, T. (2013) The
functionality-based application confinement model.
International Journal of Information Security, 12 (5).
pp. 393-422.

http://researchrepository.murdoch.edu.au/15261/

© 2013 Springer-Verlag Berlin Heidelberg

It is posted here for your personal use. No further distribution is permitted.



http://dx.doi.org/10.1007/s10207-013-0199-4
http://researchrepository.murdoch.edu.au/15261/

International Journal of Information Security manuscript No.

(will be inserted by the editor)

The Functionality-based Application Confinement Model

Z. Cliffe Schreuders - Christian Payne -

Received: date / Accepted: date

Abstract This paper presents the functionality-based
application confinement (FBAC) access control model.
FBAC is an application-oriented access control model,
intended to restrict processes to the behaviour that is
authorised by end users, administrators, and processes,
in order to limit the damage that can be caused by
malicious code, due to software vulnerabilities or mal-
ware. FBAC is unique in its ability to limit applications
to finely grained access control rules based on high-
level easy to understand reusable policy abstractions,
its ability to simultaneously enforce application-orient-
ed security goals of administrators, programs, and end
users, its ability to perform dynamic activation and de-
activation of logically grouped portions of a process’s
authority, its approach to process invocation history
intersection-based privilege propagation, its suitability
to policy automation techniques, and in the resulting
usability benefits. Central to the model are ‘function-
alities’, hierarchical and parameterised policy abstrac-
tions, which can represent features that applications
provide; ‘confinements’; which can model simultaneous
enforcement of multiple sets of policies to enforce a
diverse range of types of application restrictions; and
‘applications’, which represent the processes to be con-
fined. The paper defines the model in terms of structure

Z.C. Schreuders (=)

School of Computing, Creative Technologies and Engineering
Leeds Metropolitan University

HC CA112, Headingley Campus

Leeds, West Yorkshire, LS6 3QS, UK

Tel.: 444 0 11381 28608

E-mail: c.schreuders@leedsmet.ac.uk

C. Payne - T. McGill

School of Information Technology

Murdoch University

Murdoch, Western Australia, 6150, Australia

Tanya McGill

(which is described in five components) and function,
and serves as a culmination of our work thus far, review-
ing the evaluation of the model that has been conducted
to date.

Keywords application-oriented access control -
sandboxing - usable security - policy abstraction

CR Subject Classification D.4.6

1 Introduction

Traditional user-oriented approaches to access control
do not prevent applications from misusing the privi-
leges of the user-identities they are associated with.
Software is typically trusted to act on behalf of lo-
cal users; however, malware and software vulnerabili-
ties misuse the privileges of users. Application-oriented
access control models can limit the damage that appli-
cations can cause by restricting access based on what
each application is authorised to perform. However, iso-
lation based schemes (such as traditional sandboxes [1,

], virtual machines [3,4], and containers [5,06]) gen-
erally suffer from workflow and redundancy problems,
making it hard for applications with different privilege
requirements to interact without circumventing the iso-
lation mechanism. Rule-based schemes (such as type en-
forcement [7], Janus [8], Systrace [9], AppArmor [10],
SELinux [11], and TOMOYO [12]) can facilitate finely-
grained authorisation to shared resources; however, these
approaches typically suffer from policy complexity and
usability issues.

In this paper we define a new access control model,
functionality-based application confinement (FBAC), which
is designed to overcome limitations of previous rule-
based application-oriented access control models, in-
cluding usability issues related to policy complexity,



7. Cliffe Schreuders et al.

and provide enforcement of the security goals of system
administrators, application developers, and end users.
The paper starts by describing the aims of the scheme
and the threats it mitigates, then an overview of FBAC
is presented. Following that, each of the five compo-
nents of the FBAC model are described separately and
related to previous research and security models. The
components combine to form the complete FBAC model,
which is illustrated in Section 2.6, Figure 11. The func-
tional aspects of FBAC are also described, including
how privileges are propagated across process invocation
and how access decisions are made. Substantial efforts
have been made to evaluate FBAC, and here we present
the results of policy analysis and review the results of
a number of publications that explore the practical im-
plications of the model. FBAC is an implementation
independent access control model and is designed to
have practical benefits when applied to existing sys-
tems. Since practical implications are a primary con-
cern, implementation options and implications are also
discussed.

1.1 Access Control Aims

As mentioned, the goal of the FBAC model is to provide
rule-based application-oriented access controls that over-
come limitations of previous schemes. More specifically,
the model aims to: provide reusable policy abstractions,
provide manageability and usability benefits, simulta-
neously enforce application restrictions defined by users
and administrators, and provide the ability to dynam-
ically deactivate and reactivate portions of policy. The
model aims to be compatible with existing applications
that are unaware of security mechanisms.

The model presented here is capable of applying
mandatory and discretionary controls to enforce the ex-
pectations of users and administrators, and is also able
to activate or deactivate portions of policy based on the
policy abstractions used. Section 4 gives an overview of
the evaluation that has been conducted of the FBAC
model and its success regarding the other aims: a Linux
proof of concept implementation was used to evaluate
the ability of the model to confine applications and ex-
press reusable policies that are compatible with exist-
ing applications, and a comparative usability study as-
sessed the usability of the scheme.

1.2 Threats FBAC Mitigates
In general the threat that FBAC mitigates is that an ex-

ecuted process can act beyond the expected behaviour
of the process and thus violate security goals concerning

resource usage. Threats that typically lead to processes
violating their security expectations include malicious
code due to software vulnerabilities and malware. Due
to their differing security goals (as described below)
separate users and administrators have diverse expec-
tations of executed programs and consider different ac-
tions as legitimate. Although existing mechanisms and
models typically consider threats from either the per-
spective of a single user or an administrator, but not
both, FBAC is designed to mitigate the threats faced
by both users and administrators. What constitutes le-
gitimate usage is therefore defined as behaviour that is
expected from all relevant users and administrators.

From a user’s perspective, a process using their iden-
tity should be acting on their behalf: only accessing the
resources necessary to perform the tasks they wish the
process to perform. However, the technical expertise
of the user may be limited and they may be unqual-
ified to define every action that should be authorised.
The threat is that software may act maliciously and
beyond these desired actions. The user’s security goal
in this case is to protect themselves from misbehaving
programs by restricting programs to only perform the
functions they wish the programs to carry out.

The administrator of a system may face a number of
threats depending on their security goals. They may in-
tend to protect users of the system from the threats fac-
ing individual users by using a mandatory access con-
trol scheme. In this case the threats are similar to those
described above: malicious programs may act beyond
the expected behaviour of the programs, to a user’s
detriment.

Administrators may also consider users to be a po-
tential threat to the system, and therefore intend to
confine users in terms of the applications they are au-
thorised to run and what they can do using them. In
addition, the administrator may wish to apply poli-
cies provided by third parties that also define which
actions applications are authorised to perform. For ex-
ample, the administrator may trust the software author
to provide a policy that defines how the application is
intended to perform, to limit the effectiveness of the
exploitation of software vulnerabilities.

1.3 Access Control Model Overview

The FBAC model enforces access control decisions based
on the identity of processes, restricting each applica-
tion to the privileges necessary to carry out its autho-
rised tasks. Users can restrict the programs they ex-
ecute using discretionary controls and users can also
be selectively restricted in application-oriented terms
by mandatory controls: for example, rules can specify



The Functionality-based Application Confinement Model

Element Name Element

One-to-many mapping (one A to many B)

0

Many-to-many mapping

® For each element A an instance B may exist
which inherits the properties of A

(A<

Fig. 1 Model Diagram Notation

which applications users can use and what those appli-
cations are allowed to do when particular users are us-
ing them. FBAC can be combined with a user-oriented
access control model such as traditional DAC or MAC
to ensure other user-oriented access goals are also en-
forced: for example, to specify which resources users are
allowed to access.

FBAC restricts applications based on policy abstrac-
tions known as functionalities that describe the func-

tions each application provides: for example, web browser,

image editor, or email client. Each functionality can be
made up of other functionalities in a hierarchical struc-
ture. Functionalities are also reusable and can be ad-
justed through parameterisation to suit the needs of
related applications. FBAC can enforce multiple secu-
rity goals simultaneously by confining users’ applica-
tions with discretionary and mandatory controls de-
fined by the users or others respectively. Users can dy-
namically activate or deactivate functionalities of pro-
cesses. FBAC also allows processes to further confine
themselves to the functions they are currently perform-
ing. Each of these aspects of the model are described in
further detail in subsequent sections.

The FBAC model is divided into five components
that combine to form the complete FBAC model: the
functionality-based component (which forms the foun-
dation of the model), the hierarchical component, the
parameterised component, the user-confinements com-
ponent, and the process-functionality activation com-
ponent.

The key shown in Figure 1 defines the notation
used in the following model diagrams. The notation em-
ployed is similar to that used in the role-based access
control (RBAC) standard.

1.4 Relation to Role-based Access Control

Initial work on the FBAC model was motivated by an
attempt to leverage benefits from the RBAC model

One-to-one mapping between elements A and B

[13] to the specific problem of improving the usability
of discretionary system call interposition systems, such
as Janus [8] and Systrace [9]. Noting the need for im-
proved usability, manageability and scalability of app-
lication-oriented access control models, it was recog-
nised that there is a notional similarity between tradi-
tional user-oriented access control (which restricts what
users are able to do on a system) and discretionary ap-
plication confinement (which restricts processes or ap-
plications to a subset of a user’s privileges). It was con-
tended that the RBAC model mitigated similar prob-
lems within the user confinement discipline; that of the
policy complexity involved in assigning permissions to
users. Therefore, the RBAC model was initially sys-
tematically adapted to the context of application con-
finement by identifying correlations between RBAC el-
ements and restricted execution constructs, adapting
RBAC functionality, and by developing a set of opera-
tions based on Unix system calls.

Some elements and constructs in the NIST/ANSI
INCITS RBAC specification [13] were found to have di-
rect equivalents in relation to application confinement:
for instance, applications rather that users access to
resources are to be confined. Most importantly, there
is a notional similarity between a user’s role in an or-
ganisation and an application’s behavioural class as it
pertains to a user’s intention for an application: for ex-
ample, a web browser or an image editor. However, as-
pects of the model needed further adaptation and care-
ful reconsideration for this new purpose. A major dif-
ference between traditional user-oriented access control
and application-oriented access controls is that applica-
tion confinement models such as FBAC need to enable
applications to start other applications; bringing with
it the complexity of designing effective privilege propa-
gation across process ancestry. Sessions in RBAC define
instances of a user within a system, as FBAC confines
processes as instances of executing applications; how-
ever, there is no equivalent concept in the RBAC model
to applications starting other applications, since RBAC
does not enable users to establish new sessions owned
by other users. Also, as previous research had indicated
[16,17], not all applications of a behavioural class re-
quire the exact same privileges (unlike most users who
have the same roles with RBAC), rather policy can be
adapted via parameterisation.

The initial adaptation was therefore followed by re-
designs, aiming to extend the model to be parame-
terised and adaptable to application privilege require-
ments, to be implementation independent (unlike the
first designs which included a set of specific operations
to mediate), and support mandatory and discretionary
controls. This is in contrast to the initial focus on im-



7. Cliffe Schreuders et al.

proving system call interposition to provide a discre-
tionary control; in fact, following the design of the model
the implementation that was developed was a system-
wide kernel security module, rather than system call
interposition. Unlike other application-oriented restric-
tion schemes, FBAC simultaneously provides manda-
tory and discretionary controls, leveraging the reusabil-
ity of functionality-based policy to do so with reduced
management overhead. These changes in addition to
features for dynamically deactivating functionalities re-
quired the model to deviate significantly in terms of
the RBAC sessions construct. Readers may note vi-
sual similarities between diagrams of the FBAC and
RBAC models (Figure 11 and [13]), and the distinct dif-
ferences around the sessions and processes constructs,
with FBAC constructs for providing the required app-
lication-oriented features. These details are described
in Section 2.

By basing the initial design of the new model on
RBAC concepts, a so called “functionality-based” scheme
has been proposed, which overcomes limitations in ex-
isting behaviour based application confinement schemes.

Similarities and differences between the RBAC and FBAC

models are further discussed throughout this paper, as
is this work’s relation to other models and literature.

Unlike the role-based access control (RBAC) model
standard [13], which separates parts of the model that
can be optionally combined when designing a RBAC
mechanism, FBAC components depend on each other
and are separated primarily to simplify the description
and discussion of the model. As described, FBAC at-
tempts to leverage RBAC-like policy abstractions to
improve application-oriented access control policy com-
plexity issues. However, it should be noted that the
two models differ considerably in terms of goals and
context, and in order to meet the stated aims of the
access control model FBAC deviates significantly from
the structure of the RBAC model.

2 Model Components
2.1 Functionality-based Component

The foundation of the FBAC model is the functionality-
based component. FBAC is based on the paradigm of
restricting or auditing applications based on the func-
tionalities associated with each application. This com-
ponent of FBAC is a fundamental aspect of the model
and is the basis for all the other components. The term
functionality-based is coined, not only to describe this
component of the FBAC model, but to also describe
any subsequent model based on this paradigm.

Privilege

Application

Fig. 2 The Paradigm: Functionality-based

Privilege

Resource
Descriptor

Operation

Fig. 3 FBAC Privileges

The functionality construct is designed to represent
a function or behaviour an application may be autho-
rised to carry out. Functionalities can describe high
level features such as ‘web browser’, ‘email client’, ‘web
server’ or ‘file manager’, or can describe lower level ap-
plication tasks such as ‘HTTP client’.

As illustrated in Figure 2, each application is asso-
ciated with one or more functionalities in a many-to-
many relationship. Functionalities are associated with
the privileges required to provide those functions. Priv-
ileges are therefore not directly associated with indi-
vidual applications, but rather via abstract constructs,
designed to minimise the management task of assigning
privileges to applications.

As illustrated in Figure 3, a privilege in the FBAC
model is made up of a single operation associated with
one or more resource descriptors. An operation describes
the type of access to the resources defined by the re-
source descriptors.

An FBAC resource descriptor represents mediated
resources or, in access control terms, it can represent a
set of objects. As shown in Figure 4, a resource can be
described by multiple descriptors. Likewise a descriptor
can refer to multiple resources.

Although outside the scope of the access control
model specification herein, implementations of the model
may express descriptors in various ways. For clarifica-
tion of the concept it is sufficient at this point to simply
review some options the model allows. An FBAC re-
source descriptor may be implemented as label-based or
name-based. That is, resource descriptors can be anal-
ogous to types in domain and type enforcement (DTE)
[14], where one or more resources are labelled with
a type that is then used to represent those resources
in policy. Alternatively, similar to the way AppArmor



The Functionality-based Application Confinement Model

Resource
Descriptor

Resource
(Object)

Fig. 4 Resource Descriptors

Executable

Application

Fig. 5 Executables Associated with an Application

specifies rules [10], the resource can be referred to by
a name or string pattern that can identify resources:
for example, the pattern “/home/*” can represent any
file in the home directory of a Unix system. In either
case the resource descriptor can be used to identify re-
sources to the finest granularity of the way resources
are distinguished on the system and can also provide
some limited abstraction to describe related resources.

An executable file is a stored program that can be
executed. Each application has one or more executa-
bles (as shown in Figure 5) that are considered part of
that application. Processes executing those executables
are therefore restricted (as described in subsequent sec-
tions) based on the application and the functionalities
available to the application.

This concludes the description of the primary com-
ponent of FBAC. The functionality-based component,
which combines the elements discussed in this section,
is shown in Figure 6. Each of the elements and rela-
tionships illustrated in the diagram has been discussed
above. This component describes how, through func-
tionalities, privileges are associated with applications.
For the sake of clarity, the way these associations are
related to users and processes are described in sepa-
rate components of the FBAC model. Also, the way
the model makes access decisions is covered in detail in
later sections.

2.1.1 Discussion of the Functionality-based Component

Other application-oriented restrictions are generally mono-

lithic in nature, where each process has one large de-
tailed policy that applies to it at a time. Rule-based

application-oriented access controls that do provide some
form of abstraction present in policy, generally do not
provide abstractions that are easily reusable for differ-
ent applications, and they are “compiled” down to a
flat list of rules that apply at run-time. In contrast
FBAC application policy (that is, the rules that de-
fine the authorisation that applies to an application)
is made up of multiple reusable abstractions that apply
at run-time. The functionality-based component, estab-
lishes the foundation of the FBAC model, and describes
how application policies are granted privileges via the
‘functionality’ abstraction.

The functionality-based paradigm (as first proposed
in an initial version of the model [15]) was inspired by
an attempt to apply the structure of the user-oriented
RBAC model to the context of restricting applications.
The abstract nature of roles, which form associations
between users and privileges in RBAC, led to the con-
cept of applying an abstract relationship between ap-
plications and the privileges they require.

This component is comparable to ANSI INCITS/
NIST Core RBAC [13] in that it provides the basis of
the model. However, in addition to the different aim
of the model, this FBAC component does not include
a concept that represents the policy associated with
an instance of the subject (represented by sessions in
RBAC), as this is left to another FBAC component.
The user-confinement FBAC component that provides
this aspect takes a very different approach and has a dif-
ferent structure to the one used in RBAC. Also the ‘exe-
cutable’ element has no correlation in the RBAC model,
as user authentication is outside the scope of RBAC.
However, the notionally analogous process-application
identification is within the scope of the FBAC model,
and as detailed in Section 3 is used for calculating priv-
ilege propagation based on administrative FBAC priv-
ileges.

The paradigm of confining applications based on the
functionalities they perform is related to the concept of
behaviour-based sandboxing [16,17]. The main distin-
guishing feature being that functionality-based restric-
tions specify multiple functionalities that apply to an
application, rather than restricting each program to a
single behavioural class. The subsequent components
of the FBAC model add substantial improvements to
the restrictions provided by this paradigm. As previ-
ously mentioned, aspects of the model are separated
into components to simplify explanation.

2.2 Hierarchical FBAC Component

The hierarchical FBAC component describes functional-
ity-functionality relationships, where a functionality may



7. Cliffe Schreuders et al.

Executable

Application

Fig. 6 FBAC Component: Functionality-Based

contain other functionalities. This is shown in Figure 7
as an arrow from the functionality element back to it-
self.

The hierarchical nature of an FBAC policy allows
layers of abstraction and encapsulation to be built. High-
level functionalities that describe the purposes of appli-
cations (such as Web_Browser, Email_Client and Web_-
Server) are constructed using lower-level functionalities
that provide the authorisation necessary to perform re-
quired tasks (such as http_client, ftp_client and POP3_-
client). These in turn are made up of very low-level ab-
stractions that group finely grained privileges needed
to access resources (such as file_r, and file_w).

2.2.1 Discussion of the Hierarchical Component

Unlike other application-oriented models, the hierar-
chical nature of FBAC policy allows detailed applic-
ation-oriented policies to be formed from layers of pol-
icy abstractions. Policy abstractions are typically self-
contained, have limited reusability or adaptability, and
are compiled into a single set of rules that are applied
at run-time. This level of abstraction and reuse of pol-
icy has not been incorporated into the access control
model of previous application-oriented schemes. Some
schemes, such AppArmor, have policy languages that
can convert from simple hierarchically contained ab-
stractions to a flat list of rules to be enforced. However,
unlike these schemes, FBAC can make access decisions
based on these hierarchies, which means they can be
activated or deactivated dynamically, as formalised in
the process-functionality activation component.

The hierarchical FBAC component is similar in con-
cept to the hierarchical RBAC component in its “gen-
eral hierarchies” form. General RBAC hierarchies also
allow multiple inheritance/containment of policy ab-
stractions. FBAC hierarchies are distinct in that they
use containment, where a functionality contains another
in terms of privileges, and contained functionalities can
be deactivated (the method of activating and deacti-
vating functionalities is described later in Section 2.5).
Whereas RBAC hierarchies can only be deactivated

Privilege

from the highest level roles that are associated with
users, contained roles cannot typically be deactivated
individually. For this reason it is possible to describe
RBAC hierarchies as inheritance, since all the attributes
of inherited roles are effectively transferred to the par-
ent roles, whereas FBAC hierarchies are contained rather
than inherited. This is a deviation from the RBAC
structure so as to allow greater run-time control over
the functionality hierarchy.

Resource
Descriptor

2.3 Parameterised FBAC Component

FBAC is parameterised, allowing functionalities to ad-
just the resource descriptors of contained privileges to
adapt to application specific requirements and therefore
allow access to resources required by particular appli-
cations. As illustrated in Figure 8, functionalities can
have multiple parameters. Application policies can then
send arguments to those parameters when functionali-
ties are assigned. Parameter arguments hold literal val-
ues, which are specified in an application policy or func-
tionality. These values can be assigned to a parameter of
a functionality from within an application policy or to
a contained functionality within a parent functionally.
Functionalities can then use parameters in place of lit-
eral values as resource descriptors. Functionalities can
therefore grant access to resources that can be defined
when the functionality is assigned, allowing functional-
ities to be reused to grant access to different resources
as needed.

For example, a functionality named Standard_Gra-
phical_Application could have a parameter called pe-
ruser_directory. The application policy for a program
such as Firefox would then have a literal value de-
scribing the resource requirements of that application
(such as “/home/*/.mozilla/firefox/”, on a Unix-based
system), which it sends to Standard_Graphical Applic-
ation when it is associated with the application. Stand-
ard_Graphical _Application can then grant access to the
parameter peruser_directory using a privilege that uses
the parameter as a resource descriptor. Other function-
alities such as Web_Browser would also be used and sent



The Functionality-based Application Confinement Model

Executable Application

Fig. 7 FBAC Component: Hierarchical FBAC

Parameter
Argument
Literal Value

Application I

Fig. 8 FBAC Component: Parameterised FBAC

Executable

parameter arguments to customise these functionalities
to the application.

When functionality hierarchies are present (where
functionalities contain other functionalities), then pa-
rameters also form hierarchical structures. This is shown
in Figure 8 as dashed lines. Functionalities that con-
tain other functionalities can send their parameters as
arguments to contained functionalities’ parameters. So
in the example in Figure 8 the Standard_Graphical -
Application functionality can use another functionality
such as dir_full_access to grant the necessary access by
passing the parameter peruser_directory as a parameter
argument to the contained functionality dir_full_access.
These hierarchical functionality levels encapsulate de-
tails while providing flexible abstractions that can be
fine-tuned to suit the diverse implementation details of
related applications.

FBAC functionalities are therefore passed arguments
in a fashion similar to subroutines in programming lan-
guages. This allows the policy abstraction to easily adapt
to the differing details of applications providing related
features. Functionalities contain other parameterised func-
tionalities and parameterised privileges; where privi-
leges are computed at run-time based on the arguments
passed to privileges via functionalities. This hierarchical

Privilege

Resource
Descriptor

Operation

=77
\ /

Parameter

Privilege

Resource
Descriptor

Operation

relationship between functionalities allows arguments
to propagate to any contained functionality.

2.8.1 Discussion of the Parameterised Component

Previous research has demonstrated that the resource
needs of programs can be related to behavioural classes
and that applications can be restricted with some suc-
cess based on the class of program along with parame-
ters that describe the specific needs of a program [17].
FBAC combines this general approach with the func-
tionality-based scheme described in the previous sec-
tions to provide a model to restrict a process using
multiple behavioural classes. Hierarchies improve pol-
icy by abstracting details, while these abstractions are
themselves parameterised to allow them to also adapt
to the specific needs of the situation.

While in RBAC it is usually adequate for all users
in a specific role to have access to the exact same re-
sources, it is not sufficient for all applications perform-
ing the same function to have access to the exact same
resources. For example, applications typically store their
configuration files in separate directories. The addition
of parameterisation is therefore necessary in order to
apply an RBAC-like structure to the context of behav-
iour-based restrictions. A few RBAC schemes have been



7. Cliffe Schreuders et al.

proposed that incorporate some form of role parame-
terisation, such as those proposed by Giuri and Iglio
[18] and by Yao et al. [19]. However, these schemes fo-
cus on using environmental constraints and object con-
tents to limit the availability of privileges or roles to
users. FBAC takes a new approach that is designed for
the specific needs of application confinement, where ab-
stractions can be used to grant different privileges based
on the needs of applications, and can be layered to en-
capsulate details so that applications can be confined
based on their high level features, which are, in turn,
modelled by parameterised lower level features.

Parameterisation significantly changes the seman-
tics of the restriction and resolution of access decisions,
and as such differentiates the RBAC and FBAC models
substantially. RBAC roles are normally omnidirectional
in the sense that it is equally demanding to determine
which users are assigned to a role and what permissions
a role grants [20]. On the other hand, FBAC function-
alities are unidirectional in the sense that it is easier to
determine which functionalities are available to appli-
cations than to determine what privileges a function-
ality will grant. This design enables FBAC functionali-
ties to be adjusted to the specific needs of applications,
whereas RBAC roles generally only provide the exact
same privileges to each user assigned.

This component has some notional similarities with
subsequent work on access control policy templates by
Johnson et al. [21], where policy templates/abstractions
are developed separately from policy specification. How-
ever, the models, methods, and aims of the schemes are
distinct. The scheme proposed by Johnson et al. aims
to assist in generating domain specific structured lists
for guided policy authoring, where as FBAC focuses
on providing usable application-oriented controls and
takes a different approach to policy development and
specification.

2.4 FBAC User-Confinements Component

The FBAC model is capable of simultaneously enforc-
ing multiple application-oriented policies that apply to
specific users. This is achieved by the FBAC User-Con-
finements Component described in this section.

Using FBAC, mandatory controls can restrict users
in terms of the applications they are allowed to exe-
cute and what those applications can subsequently do.
Furthermore, by allowing users to have discretion over
some policies pertaining to their own applications, the
model can also enforce discretionary controls that users
can utilise to restrict their own processes.

An FBAC confinement represents application re-
strictions that apply to specific users. As illustrated in

Figure 9, each user can have multiple confinements that
apply to them (shown as the right-side connection be-
tween User and Confinement). Each confinement also
has users who are authorised to maintain the appli-
cation policies, which involves application specification
and association with functionalities. This is represented
on the diagram by the left-side connection between con-
finements and users.

Each confinement has a list of applications that use
functionalities available to the confinement. That is, the
applications associated with a confinement can only be
associated with functionalities from that confinement.
Due to the reusability of functionalities, functionalities
can be made available to multiple confinements and
hence the many-to-many relationship between the func-
tionality and confinement element.

As shown in the dashed rectangle in Figure 9, each
confinement also has an attribute value applies_to_type;
this allows the confinement to apply to all the users as-
sociated with the confinement (the value only), to all
other users (except), or to all users (everyone). Each
confinement also allows configuration of the policy that
is to apply to processes that do not have a matching
executable. This is specified using the no_profile value,
which can take on of the following values: unconfined,
confine_with_restricted_profile, or deny_execution. In the
unconfined case a child process is restricted by its par-
ent’s policy.

Creating mandatory restrictions involves creating
confinements that apply to users that are not also main-
tainers of those confinements. In terms of Figure 9,
there is an ‘applies to’ relationship between a User and
a Confinement, but not a ‘maintained by’ relationship.
Usually mandatory confinements would be maintained
by a security administrator, although other less likely
configurations are possible such as allowing one normal
user to specify the application restrictions of another
user (such as for a colleague with less technical knowl-
edge). Creating a discretionary control involves creat-
ing a confinement that applies to a user who is also
authorised to maintain the confinement. The user can
then add applications to that confinement to restrict
programs.

2.4.1 Discussion of the User-Confinements Component

The FBAC user-confinements component describes a
significant aspect of the FBAC model that is unique
within the field of application-oriented access control:
the simultaneous enforcement of multiple policies de-
fined by multiple people with distinct security goals
applying to the same process. The applies_to_type and
the no_profile confinement attributes enable the admin-



The Functionality-based Application Confinement Model

Executable

. enum {only, except, everyone}
- applies_to_type :
- enum {unconfined, :
. confine_with_restricted_profile,
- deny_execution} no_profile

Confinement
maintained by

Fig. 9 FBAC Component: User-Confinements

istrator to configure a number of different types of re-
strictions. For example, sets of users can be confined
to using only particular programs. Other programs can
either be off limits (deny_execution), or severely re-
stricted (confine_with_restricted profile). Alternatively
a more targeted approach can also be achieved, where
programs without policies are unconfined. The ‘main-
tained by’ relationship between users and confinements
allows administrators to authorise users to configure
the rules for applications to also enforce their own se-
curity goals. These constructs can be utilised to enforce
a number of diverse security policies, and can represent
rules not easily enforced using previous schemes.

Previous application-oriented models were designed
to enforce one policy, which is specified to enforce a
particular security goal, for each process or program.
Mechanisms are therefore designed to either provide
a mandatory or a discretionary control. For example,
systems such as Janus [22], Systrace [9], and TRON
[23] provide enforcement of discretionary user-defined
process restrictions, and systems such as AppArmor
[10], SELinux [I1], and Linux DTE [24] are system-
wide mandatory controls defined by an administrator.
These systems are therefore used to enforce separate
goals. Discretionary application-oriented controls are
employed by users to protect their own resources from
a malicious program. This ensures the program only
accesses resources required to carry out the tasks the
user wants it to. In contrast, mandatory controls are
used by administrators to enforce system-wide security
goals, ensuring that processes do not access resources

Application I

Privilege

Resource
Descriptor

Confinement
applies to

that could lead to these goals being subverted: for ex-
ample, the restriction of certain shared services such
as web, ftp or local setuid programs. Both approaches
have security benefits. However, providing both types
of restrictions using previous models requires two sep-
arate mechanisms to be maintained. Even if the same
model (for example, DTE) was implemented as both a
mandatory and discretionary control, it would involve
the redundancy of maintaining both types of controls
entirely separately.

On the other hand, FBAC is designed to provide
both types of controls, and does so while reducing the
overhead of enforcing multiple policies for a single pro-
cess. The main policy unit (functionality) is reusable
across confinements, which makes the task of maintain-
ing low-level policy scale well to this situation. Users
and administrators can reuse these abstractions in any
of the confinements they maintain to enforce their own
security goals. Enforcement is achieved through the one
model in one access decision procedure.

Most application-oriented models and mechanisms
do not consider the user identity when confining a pro-
cess. Discretionary application-oriented controls typi-
cally only apply to a single user maintaining the restric-
tion, while mandatory application-oriented controls typ-
ically apply the same set of rules for a program re-
gardless of user-identity. The main exception to this
is SELinux [l1], which is a framework that combines
multiple security models, including non-standard ver-
sions of RBAC and DTE. Roles define which domains
users are authorised to transition into. SELinux policy



10

7. Cliffe Schreuders et al.

takes the form of an extremely complex combination
of a number of security models, which makes it hard to
maintain and verify for correctness [25]. FBAC provides
user-specific restrictions using a single application-ori-
ented access control model that is designed to be easier
to administer.

Because the FBAC model only involves positive au-
thorisation rules (not denials), conflicts in security goals
do not result in decision making complexity. Rather, if a
user has the authority to maintain a confinement, then
they may configure policies that can further restrict the
actions of any programs run by the users that the con-
finement applies to. The model can enable clear audit-
ing to make the source of denials clear. Although not a
common use case, assigning multiple users to maintain
a single confinement should involve careful considera-
tion, to ensure they collaborate on policy effectively,
since they will all have the authority to modify any
rules that applies to that confinement.

2.5 FBAC Process-Functionality Activation
Component

Figure 10 shows the FBAC process-functionality activa-
tion component. Included in this figure are the process
and task confinement elements, which associate policy
with a running process. As shown in the figure, a user
can run multiple processes. Each process is confined by
all the task confinements that correspond (one-to-one)
to any confinements that apply to the user. For exam-
ple, if a user is restricted by two confinements (such as a
mandatory and a discretionary confinement), then any
process owned by that user would have two active corre-
sponding task confinements. That is, each confinement
that applies to a user is instantiated as a task confine-
ment for each of their processes, and inherits the values
of the confinement (applies_to_type and no_profile). If
the process corresponds to an executable that matches
an application that is associated with one of its task
confinements, then the task confinement has a one-to-
one association with the corresponding application (
shown in the figure by the connection between Task
Confinement and Application).

Confinement process ancestry is represented by map-
ping task confinements to task confinements (children
to parents). This relationship is shown in Figure 10 as
the connection between the Task Confinement element
and itself. This parent-child relationship is used to cal-
culate privilege propagation and used in access control
decision logic, as described in subsequent sections.

For each task confinement, each of the functionali-
ties associated with the application are instantiated as
functionality instances. The associations between task

confinements and functionality instances represent which
functionalities are active for a task confinement. By de-
fault, when a process is started, all its functionalities
for each task confinement that apply to it are acti-
vated. However, this behaviour could be altered in the
application’s policy to require manual user activation.
Functionalities directly assigned to applications are ac-
tivated by mapping functionality instances to task con-
finements (labelled in Figure 10 as “Active high-level
functionalities”). Inherited functionalities are activated
by mapping functionality instances to other function-
ality instances (labelled as “Active hierarchical func-
tionalities”). By default, when a functionality is acti-
vated, all inherited functionalities are also activated.
Functionalities can be deactivated by severing these re-
lationships, and reactivated by re-instantiating func-
tionalities. Processes are only granted access to priv-
ileges via functionalities that are active.

The functionalities associated with a task confine-
ment can be dynamically activated and deactivated.
Users who have discretion over policy (that is, they have
a ‘maintained by’ relationship with the confinement,
as described in the FBAC User-Confinements compo-
nent) can activate or deactivate them, while security
aware software (i.e. the process itself) can only deacti-
vate functionalities. This allows the rights of a process
to be altered at run time by dynamic interaction. Users
can limit the software to the behaviour the user wants
the application to carry out at a point in time, while
software can make itself more resistant to vulnerabili-
ties by restricting itself to only the functionalities it is
currently performing.

Users who have discretion over policy can deacti-
vate functionalities associated with the corresponding
task confinements. The functionalities may then be re-
activated only by further user intervention. Processes
may also deactivate functionalities if they are FBAC-
aware. Although a process can drop functionalities, it
can never reactivate them. Software authors can there-
fore limit the impact of vulnerabilities by dropping all
functionalities other than those that represent the task
a process is currently performing. For example, a pro-
gram that can both act as an email client and a web
browser could fork a process for performing web brows-
ing and then deactivate the email client functionality.
This behaviour would limit the impact of malicious
code to within the permissions associated with web
browsing and would not allow the browser to send emails
if the browser component of the software was compro-
mised.



The Functionality-based Application Confinement Model

11

Executable Application

<]

Confinement
maintained by

Fig. 10 FBAC Component: Process-Functionality Activation

2.5.1 Discussion of the Process-Functionality
Activation Component

By allowing processes to further restrict themselves,
FBAC enforces yet another type of restriction, appli-
cation security, without introducing any management
overhead to users or administrators. This restriction is
another form of discretionary control, but from the per-
spective of the processes rather than the user. Other
such restriction schemes include FreeBSD Jails, and ch-
root() [5], both of which allow a process to initiate one-
way privilege declination. FBAC provides the function-
ality abstraction to processes, which makes managing
privileges much simpler for the process than managing
each privilege independently. FBAC also provides much
greater control over privileges than namespace scope-
limiting schemes such as Jails and chroot()or coarsely
grained schemes such as Linux capabilities [20] or the
Mac OS X sandbox API [27, pp. 156-178].

FBAC’s hierarchy of functionalities allows run-time

intervention to dynamically deactivate or activate branches

of functionalities. This is similar to the concept of users
restricted by an RBAC scheme who only activate the
roles relevant to the part of their job they are currently

Privilege

Operation
N Instance of

a functionality

Resource
Descriptor

Functionality
Instance

Active hierarchical
functionalities

Active high-level
functionalities

Task
Confinement

Confinement
process ancestry

performing in order to mitigate the security risks in-
volved in holding excess privileges.

Although related to the idea of active roles in RBAC,
the scheme for providing active functionalities in FBAC
is distinctly different to the structure used by RBAC.
RBAC uses the concept of sessions, a simple mapping
between users and the roles they have activated [23].
Rather than simply providing a mapping between task
confinements and functionalities, FBAC introduces the
concept of functionality instances, which allows func-
tionalities to be dropped or activated from within a hi-
erarchy. This level of dynamic control is not possible us-
ing RBAC. So although the FBAC model was developed
in part from the RBAC model, FBAC allows greater dy-
namic control of policy than the RBAC model allows.
For example, a ‘Web Browser’ functionality could con-
tain other functionalities that allow HTTP and FTP
network access. Using FBAC, a web browser process
could drop the ability to use FTP while still using
HTTP. Using RBAC, only roles directly associated with
a user can be activated, and any inherited roles are au-
tomatically also active.

Because FBAC’s policy abstractions are hierarchi-
cal, small or large parts of the policy can be activated or
deactivated at run time. This is not possible using ex-



12

7. Cliffe Schreuders et al.

isting application-oriented access control models, such
as DTE [29]/SELinux [11], RC [30], or AppArmor [10],
as privileges are contained in a monolithic abstraction
associated with the security context. Changing privi-
leges using these models requires transitioning into an-
other complete set of privileges (domain, role, or profile
respectively). FBAC provides greater dynamic control
of active policy than any previous application-oriented
access control.

2.6 Complete FBAC Model Structure

The FBAC model as a whole is made up of the previ-
ously described components and is shown in Figure 11.
The following example demonstrates how the FBAC
model elements relate to each other. The example also
refers to the decision making process that the element
relationships are used for; this aspect of the model is
described more formally in the Appendix.

The user Alice may have two confinements that ap-
ply to her: one that she maintains called “Alice’s_Disc-
retionary”, and one that her system administrator put
in place called “Staff_Mandatory”, which is non-discret-
ionary and applies to all staff. These user-confinement
relationships — the confinements that apply and who
manages them — are shown as the two arrows between
Confinement and User.

Alice and her administrator may have both created
policies for the program Firefox. The application poli-
cies specify which executable files form part of the appli-
cation (the arrow from Application to Executable) and
which functionalities the program performs (the arrow
to Functionality). By specifying parameters for func-
tionalities (the arrow to Parameter Argument, which is
for a particular Parameter), the administrator ensures
that the program will only write to Alice’s home di-
rectory: so that if the program is exposed to malicious
code it cannot alter other shared resources Alice has ac-
cess to. Alice restricts the application further, granting
access to particular directories within her home direc-
tory, such as a download directory and the applications
configuration directory.

When Alice executes the program, its path matches
an executable specified in application policies in both
confinements and a process is created and the program
starts. Two task confinements that correspond to the
confinements that apply to Alice are created for that
process. Each task confinement links to the application
that it is confining the process as (the line between
Task Confinement and Application). These task con-
finements represent the restrictions that are enforced
for the process. The functionalities that apply to the
application are associated with the task confinement

when those functionalities are active. If a functionality
is deactivated, it is removed from this relationship and
is no longer used to calculate what that process can do.

When that process attempts to access a mediated
resource (for example, it tries to write a file to disk),
each task confinement is queried. Each task confinement
authorises the action based on the functionalities that
are active and the process’s ancestry. If every task con-
finement allows the action then the request is allowed,
otherwise it is rejected.

3 Process Ancestry and Authority Propagation

The FBAC model controls authority propagation be-
tween processes based on process ancestry and associ-
ated privileges. The FBAC model does not allow pro-
cesses to discretionarily delegate privileges to arbitrary
processes.

Each task confinement that applies to a process re-
stricts propagation independently and, for an action to
be allowed, every task confinement must permit the
action. This section describes the propagation of au-
thority within a single task confinement across pro-
cesses. The way in which task confinements are com-
bined to form the final authorisations for applications
is described in the Appendix.

The FBAC model does not specify a complete list
of operations, as operations can be implementation-
dependent so that implementations can take advantage
of the granularity of the available security mediation in-
terface. However, the FBAC model does specify a small
number of operations, presented here, for controlling
authority propagation. These operations are considered
necessary for the model as they are involved in the de-
cision logic for controlling authority based on process
ancestry.

In order for a process (A) to execute another (B)
it must have a privilege that explicitly allows this. An
execute privilege is specified using one of the opera-
tions shown in Table 1, along with a resource descriptor
that specifies the programs that can be executed. The
amount of authority granted to the executed program B
depends on the operation used to grant the permission.

Table 1 gives an overview of the operations that
control authority propagation. The prefix “file.” sim-
ply denotes that the operations work on resources that
are files, while those prefixed with “application_” oper-
ate on applications, allowing execution of any file that
is an executable of the specified application. The re-
source descriptors used with any of these operations
form privileges that specify the executable files or the
other application that the application is authorised to
execute.



The Functionality-based Application Confinement Model

Parameter

Argument Parameter

Literal Value

Executable Application

Functionality
Instance

Task

I Confinement

Table 1 FBAC Authority Propagation and Execute Operations

Fig. 11 The Complete FBAC Model

Privilege

Resource
Descriptor

Operations Description

Propagation of Authority When Ap-
plication A Executes Application B

Where an application A executes another
application B to help perform the function-
alities the application performs. For exam-
ple, using helper programs to perform sub-
tasks.

When application A executes another ap-
plication B to perform other functionalities
that A cannot perform.

file_execute

application_execute

file_execute_load_profile

application_execute_load_profile

When application A executes a shell such
as bash to execute other programs to help
perform the functionalities the application
performs.

file_execute_shell

application_execute_shell

Can be used when no profile exists for pro-
gram B to allow B to run as A. This is equiv-
alent to adding executable B to application
A, except that executable B is only consid-
ered part of application A when executed
by application A.

file_execute_as_current_app

Subtractive propagation:

ANB

Context transition:

B

Context copy:
A

Special case: the next propagation is
always subtractive.
Context copy:

A




14

7. Cliffe Schreuders et al.

The way process task confinement privileges are com-
bined is given in the right hand column, where A is
the set of privileges that apply to the previous pro-
cess task confinement. For example, if Firefox, a web
browser, starts with its full application permissions (via
*_execute_load_profile) and uses rm, which deletes files
on Unix, (via *_execute) to remove a file, then rm has
the permissions, FirefoxrNrm. In the unlikely scenario
that rm was authorised to run mv (via *_execute) then
the previous permissions A (Firefox N rm) would be
intersected with muv, giving Firefoxr N rm N muv. The
result in this example is that Firefox can use rm to
remove files that Firefox is authorised to remove, and
rm could not use other programs (via *_execute) to do
anything but remove files that Firefox is authorised to
remove.

The *_execute operations are used for the frequent
situation where an application A executes another ap-
plication B to help it carry out its features. In other
words the subsequent application B acts within the
bounds of what the first application A is allowed to do,
but since the application B exists, application A uses
it rather than reprogramming the task involved. Ap-
plication B is restricted using subtractive propagation,
where application B is restricted to an intersection of
the permissions allowed to application A (the result of
previous propagation) and the policy allocated to ap-
plication B. This propagation is safe and always further
restrictive, never permissive. This allows an application
policy for a program such as rm to allow all file un-
links. However, when it is used by another application
to remove files, it can only remove files that application
could have removed itself.

The *_execute_load_profile operations are used when
an application needs to start a dissimilar application,
that is, an application whose resource needs are dis-
tinctly different. Application B is allowed the full per-
missions afforded to the corresponding application pol-
icy. This is roughly analogous to allowing a domain
transition in DTE. There is an inherent security risk
involved as propagation is not necessarily restrictive:
propagation can grant program B authority that pro-
gram A does not have. Therefore these operations should
be used with caution and with well thought-out secu-
rity goals. Examples of when these operations would be
used are for a launcher program, which starts applica-
tions with their full policies, and for a web browser that
is allowed to start a program such as a word processor
to view downloaded files. In each case the interactions
authorised between applications using these operations
need to be carefully considered.

The file_execute_as_current_app operation restricts
the subsequent application B to the same security con-

text as the parent application A. This is similar to
adding an executable to an application, except that the
executable file B is only considered as part of appli-
cation A when an executable from application A runs
it.

The *_execute_shell operations are used for the spe-
cial case of an application launching a shell through
which other programs are executed to carry out the
tasks of the first application. This is a common occur-
rence on Unix systems as programs often start other
helper programs via the bash shell. The shell is re-
stricted using the policy of application A, similar to the
behaviour resulting from the file_execute_as_current_-
app operation. However, a special condition applies:
when the shell starts another application, propagation
is always restrictive. That is, in this case *_execute_-
load_profile is treated as *_execute. This design allows
the policy for a shell to authorise full profile loading
of applications when run as a launcher via *_execute_-
load_profile, and when used by other applications with
*_execute_shell it acts as a helper, which is a safe and
restrictive approach.

Figure 12 illustrates some example process ances-
tries (including the Firefox rm mv example above)
and the resulting authorised permissions.

When granted multiple privileges to execute the same
program, the following order of predominance applies.

1. file_execute_as_current_app

2. file_execute_shell or application_execute_shell

3. file_execute_load_profile or application_execute_load_-
profile

4. file_execute or application_execute

This ordering allows special cases (with higher privi-
lege) to overwrite general cases. For example, on a Unix
system using name-based resource descriptors, an appli-
cation may be allowed to run any program in “/bin/*”
with file_execute, except in the special case of “/bin/bash”,
which is run with file_execute_shell. This order is de-
signed to simplify policy specification as special cases
override common cases. Otherwise in the example above
the file_execute operation could not be used as a blanket
permission with “/bin/*” | instead every separate exe-
cutable would have to be specified separately because
the “/bin/bash” special case would otherwise be over-
ridden. Similarly the file_execute_as_current_app and * -
execute_load_profile operations are special cases, which
are to be used seldom and with careful consideration.

On modern systems, programs are not always in the
form of natively executable files. Scripted and inter-
preted languages such as bash scripts, Perl and Python,
and frameworks such as Java and .NET often have a
process interpreting and working on behalf of a sepa-
rately stored program. For this reason FBAC includes



The Functionality-based Application Confinement Model

15

launcher
launcher

Fig. 12 Hypothetical Authority Propagation Example

an additional operation that grants a program the right
to work on behalf of another. The interpreter (A) can
then assume the privileges of an application (B) in one
of two ways: the interpreter can signal to the access
control mechanism that it wishes to do so, or the in-
terpreter can access the file with execute permission.
Doing the latter automatically initiates the procedure.
The resulting privilege is still subject to the privilege
propagation rules previously described.

As shown in Table 2, the privilege granted to the
interpreter’s application policy is the operation file_-
execute_as_interpreted or application_execute_as_inter-
preted with a resource descriptor that defines the file
or application that is to be interpreted.

For example, Java may be given the permission to
interpret all .class files. An rm.class Java program that
deletes files could be created and that class file could
be added to the executables of the rm application pol-
icy. Then, when Java accessed the rm.class file, Java
would assume the privileges of the rm application and
be allowed to delete files. However, the process ances-
try that led to the execution of Java would restrict
which files Java could delete. Returning to the Fire-
fox example, if Firefox executed Java via *_execute,
then Java could only access the .class files that Firefox
could execute. When Java executes rm.class its privi-
leges would become Java U rm, which when combined
with the fact Java was started by Firefox, becomes
Firefox N (Java Urm). Consequently the interpreted
rm program may still only delete files that Firefox can
delete. Note that the Linux kernel is aware of certain
interpreters, and is therefore able to identify a pro-

P1 (firefox) P2 (rm) shell
P1 P2 shell
—
A V v A4
P3 (xpdf) P2 (rm) shell P2 (rm)
P1NP3 P1NP2 P1 P2
v v v
P4 (helper) P5 (mv) P2 (rm) Key .
P1NP3 | [P1NP2P5| | P1NP2 Executed via:
) L . y --3privilege file_execute
! —>privilege file_execute_load_profile
_Y_shell - ---»privilege file_execute_shell
P1NP2 »privilege file_execute_as_current_app
—
Process P
v X With restriction as
P2 (rm) applies to policy X
P1NP2

cess in terms of the file being interpreted. Therefore,
the FBAC-LSM implementation avoids having to im-
plement this part of the FBAC model, and instead as-
signs additional functionalities to interpreted programs,
which enable the interpreters to function.

8.0.1 Discussion of FBAC Privilege Propagation

The FBAC scheme for privilege propagation and pro-
cess ancestry is unique within the field of application-
oriented access controls. Isolation-based schemes typi-
cally do not perform security context changes and con-
sequently all children are isolated to the same resources.
Rule-based controls typically allow different applica-
tions to be restricted using separate policies that are
applied when they are executed. When processes start,

most rule-based application-oriented access control schemes

(for example, AppArmor, SELinux, and DTE) consult
the active policy and either keep the parent’s secu-
rity context for the new process or transition to be-
ing confined by a separate policy. Unfortunately, with
discrete policies it is difficult to verify that all the au-
thorised policy transitions are safe [31]. Transitions can
lead to the ‘confused deputy’ problem, where a pro-
gram can launch and influence another more privileged
program in order to exceed its own authority [32]. The
FBAC model simplifies the security sensitivity of many
of these interactions by preferring an intersection ap-
proach, where each helper process (such as one of the
common Unix commands) is confined to the intersec-
tion of its own authority and that of the program(s) it
is acting on the behalf of. In this case it is safe to allow



16

7. Cliffe Schreuders et al.

Table 2 FBAC Privilege Interpreter Operation

Operations Description

Resulting Privilege When Applica-
tion A Interprets Application B

file_execute_as_interpreted

application_execute_as_interpreted

Allows application A to interpret and act
using to privileges of application B.

Additive:
AUB

the parent processes to influence the child process, and
the child can be confined to specific behaviour, rather
than allowing it the excess authority of either the par-
ent or child policy. This concept was illustrated by the
Firefox/rm example in the previous section.

The FBAC privilege propagation approach is re-
lated to stack inspection, a language-based security fea-
ture of Java and .NET. Stack inspection is used in the
context of application virtualisation to restrict the ac-
tions of untrusted code modules within a virtual ma-
chine [33,34]. Access rights are the intersection of the
authority of all the frames on the stack. Therefore a
malicious module cannot perform operations it is not
authorised to. Trusted code can optionally assert re-
sponsibility for use of some permissions, thus overrid-
ing the inspection of its callers: for example, to grant
additional privileges [35]. Stack tracing has some no-
tional similarities with the FBAC privilege propagation
scheme. In both schemes intersection is performed by
inspecting the invocation history; in the case of stack
inspection this is the method call history, for FBAC it
is the process ancestry history. Also in both schemes
intersection is overridden when necessary; for stack in-
spection this involves enabling privileges, for FBAC this
involves making execute_as_current_app transitions. Al-
though the work is related, the specifics and purpose are
distinct.

The Singularity operating system incorporates pro-
cess invocation history in its system-wide access control
scheme [30]. Process identities are represented using
text strings, which include the complete process an-
cestry, and can be used in access decisions to confine
applications by pattern matching against the invoca-
tion history. TOMOYO provides an invocation history-
based application-oriented access control for Linux [12].
However, a separate policy is defined for each different
invocation string that is allowed, meaning a single pro-
gram may require many separate policies if it is exe-
cuted by a number of separate programs [12]. Neither
of these systems currently enforce the intersection of
policies for separate programs.

4 Evaluation

Substantial effort has been made to evaluate the efficacy
of the FBAC model, much of which has previously been
published. Here we provide an overview of the results
of the evaluation that has been conducted.

4.1 Prototype development

As previously mentioned, a prototype mechanism im-
plementing the FBAC model has been designed and
built. The mechanism is known as FBAC-LSM and is
implemented for Linux platforms [37]. FBAC-LSM is
available as free open source software [38]. The goal of
the implementation is to act as a proof of concept and to
facilitate evaluation of the FBAC model. As improved
usability is a major objective of this research, the user
interface aims to leverage the FBAC model constructs
to provide policy construction with ease of use. As the
FBAC-LSM name implies, a main component is a Linux
security module (LSM). As the implementation is in-
tended as a proof of concept, it does not aim to provide
complete coverage and has not been verified to be error
free.

As described in Section 2, the FBAC model may be
implemented as either label-based or name-based. The
FBAC-LSM implementation mediates access by means
of name-based controls. Using name-based mediation,
resources are protected based on their names rather
than via labels attached to objects. For example, ac-
cess to files is mediated in terms of their pathnames
rather than the names of labels associated with the
files. Examples of other name-based mechanisms are
AppArmor [10] and TOMOYO [39], while SELinux [40]
and SMACK [41] are examples of label-based LSMs.
Some access control model specifications, such as tra-
ditional MAC [42] and DTE [43], specify that they are
implemented as label-based mechanisms. FBAC allows
the model to be implemented either way; the type of
mediation used by the FBAC model is not defined by
the FBAC specification. Name-based mediation is used
by FBAC-LSM because it provides conceptual simplic-
ity, as security is defined in terms of concepts users
are familiar with, rather than associations with labels,



The Functionality-based Application Confinement Model

17

which are less familiar to users, and enables access to
be granted based on pathname patterns, which can rep-
resent complex rules in simple terms.

The prototype has been used to analyse the ability
of FBAC to model and enforce the needs of applica-
tions, and to study the usability benefits of the scheme.
In order to evaluate the practical aspects of the model it
was deemed necessary to create an implementation that
was grounded in an operating system with existing ap-
plications to be confined. As described in the following
sections, the results of evaluation have demonstrated
that the model can provide improvements for confining
existing applications on Linux systems. As the benefits
of the implementation can predominantly be attributed
to the policy abstraction that the FBAC model pro-
vides, we contend that the evaluation results can be at-
tributed to the model, which is platform independent.

4.2 Modelling the Privileges Assigned to Applications

As a preliminary investigation of the suitability of the
model, the resource requirements of four different web
browsers were analysed, and a hierarchical set of FBAC
functionalities were created [141]. Web browsers were
chosen as the type of application to study due to their
inherent internal complexity and feature richness. The
FBAC policy language, FBAC-PL, was developed for
the implementation [15], and was able to express the
security goals, resulting in a policy that can confine
the applications to expected resource use. The result-
ing policy compared very favourable to other existing
schemes, such as SELinux, AppArmor, and Systrace.
The Web_Browser functionality provided an abstract
way of granting an application the authority to perform
web browsing. Parameters were used to adapt the gen-
eral policy abstraction to the individual requirements
of different applications: for example, each application
stored had separate configuration directories. Parame-
ters were also used to specify user preferences, such as
locations authorised for file downloads. The hierarchical
nature of functionalities also enabled encapsulation of
policy details, which enabled policy to abstract details
away from end user facing configuration, while enabling
policy reuse at the functionality development level.

Subsequently, over 100 applications have been pro-
filed and FBAC policies have been created to confine
them. Except in a few fringe cases, the functionalities
required by applications were obvious and enabled pol-
icy reuse across different applications.

4.2.1 Methodology

One hundred and two applications were analysed in
terms of resource usage and privilege requirements. Based
on this analysis, functionalities were created and ex-
pressed using FBAC-PL [45]. These policy abstractions
were then used as a basis for constructing policies to
restrict the applications to authorised behaviour us-
ing FBAC-LSM. Applications were selected for analy-
sis based on the features they provided and their avail-
ability on the policy development environment. Games,
image editing and viewing programs, video and audio
players, text editors, network clients (IRC chat clients,
FTP clients, bittorrent clients, and web browsers), and
some widely-used command-line programs were anal-
ysed.

Developing functionalities, which abstract common
privilege requirements in terms of the features the ap-
plication provides, involved a number of steps. These
are listed below and then described in further detail:

— identifying the resources applications utilised;

— identifying the purpose of each of these resources;

— determining whether access to each resource was re-
quired for the application to perform the user’s in-
tent;

— grouping required resources, based on features pro-
vided, into functionalities; and, abstracting away
application-specific resources by replacing literal re-
source descriptions with parameters.

Identifying the resources that applications utilise
was performed by executing the applications, exercis-
ing their primary features, and using tools to analyse
the resources and the type of access requested. Anal-
ysis of the resources used by applications was carried
out using strace (which outputs the system calls used
by programs), AppArmor profiling tools (which out-
put file/type AppArmor rules matching accesses), by
analysing the open source application profiles that were
available for AppArmor, and using the FBAC-LSM mod-
ule auditing features and user-space tools. The FBAC-
LSM policy manager has a learning mode that inter-
acts with the module. The policy manager was used to
interactively add to application policies. The resulting
output was then analysed.

Identifying the purpose of each of the accessed re-
sources and determining whether access to each resource
was required was an iterative process. Examination of
the context of use, source code inspection, examina-
tion of resource contents, and web searches were used
to identify the reason applications accessed these re-
sources. This information was used to make decisions
about whether to authorise access to the resources. When
access to a resource seemed unnecessary, the ability of



18

7. Cliffe Schreuders et al.

the application to function without access to the re-
source was tested. FBAC-PL rules granting access to
the required resources were grouped together based on
the features provided by applications and the way pro-
grams interacted with users. Each of these groups of
privileges were either expressed as FBAC-PL high-level
functionalities, representing program features, or base-
level functionalities, representing types of programs. Ap-
plication-specific resources were replaced with function-
ality parameters, thereby abstracting away those de-
tails from the functionalities. These application-specific
resources were specified for each application policy as
arguments to parameters when assigning functionali-
ties. Required privileges that were not appropriate for
any functionalities were assigned directly to application
policies.

The ability to grant applications direct privileges
in addition to those authorised via functionalities is a
feature of FBAC-PL which is beyond the FBAC model
presented in this paper, and the extent that this was
(not) required for policy represents a measure of the
extent that the model suited the studied use cases’.

Privileges within functionalities that described com-
ponents of high-level features — that is, groups of priv-
ileges that were reused in multiple functionalities or
with logical relationships — were likewise grouped into
low-level functionalities. When appropriate for policy
reuse, the parent-functionality-specific details were ab-
stracted using parameters. Thus, low-level functionali-
ties were reused within other functionalities and, when
child functionalities had parameters, arguments were
specified by the parent-functionality to adapt contained
functionalities to the needs of the parent-functionality.
The resulting policy structure was a hierarchy of func-
tionalities, starting with the functionalities directly as-
signed to applications where, for example, a high-level
functionality would contain other high-level functional-
ities and low-level functionalities, which would in turn
contain other functionalities, and so on.

4.2.2 Policy Abstraction Results

Using the methodology described, 144 functionalities
were created. Functionalities can be assigned “high-
level”, “base-level”, or “low-level” status in the pol-
icy language, and this has the benefit of improving the
user interface and simplifies discussion. Of the function-
alities created, three were base-level (2.1%), 40 were

1 Note that the same result can be achieved without de-
viating from the FBAC model, by creating non-reusable
application-specific functionalities. This was avoided during
the study, since the study aimed to analyse the reusability of
the FBAC policy abstractions.

Table 3 Base-level Functionalities

Base-level Functionalities Number of

Parameters
Simple_Commandline_Program 0
Standard_Commandline_Application 6
Standard_Graphical_Application 7

high-level (27.8%), and 101 were low-level functional-
ities (70.1%). The functionalities created are available
in full online [38]. These results add to the literature
describing behavioural classes of programs.

Base-level functionalities were designed to represent
the different ways programs interface with users. Based
on the programs analysed, the three base-level function-
alities and the number of parameters for each of these
functionalities is shown in Table 3.

These base-level functionalities contained low-level
functionalities. For example, the Standard_Graphical -
Application functionality included the functionalities:
base, gui, audio, common_console_helper_programs, tmp_-

access, printer, IPC_system_aware-dbus_system_bus, mime_-

aware, and other functionalities that grant access to
application-specific resources specified as parameters.

Most of these low-level functionalities were likewise
made up of other low-level functionalities. As shown
in Figure 13, using the FBAC-LSM policy manager’s
advanced views one may “drill down” from base or high-
level functionalities though the hierarchy of contained
functionalities.

The high-level functionalities created were designed
to provide the privileges necessary for programs to per-
form the high-level features identified during analysis.
High-level functionalities have been assigned categories
to group related functionalities for ease of use. Table
4 shows a list of the 40 high-level functionalities that
were developed. The categories into which they were
grouped, and the number of parameters for each, are
also displayed.

A mean of 1.9 parameters were defined per high-
level functionality. This result shows that only a small
number of application-specific details are typically re-
quired to adapt high-level functionalities to specific ap-
plications. FBAC-PL was successfully able to represent
feature-based security goals for applications as high-
level functionalities.

4.2.3 Policies for Applications

Utilising the functionalities developed, policies were cre-
ated for the applications. Tables 5 to 12 give an overview
of the application policies created. Each table shows the
application policy names (which, by convention, were
named after the command used to start each applica-



The Functionality-based Application Confinement Model

19

- FBAC-LSM Policy Manager
Poalicy Secunty Module Applications  Functionalties  Wiew Help

Caonfinements

users_dac_confinement

users_mac_confinement

Manage Palicy

Applications | Functionalities

Caonfinement

system_mac_palicy

‘Functionalities

Advanced Functionality View

Simple Cammandline Program
Standard Commandline Application
... Standard Graphical Application

[D|sp|ay base level functionalities

-]

= contained functionalities:
base
B gui

=

distro_dependent

icons

fants

¥_window_system

freedeskiop

gnome

kde
privilege: file_read "fopt/kde*/share/apps/kdeprint/icon:
privilege: file_read “foptfkde”fsharefappsfk\o_uisewerfi@

o555

4 | G+

Fig. 13 The Policy Manager’s Advanced Functionality View

tion), the functionalities directly assigned to the appli-
cation policy, and the number of privileges directly as-
signed to the application policy. Applications that were
assigned the same functionalities with the same number
of additional privileges are grouped into the same row.

Of the 102 applications studied, only four required
privileges that were deemed unsuited to the functionali-
ties and parameters developed. Two of these four appli-
cations (glchess, xchat-gnome) required extra privileges
because they acted as front-ends for other applications,
one (digikam) stored its configuration files in a non-
standard location, and the other (kcheckpass) stored
files in an unusual location for a graphical application.
As an exception, during policy analysis, the lbreakout
game corrupted its configuration files; the result being
that even when no confinement policy was in effect, the
game crashed with a segmentation fault.

4.2.4 Policy Discussion

The analysis of existing applications and the policy de-
velopment presented in this paper demonstrate that
FBAC functionalities can model and abstract the priv-
ileges required to perform program features. The cre-
ated functionalities were successfully utilised to autho-
rise the applications to perform the features they pro-
vided, while severely limiting the damage that may be
caused by malware or software vulnerabilities. Results
show that the functionality construct is able to provide
reusable abstractions that can encapsulate and abstract
policy details, can adapt to the needs of specific applica-
tions to provide the privileges they require, and reduce
the challenges that can arise when applying rule-based
application-oriented access controls to confine existing
software. Based on these results, we contend that FBAC

provides a practical solution that is an excellent balance
between the principle of least privilege and that of psy-
chological acceptability. These results are expected to
be operating system independent, should FBAC be re-
implemented.

One of the challenges facing all finely-grained rule-
based application-oriented access control schemes is pol-
icy complexity. Each application policy is typically made
up of a large number of low-level access rules, and the
complexity of the overall system policy more or less
increases in direct relation to the number of applica-
tions that are confined. Some existing schemes include
simple abstractions that group related rules (for exam-
ple, AppArmor policy abstractions, and SELinux do-
mains); however, these abstractions only represent rel-
atively low-level aspects of programs and have limited
reuse. In contrast, the policies created for FBAC-LSM
are largely defined in terms of reusable abstractions.
The result is a hierarchical policy configuration that
reduces redundancy in both application policies, and
also within policy abstractions (where functionalities
are defined in terms of other functionalities). The re-
sults presented in this paper show that the functionali-
ties developed were reusable and flexible; functionalities
were adapted to provide authority to multiple applica-
tions and functionalities. FBAC therefore improves the
scalability of policy, since confining applications is per-
formed by applying existing functionalities, rather than
creating complex low-level rules.

The structure produced by functionality hierarchies
provided layers of abstraction. In the policies created,
logically grouped rules were successfully abstracted into
functionalities. This abstraction improves the manage-
ability of policy, by making it possible to drill down



20

7. Cliffe Schreuders et al.

Table 4 High-level Functionalities

Category High-level Functionalities Number of
Parameters

File/Media File_Editor 2

Editor Archive_Editor

Audio_Editor
Document_Editor
Image_Editor
PDF_Editor
Video_Editor
‘Web_Files_Editor
File_Viewer
Archive_Viewer
Audio_Player
Document_Viewer
Image_Viewer

PDF _Viewer
Video_Player
Web_Files_Viewer
Game

Network Game
General Network Client
BitTorrent_Client
Email_Client
Ftp_Client
Downloader
Irc_Chat_Client
News_Reader_Client
ICMP _Pinger
Web_Browser
Deleter
Process_Information
File_System_Mounter
Uses_Shell
System_Password_Management
System_Password_Check
Uses_Perl
Uses_Mono
Uses_Python
Uses_Orbit
Uses_Java
Uses_Ruby
Uses_XulRunner

File Viewer /
Media Player

Game

Network
Client

System Tools

Platform

OO OO OO0 O R OONERFFHFANWOOER IO WNNNNNDNDNNNDNDDNDDNDNNDN

from higher level functionalities, to low-level details.
This structure can ease maintenance of policy, since
details are encapsulated according to the purpose of
the rules. As illustrated in Figure 13, this can facili-
tate visual representations of policy that can assist in
policy maintenance. FBAC also separates the task of
abstraction development from association with applica-
tion policies. Assigning functionalities to applications is
separated from the more complicated task of develop-
ing functionalities, which would normally be performed
by someone with more specialised knowledge.

Of the 102 applications studied, only four required
privileges in addition to those provided by the function-
alities developed. Those that had additional privilege
requirements were resolved with minor additions, and
it is believed that, in each case, further research and de-

Table 5 Overview of FTP and Bittorrent Application Poli-
cies (file transfer.fbac)

Applications Functionalities Additional
Privileges
gftp, filezilla Standard_Graphical - 0
Application
Ftp_Client
ktorrent, Standard_Graphical - 0
torium, trans- Application
mission BitTorrent_Client
ftp Standard_Commandline_- 0
Application
Ftp_Client
ncftp, yaftp Simple_Commandline_- 0
Program
Ftp_Client
wget Simple_Commandline - 0
Program
Downloader
deluge Standard_Graphical - 0
Application
BitTorrent_Client
Uses_Python
rtorrent Simple_Commandline_- 0

Program
BitTorrent_Client

velopment would yield functionalities that would satisfy
these privilege requirements. On the occasions where an
application does require access to additional resources
(such as access to a particular non-standard resource, or
to GPS or other sensors — as may increasingly become
popular), the additional access attempts can be vetted
separately from the complex finely-grained resource us-
age that can be authorised based on functionalities that
represent the high-level features the application pro-
vides.

This research shows that using a functionality-based
approach can yield reusable policy abstractions, and
that the privilege requirements of applications map well
to these abstractions in practice. From a policy devel-
opment point of view, this builds a strong case for the
reusability and flexibility of the FBAC model.

Although providing policy configuration and man-
agement benefits, it was evident that at point of end
user configuration the specification of parameter ar-
guments was the least intuitive and most complex as-
pect of the model. Fortunately the model proved to be
uniquely suited to policy specification automation.

4.3 Automation and a Priori Policy Specification

Automation techniques have been developed to assist
in FBAC policy specification, automating or provid-
ing suggestions for each of the steps: selecting executa-
bles, associating functionalities, and specifying argu-



The Functionality-based Application Confinement Model

21

Table 6 Overview of Game Application Policies Table 8 Overview of IRC Client Application Policies (irc
(games.fbac) clients.fbac)
Applications Functionalities Additional Applications Functionalities Additional
Privileges Privileges
gnobots, gnometris, Standard_Graphical - 0 konversation, ksirc, Standard_Graphical - 0
kasteroids, kfou-  Application dsirc Application
leggs, kgoldrunner, Game Irc_Chat_Client
ksirtet, ksmiletris, Uses_Perl
ksnake, kspaceduel, bitchx Standard - 0
ktron, ktumber- Commandline_-
ling, supertux, Application
kenolaba, kbackgam- Irc_Chat_Client
mon, kblackbox, xchat Standard_Graphical - 0
gtali, kmahjongg, Application
mahjongg, kreversi, Irc_Chat_Client
blackjack, kpat, xchat-gnome Standard_Graphical - 1
kpoker, sol, ksame, Application
kbounce, konquest, Irc_Chat_Client
kmines, gnomine,
gggﬁé7gn0t§§;tf:$i’ Ta‘t.)l.e 9 Ove.rview of Audio and Video Players Application
ksokoban,  katomic, Policies (media players.fbac)
kjumpingcube, knet- Applications Functionalities Additional
walk, klines, kolf, Privileges
brutalchess, xmoto, amarok Standard_Graphical - 0
klickety Application
glchess Standard_Graphical - 1 Audio_Player
Application Uses_Ruby
Game banshee Standard_Graphical - 0
Uses_Python Application
Uses_Orbit Audio_Player
gnome-sudoku Standard_Graphical - 0 Video_Player
Application Uses_Mono
Game codeine,  gmplayer, Standard_Graphical - 0
Uses_Python kaffeine, kplayer, Application
Uses_Orbit realplay, vlc, xine, Audio_Player
iagno, gnect, Iskat, Standard_Graphical - 0 mplayer Video_Player
gnibbles, kwin4, kbat-  Application totem Standard_Graphical - 0
tleship Network_Game Application
frozen-bubble Standard_Graphical - 0 Video_Player
Application
Network_Game
Uses_Perl Table 10 Overview of File Editor Application Policies (text
Ibreakout Standard_Graphical - N/A editors.fbac)
Application Applications Functionalities Additional
Game ..
Privileges
gedit, kate, kwrite Standard_Graphical - 0
Table 7 Overview of Graphics Application Policies (graph- Application
ics.fbac) File_Editor
— _ _ _ vi Standard_- 0
Applications Functionalities Ad.d}tlonal Commandline.-
_ ‘ Privileges Application
digikam Standard_Graphical - 2
Application
Image_Editor . .
cog, gimp, krita Standard_Graphical = 0 ments for each functionality parameter [16]. Automa-
Application tion is achieved via simple analysis of program depen-
Image_Editor dencies, program management information, and filesys-
karbon itaﬁ?:;iﬁraphlcal: Oar(ji: for tem contents. For this purpose, FBAC-PL includes au-
Inll)zi)ge,Editor Ether gﬁle tomation metadata within the definition of function-
formats) alities and parameters [45]. For example, functionality
gwenview Standard_Graphical -~ 0 definitions can contain libraries and desktop icon cat-

Application
Image_Viewer

egories that indicate the functionality is likely to be
appropriate. As a result of automation, complete (and



22

7. Cliffe Schreuders et al.

Table 11 Overview of Web Brower Application Policies (web
browsers.fbac)

Applications Functionalities Additional
Privileges
epiphany Standard_Graphical - 0
Application
Web_Browser
firefox Standard_Graphical - 0
Application
‘Web_Browser
Uses_XulRunner
lynx Standard - 0
Commandline -
Application
‘Web_Browser
opera Standard_Graphical - 0

Application
‘Web_Browser
Email_Client
Irc_Chat_Client
BitTorrent_Client
News_Reader_Client

Table 12 Overview of Common Console Application Policies
(console.fbac)

Additional
Privileges

Applications Functionalities

rm Simple_- 0
Commandline_-

Program

Deleter

Simple_- 0
Commandline_-

Program

File_Viewer

ps Simple_- 0
Commandline_-

Program
Process_Information
Simple_- 0
Commandline_-

Program
File_System_Mounter
Simple_- 0
Commandline_-

Program
System_Passwd_-
Management
Standard_Graphical - 3
Application
System_Passwd_-

Check

cat, ls

mount

passwd,
gpasswd

expiry,

kcheckpass

near complete) policies can easily be created a priori:
that is, without first executing the program being con-
fined. During assessment, policy only occasionally suf-
fered from rare false negatives or positives.

Due to the complexity of rule-based application-ori-
ented access controls, learning modes are often used to
generate policy. Schemes that typically rely on learn-
ing modes to generate policy include Systrace [9], Ap-

pArmor [10], SELinux [11], and TOMOYO [12]. Learn-
ing modes generate policy rules by recording applica-
tion behaviour. Disadvantages of this approach include
the fact that this recording is typically done while the
application is not confined, meaning the typical ap-
proach is not appropriate for confining potentially mali-
cious software. Conversely, if an application is confined
during development, typically many iterations of pol-
icy development will be required, since many programs
continue to crash until policy is somewhat complete.
Furthermore, any policy specification exposes the user
to low level privilege requirements of applications and
many users are not likely to possess the knowledge nec-
essary. In contrast, automation that leverages FBAC
model features is able to generate policies that are rel-
atively easy to comprehend, and enable the user to en-
force their security goals in relation to the application
without exposing them to low level policy details. Dur-
ing evaluation, the few false negatives that prevented
legitimate behaviour could be resolved using FBAC-
LSM learning mode, which involves fewer decisions than
other schemes as the learning mode is only required for
these fringe cases [10].

These automation techniques successfully further low-
ered the expertise required to construct policies to con-
fine applications using FBAC-LSM, and added further
evidence of the benefits of the FBAC model.

4.4 Usability

A comparative study was conducted to evaluate the
usability of the FBAC model, by comparing FBAC-
LSM with two widely deployed alternative systems that
provide application-oriented controls, AppArmor, and
SELinux [47,48]. After a pilot study, 39 participants
completed the experiment, using all three security mech-
anisms to construct policies to confine two programs.
Descriptive and inferential statistics were utilised to
compare the within-subjects effects of the three security
systems.

As previously reported [18]?, a one-way within sub-
jects ANOVA was conducted to compare the effect of
security system on System Usability Scale (SUS) scores.
The security system was found to have a significant ef-
fect, Wilks’” Lambda = 0.38, F (2,35) = 28.99, p <
.001, n=37. Post hoc analysis using the Tukey LSD test
showed that the usability of all three systems were sig-
nificantly different from each other. On average FBAC-
LSM received the highest SUS scores (M=70.21), fol-

2 For further details regarding the methods, results, and
discussion please refer to this publication. An overview is
presented here as part of the wider evaluation of the FBAC
model.



The Functionality-based Application Confinement Model

23

lowed by AppArmor (M=54.93), and SELinux (M=34.58).

On average, participants also ranked FBAC-LSM easi-
est to use, easiest to understand, and most likely to use
again. These results indicated that FBAC-LSM demon-
strated higher perceived usability compared to AppAr-
mor and SELinux.

The effect of the security system on the partici-
pants success in creating policies that were actually
in effect was analysed using repeated measures logistic
regression. In each case there was a significant effect,
p < .007, and in each case FBAC-LSM was most fre-
quently successfully used to create enforcing policies.
In the web browser example, 90% of participants suc-
cessfully created a policy that was enforced using us-
ing FBAC-LSM, 66% using AppArmor, and only 23%
using SELinux. In the Trojan horse simulation exam-
ple 82% of participants created enforced policies us-
ing FBAC-LSM, 71% using AppArmor, and only 22%
using SELinux. The results showed that, compared to
the other systems, FBAC-LSM had significantly higher
success rates for both policy creation and enforcement.
It was also found that using FBAC-LSM more of the
policies that were created allowed programs to function
correctly while they were confined.

The final security state of the systems were fur-
ther analysed using the non-parametric Friedman test
(since not all assumptions for ANOVA were met), and
the security system was found to have a significant ef-
fect (p < 0.001) on the overall risk exposure. Risk ex-
posure was measured in terms of the number of spe-
cific security sensitive resources that the participant-
configured security systems did not prevent access to.
Post hoc analysis showed that the policies created us-
ing FBAC-LSM had a lower risk exposure (M=14.3)
compared to both AppArmor (M=30.3) and SELinux
(M=43.0). The study also demonstrated that FBAC-
LSM provided similar security benefits when success-
fully confining benign software, such as a web browser.

However, using FBAC-LSM, participants more frequently

successfully created policies, thereby reducing risk in
the case of confining trustworthy software to protect
against vulnerabilities. The policies created using FBAC-
LSM provided significantly increased protection against
malware, compared to the other mechanisms.
Participants also rated FBAC-LSM as being more
time efficient; however, the time recorded for AppAr-
mor profiling was often shorter. This discrepancy was
attributed to the behaviour of participants who rapidly
clicked through the many AppArmor dialogues, which
in the case of the Trojan horse simulation also had the
effect of inadvertently authorising malicious behaviour.
As mentioned, the usability study showed empiri-
cally that FBAC-LSM was rated as significantly more

usable than the other systems. FBAC-LSM was also
significantly more successful at securing the systems.
Learning mode systems, which rely on users vetting
rules, were demonstrated to be unreliable and open to
subversion by malicious programs compared to a func-
tionality-based approach.

Qualitative analysis provided further insight into
factors that can influence the usability of application-
oriented access controls, and confirmed that the ab-
stractions and techniques enabled by the FBAC model
contributed to usability benefits [47].

5 Conclusion

This paper has proposed and defined a novel rule-based
application-oriented access control model, FBAC, that
confines processes based on application policies con-
structed using reusable and adaptable policy abstrac-
tions known as functionalities. Processes can simultane-
ously be subject to restrictions, known as confinements,
that can enforce mandatory and discretionary applica-
tion policies specified by separate users.

As discussed, the FBAC model has many features
unique within the field of application-oriented access
controls, including:

e hierarchical policy primitives;

e parameterised policy abstractions that can be com-
bined and layered;

e simultaneous enforcement of multiple security goals/
sets of policies, which can enforce a diverse range of
types of application restrictions;

e dynamic activation and deactivation of logically grouped

portions of a processes authority;
e process invocation history intersection-based privi-
lege propagation.

FBAC was designed to provide application confine-
ment that is functionality-based in nature, capable of
modelling high level security goals for application re-
strictions, with abstractions that encapsulate low level
policy details. This design separates the task of specify-
ing application-functionality associations from the more
involved task of specifying security rules for classes of
programs.

The Linux prototype, FBAC-LSM, has enabled the
evaluation of the efficacy of the FBAC model, and demon-
strates the usability advantages and unique features of
this new approach to application confinement. Analysis
showed that the FBAC model is capable of represent-
ing the privilege needs of applications. The model is
also well suited to automation techniques that can in
many cases create complete application policies without
first running the applications. This is an improvement



24

7. Cliffe Schreuders et al.

over previous approaches that typically rely on learn-

ing

modes to generate policies. A usability study was

conducted, which showed that compared to two widely-

deployed alternatives (SELinux and AppArmor), FBAC-

LSM had significantly higher perceived usability and
resulted in significantly more protective policies.

It is our hope that the model presented in this paper

will be used to protect end users against malicious code,
and will help to direct and inspire future work in this
developing field of research.

References

10.

11.

12.

Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Or-
mandy, T., Okasaka, S., Narula, N., Fullagar, N.: Native
Client: A Sandbox for Portable, Untrusted x86 Native
Code. Communications of the ACM 53(1), 91-99 (2010)
Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.:
Going Beyond the Sandbox: An Overview of the New
Security Architecture in the Java Development Kit 1.2.
In: USENIX Symposium on Internet Technologies and
Systems, Monterey, CA, USA 1997. Prentice Hall PTR
Whitaker, A., Shaw, M., Gribble, S.D.: Denali:
Lightweight Virtual Machines for Distributed and Net-
worked Applications. In: 5th USENIX Symposium on
Operating Systems Design and Implementation, Boston,
MA, USA 2002. USENIX Association

Madnick, S.E., Donovan, J.J.: Application and Analysis
of the Virtual Machine Approach to Information Secu-
rity. In: ACM Workshop on Virtual Computer Systems,
Cambridge, MA, USA 1973. Harvard University
Kamp, P.-H., Watson, R.: Jails: Confining the Omnipo-
tent Root. In: 2nd International System Administration
and Networking Conference (SANE 2000), Maastricht,
The Netherlands 2000

Tucker, A.; Comay, D.: Solaris Zones: Operating Sys-
tem Support for Server Consolidation. In: 3rd Virtual
Machine Research and Technology Symposium Works-
in-Progress, San Jose, CA, USA 2004

Boebert, W.E.,; Kain, R.Y.: A Practical Alternative to
Hierarchical Integrity Policies. In: 8th National Com-
puter Security Conference, Gaithersburg, MD, USA
1985. NIST

Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A
Secure Environment for Untrusted Helper Applications:
Confining the Wily Hacker. In: 6th USENIX Security
Symposium, San Jose, CA, USA 1996. USENIX Asso-
ciation

Provos, N.: Improving Host Security with System Call
Policies. In: 12th USENIX Security Symposium, Wash-
ington, DC, USA, August 2002. USENIX Association
Cowan, C., Beattie, S., Kroah-Hartman, G., Pu, C., Wa-
gle, P., Gligor, V.: SubDomain: Parsimonious Server Se-
curity. In: USENIX 14th Systems Administration Con-
ference, New Orleans, LA, USA 2000. USENIX Associ-
ation

Loscocco, P., Smalley, S.: Integrating Flexible Support
for Security Policies into the Linux Operating System.
In: FREENIX Track: 2001 USENIX Annual Technical
Conference, Boston, MA, USA 2001. USENIX Associa-
tion

Harada, T., Horie, T., Tanaka, K.: Task Oriented Man-
agement Obviates Your Onus on Linux. In: Linux Con-
ference 2004, Tokyo, Japan 2004

13.

16.

17.

18.

20.

28.

29.

Sandhu, R., Ferraiolo, D., Kuhn, R.: Role Based Ac-
cess Control. In. American National Standards Institute
/ International Committee for Information Technology
Standards (ANSI/INCITS), (2004)

. Walker, K., Sterne, D., Badger, M., Petkac, M., Sher-

man, D., Oostendorp, K.: Confining Root Programs
with Domain and Type Enforcement. In: 6th USENIX
Security Symposium, San Jose, CA, USA 1996. USENIX
Association

. Schreuders, Z.C.: Thesis. A Role-Based Approach to

Restricting Application Execution. Murdoch University
(2005)

Raje, M.: TRCS 99-12: Behavior-based Confinement of
Untrusted Applications. University of Calfornia (1999)
Acharya, A., Raje, M.: MAPbox: Using Parameter-
ized Behavior Classes to Confine Applications. In: 9th
USENIX Security Symposium, Denver, CO, USA 2000.
USENIX Association

Giuri, L., Iglio, P.: Role Templates for Content-based
Access Control. In: 2nd ACM Workshop on Role-based
Access Control, Fairfax, VA, USA 1997. ACM Press

. Yao, W., Moody, K., Bacon, J.: A Model of OASIS Role-

based Access Control and its Support for Active Secu-
rity. In: 6th ACM Symposium on Access Control Models
and Technologies, Chantilly, VA, USA 2001. ACM Press
Ferraiolo, D., Cugini, J.A., Kuhn, R.: Role-Based Ac-
cess Control (RBAC): Features and Motivations. In:
11th Annual Computer Security Applications Confer-
ence (ACSAC), Gaithersburg, MD, USA 1995. IEEE
Computer Society Press

. Johnson, M., Karat, J., Karat, C.-M., Grueneberg, K.:

Optimizing a Policy Authoring Framework for Secu-
rity and Privacy Policies. In: 6th Symposium on Usable
Privacy and Security (SOUPS), Redmond, Washington,
DC, USA 2010. ACM Press

. Wagner, D.A.: Janus: An Approach for Confinement of

Untrusted Applications. In: Electrical Engineering and
Computer Sciences. University of California, Berkeley,

CA, USA, (1999)

. Berman, A., Bourassa, V., Selberg, E.: TRON: Process-

Specific File Protection for the UNIX Operating System.
In: Winter USENIX Conference, New Orleans, LA, USA
1995. USENIX Association

. Hallyn, S.E., Kearns, P.: Domain and Type Enforcement

for Linux. In: 4th Annual Linux Showcase and Confer-
ence, Atlanta, GA, USA 2000

. Zanin, G., Mancini, L.V.: Towards a Formal Model for

Security Policies Specification and Validation in the
SELinux System. In: 9th ACM Symposium on Access
Control Models and Technologies, Yorktown Heights,
NY, USA 2004. ACM Press

. Hallyn, S.E., Morgan, A.G.: Linux Capabilities: Making

Them Work. In: The Linux Symposium, Ottawa, ON,
Canada 2008

. Edge, C., Barker, W., Hunter, B., Sullivan, G.: Enter-

prise Mac Security: Mac OS X Snow Leopard, Second
Edition. Apress, (2010)

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R.,
Chandramouli, R.: Proposed NIST Standard for Role-
Based Access Control. ACM Transactions on Infor-
mation and System Security (TISSEC) 4(3), 224-274
(2001)

Tidswell, J., Potter, J.: An Approach to Dynamic Do-
main and Type Enforcement. In: Australasian Con-
ference on Information Security and Privacy, Syndey,
NSW, Australia 1997. Springer



The Functionality-based Application Confinement Model

25

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Ott, A.: The Role Compatibility Security Model. In:
7th Nordic Workshop on Secure IT Systems (NordSec),
Karlstad, Sweden 2002

Hinrichs, S., Naldurg, P.: Attack-based Domain Transi-
tion Analysis. In: 2nd Annual Security Enhanced Linux
Symposium, Baltimore, MD, USA 2006

Hardy, N.: The Confused Deputy: Or Why Capabilities
Might Have Been Invented. ACM SIGOPS Operating
Systems Review 22(4), 36-38 (1988)

Fournet, C., Gordon, A.D.: Stack Inspection: Theory
and Variants. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 25(3), 360-399 (2003)
Wallach, D.S., Felten, E.W.: Understanding Java Stack
Inspection. In: 19th IEEE Symposium on Security and
Privacy, Oakland, CA, USA 1998. IEEE Computer So-
ciety

Besson, F., Blanc, T., Fournet, C., Gordon, A.D.: From
Stack Inspection to Access Control: A Security Analysis
for Libraries. In: 17th IEEE Computer Security Founda-
tions Workshop, Asilomar, CA, USA 2004. IEEE Com-
puter Society

Hunt, G., Larus, J., Abadi, M., Aiken, M., Barham,
P., Fhndrich, M., Hawblitzel, C., Hodson, O., Levi, S.,
Murphy, N., Steensgaard, B., Tarditi, D., Wobber, T.,
Zill, B.: An Overview of the Singularity Project. In. Mi-
crosoft Research, Redmond, WA, USA, (2005)
Schreuders, Z.C.: The Functionality-Based Application
Confinement Model and its Linux Prototype FBAC-
LSM (Presentation). In: linux.conf.au - LCA2009, Tas-
mania, Australia 2009

Schreuders, Z.C.: FBAC-LSM: Protect Yourself From
Your Apps. http://schreuders.org/FBAC-LSM (Ac-
cessed 2011)

Harada, T., Horie, T., Tanaka, K.: Towards a Man-
ageable Linux Security. In: Linux Conference 2005
(Japanese), Japan 2005

Morris, J.: Filesystem Labeling in SELinux. Linux Jour-
nal(126), 22-24 (2004)

Schaufler, C.: The Simplified Mandatory Access Control
Kernel. In: http://schaufler-ca.com/. (2008)
Department of Defense: Trusted Computer Security
Evaluation Criteria. DOD 5200.28-STD. (1985)
Boebert, W.E., Kain, R.Y.: A Practical Alternative to
Hierarchical Integrity Policies. Proceedings of the 8th
National Computer Security Conference, 18-27 (1985)
Schreuders, Z.C., Payne, C.: Reusability of
Functionality-Based Application Confinement Pol-
icy Abstractions. In: 10th International Conference
on Information and Communications Security (ICICS
2008), Birmingham, UK 2008. Springer

Schreuders, Z.C., Payne, C., McGill, T.: A Policy Lan-
guage for Abstraction and Automation in Application-
oriented Access Controls: The Functionality-based Ap-
plication Confinement Policy Language. In: IEEE Inter-
national Symposium on Policies for Distributed Systems
and Networks (POLICY 2011), Italy, Pisa 2011. IEEE
Computer Society

Schreuders, Z.C., Payne, C., McGill, T.: Techniques
for Automating Policy Specification for Application-
oriented Access Controls. In: 6th International Confer-
ence on Availability, Reliability and Security (ARES
2011) Vienna, Austria 2011. IEEE Computer Society
Schreuders, Z.C., McGill, T., Payne, C.: Towards Us-
able Application-oriented Access Controls: Qualitative
Results from a Usability Study of SELinux, AppArmor
and FBAC-LSM. International Journal of Information
Security and Privacy 6(1), 57-76 (2012)

48. Schreuders, Z.C., McGill, T., Payne, C.: Empowering

End Users to Confine Their Own Applications: The Re-
sults of a Usability Study Comparing SELinux, AppAr-
mor and FBAC-LSM. ACM Transactions on Informa-
tion and System Security (TISSEC) 14(2), 1-28 (2011)



26

7. Cliffe Schreuders et al.

Appendix: Model Logic

This paper has introduced FBAC, defined its compo-
nents and the model structure, discussed the design
of privilege propagation across process invocation, and
presented evaluation of the model. This appendix de-
fines the logic that is utilised to enforce the FBAC
model. Algorithms are presented here for starting new
processes, performing access decisions, and resolving
parameters to values. The specification of these algo-
rithms is necessarily complex; however, each algorithm
is also described in less formal terms.

The names of the functions used to identify mapped
entities in the following algorithms are displayed on the
entity mapping connections in Figure 14. For example,
PT(PROCESS x) represents the set of task confine-
ments associated with the process denoted by the vari-
able ‘x’. This notation can denote the association in ei-
ther direction: for example, PT(TASK_CONFINEMENT
c) represents the process associated with the task con-
finement ‘c’. Attribute values (as shown in Figure 14 as
dotted rectangles) are accessed using a “.” followed by

the entity name: for example, task_confinement.propagate.

It is suggested the reader refer to the figure while read-
ing the following sections.

A.1 Starting a Process

The procedure for starting a new process involves check-
ing that the program is authorised to run, creating the
process context and policy instances, and managing the
ancestry propagation of authority. The procedure is di-
vided into functions, each function is first described
then defined using pseudocode.

As defined in Figure 15, the function process_start
describes how processes start. The function parent_-
task_conf is called to retrieve each task confinement
from the parent, which is added to the ancestry associa-

tion for the child process. The function find_propagation_-

type is then used to retrieve the execute operation that
authorises the parent to start the new process. If, for
any of the task confinements, the parent is not autho-
rised to start the new process, the attempt is denied
and the process will not start. If the process has no par-
ent (that is, the parent is unconfined or nonexistent),
then the child starts using the execute_load_profile op-
eration. This means that ancestry for that process will
not be considered again when making access decisions.

The application that applies to the process is iden-
tified based on the executable path using the find_-
application function. If no policy is found for the pro-
cess, the confinement attribute no_profile (which can
be configured by an administrator, and was described

Function parent_task_conf
Parameters: child_conf, parent
Returns: TASK_.CONFINEMENT

TASK_CONFINEMENT retval = NO_.PARENT_CONF
for each parent_task_conf in set PT(PROCESS parent)
if(parent_task_conf inherited_from(child_conf))

retval = parent_task_conf
return retval

Fig. 16 Function parent_task_conf

in Section 2.4) is used to decide whether to restrict
the process to a limited policy, confine it using its par-
ent’s policy (unconfined if the parent was unconfined),
or deny the execution. If the program is permitted to
run, the function manage_propagation is then called to
modify the process ancestry (if required due to a parent
running with the execute_shell operation).

The remaining functions described in this section
perform other steps necessary for process_start to func-
tion. The process ancestry is maintained separately for
each task confinement, since each confinement can rep-
resent separate rules. Therefore, a process can have a
different ancestry of rules that needs to be considered
for each task confinement. The function parent_task_-
conf, shown in Figure 16, simply retrieves and returns
the parent task confinement for a given task confine-
ment, by searching for one that is associated with the
parent process and is inherited from the same confine-
ment.

The function find_propagation_type, shown in Fig-
ure 17, queries a task confinement for the authority
to start a program. If no privilege allows the program
to run, the function returns NONE and process_start
stops the process from starting. Otherwise, the opera-
tion used to authorise the process to start is returned.
As shown in the algorithm below, the operations are
checked in the following order of precedence: execute_-
as_current_app, execute_as_interpreted, execute_shell, ex-
ecute_load_profile, then execute. The function conf_has_-
authority (as defined later in the access control deci-
sion logic) is used to check if starting the program with
one of these operations is authorised. If the parent was
started using execute_shell or execute_as_current_app,
then the confinement’s parent’s privileges are queried
(i.e. the parent’s parent, and so on recursively).

The find_application function, shown in Figure 18,
simply searches all the application in a confinement,
for an application that has an executable matching the
executable_path argument.

The function build_task_tree, shown in Figure 19,
creates the new records and establishes the relation-
ships between records to represent the presence of a
new process on the system. As shown in the algorithm,
the new process is first associated with the user entity.



The Functional

ity-based Application Confinement Model

27

Fig. 14 The F

PP

Parameter
Argument
Literal Value

Parameter

Privilege

Executable

Resource
Descriptor

Functionality
Instance

. enum {only, except, everyone}

- applies_to_type

- enum {unconfined, :
© confine_with_restricted_profile,
deny_execution} no_profile

Task

onfinement T

<J c

. enum {execute_as_current_app,
- execute_as_interpreted, execute_shell,

BAC Model, Showing Set Association Function Names

Function process_start

Parameters: path
Returns: Boolean

, user, parent, newprocess

boolean permit = TRUE

for each conf in set CAU(USER user)
parent_conf = parent_task_conf(conf, parent)
if(parent_conf |= NO_.PARENT_CONF)

add par

ent_conf to set TT(CHILD_TASK_CONFINEMENT conf)

op = find_propagation_type(path, parent_conf)

else

op = execute_load_profile
if(op != NONE)
app = find_application(path, conf)
if(app == NOT_FOUND)
switch(conf.no_profile)

case confine_with_restricted_profile:

permit = build_task_tree (conf, RESTRICTED_APPLICATION, newprocess, user, execute)
case unconfined:

op = execute_as_current_app

permit = TRUE
case deny_execution:

permit = FALSE

else

manage
else

permit = build_task_tree(conf, app, newprocess, user, op)

_propagation(op, conf, parent_conf)

permit = FALSE

Fig. 15 Function process_start

execute_load_profile, execute} propagate



28

7. Cliffe Schreuders et al.

Function find_propagation_type
Parameters: executable_path, confinement

Returns: OPERATION {execute_as_current_app, execute_as_interpreted, execute_shell, execute_load_profile, or execute}

prop-type = NONE

set execute_operations {execute_as_current_app, execute_as_interpreted, execute_shell, execute_load_profile, execute}
if(confinement.propagate == execute_as_current_app OR confinement.propagate == execute_shell)
prop-type = find_propagation_type(TT (CHILD_TASK_CONFINEMENT confinement), path)

else
for each eop in execute_operations

if(conf_has_authority(eop, executable_path, conf) == TRUE)

prop_type = eop
break for
return prop-type

Fig. 17 Function find_propagation_type

Function find_application
Parameters: executable_path, confinement
Returns: APPLICATION

for each app in set AC(CONFINEMENT confinement)
for each exec in set AE(APPLICATION app)
if(exec matches(executable_path))
return app
return NOT_FOUND

Fig. 18 Function find_application

A new task confinement is created as an instance of the
confinement and is associated with the process. The ap-
plication is associated with the new task confinement.
All the functionalities associated with the application
(and recursively all contained functionalities) are cre-
ated as functionality instances and associated with the
NEW Process.

The function create_func_instance_recursive, shown
in Figure 20, is called by build_task_tree, and simply
creates and establishes the relationships between con-
tained functionality instances.

After everything else has successfully been estab-
lished, the function manage_propagation, shown in Fig-
ure 21, is called by process_start to set the propaga-
tion type of the new process. If the parent confinement
was running as execute_shell and the operation used to
authorise the process to start was execute_load_profile,
then the operation is reset to execute (so that the shell
can be used to launch helper programs, as described in
Section 3). The operation that has been calculated is
associated with the task confinement.

A.2 Access Decision

The logic used to make access control decisions is de-
fined in this section. The function task_has_privilege,
shown in Figure 22, is the interface to the decision
logic. It reports whether a process is authorised to per-
form an action, given the operation and the specifics
of the resources to be accessed (specified via the ‘argu-
ments’ function parameter). As shown in the algorithm,
task_has_privilege uses the conf_has_authority function
to check that every task confinement for a process au-

thorises the proposed access. This enforces the require-
ment that the resulting permission is an intersection of
these confinements.

The function conf_has_authority, shown in Figure
23, returns whether a given task confinement authorises
the action. This function takes the type of propagation
into account. Depending on the type of propagation, it
may call itself recursively for its parent and may check
the privileges associated with the task confinement us-
ing the test_all_app_privileges_with_op function. If there
is no task confinement supplied (that is, there is no par-
ent task confinement), the recursive call returns TRUE,
and the intersection of the previous task confinements
is returned. This enforces the requirement that the au-
thority granted by a task confinement is an intersection
of the hierarchy of task confinements for the process’s
ancestry.

The function test_all_app_privileges_with_op, shown
in Figure 24, is used by conf_has_authority to check
whether an application for a specific task confinement
grants the authority to perform an action. This is achieved
by calling the function test_all_func_privileges_with_op
to check whether any of the functionality instances as-
sociated with a task confinement’s application autho-
rise the activity. Subsequently test_all func_privileges_-
with_op, shown in Figure 25, recursively calls itself to
check if any functionality instances contained within
the functionality grant the access. For every function-
ality, test_direct_privs is used to test the privileges di-
rectly assigned to each functionality.

The function test_direct_privs, shown in Figure 26,
searches for privileges matching the specified operation,



The Functionality-based Application Confinement Model 29

Function build_task_tree
Parameters: confinement, application, newprocess, parent, user, op

add newprocess to set UP(USER user)

create task_confinement(confinement)

add task_confinement to set PT(PROCESS newprocess)

add application to set TA(TASK_CONFINEMENT task_confinement)

for each func in set AF(APPLICATION application)
create_func_instance_recursive(func, task_confinement)

Fig. 19 Function build_task_tree

Function create_func_instance_recursive
Parameters: functionality, task_confinement

create func_instance(functionality)

add func_instance to set IT((TASK_.CONFINEMENT task_confinement)

for each func in set II(PARENT_FUNCTIONALITY functionality)
create_func_instance_recursive(func, task_confinement)

Fig. 20 Function create_func_instance_recursive

Function manage_propagation
Parameters: op, child_conf, parent_conf

if(parent_conf != NO_PARENT_CONF AND parent_conf.propagate == execute_shell AND op == execute_load_profile)
op = execute
child_conf.propagate = op

Fig. 21 Function manage_propagation

Function task-has_privilege
Parameters: operation, arguments, current_process
Returns: Boolean

boolean permit = TRUE

for each task_confinement in set PT(PROCESS current_process)
permit = permit AND conf_has_authority(operation, arguments, process, task_confinement)
return permit

Fig. 22 Function task_has_privilege

Function conf_has_authority
Parameters: operation, arguments, task_confinement
Returns: Boolean

boolean permit
if(task_confinement == 0)
return TRUE
switch(task_confinement.propagate)
case execute:
permit = conf_has_authority(operation, arguments, TT(CHILD_TASK_CONFINEMENT task_confinement) AND test_all_app_-
privileges_with_op(operation, TA(APPLICATION task_confinement), arguments)
case execute_as_interpreted:
permit = conf_has_authority(operation, arguments, TT(CHILD_-TASK_CONFINEMENT task_confinement) OR test_all.app—-
privileges_with_op(operation, TA(APPLICATION task_confinement), arguments)
case execute_shell:
permit = conf_has_authority (operation, arguments, TT(CHILD_TASK_CONFINEMENT task_confinement)
case execute_as_current_app:
permit = conf_has_authority(operation, arguments, TT(CHILD_TASK_CONFINEMENT task_confinement)
case execute_load_profile:
if(TT(CHILD_.TASK_CONFINEMENT task_confinement).propagate == execute_shell)
permit = conf_has_authority (operation, arguments, TT(CHILD_TASK_CONFINEMENT task_confinement) AND test_all_app_-
privileges_with_op(operation, TA(APPLICATION task_confinement), arguments)
else
permit = test_all_app_privileges_with_op( operation, task_confinement, arguments)
return permit

Fig. 23 Function conf_has_authority



30

7. Cliffe Schreuders et al.

Function test_all_app_privileges_with_op
Parameters: operation, task_confinement, arguments
Returns: Boolean

boolean permit = FALSE

for each functionality in set IT(TASK_.CONFINEMENT task_confinement) while permit == FALSE
permit = test_all_func_privileges_with_op(operation, functionality, arguments)

if(permit == TRUE)
break for
return permit

Fig. 24 Function test_all_app_privileges_with_op

Function test_all_func_privileges_with_op
Parameters: operation, functionality, arguments
Returns: Boolean

Boolean permit

permit = test_direct_privs(operation, FP(FUNCTIONALITY FI(FUN_INSTANCE functionality)), arguments)

if(!permit)
for each func_child in set I(FUNCTIONALITY functionality)

permit = test_all_func_privileges_with_op(operation, func_child, arguments)

if(permit == TRUE)
break for
return permit

Fig. 25 Function test_all_func_privileges_with_op

Function test_direct_privs
Parameters: operation, privileges, arguments
Returns: Boolean

Boolean permit = FALSE
for each privilege in set privileges
if(privilege.operation == operation)

if(test_permission(operation, privilege, arguments) == TRUE)

permit = TRUE
break
return permit

Fig. 26 Function test_direct_privs
and calls test_permission to test if that privilege grants

access.
The function test_permission, shown in Figure 27,

calls the implementation dependent has_privilege to check

if the arguments supplied to the decision logic are a
match for any resource descriptors associated with the
privilege. This can involve different types of compar-
isons based on the type of resource being accessed.
As previously discussed in Section 2, this may involve
pattern matching between the patterns specified in re-
source descriptors and the strings representing the re-
source in the parameter arguments. Resolving param-
eters, as described in the next section, can be used at
this stage to determine non-literal parameter argument
values.

A.3 Resolving Parameter Arguments to Privileges

As previously discussed in Section 2.3, application poli-
cies or functionalities can supply literal arguments (in
other words, actual descriptions of resources) to param-
eters. These associations are represented in Figure 14 as
AA and FA. However, parameters can also refer to other
parameters contained in parent functionalities. This is

represented as PP in the figure. It is necessary to re-
solve these parameters to literal arguments in order to
make access decisions.

The algorithm presented in this section resolves re-
source descriptors that refer to parameters to the literal
argument values that describe the resources the opera-
tion grants access to.

The function resolve_nonliteral resource_descriptor,
shown in Figure 28, returns a literal result that de-
scribes resources. If the ‘resource_descr’ argument is al-
ready literal (that is, it is not associated with a pa-
rameter), it is simply returned. If it is non-literal (it
is associated with a parameter) then the function re-
solve_argument is used to return the literal parameter
argument.

The function resolve_argument, shown in Figure 29,
checks whether a parameter is associated with a parent
parameter. If it is, the function calls itself recursively
until all parents have been traversed and a literal value
is found. If the parameter has no parent parameters,
then the corresponding literal argument is returned.



The Functionality-based Application Confinement Model

31

Function test_permission
Parameters: operation, privilege, arguments
Returns: Boolean

return [has_privilege](operation, privilege, arguments)

Fig. 27 Function test_permission

Function resolve_nonliteral_resource_descriptor
Parameters: resource_descr
Returns: ARGUMENT or RESOURCE_DESCRIPTOR (if literal)

param = OR(RESOURCE_DESCRIPTOR resource_descr)
if param !=

return resolve_argument(param)
else

return resource_descr

Fig. 28 Function resolve_nonliteral _resource_descriptor

Function resolve_argument
Parameters: parameter
Returns: ARGUMENT

parent_param = PP(CHILD_PARAMETER parameter)
if parent_param !=

return PA(PARAMETER parameter)
else

return resolve_argument(parent_param)

Fig. 29 Function resolve_argument



	Cover page author's version
	functionality-based application confinement model
	Introduction
	Model Components
	Process Ancestry and Authority Propagation
	Evaluation
	Conclusion
	Appendix: Model Logic


