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Abstract This paper presents the functionality-based

application confinement (FBAC) access control model.

FBAC is an application-oriented access control model,

intended to restrict processes to the behaviour that is

authorised by end users, administrators, and processes,

in order to limit the damage that can be caused by

malicious code, due to software vulnerabilities or mal-

ware. FBAC is unique in its ability to limit applications

to finely grained access control rules based on high-

level easy to understand reusable policy abstractions,

its ability to simultaneously enforce application-orient-

ed security goals of administrators, programs, and end

users, its ability to perform dynamic activation and de-

activation of logically grouped portions of a process’s

authority, its approach to process invocation history

intersection-based privilege propagation, its suitability
to policy automation techniques, and in the resulting

usability benefits. Central to the model are ‘function-

alities’, hierarchical and parameterised policy abstrac-

tions, which can represent features that applications

provide; ‘confinements’, which can model simultaneous

enforcement of multiple sets of policies to enforce a

diverse range of types of application restrictions; and

‘applications’, which represent the processes to be con-

fined. The paper defines the model in terms of structure
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(which is described in five components) and function,

and serves as a culmination of our work thus far, review-

ing the evaluation of the model that has been conducted

to date.
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CR Subject Classification D.4.6

1 Introduction

Traditional user-oriented approaches to access control

do not prevent applications from misusing the privi-

leges of the user-identities they are associated with.

Software is typically trusted to act on behalf of lo-

cal users; however, malware and software vulnerabili-

ties misuse the privileges of users. Application-oriented

access control models can limit the damage that appli-

cations can cause by restricting access based on what

each application is authorised to perform. However, iso-

lation based schemes (such as traditional sandboxes [1,

2], virtual machines [3,4], and containers [5,6]) gen-

erally suffer from workflow and redundancy problems,

making it hard for applications with different privilege

requirements to interact without circumventing the iso-

lation mechanism. Rule-based schemes (such as type en-

forcement [7], Janus [8], Systrace [9], AppArmor [10],

SELinux [11], and TOMOYO [12]) can facilitate finely-

grained authorisation to shared resources; however, these

approaches typically suffer from policy complexity and

usability issues.

In this paper we define a new access control model,

functionality-based application confinement (FBAC), which

is designed to overcome limitations of previous rule-

based application-oriented access control models, in-

cluding usability issues related to policy complexity,
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and provide enforcement of the security goals of system

administrators, application developers, and end users.

The paper starts by describing the aims of the scheme

and the threats it mitigates, then an overview of FBAC

is presented. Following that, each of the five compo-

nents of the FBAC model are described separately and

related to previous research and security models. The

components combine to form the complete FBAC model,

which is illustrated in Section 2.6, Figure 11. The func-

tional aspects of FBAC are also described, including

how privileges are propagated across process invocation

and how access decisions are made. Substantial efforts

have been made to evaluate FBAC, and here we present

the results of policy analysis and review the results of

a number of publications that explore the practical im-

plications of the model. FBAC is an implementation

independent access control model and is designed to

have practical benefits when applied to existing sys-

tems. Since practical implications are a primary con-

cern, implementation options and implications are also

discussed.

1.1 Access Control Aims

As mentioned, the goal of the FBAC model is to provide

rule-based application-oriented access controls that over-

come limitations of previous schemes. More specifically,

the model aims to: provide reusable policy abstractions,

provide manageability and usability benefits, simulta-

neously enforce application restrictions defined by users

and administrators, and provide the ability to dynam-

ically deactivate and reactivate portions of policy. The

model aims to be compatible with existing applications

that are unaware of security mechanisms.

The model presented here is capable of applying

mandatory and discretionary controls to enforce the ex-

pectations of users and administrators, and is also able

to activate or deactivate portions of policy based on the

policy abstractions used. Section 4 gives an overview of

the evaluation that has been conducted of the FBAC

model and its success regarding the other aims: a Linux

proof of concept implementation was used to evaluate

the ability of the model to confine applications and ex-

press reusable policies that are compatible with exist-

ing applications, and a comparative usability study as-

sessed the usability of the scheme.

1.2 Threats FBAC Mitigates

In general the threat that FBAC mitigates is that an ex-

ecuted process can act beyond the expected behaviour

of the process and thus violate security goals concerning

resource usage. Threats that typically lead to processes

violating their security expectations include malicious

code due to software vulnerabilities and malware. Due

to their differing security goals (as described below)

separate users and administrators have diverse expec-

tations of executed programs and consider different ac-

tions as legitimate. Although existing mechanisms and

models typically consider threats from either the per-

spective of a single user or an administrator, but not

both, FBAC is designed to mitigate the threats faced

by both users and administrators. What constitutes le-

gitimate usage is therefore defined as behaviour that is

expected from all relevant users and administrators.

From a user’s perspective, a process using their iden-

tity should be acting on their behalf: only accessing the

resources necessary to perform the tasks they wish the

process to perform. However, the technical expertise

of the user may be limited and they may be unqual-

ified to define every action that should be authorised.

The threat is that software may act maliciously and

beyond these desired actions. The user’s security goal

in this case is to protect themselves from misbehaving

programs by restricting programs to only perform the

functions they wish the programs to carry out.

The administrator of a system may face a number of

threats depending on their security goals. They may in-

tend to protect users of the system from the threats fac-

ing individual users by using a mandatory access con-

trol scheme. In this case the threats are similar to those

described above: malicious programs may act beyond

the expected behaviour of the programs, to a user’s

detriment.

Administrators may also consider users to be a po-

tential threat to the system, and therefore intend to

confine users in terms of the applications they are au-

thorised to run and what they can do using them. In

addition, the administrator may wish to apply poli-

cies provided by third parties that also define which

actions applications are authorised to perform. For ex-

ample, the administrator may trust the software author

to provide a policy that defines how the application is

intended to perform, to limit the effectiveness of the

exploitation of software vulnerabilities.

1.3 Access Control Model Overview

The FBAC model enforces access control decisions based

on the identity of processes, restricting each applica-

tion to the privileges necessary to carry out its autho-

rised tasks. Users can restrict the programs they ex-

ecute using discretionary controls and users can also

be selectively restricted in application-oriented terms

by mandatory controls: for example, rules can specify
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Fig. 1 Model Diagram Notation

which applications users can use and what those appli-

cations are allowed to do when particular users are us-

ing them. FBAC can be combined with a user-oriented

access control model such as traditional DAC or MAC

to ensure other user-oriented access goals are also en-

forced: for example, to specify which resources users are

allowed to access.

FBAC restricts applications based on policy abstrac-

tions known as functionalities that describe the func-

tions each application provides: for example, web browser,

image editor, or email client. Each functionality can be

made up of other functionalities in a hierarchical struc-

ture. Functionalities are also reusable and can be ad-

justed through parameterisation to suit the needs of

related applications. FBAC can enforce multiple secu-

rity goals simultaneously by confining users’ applica-

tions with discretionary and mandatory controls de-

fined by the users or others respectively. Users can dy-

namically activate or deactivate functionalities of pro-

cesses. FBAC also allows processes to further confine

themselves to the functions they are currently perform-

ing. Each of these aspects of the model are described in

further detail in subsequent sections.

The FBAC model is divided into five components

that combine to form the complete FBAC model: the

functionality-based component (which forms the foun-

dation of the model), the hierarchical component, the

parameterised component, the user-confinements com-

ponent, and the process-functionality activation com-

ponent.

The key shown in Figure 1 defines the notation

used in the following model diagrams. The notation em-

ployed is similar to that used in the role-based access

control (RBAC) standard.

1.4 Relation to Role-based Access Control

Initial work on the FBAC model was motivated by an

attempt to leverage benefits from the RBAC model

[13] to the specific problem of improving the usability

of discretionary system call interposition systems, such

as Janus [8] and Systrace [9]. Noting the need for im-

proved usability, manageability and scalability of app-

lication-oriented access control models, it was recog-

nised that there is a notional similarity between tradi-

tional user-oriented access control (which restricts what

users are able to do on a system) and discretionary ap-

plication confinement (which restricts processes or ap-

plications to a subset of a user’s privileges). It was con-

tended that the RBAC model mitigated similar prob-

lems within the user confinement discipline; that of the

policy complexity involved in assigning permissions to

users. Therefore, the RBAC model was initially sys-

tematically adapted to the context of application con-

finement by identifying correlations between RBAC el-

ements and restricted execution constructs, adapting

RBAC functionality, and by developing a set of opera-

tions based on Unix system calls.

Some elements and constructs in the NIST/ANSI

INCITS RBAC specification [13] were found to have di-

rect equivalents in relation to application confinement:

for instance, applications rather that users access to

resources are to be confined. Most importantly, there

is a notional similarity between a user’s role in an or-

ganisation and an application’s behavioural class as it

pertains to a user’s intention for an application: for ex-

ample, a web browser or an image editor. However, as-

pects of the model needed further adaptation and care-

ful reconsideration for this new purpose. A major dif-

ference between traditional user-oriented access control

and application-oriented access controls is that applica-

tion confinement models such as FBAC need to enable

applications to start other applications; bringing with

it the complexity of designing effective privilege propa-

gation across process ancestry. Sessions in RBAC define

instances of a user within a system, as FBAC confines

processes as instances of executing applications; how-

ever, there is no equivalent concept in the RBAC model

to applications starting other applications, since RBAC

does not enable users to establish new sessions owned

by other users. Also, as previous research had indicated

[16,17], not all applications of a behavioural class re-

quire the exact same privileges (unlike most users who

have the same roles with RBAC), rather policy can be

adapted via parameterisation.

The initial adaptation was therefore followed by re-

designs, aiming to extend the model to be parame-

terised and adaptable to application privilege require-

ments, to be implementation independent (unlike the

first designs which included a set of specific operations

to mediate), and support mandatory and discretionary

controls. This is in contrast to the initial focus on im-
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proving system call interposition to provide a discre-

tionary control; in fact, following the design of the model

the implementation that was developed was a system-

wide kernel security module, rather than system call

interposition. Unlike other application-oriented restric-

tion schemes, FBAC simultaneously provides manda-

tory and discretionary controls, leveraging the reusabil-

ity of functionality-based policy to do so with reduced

management overhead. These changes in addition to

features for dynamically deactivating functionalities re-

quired the model to deviate significantly in terms of

the RBAC sessions construct. Readers may note vi-

sual similarities between diagrams of the FBAC and

RBAC models (Figure 11 and [13]), and the distinct dif-

ferences around the sessions and processes constructs,

with FBAC constructs for providing the required app-

lication-oriented features. These details are described

in Section 2.

By basing the initial design of the new model on

RBAC concepts, a so called “functionality-based” scheme

has been proposed, which overcomes limitations in ex-

isting behaviour based application confinement schemes.

Similarities and differences between the RBAC and FBAC

models are further discussed throughout this paper, as

is this work’s relation to other models and literature.

Unlike the role-based access control (RBAC) model

standard [13], which separates parts of the model that

can be optionally combined when designing a RBAC

mechanism, FBAC components depend on each other

and are separated primarily to simplify the description

and discussion of the model. As described, FBAC at-

tempts to leverage RBAC-like policy abstractions to

improve application-oriented access control policy com-

plexity issues. However, it should be noted that the

two models differ considerably in terms of goals and

context, and in order to meet the stated aims of the

access control model FBAC deviates significantly from

the structure of the RBAC model.

2 Model Components

2.1 Functionality-based Component

The foundation of the FBAC model is the functionality-

based component. FBAC is based on the paradigm of

restricting or auditing applications based on the func-

tionalities associated with each application. This com-

ponent of FBAC is a fundamental aspect of the model

and is the basis for all the other components. The term

functionality-based is coined, not only to describe this

component of the FBAC model, but to also describe

any subsequent model based on this paradigm.

Fig. 2 The Paradigm: Functionality-based

Fig. 3 FBAC Privileges

The functionality construct is designed to represent

a function or behaviour an application may be autho-

rised to carry out. Functionalities can describe high

level features such as ‘web browser’, ‘email client’, ‘web

server’ or ‘file manager’, or can describe lower level ap-

plication tasks such as ‘HTTP client’.

As illustrated in Figure 2, each application is asso-

ciated with one or more functionalities in a many-to-

many relationship. Functionalities are associated with

the privileges required to provide those functions. Priv-

ileges are therefore not directly associated with indi-

vidual applications, but rather via abstract constructs,

designed to minimise the management task of assigning

privileges to applications.

As illustrated in Figure 3, a privilege in the FBAC

model is made up of a single operation associated with

one or more resource descriptors. An operation describes

the type of access to the resources defined by the re-

source descriptors.

An FBAC resource descriptor represents mediated

resources or, in access control terms, it can represent a

set of objects. As shown in Figure 4, a resource can be

described by multiple descriptors. Likewise a descriptor

can refer to multiple resources.

Although outside the scope of the access control

model specification herein, implementations of the model

may express descriptors in various ways. For clarifica-

tion of the concept it is sufficient at this point to simply

review some options the model allows. An FBAC re-

source descriptor may be implemented as label-based or

name-based. That is, resource descriptors can be anal-

ogous to types in domain and type enforcement (DTE)

[14], where one or more resources are labelled with

a type that is then used to represent those resources

in policy. Alternatively, similar to the way AppArmor
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Fig. 4 Resource Descriptors

Fig. 5 Executables Associated with an Application

specifies rules [10], the resource can be referred to by

a name or string pattern that can identify resources:

for example, the pattern “/home/*” can represent any

file in the home directory of a Unix system. In either

case the resource descriptor can be used to identify re-

sources to the finest granularity of the way resources

are distinguished on the system and can also provide

some limited abstraction to describe related resources.

An executable file is a stored program that can be

executed. Each application has one or more executa-

bles (as shown in Figure 5) that are considered part of

that application. Processes executing those executables

are therefore restricted (as described in subsequent sec-
tions) based on the application and the functionalities

available to the application.

This concludes the description of the primary com-

ponent of FBAC. The functionality-based component,

which combines the elements discussed in this section,

is shown in Figure 6. Each of the elements and rela-

tionships illustrated in the diagram has been discussed

above. This component describes how, through func-

tionalities, privileges are associated with applications.

For the sake of clarity, the way these associations are

related to users and processes are described in sepa-

rate components of the FBAC model. Also, the way

the model makes access decisions is covered in detail in

later sections.

2.1.1 Discussion of the Functionality-based Component

Other application-oriented restrictions are generally mono-

lithic in nature, where each process has one large de-

tailed policy that applies to it at a time. Rule-based

application-oriented access controls that do provide some

form of abstraction present in policy, generally do not

provide abstractions that are easily reusable for differ-

ent applications, and they are “compiled” down to a

flat list of rules that apply at run-time. In contrast

FBAC application policy (that is, the rules that de-

fine the authorisation that applies to an application)

is made up of multiple reusable abstractions that apply

at run-time. The functionality-based component, estab-

lishes the foundation of the FBAC model, and describes

how application policies are granted privileges via the

‘functionality’ abstraction.

The functionality-based paradigm (as first proposed

in an initial version of the model [15]) was inspired by

an attempt to apply the structure of the user-oriented

RBAC model to the context of restricting applications.

The abstract nature of roles, which form associations

between users and privileges in RBAC, led to the con-

cept of applying an abstract relationship between ap-

plications and the privileges they require.

This component is comparable to ANSI INCITS/

NIST Core RBAC [13] in that it provides the basis of

the model. However, in addition to the different aim

of the model, this FBAC component does not include

a concept that represents the policy associated with

an instance of the subject (represented by sessions in

RBAC), as this is left to another FBAC component.

The user-confinement FBAC component that provides

this aspect takes a very different approach and has a dif-

ferent structure to the one used in RBAC. Also the ‘exe-

cutable’ element has no correlation in the RBAC model,

as user authentication is outside the scope of RBAC.

However, the notionally analogous process-application

identification is within the scope of the FBAC model,

and as detailed in Section 3 is used for calculating priv-

ilege propagation based on administrative FBAC priv-

ileges.

The paradigm of confining applications based on the

functionalities they perform is related to the concept of

behaviour-based sandboxing [16,17]. The main distin-

guishing feature being that functionality-based restric-

tions specify multiple functionalities that apply to an

application, rather than restricting each program to a

single behavioural class. The subsequent components

of the FBAC model add substantial improvements to

the restrictions provided by this paradigm. As previ-

ously mentioned, aspects of the model are separated

into components to simplify explanation.

2.2 Hierarchical FBAC Component

The hierarchical FBAC component describes functional-

ity-functionality relationships, where a functionality may
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Fig. 6 FBAC Component: Functionality-Based

contain other functionalities. This is shown in Figure 7

as an arrow from the functionality element back to it-

self.

The hierarchical nature of an FBAC policy allows

layers of abstraction and encapsulation to be built. High-

level functionalities that describe the purposes of appli-

cations (such as Web Browser, Email Client and Web -

Server) are constructed using lower-level functionalities

that provide the authorisation necessary to perform re-

quired tasks (such as http client, ftp client and POP3 -

client). These in turn are made up of very low-level ab-

stractions that group finely grained privileges needed

to access resources (such as file r, and file w).

2.2.1 Discussion of the Hierarchical Component

Unlike other application-oriented models, the hierar-

chical nature of FBAC policy allows detailed applic-

ation-oriented policies to be formed from layers of pol-

icy abstractions. Policy abstractions are typically self-

contained, have limited reusability or adaptability, and

are compiled into a single set of rules that are applied

at run-time. This level of abstraction and reuse of pol-

icy has not been incorporated into the access control

model of previous application-oriented schemes. Some

schemes, such AppArmor, have policy languages that

can convert from simple hierarchically contained ab-

stractions to a flat list of rules to be enforced. However,

unlike these schemes, FBAC can make access decisions

based on these hierarchies, which means they can be

activated or deactivated dynamically, as formalised in

the process-functionality activation component.

The hierarchical FBAC component is similar in con-

cept to the hierarchical RBAC component in its “gen-

eral hierarchies” form. General RBAC hierarchies also

allow multiple inheritance/containment of policy ab-

stractions. FBAC hierarchies are distinct in that they

use containment, where a functionality contains another

in terms of privileges, and contained functionalities can

be deactivated (the method of activating and deacti-

vating functionalities is described later in Section 2.5).

Whereas RBAC hierarchies can only be deactivated

from the highest level roles that are associated with

users, contained roles cannot typically be deactivated

individually. For this reason it is possible to describe

RBAC hierarchies as inheritance, since all the attributes

of inherited roles are effectively transferred to the par-

ent roles, whereas FBAC hierarchies are contained rather

than inherited. This is a deviation from the RBAC

structure so as to allow greater run-time control over

the functionality hierarchy.

2.3 Parameterised FBAC Component

FBAC is parameterised, allowing functionalities to ad-

just the resource descriptors of contained privileges to

adapt to application specific requirements and therefore

allow access to resources required by particular appli-

cations. As illustrated in Figure 8, functionalities can

have multiple parameters. Application policies can then

send arguments to those parameters when functionali-

ties are assigned. Parameter arguments hold literal val-

ues, which are specified in an application policy or func-

tionality. These values can be assigned to a parameter of

a functionality from within an application policy or to

a contained functionality within a parent functionally.

Functionalities can then use parameters in place of lit-

eral values as resource descriptors. Functionalities can

therefore grant access to resources that can be defined

when the functionality is assigned, allowing functional-

ities to be reused to grant access to different resources

as needed.

For example, a functionality named Standard Gra-

phical Application could have a parameter called pe-

ruser directory. The application policy for a program

such as Firefox would then have a literal value de-

scribing the resource requirements of that application

(such as “/home/*/.mozilla/firefox/”, on a Unix-based

system), which it sends to Standard Graphical Applic-

ation when it is associated with the application. Stand-

ard Graphical Application can then grant access to the

parameter peruser directory using a privilege that uses

the parameter as a resource descriptor. Other function-

alities such as Web Browser would also be used and sent
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Fig. 7 FBAC Component: Hierarchical FBAC

Fig. 8 FBAC Component: Parameterised FBAC

parameter arguments to customise these functionalities

to the application.

When functionality hierarchies are present (where

functionalities contain other functionalities), then pa-

rameters also form hierarchical structures. This is shown

in Figure 8 as dashed lines. Functionalities that con-

tain other functionalities can send their parameters as

arguments to contained functionalities’ parameters. So

in the example in Figure 8 the Standard Graphical -

Application functionality can use another functionality

such as dir full access to grant the necessary access by

passing the parameter peruser directory as a parameter

argument to the contained functionality dir full access.

These hierarchical functionality levels encapsulate de-

tails while providing flexible abstractions that can be

fine-tuned to suit the diverse implementation details of

related applications.

FBAC functionalities are therefore passed arguments

in a fashion similar to subroutines in programming lan-

guages. This allows the policy abstraction to easily adapt

to the differing details of applications providing related

features. Functionalities contain other parameterised func-

tionalities and parameterised privileges; where privi-

leges are computed at run-time based on the arguments

passed to privileges via functionalities. This hierarchical

relationship between functionalities allows arguments

to propagate to any contained functionality.

2.3.1 Discussion of the Parameterised Component

Previous research has demonstrated that the resource

needs of programs can be related to behavioural classes

and that applications can be restricted with some suc-

cess based on the class of program along with parame-

ters that describe the specific needs of a program [17].

FBAC combines this general approach with the func-

tionality-based scheme described in the previous sec-

tions to provide a model to restrict a process using

multiple behavioural classes. Hierarchies improve pol-

icy by abstracting details, while these abstractions are

themselves parameterised to allow them to also adapt

to the specific needs of the situation.

While in RBAC it is usually adequate for all users

in a specific role to have access to the exact same re-

sources, it is not sufficient for all applications perform-

ing the same function to have access to the exact same

resources. For example, applications typically store their

configuration files in separate directories. The addition

of parameterisation is therefore necessary in order to

apply an RBAC-like structure to the context of behav-

iour-based restrictions. A few RBAC schemes have been
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proposed that incorporate some form of role parame-

terisation, such as those proposed by Giuri and Iglio

[18] and by Yao et al. [19]. However, these schemes fo-

cus on using environmental constraints and object con-

tents to limit the availability of privileges or roles to

users. FBAC takes a new approach that is designed for

the specific needs of application confinement, where ab-

stractions can be used to grant different privileges based

on the needs of applications, and can be layered to en-

capsulate details so that applications can be confined

based on their high level features, which are, in turn,

modelled by parameterised lower level features.

Parameterisation significantly changes the seman-

tics of the restriction and resolution of access decisions,

and as such differentiates the RBAC and FBAC models

substantially. RBAC roles are normally omnidirectional

in the sense that it is equally demanding to determine

which users are assigned to a role and what permissions

a role grants [20]. On the other hand, FBAC function-

alities are unidirectional in the sense that it is easier to

determine which functionalities are available to appli-

cations than to determine what privileges a function-

ality will grant. This design enables FBAC functionali-

ties to be adjusted to the specific needs of applications,

whereas RBAC roles generally only provide the exact

same privileges to each user assigned.

This component has some notional similarities with

subsequent work on access control policy templates by

Johnson et al. [21], where policy templates/abstractions

are developed separately from policy specification. How-

ever, the models, methods, and aims of the schemes are

distinct. The scheme proposed by Johnson et al. aims

to assist in generating domain specific structured lists

for guided policy authoring, where as FBAC focuses

on providing usable application-oriented controls and

takes a different approach to policy development and

specification.

2.4 FBAC User-Confinements Component

The FBAC model is capable of simultaneously enforc-

ing multiple application-oriented policies that apply to

specific users. This is achieved by the FBAC User-Con-

finements Component described in this section.

Using FBAC, mandatory controls can restrict users

in terms of the applications they are allowed to exe-

cute and what those applications can subsequently do.

Furthermore, by allowing users to have discretion over

some policies pertaining to their own applications, the

model can also enforce discretionary controls that users

can utilise to restrict their own processes.

An FBAC confinement represents application re-

strictions that apply to specific users. As illustrated in

Figure 9, each user can have multiple confinements that

apply to them (shown as the right-side connection be-

tween User and Confinement). Each confinement also

has users who are authorised to maintain the appli-

cation policies, which involves application specification

and association with functionalities. This is represented

on the diagram by the left-side connection between con-

finements and users.

Each confinement has a list of applications that use

functionalities available to the confinement. That is, the

applications associated with a confinement can only be

associated with functionalities from that confinement.

Due to the reusability of functionalities, functionalities

can be made available to multiple confinements and

hence the many-to-many relationship between the func-

tionality and confinement element.

As shown in the dashed rectangle in Figure 9, each

confinement also has an attribute value applies to type;

this allows the confinement to apply to all the users as-

sociated with the confinement (the value only), to all

other users (except), or to all users (everyone). Each

confinement also allows configuration of the policy that

is to apply to processes that do not have a matching

executable. This is specified using the no profile value,

which can take on of the following values: unconfined,

confine with restricted profile, or deny execution. In the

unconfined case a child process is restricted by its par-

ent’s policy.

Creating mandatory restrictions involves creating

confinements that apply to users that are not also main-

tainers of those confinements. In terms of Figure 9,

there is an ‘applies to’ relationship between a User and

a Confinement, but not a ‘maintained by’ relationship.

Usually mandatory confinements would be maintained

by a security administrator, although other less likely

configurations are possible such as allowing one normal

user to specify the application restrictions of another

user (such as for a colleague with less technical knowl-

edge). Creating a discretionary control involves creat-

ing a confinement that applies to a user who is also

authorised to maintain the confinement. The user can

then add applications to that confinement to restrict

programs.

2.4.1 Discussion of the User-Confinements Component

The FBAC user-confinements component describes a

significant aspect of the FBAC model that is unique

within the field of application-oriented access control:

the simultaneous enforcement of multiple policies de-

fined by multiple people with distinct security goals

applying to the same process. The applies to type and

the no profile confinement attributes enable the admin-
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Fig. 9 FBAC Component: User-Confinements

istrator to configure a number of different types of re-

strictions. For example, sets of users can be confined

to using only particular programs. Other programs can

either be off limits (deny execution), or severely re-

stricted (confine with restricted profile). Alternatively

a more targeted approach can also be achieved, where

programs without policies are unconfined. The ‘main-

tained by’ relationship between users and confinements

allows administrators to authorise users to configure

the rules for applications to also enforce their own se-

curity goals. These constructs can be utilised to enforce
a number of diverse security policies, and can represent

rules not easily enforced using previous schemes.

Previous application-oriented models were designed

to enforce one policy, which is specified to enforce a

particular security goal, for each process or program.

Mechanisms are therefore designed to either provide

a mandatory or a discretionary control. For example,

systems such as Janus [22], Systrace [9], and TRON

[23] provide enforcement of discretionary user-defined

process restrictions, and systems such as AppArmor

[10], SELinux [11], and Linux DTE [24] are system-

wide mandatory controls defined by an administrator.

These systems are therefore used to enforce separate

goals. Discretionary application-oriented controls are

employed by users to protect their own resources from

a malicious program. This ensures the program only

accesses resources required to carry out the tasks the

user wants it to. In contrast, mandatory controls are

used by administrators to enforce system-wide security

goals, ensuring that processes do not access resources

that could lead to these goals being subverted: for ex-

ample, the restriction of certain shared services such

as web, ftp or local setuid programs. Both approaches

have security benefits. However, providing both types

of restrictions using previous models requires two sep-

arate mechanisms to be maintained. Even if the same

model (for example, DTE) was implemented as both a

mandatory and discretionary control, it would involve

the redundancy of maintaining both types of controls

entirely separately.

On the other hand, FBAC is designed to provide

both types of controls, and does so while reducing the

overhead of enforcing multiple policies for a single pro-

cess. The main policy unit (functionality) is reusable

across confinements, which makes the task of maintain-

ing low-level policy scale well to this situation. Users

and administrators can reuse these abstractions in any

of the confinements they maintain to enforce their own

security goals. Enforcement is achieved through the one

model in one access decision procedure.

Most application-oriented models and mechanisms

do not consider the user identity when confining a pro-

cess. Discretionary application-oriented controls typi-

cally only apply to a single user maintaining the restric-

tion, while mandatory application-oriented controls typ-

ically apply the same set of rules for a program re-

gardless of user-identity. The main exception to this

is SELinux [11], which is a framework that combines

multiple security models, including non-standard ver-

sions of RBAC and DTE. Roles define which domains

users are authorised to transition into. SELinux policy
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takes the form of an extremely complex combination

of a number of security models, which makes it hard to

maintain and verify for correctness [25]. FBAC provides

user-specific restrictions using a single application-ori-

ented access control model that is designed to be easier

to administer.

Because the FBAC model only involves positive au-

thorisation rules (not denials), conflicts in security goals

do not result in decision making complexity. Rather, if a

user has the authority to maintain a confinement, then

they may configure policies that can further restrict the

actions of any programs run by the users that the con-

finement applies to. The model can enable clear audit-

ing to make the source of denials clear. Although not a

common use case, assigning multiple users to maintain

a single confinement should involve careful considera-

tion, to ensure they collaborate on policy effectively,

since they will all have the authority to modify any

rules that applies to that confinement.

2.5 FBAC Process-Functionality Activation

Component

Figure 10 shows the FBAC process-functionality activa-

tion component. Included in this figure are the process

and task confinement elements, which associate policy

with a running process. As shown in the figure, a user

can run multiple processes. Each process is confined by

all the task confinements that correspond (one-to-one)

to any confinements that apply to the user. For exam-

ple, if a user is restricted by two confinements (such as a

mandatory and a discretionary confinement), then any

process owned by that user would have two active corre-

sponding task confinements. That is, each confinement

that applies to a user is instantiated as a task confine-

ment for each of their processes, and inherits the values

of the confinement (applies to type and no profile). If

the process corresponds to an executable that matches

an application that is associated with one of its task

confinements, then the task confinement has a one-to-

one association with the corresponding application (

shown in the figure by the connection between Task

Confinement and Application).

Confinement process ancestry is represented by map-

ping task confinements to task confinements (children

to parents). This relationship is shown in Figure 10 as

the connection between the Task Confinement element

and itself. This parent-child relationship is used to cal-

culate privilege propagation and used in access control

decision logic, as described in subsequent sections.

For each task confinement, each of the functionali-

ties associated with the application are instantiated as

functionality instances. The associations between task

confinements and functionality instances represent which

functionalities are active for a task confinement. By de-

fault, when a process is started, all its functionalities

for each task confinement that apply to it are acti-

vated. However, this behaviour could be altered in the

application’s policy to require manual user activation.

Functionalities directly assigned to applications are ac-

tivated by mapping functionality instances to task con-

finements (labelled in Figure 10 as “Active high-level

functionalities”). Inherited functionalities are activated

by mapping functionality instances to other function-

ality instances (labelled as “Active hierarchical func-

tionalities”). By default, when a functionality is acti-

vated, all inherited functionalities are also activated.

Functionalities can be deactivated by severing these re-

lationships, and reactivated by re-instantiating func-

tionalities. Processes are only granted access to priv-

ileges via functionalities that are active.

The functionalities associated with a task confine-

ment can be dynamically activated and deactivated.

Users who have discretion over policy (that is, they have

a ‘maintained by’ relationship with the confinement,

as described in the FBAC User-Confinements compo-

nent) can activate or deactivate them, while security

aware software (i.e. the process itself) can only deacti-

vate functionalities. This allows the rights of a process

to be altered at run time by dynamic interaction. Users

can limit the software to the behaviour the user wants

the application to carry out at a point in time, while

software can make itself more resistant to vulnerabili-

ties by restricting itself to only the functionalities it is

currently performing.

Users who have discretion over policy can deacti-

vate functionalities associated with the corresponding

task confinements. The functionalities may then be re-

activated only by further user intervention. Processes

may also deactivate functionalities if they are FBAC-

aware. Although a process can drop functionalities, it

can never reactivate them. Software authors can there-

fore limit the impact of vulnerabilities by dropping all

functionalities other than those that represent the task

a process is currently performing. For example, a pro-

gram that can both act as an email client and a web

browser could fork a process for performing web brows-

ing and then deactivate the email client functionality.

This behaviour would limit the impact of malicious

code to within the permissions associated with web

browsing and would not allow the browser to send emails

if the browser component of the software was compro-

mised.
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Fig. 10 FBAC Component: Process-Functionality Activation

2.5.1 Discussion of the Process-Functionality

Activation Component

By allowing processes to further restrict themselves,

FBAC enforces yet another type of restriction, appli-

cation security, without introducing any management

overhead to users or administrators. This restriction is

another form of discretionary control, but from the per-

spective of the processes rather than the user. Other

such restriction schemes include FreeBSD Jails, and ch-

root() [5], both of which allow a process to initiate one-

way privilege declination. FBAC provides the function-

ality abstraction to processes, which makes managing

privileges much simpler for the process than managing

each privilege independently. FBAC also provides much

greater control over privileges than namespace scope-

limiting schemes such as Jails and chroot()or coarsely

grained schemes such as Linux capabilities [26] or the

Mac OS X sandbox API [27, pp. 156-178].

FBAC’s hierarchy of functionalities allows run-time

intervention to dynamically deactivate or activate branches

of functionalities. This is similar to the concept of users

restricted by an RBAC scheme who only activate the

roles relevant to the part of their job they are currently

performing in order to mitigate the security risks in-

volved in holding excess privileges.

Although related to the idea of active roles in RBAC,

the scheme for providing active functionalities in FBAC

is distinctly different to the structure used by RBAC.

RBAC uses the concept of sessions, a simple mapping
between users and the roles they have activated [28].

Rather than simply providing a mapping between task

confinements and functionalities, FBAC introduces the

concept of functionality instances, which allows func-

tionalities to be dropped or activated from within a hi-

erarchy. This level of dynamic control is not possible us-

ing RBAC. So although the FBAC model was developed

in part from the RBAC model, FBAC allows greater dy-

namic control of policy than the RBAC model allows.

For example, a ‘Web Browser’ functionality could con-

tain other functionalities that allow HTTP and FTP

network access. Using FBAC, a web browser process

could drop the ability to use FTP while still using

HTTP. Using RBAC, only roles directly associated with

a user can be activated, and any inherited roles are au-

tomatically also active.

Because FBAC’s policy abstractions are hierarchi-

cal, small or large parts of the policy can be activated or

deactivated at run time. This is not possible using ex-
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isting application-oriented access control models, such

as DTE [29]/SELinux [11], RC [30], or AppArmor [10],

as privileges are contained in a monolithic abstraction

associated with the security context. Changing privi-

leges using these models requires transitioning into an-

other complete set of privileges (domain, role, or profile

respectively). FBAC provides greater dynamic control

of active policy than any previous application-oriented

access control.

2.6 Complete FBAC Model Structure

The FBAC model as a whole is made up of the previ-

ously described components and is shown in Figure 11.

The following example demonstrates how the FBAC

model elements relate to each other. The example also

refers to the decision making process that the element

relationships are used for; this aspect of the model is

described more formally in the Appendix.

The user Alice may have two confinements that ap-

ply to her: one that she maintains called “Alice’s Disc-

retionary”, and one that her system administrator put

in place called “Staff Mandatory”, which is non-discret-

ionary and applies to all staff. These user-confinement

relationships — the confinements that apply and who

manages them — are shown as the two arrows between

Confinement and User.

Alice and her administrator may have both created

policies for the program Firefox. The application poli-

cies specify which executable files form part of the appli-

cation (the arrow from Application to Executable) and

which functionalities the program performs (the arrow

to Functionality). By specifying parameters for func-
tionalities (the arrow to Parameter Argument, which is

for a particular Parameter), the administrator ensures

that the program will only write to Alice’s home di-

rectory: so that if the program is exposed to malicious

code it cannot alter other shared resources Alice has ac-

cess to. Alice restricts the application further, granting

access to particular directories within her home direc-

tory, such as a download directory and the applications

configuration directory.

When Alice executes the program, its path matches

an executable specified in application policies in both

confinements and a process is created and the program

starts. Two task confinements that correspond to the

confinements that apply to Alice are created for that

process. Each task confinement links to the application

that it is confining the process as (the line between

Task Confinement and Application). These task con-

finements represent the restrictions that are enforced

for the process. The functionalities that apply to the

application are associated with the task confinement

when those functionalities are active. If a functionality

is deactivated, it is removed from this relationship and

is no longer used to calculate what that process can do.

When that process attempts to access a mediated

resource (for example, it tries to write a file to disk),

each task confinement is queried. Each task confinement

authorises the action based on the functionalities that

are active and the process’s ancestry. If every task con-

finement allows the action then the request is allowed,

otherwise it is rejected.

3 Process Ancestry and Authority Propagation

The FBAC model controls authority propagation be-

tween processes based on process ancestry and associ-

ated privileges. The FBAC model does not allow pro-

cesses to discretionarily delegate privileges to arbitrary

processes.

Each task confinement that applies to a process re-

stricts propagation independently and, for an action to

be allowed, every task confinement must permit the

action. This section describes the propagation of au-

thority within a single task confinement across pro-

cesses. The way in which task confinements are com-

bined to form the final authorisations for applications

is described in the Appendix.

The FBAC model does not specify a complete list

of operations, as operations can be implementation-

dependent so that implementations can take advantage

of the granularity of the available security mediation in-

terface. However, the FBAC model does specify a small

number of operations, presented here, for controlling

authority propagation. These operations are considered

necessary for the model as they are involved in the de-

cision logic for controlling authority based on process

ancestry.

In order for a process (A) to execute another (B)

it must have a privilege that explicitly allows this. An

execute privilege is specified using one of the opera-

tions shown in Table 1, along with a resource descriptor

that specifies the programs that can be executed. The

amount of authority granted to the executed program B

depends on the operation used to grant the permission.

Table 1 gives an overview of the operations that

control authority propagation. The prefix “file ” sim-

ply denotes that the operations work on resources that

are files, while those prefixed with “application ” oper-

ate on applications, allowing execution of any file that

is an executable of the specified application. The re-

source descriptors used with any of these operations

form privileges that specify the executable files or the

other application that the application is authorised to

execute.
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Fig. 11 The Complete FBAC Model

Table 1 FBAC Authority Propagation and Execute Operations

Operations Description Propagation of Authority When Ap-
plication A Executes Application B

file execute

application execute

Where an application A executes another
application B to help perform the function-
alities the application performs. For exam-
ple, using helper programs to perform sub-
tasks.

Subtractive propagation:

A ∩B

file execute load profile

application execute load profile

When application A executes another ap-
plication B to perform other functionalities
that A cannot perform.

Context transition:

B

file execute shell

application execute shell

When application A executes a shell such
as bash to execute other programs to help
perform the functionalities the application
performs.

Context copy:

A

Special case: the next propagation is
always subtractive.

file execute as current app Can be used when no profile exists for pro-
gram B to allow B to run as A. This is equiv-
alent to adding executable B to application
A, except that executable B is only consid-
ered part of application A when executed
by application A.

Context copy:

A
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The way process task confinement privileges are com-

bined is given in the right hand column, where A is

the set of privileges that apply to the previous pro-

cess task confinement. For example, if Firefox, a web

browser, starts with its full application permissions (via

* execute load profile) and uses rm, which deletes files

on Unix, (via * execute) to remove a file, then rm has

the permissions, Firefox∩rm. In the unlikely scenario

that rm was authorised to run mv (via * execute) then

the previous permissions A (Firefox ∩ rm) would be

intersected with mv, giving Firefox ∩ rm ∩ mv. The

result in this example is that Firefox can use rm to

remove files that Firefox is authorised to remove, and

rm could not use other programs (via * execute) to do

anything but remove files that Firefox is authorised to

remove.

The * execute operations are used for the frequent

situation where an application A executes another ap-

plication B to help it carry out its features. In other

words the subsequent application B acts within the

bounds of what the first application A is allowed to do,

but since the application B exists, application A uses

it rather than reprogramming the task involved. Ap-

plication B is restricted using subtractive propagation,

where application B is restricted to an intersection of

the permissions allowed to application A (the result of

previous propagation) and the policy allocated to ap-

plication B. This propagation is safe and always further

restrictive, never permissive. This allows an application

policy for a program such as rm to allow all file un-

links. However, when it is used by another application

to remove files, it can only remove files that application

could have removed itself.

The * execute load profile operations are used when

an application needs to start a dissimilar application,

that is, an application whose resource needs are dis-

tinctly different. Application B is allowed the full per-

missions afforded to the corresponding application pol-

icy. This is roughly analogous to allowing a domain

transition in DTE. There is an inherent security risk

involved as propagation is not necessarily restrictive:

propagation can grant program B authority that pro-

gram A does not have. Therefore these operations should

be used with caution and with well thought-out secu-

rity goals. Examples of when these operations would be

used are for a launcher program, which starts applica-

tions with their full policies, and for a web browser that

is allowed to start a program such as a word processor

to view downloaded files. In each case the interactions

authorised between applications using these operations

need to be carefully considered.

The file execute as current app operation restricts

the subsequent application B to the same security con-

text as the parent application A. This is similar to

adding an executable to an application, except that the

executable file B is only considered as part of appli-

cation A when an executable from application A runs

it.

The * execute shell operations are used for the spe-

cial case of an application launching a shell through

which other programs are executed to carry out the

tasks of the first application. This is a common occur-

rence on Unix systems as programs often start other

helper programs via the bash shell. The shell is re-

stricted using the policy of application A, similar to the

behaviour resulting from the file execute as current -

app operation. However, a special condition applies:

when the shell starts another application, propagation

is always restrictive. That is, in this case * execute -

load profile is treated as * execute. This design allows

the policy for a shell to authorise full profile loading

of applications when run as a launcher via * execute -

load profile, and when used by other applications with

* execute shell it acts as a helper, which is a safe and

restrictive approach.

Figure 12 illustrates some example process ances-

tries (including the Firefox rm mv example above)

and the resulting authorised permissions.

When granted multiple privileges to execute the same

program, the following order of predominance applies.

1. file execute as current app

2. file execute shell or application execute shell

3. file execute load profile or application execute load -

profile

4. file execute or application execute

This ordering allows special cases (with higher privi-

lege) to overwrite general cases. For example, on a Unix

system using name-based resource descriptors, an appli-

cation may be allowed to run any program in “/bin/*”

with file execute, except in the special case of “/bin/bash”,

which is run with file execute shell. This order is de-

signed to simplify policy specification as special cases

override common cases. Otherwise in the example above

the file execute operation could not be used as a blanket

permission with “/bin/*”, instead every separate exe-

cutable would have to be specified separately because

the “/bin/bash” special case would otherwise be over-

ridden. Similarly the file execute as current app and * -

execute load profile operations are special cases, which

are to be used seldom and with careful consideration.

On modern systems, programs are not always in the

form of natively executable files. Scripted and inter-

preted languages such as bash scripts, Perl and Python,

and frameworks such as Java and .NET often have a

process interpreting and working on behalf of a sepa-

rately stored program. For this reason FBAC includes
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Fig. 12 Hypothetical Authority Propagation Example

an additional operation that grants a program the right

to work on behalf of another. The interpreter (A) can

then assume the privileges of an application (B) in one

of two ways: the interpreter can signal to the access

control mechanism that it wishes to do so, or the in-

terpreter can access the file with execute permission.

Doing the latter automatically initiates the procedure.

The resulting privilege is still subject to the privilege

propagation rules previously described.

As shown in Table 2, the privilege granted to the

interpreter’s application policy is the operation file -

execute as interpreted or application execute as inter-
preted with a resource descriptor that defines the file

or application that is to be interpreted.

For example, Java may be given the permission to

interpret all .class files. An rm.class Java program that

deletes files could be created and that class file could

be added to the executables of the rm application pol-

icy. Then, when Java accessed the rm.class file, Java

would assume the privileges of the rm application and

be allowed to delete files. However, the process ances-

try that led to the execution of Java would restrict

which files Java could delete. Returning to the Fire-

fox example, if Firefox executed Java via * execute,

then Java could only access the .class files that Firefox

could execute. When Java executes rm.class its privi-

leges would become Java ∪ rm, which when combined

with the fact Java was started by Firefox, becomes

Firefox ∩ (Java ∪ rm). Consequently the interpreted

rm program may still only delete files that Firefox can

delete. Note that the Linux kernel is aware of certain

interpreters, and is therefore able to identify a pro-

cess in terms of the file being interpreted. Therefore,

the FBAC-LSM implementation avoids having to im-

plement this part of the FBAC model, and instead as-

signs additional functionalities to interpreted programs,

which enable the interpreters to function.

3.0.1 Discussion of FBAC Privilege Propagation

The FBAC scheme for privilege propagation and pro-

cess ancestry is unique within the field of application-

oriented access controls. Isolation-based schemes typi-

cally do not perform security context changes and con-

sequently all children are isolated to the same resources.

Rule-based controls typically allow different applica-

tions to be restricted using separate policies that are

applied when they are executed. When processes start,

most rule-based application-oriented access control schemes

(for example, AppArmor, SELinux, and DTE) consult

the active policy and either keep the parent’s secu-

rity context for the new process or transition to be-

ing confined by a separate policy. Unfortunately, with

discrete policies it is difficult to verify that all the au-

thorised policy transitions are safe [31]. Transitions can

lead to the ‘confused deputy’ problem, where a pro-

gram can launch and influence another more privileged

program in order to exceed its own authority [32]. The

FBAC model simplifies the security sensitivity of many

of these interactions by preferring an intersection ap-

proach, where each helper process (such as one of the

common Unix commands) is confined to the intersec-

tion of its own authority and that of the program(s) it

is acting on the behalf of. In this case it is safe to allow
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Table 2 FBAC Privilege Interpreter Operation

Operations Description Resulting Privilege When Applica-
tion A Interprets Application B

file execute as interpreted

application execute as interpreted

Allows application A to interpret and act
using to privileges of application B.

Additive:

A ∪B

the parent processes to influence the child process, and

the child can be confined to specific behaviour, rather

than allowing it the excess authority of either the par-

ent or child policy. This concept was illustrated by the

Firefox/rm example in the previous section.

The FBAC privilege propagation approach is re-

lated to stack inspection, a language-based security fea-

ture of Java and .NET. Stack inspection is used in the

context of application virtualisation to restrict the ac-

tions of untrusted code modules within a virtual ma-

chine [33,34]. Access rights are the intersection of the

authority of all the frames on the stack. Therefore a

malicious module cannot perform operations it is not

authorised to. Trusted code can optionally assert re-

sponsibility for use of some permissions, thus overrid-

ing the inspection of its callers: for example, to grant

additional privileges [35]. Stack tracing has some no-

tional similarities with the FBAC privilege propagation

scheme. In both schemes intersection is performed by

inspecting the invocation history; in the case of stack

inspection this is the method call history, for FBAC it

is the process ancestry history. Also in both schemes

intersection is overridden when necessary; for stack in-

spection this involves enabling privileges, for FBAC this

involves making execute as current app transitions. Al-

though the work is related, the specifics and purpose are

distinct.

The Singularity operating system incorporates pro-

cess invocation history in its system-wide access control

scheme [36]. Process identities are represented using

text strings, which include the complete process an-

cestry, and can be used in access decisions to confine

applications by pattern matching against the invoca-

tion history. TOMOYO provides an invocation history-

based application-oriented access control for Linux [12].

However, a separate policy is defined for each different

invocation string that is allowed, meaning a single pro-

gram may require many separate policies if it is exe-

cuted by a number of separate programs [12]. Neither

of these systems currently enforce the intersection of

policies for separate programs.

4 Evaluation

Substantial effort has been made to evaluate the efficacy

of the FBAC model, much of which has previously been

published. Here we provide an overview of the results

of the evaluation that has been conducted.

4.1 Prototype development

As previously mentioned, a prototype mechanism im-

plementing the FBAC model has been designed and

built. The mechanism is known as FBAC-LSM and is

implemented for Linux platforms [37]. FBAC-LSM is

available as free open source software [38]. The goal of

the implementation is to act as a proof of concept and to

facilitate evaluation of the FBAC model. As improved

usability is a major objective of this research, the user

interface aims to leverage the FBAC model constructs

to provide policy construction with ease of use. As the

FBAC-LSM name implies, a main component is a Linux

security module (LSM). As the implementation is in-

tended as a proof of concept, it does not aim to provide

complete coverage and has not been verified to be error

free.

As described in Section 2, the FBAC model may be

implemented as either label-based or name-based. The

FBAC-LSM implementation mediates access by means

of name-based controls. Using name-based mediation,

resources are protected based on their names rather

than via labels attached to objects. For example, ac-

cess to files is mediated in terms of their pathnames

rather than the names of labels associated with the

files. Examples of other name-based mechanisms are

AppArmor [10] and TOMOYO [39], while SELinux [40]

and SMACK [41] are examples of label-based LSMs.

Some access control model specifications, such as tra-

ditional MAC [42] and DTE [43], specify that they are

implemented as label-based mechanisms. FBAC allows

the model to be implemented either way; the type of

mediation used by the FBAC model is not defined by

the FBAC specification. Name-based mediation is used

by FBAC-LSM because it provides conceptual simplic-

ity, as security is defined in terms of concepts users

are familiar with, rather than associations with labels,
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which are less familiar to users, and enables access to

be granted based on pathname patterns, which can rep-

resent complex rules in simple terms.

The prototype has been used to analyse the ability

of FBAC to model and enforce the needs of applica-

tions, and to study the usability benefits of the scheme.

In order to evaluate the practical aspects of the model it

was deemed necessary to create an implementation that

was grounded in an operating system with existing ap-

plications to be confined. As described in the following

sections, the results of evaluation have demonstrated

that the model can provide improvements for confining

existing applications on Linux systems. As the benefits

of the implementation can predominantly be attributed

to the policy abstraction that the FBAC model pro-

vides, we contend that the evaluation results can be at-

tributed to the model, which is platform independent.

4.2 Modelling the Privileges Assigned to Applications

As a preliminary investigation of the suitability of the

model, the resource requirements of four different web

browsers were analysed, and a hierarchical set of FBAC

functionalities were created [44]. Web browsers were

chosen as the type of application to study due to their

inherent internal complexity and feature richness. The

FBAC policy language, FBAC-PL, was developed for

the implementation [45], and was able to express the

security goals, resulting in a policy that can confine

the applications to expected resource use. The result-

ing policy compared very favourable to other existing

schemes, such as SELinux, AppArmor, and Systrace.

The Web Browser functionality provided an abstract

way of granting an application the authority to perform

web browsing. Parameters were used to adapt the gen-

eral policy abstraction to the individual requirements

of different applications: for example, each application

stored had separate configuration directories. Parame-

ters were also used to specify user preferences, such as

locations authorised for file downloads. The hierarchical

nature of functionalities also enabled encapsulation of

policy details, which enabled policy to abstract details

away from end user facing configuration, while enabling

policy reuse at the functionality development level.

Subsequently, over 100 applications have been pro-

filed and FBAC policies have been created to confine

them. Except in a few fringe cases, the functionalities

required by applications were obvious and enabled pol-

icy reuse across different applications.

4.2.1 Methodology

One hundred and two applications were analysed in

terms of resource usage and privilege requirements. Based

on this analysis, functionalities were created and ex-

pressed using FBAC-PL [45]. These policy abstractions

were then used as a basis for constructing policies to

restrict the applications to authorised behaviour us-

ing FBAC-LSM. Applications were selected for analy-

sis based on the features they provided and their avail-

ability on the policy development environment. Games,

image editing and viewing programs, video and audio

players, text editors, network clients (IRC chat clients,

FTP clients, bittorrent clients, and web browsers), and

some widely-used command-line programs were anal-

ysed.

Developing functionalities, which abstract common

privilege requirements in terms of the features the ap-

plication provides, involved a number of steps. These

are listed below and then described in further detail:

– identifying the resources applications utilised;

– identifying the purpose of each of these resources;

– determining whether access to each resource was re-

quired for the application to perform the user’s in-

tent;

– grouping required resources, based on features pro-

vided, into functionalities; and, abstracting away

application-specific resources by replacing literal re-

source descriptions with parameters.

Identifying the resources that applications utilise

was performed by executing the applications, exercis-

ing their primary features, and using tools to analyse

the resources and the type of access requested. Anal-

ysis of the resources used by applications was carried

out using strace (which outputs the system calls used

by programs), AppArmor profiling tools (which out-

put file/type AppArmor rules matching accesses), by

analysing the open source application profiles that were

available for AppArmor, and using the FBAC-LSM mod-

ule auditing features and user-space tools. The FBAC-

LSM policy manager has a learning mode that inter-

acts with the module. The policy manager was used to

interactively add to application policies. The resulting

output was then analysed.

Identifying the purpose of each of the accessed re-

sources and determining whether access to each resource

was required was an iterative process. Examination of

the context of use, source code inspection, examina-

tion of resource contents, and web searches were used

to identify the reason applications accessed these re-

sources. This information was used to make decisions

about whether to authorise access to the resources. When

access to a resource seemed unnecessary, the ability of
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the application to function without access to the re-

source was tested. FBAC-PL rules granting access to

the required resources were grouped together based on

the features provided by applications and the way pro-

grams interacted with users. Each of these groups of

privileges were either expressed as FBAC-PL high-level

functionalities, representing program features, or base-

level functionalities, representing types of programs. Ap-

plication-specific resources were replaced with function-

ality parameters, thereby abstracting away those de-

tails from the functionalities. These application-specific

resources were specified for each application policy as

arguments to parameters when assigning functionali-

ties. Required privileges that were not appropriate for

any functionalities were assigned directly to application

policies.

The ability to grant applications direct privileges

in addition to those authorised via functionalities is a

feature of FBAC-PL which is beyond the FBAC model

presented in this paper, and the extent that this was

(not) required for policy represents a measure of the

extent that the model suited the studied use cases1.

Privileges within functionalities that described com-

ponents of high-level features – that is, groups of priv-

ileges that were reused in multiple functionalities or

with logical relationships – were likewise grouped into

low-level functionalities. When appropriate for policy

reuse, the parent-functionality-specific details were ab-

stracted using parameters. Thus, low-level functionali-

ties were reused within other functionalities and, when

child functionalities had parameters, arguments were

specified by the parent-functionality to adapt contained

functionalities to the needs of the parent-functionality.

The resulting policy structure was a hierarchy of func-

tionalities, starting with the functionalities directly as-

signed to applications where, for example, a high-level

functionality would contain other high-level functional-

ities and low-level functionalities, which would in turn

contain other functionalities, and so on.

4.2.2 Policy Abstraction Results

Using the methodology described, 144 functionalities

were created. Functionalities can be assigned “high-

level”, “base-level”, or “low-level” status in the pol-

icy language, and this has the benefit of improving the

user interface and simplifies discussion. Of the function-

alities created, three were base-level (2.1%), 40 were

1 Note that the same result can be achieved without de-
viating from the FBAC model, by creating non-reusable
application-specific functionalities. This was avoided during
the study, since the study aimed to analyse the reusability of
the FBAC policy abstractions.

Table 3 Base-level Functionalities

Base-level Functionalities Number of
Parameters

Simple Commandline Program 0
Standard Commandline Application 6
Standard Graphical Application 7

high-level (27.8%), and 101 were low-level functional-

ities (70.1%). The functionalities created are available

in full online [38]. These results add to the literature

describing behavioural classes of programs.

Base-level functionalities were designed to represent

the different ways programs interface with users. Based

on the programs analysed, the three base-level function-

alities and the number of parameters for each of these

functionalities is shown in Table 3.

These base-level functionalities contained low-level

functionalities. For example, the Standard Graphical -

Application functionality included the functionalities:

base, gui, audio, common console helper programs, tmp -

access, printer, IPC system aware-dbus system bus, mime -

aware, and other functionalities that grant access to

application-specific resources specified as parameters.

Most of these low-level functionalities were likewise

made up of other low-level functionalities. As shown

in Figure 13, using the FBAC-LSM policy manager’s

advanced views one may “drill down” from base or high-

level functionalities though the hierarchy of contained

functionalities.

The high-level functionalities created were designed

to provide the privileges necessary for programs to per-

form the high-level features identified during analysis.

High-level functionalities have been assigned categories

to group related functionalities for ease of use. Table

4 shows a list of the 40 high-level functionalities that

were developed. The categories into which they were

grouped, and the number of parameters for each, are

also displayed.

A mean of 1.9 parameters were defined per high-

level functionality. This result shows that only a small

number of application-specific details are typically re-

quired to adapt high-level functionalities to specific ap-

plications. FBAC-PL was successfully able to represent

feature-based security goals for applications as high-

level functionalities.

4.2.3 Policies for Applications

Utilising the functionalities developed, policies were cre-

ated for the applications. Tables 5 to 12 give an overview

of the application policies created. Each table shows the

application policy names (which, by convention, were

named after the command used to start each applica-
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Fig. 13 The Policy Manager’s Advanced Functionality View

tion), the functionalities directly assigned to the appli-

cation policy, and the number of privileges directly as-

signed to the application policy. Applications that were

assigned the same functionalities with the same number

of additional privileges are grouped into the same row.

Of the 102 applications studied, only four required

privileges that were deemed unsuited to the functionali-

ties and parameters developed. Two of these four appli-

cations (glchess, xchat-gnome) required extra privileges

because they acted as front-ends for other applications,

one (digikam) stored its configuration files in a non-

standard location, and the other (kcheckpass) stored

files in an unusual location for a graphical application.

As an exception, during policy analysis, the lbreakout

game corrupted its configuration files; the result being
that even when no confinement policy was in effect, the

game crashed with a segmentation fault.

4.2.4 Policy Discussion

The analysis of existing applications and the policy de-

velopment presented in this paper demonstrate that

FBAC functionalities can model and abstract the priv-

ileges required to perform program features. The cre-

ated functionalities were successfully utilised to autho-

rise the applications to perform the features they pro-

vided, while severely limiting the damage that may be

caused by malware or software vulnerabilities. Results

show that the functionality construct is able to provide

reusable abstractions that can encapsulate and abstract

policy details, can adapt to the needs of specific applica-

tions to provide the privileges they require, and reduce

the challenges that can arise when applying rule-based

application-oriented access controls to confine existing

software. Based on these results, we contend that FBAC

provides a practical solution that is an excellent balance

between the principle of least privilege and that of psy-

chological acceptability. These results are expected to

be operating system independent, should FBAC be re-

implemented.

One of the challenges facing all finely-grained rule-

based application-oriented access control schemes is pol-

icy complexity. Each application policy is typically made

up of a large number of low-level access rules, and the

complexity of the overall system policy more or less

increases in direct relation to the number of applica-

tions that are confined. Some existing schemes include

simple abstractions that group related rules (for exam-

ple, AppArmor policy abstractions, and SELinux do-

mains); however, these abstractions only represent rel-
atively low-level aspects of programs and have limited

reuse. In contrast, the policies created for FBAC-LSM

are largely defined in terms of reusable abstractions.

The result is a hierarchical policy configuration that

reduces redundancy in both application policies, and

also within policy abstractions (where functionalities

are defined in terms of other functionalities). The re-

sults presented in this paper show that the functionali-

ties developed were reusable and flexible; functionalities

were adapted to provide authority to multiple applica-

tions and functionalities. FBAC therefore improves the

scalability of policy, since confining applications is per-

formed by applying existing functionalities, rather than

creating complex low-level rules.

The structure produced by functionality hierarchies

provided layers of abstraction. In the policies created,

logically grouped rules were successfully abstracted into

functionalities. This abstraction improves the manage-

ability of policy, by making it possible to drill down
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Table 4 High-level Functionalities

Category High-level Functionalities Number of
Parameters

File/Media
Editor

File Editor
Archive Editor
Audio Editor
Document Editor
Image Editor
PDF Editor
Video Editor
Web Files Editor

2
2
2
2
2
2
2
2

File Viewer /
Media Player

File Viewer
Archive Viewer
Audio Player
Document Viewer
Image Viewer
PDF Viewer
Video Player
Web Files Viewer

2
2
2
2
2
2
2
2

Game Game
Network Game

3
6

Network
Client

General Network Client
BitTorrent Client
Email Client
Ftp Client
Downloader
Irc Chat Client
News Reader Client
ICMP Pinger
Web Browser

6
4
6
3
2
4
1
1
4

System Tools Deleter
Process Information
File System Mounter
Uses Shell
System Password Management
System Password Check

2
0
0
1
0
0

Platform Uses Perl
Uses Mono
Uses Python
Uses Orbit
Uses Java
Uses Ruby
Uses XulRunner

0
0
0
0
0
0
0

from higher level functionalities, to low-level details.

This structure can ease maintenance of policy, since

details are encapsulated according to the purpose of

the rules. As illustrated in Figure 13, this can facili-

tate visual representations of policy that can assist in

policy maintenance. FBAC also separates the task of

abstraction development from association with applica-

tion policies. Assigning functionalities to applications is

separated from the more complicated task of develop-

ing functionalities, which would normally be performed

by someone with more specialised knowledge.

Of the 102 applications studied, only four required

privileges in addition to those provided by the function-

alities developed. Those that had additional privilege

requirements were resolved with minor additions, and

it is believed that, in each case, further research and de-

Table 5 Overview of FTP and Bittorrent Application Poli-
cies (file transfer.fbac)

Applications Functionalities Additional
Privileges

gftp, filezilla Standard Graphical -
Application
Ftp Client

0

ktorrent,
torium, trans-
mission

Standard Graphical -
Application
BitTorrent Client

0

ftp Standard Commandline -
Application
Ftp Client

0

ncftp, yaftp Simple Commandline -
Program
Ftp Client

0

wget Simple Commandline -
Program
Downloader

0

deluge Standard Graphical -
Application
BitTorrent Client
Uses Python

0

rtorrent Simple Commandline -
Program
BitTorrent Client

0

velopment would yield functionalities that would satisfy

these privilege requirements. On the occasions where an

application does require access to additional resources

(such as access to a particular non-standard resource, or

to GPS or other sensors – as may increasingly become

popular), the additional access attempts can be vetted

separately from the complex finely-grained resource us-

age that can be authorised based on functionalities that

represent the high-level features the application pro-

vides.

This research shows that using a functionality-based

approach can yield reusable policy abstractions, and

that the privilege requirements of applications map well

to these abstractions in practice. From a policy devel-

opment point of view, this builds a strong case for the

reusability and flexibility of the FBAC model.

Although providing policy configuration and man-

agement benefits, it was evident that at point of end

user configuration the specification of parameter ar-

guments was the least intuitive and most complex as-

pect of the model. Fortunately the model proved to be

uniquely suited to policy specification automation.

4.3 Automation and a Priori Policy Specification

Automation techniques have been developed to assist

in FBAC policy specification, automating or provid-

ing suggestions for each of the steps: selecting executa-

bles, associating functionalities, and specifying argu-
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Table 6 Overview of Game Application Policies
(games.fbac)

Applications Functionalities Additional
Privileges

gnobots, gnometris,
kasteroids, kfou-
leggs, kgoldrunner,
ksirtet, ksmiletris,
ksnake, kspaceduel,
ktron, ktumber-
ling, supertux,
kenolaba, kbackgam-
mon, kblackbox,
gtali, kmahjongg,
mahjongg, kreversi,
blackjack, kpat,
kpoker, sol, ksame,
kbounce, konquest,
kmines, gnomine,
glines, gnotski, same-
gnome, gnotravex,
ksokoban, katomic,
kjumpingcube, knet-
walk, klines, kolf,
brutalchess, xmoto,
klickety

Standard Graphical -
Application
Game

0

glchess Standard Graphical -
Application
Game
Uses Python
Uses Orbit

1

gnome-sudoku Standard Graphical -
Application
Game
Uses Python
Uses Orbit

0

iagno, gnect, lskat,
gnibbles, kwin4, kbat-
tleship

Standard Graphical -
Application
Network Game

0

frozen-bubble Standard Graphical -
Application
Network Game
Uses Perl

0

lbreakout Standard Graphical -
Application
Game

N/A

Table 7 Overview of Graphics Application Policies (graph-
ics.fbac)

Applications Functionalities Additional
Privileges

digikam Standard Graphical -
Application
Image Editor

2

eog, gimp, krita Standard Graphical -
Application
Image Editor

0

karbon Standard Graphical -
Application
Image Editor

0 (2+ for
parsing
other file
formats)

gwenview Standard Graphical -
Application
Image Viewer

0

Table 8 Overview of IRC Client Application Policies (irc
clients.fbac)

Applications Functionalities Additional
Privileges

konversation, ksirc,
dsirc

Standard Graphical -
Application
Irc Chat Client
Uses Perl

0

bitchx Standard -
Commandline -
Application
Irc Chat Client

0

xchat Standard Graphical -
Application
Irc Chat Client

0

xchat-gnome Standard Graphical -
Application
Irc Chat Client

1

Table 9 Overview of Audio and Video Players Application
Policies (media players.fbac)

Applications Functionalities Additional
Privileges

amarok Standard Graphical -
Application
Audio Player
Uses Ruby

0

banshee Standard Graphical -
Application
Audio Player
Video Player
Uses Mono

0

codeine, gmplayer,
kaffeine, kplayer,
realplay, vlc, xine,
mplayer

Standard Graphical -
Application
Audio Player
Video Player

0

totem Standard Graphical -
Application
Video Player

0

Table 10 Overview of File Editor Application Policies (text
editors.fbac)

Applications Functionalities Additional
Privileges

gedit, kate, kwrite Standard Graphical -
Application
File Editor

0

vi Standard -
Commandline -
Application

0

ments for each functionality parameter [46]. Automa-

tion is achieved via simple analysis of program depen-

dencies, program management information, and filesys-

tem contents. For this purpose, FBAC-PL includes au-

tomation metadata within the definition of function-

alities and parameters [45]. For example, functionality

definitions can contain libraries and desktop icon cat-

egories that indicate the functionality is likely to be

appropriate. As a result of automation, complete (and
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Table 11 Overview of Web Brower Application Policies (web
browsers.fbac)

Applications Functionalities Additional
Privileges

epiphany Standard Graphical -
Application
Web Browser

0

firefox Standard Graphical -
Application
Web Browser
Uses XulRunner

0

lynx Standard -
Commandline -
Application
Web Browser

0

opera Standard Graphical -
Application
Web Browser
Email Client
Irc Chat Client
BitTorrent Client
News Reader Client

0

Table 12 Overview of Common Console Application Policies
(console.fbac)

Applications Functionalities Additional
Privileges

rm Simple -
Commandline -
Program
Deleter

0

cat, ls Simple -
Commandline -
Program
File Viewer

0

ps Simple -
Commandline -
Program
Process Information

0

mount Simple -
Commandline -
Program
File System Mounter

0

passwd, expiry,
gpasswd

Simple -
Commandline -
Program
System Passwd -
Management

0

kcheckpass Standard Graphical -
Application
System Passwd -
Check

3

near complete) policies can easily be created a priori:

that is, without first executing the program being con-

fined. During assessment, policy only occasionally suf-

fered from rare false negatives or positives.

Due to the complexity of rule-based application-ori-

ented access controls, learning modes are often used to

generate policy. Schemes that typically rely on learn-

ing modes to generate policy include Systrace [9], Ap-

pArmor [10], SELinux [11], and TOMOYO [12]. Learn-

ing modes generate policy rules by recording applica-

tion behaviour. Disadvantages of this approach include

the fact that this recording is typically done while the

application is not confined, meaning the typical ap-

proach is not appropriate for confining potentially mali-

cious software. Conversely, if an application is confined

during development, typically many iterations of pol-

icy development will be required, since many programs

continue to crash until policy is somewhat complete.

Furthermore, any policy specification exposes the user

to low level privilege requirements of applications and

many users are not likely to possess the knowledge nec-

essary. In contrast, automation that leverages FBAC

model features is able to generate policies that are rel-

atively easy to comprehend, and enable the user to en-

force their security goals in relation to the application

without exposing them to low level policy details. Dur-

ing evaluation, the few false negatives that prevented

legitimate behaviour could be resolved using FBAC-

LSM learning mode, which involves fewer decisions than

other schemes as the learning mode is only required for

these fringe cases [46].

These automation techniques successfully further low-

ered the expertise required to construct policies to con-

fine applications using FBAC-LSM, and added further

evidence of the benefits of the FBAC model.

4.4 Usability

A comparative study was conducted to evaluate the

usability of the FBAC model, by comparing FBAC-

LSM with two widely deployed alternative systems that
provide application-oriented controls, AppArmor, and

SELinux [47,48]. After a pilot study, 39 participants

completed the experiment, using all three security mech-

anisms to construct policies to confine two programs.

Descriptive and inferential statistics were utilised to

compare the within-subjects effects of the three security

systems.

As previously reported [48]2, a one-way within sub-

jects ANOVA was conducted to compare the effect of

security system on System Usability Scale (SUS) scores.

The security system was found to have a significant ef-

fect, Wilks’ Lambda = 0.38, F (2,35) = 28.99, p <

.001, n=37. Post hoc analysis using the Tukey LSD test

showed that the usability of all three systems were sig-

nificantly different from each other. On average FBAC-

LSM received the highest SUS scores (M=70.21), fol-

2 For further details regarding the methods, results, and
discussion please refer to this publication. An overview is
presented here as part of the wider evaluation of the FBAC
model.
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lowed by AppArmor (M=54.93), and SELinux (M=34.58).

On average, participants also ranked FBAC-LSM easi-

est to use, easiest to understand, and most likely to use

again. These results indicated that FBAC-LSM demon-

strated higher perceived usability compared to AppAr-

mor and SELinux.

The effect of the security system on the partici-

pants success in creating policies that were actually

in effect was analysed using repeated measures logistic

regression. In each case there was a significant effect,

p < .007, and in each case FBAC-LSM was most fre-

quently successfully used to create enforcing policies.

In the web browser example, 90% of participants suc-

cessfully created a policy that was enforced using us-

ing FBAC-LSM, 66% using AppArmor, and only 23%

using SELinux. In the Trojan horse simulation exam-

ple 82% of participants created enforced policies us-

ing FBAC-LSM, 71% using AppArmor, and only 22%

using SELinux. The results showed that, compared to

the other systems, FBAC-LSM had significantly higher

success rates for both policy creation and enforcement.

It was also found that using FBAC-LSM more of the

policies that were created allowed programs to function

correctly while they were confined.

The final security state of the systems were fur-

ther analysed using the non-parametric Friedman test

(since not all assumptions for ANOVA were met), and

the security system was found to have a significant ef-

fect (p < 0.001) on the overall risk exposure. Risk ex-

posure was measured in terms of the number of spe-

cific security sensitive resources that the participant-

configured security systems did not prevent access to.

Post hoc analysis showed that the policies created us-

ing FBAC-LSM had a lower risk exposure (M=14.3)

compared to both AppArmor (M=30.3) and SELinux

(M=43.0). The study also demonstrated that FBAC-

LSM provided similar security benefits when success-

fully confining benign software, such as a web browser.

However, using FBAC-LSM, participants more frequently

successfully created policies, thereby reducing risk in

the case of confining trustworthy software to protect

against vulnerabilities. The policies created using FBAC-

LSM provided significantly increased protection against

malware, compared to the other mechanisms.

Participants also rated FBAC-LSM as being more

time efficient; however, the time recorded for AppAr-

mor profiling was often shorter. This discrepancy was

attributed to the behaviour of participants who rapidly

clicked through the many AppArmor dialogues, which

in the case of the Trojan horse simulation also had the

effect of inadvertently authorising malicious behaviour.

As mentioned, the usability study showed empiri-

cally that FBAC-LSM was rated as significantly more

usable than the other systems. FBAC-LSM was also

significantly more successful at securing the systems.

Learning mode systems, which rely on users vetting

rules, were demonstrated to be unreliable and open to

subversion by malicious programs compared to a func-

tionality-based approach.

Qualitative analysis provided further insight into

factors that can influence the usability of application-

oriented access controls, and confirmed that the ab-

stractions and techniques enabled by the FBAC model

contributed to usability benefits [47].

5 Conclusion

This paper has proposed and defined a novel rule-based

application-oriented access control model, FBAC, that

confines processes based on application policies con-

structed using reusable and adaptable policy abstrac-

tions known as functionalities. Processes can simultane-

ously be subject to restrictions, known as confinements,

that can enforce mandatory and discretionary applica-

tion policies specified by separate users.

As discussed, the FBAC model has many features

unique within the field of application-oriented access

controls, including:

• hierarchical policy primitives;

• parameterised policy abstractions that can be com-

bined and layered;

• simultaneous enforcement of multiple security goals/

sets of policies, which can enforce a diverse range of

types of application restrictions;

• dynamic activation and deactivation of logically grouped

portions of a processes authority;

• process invocation history intersection-based privi-

lege propagation.

FBAC was designed to provide application confine-

ment that is functionality-based in nature, capable of

modelling high level security goals for application re-

strictions, with abstractions that encapsulate low level

policy details. This design separates the task of specify-

ing application-functionality associations from the more

involved task of specifying security rules for classes of

programs.

The Linux prototype, FBAC-LSM, has enabled the

evaluation of the efficacy of the FBAC model, and demon-

strates the usability advantages and unique features of

this new approach to application confinement. Analysis

showed that the FBAC model is capable of represent-

ing the privilege needs of applications. The model is

also well suited to automation techniques that can in

many cases create complete application policies without

first running the applications. This is an improvement
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over previous approaches that typically rely on learn-

ing modes to generate policies. A usability study was

conducted, which showed that compared to two widely-

deployed alternatives (SELinux and AppArmor), FBAC-

LSM had significantly higher perceived usability and

resulted in significantly more protective policies.

It is our hope that the model presented in this paper

will be used to protect end users against malicious code,

and will help to direct and inspire future work in this

developing field of research.
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Appendix: Model Logic

This paper has introduced FBAC, defined its compo-

nents and the model structure, discussed the design

of privilege propagation across process invocation, and

presented evaluation of the model. This appendix de-

fines the logic that is utilised to enforce the FBAC

model. Algorithms are presented here for starting new

processes, performing access decisions, and resolving

parameters to values. The specification of these algo-

rithms is necessarily complex; however, each algorithm

is also described in less formal terms.

The names of the functions used to identify mapped

entities in the following algorithms are displayed on the

entity mapping connections in Figure 14. For example,

PT(PROCESS x) represents the set of task confine-

ments associated with the process denoted by the vari-

able ‘x’. This notation can denote the association in ei-

ther direction: for example, PT(TASK CONFINEMENT

c) represents the process associated with the task con-

finement ‘c’. Attribute values (as shown in Figure 14 as

dotted rectangles) are accessed using a “.” followed by

the entity name: for example, task confinement.propagate.

It is suggested the reader refer to the figure while read-

ing the following sections.

A.1 Starting a Process

The procedure for starting a new process involves check-

ing that the program is authorised to run, creating the

process context and policy instances, and managing the

ancestry propagation of authority. The procedure is di-

vided into functions, each function is first described
then defined using pseudocode.

As defined in Figure 15, the function process start

describes how processes start. The function parent -

task conf is called to retrieve each task confinement

from the parent, which is added to the ancestry associa-

tion for the child process. The function find propagation -

type is then used to retrieve the execute operation that

authorises the parent to start the new process. If, for

any of the task confinements, the parent is not autho-

rised to start the new process, the attempt is denied

and the process will not start. If the process has no par-

ent (that is, the parent is unconfined or nonexistent),

then the child starts using the execute load profile op-

eration. This means that ancestry for that process will

not be considered again when making access decisions.

The application that applies to the process is iden-

tified based on the executable path using the find -

application function. If no policy is found for the pro-

cess, the confinement attribute no profile (which can

be configured by an administrator, and was described

Function parent task conf
Parameters: child conf, parent
Returns: TASK CONFINEMENT

TASK CONFINEMENT retval = NO PARENT CONF
for each parent task conf in set PT(PROCESS parent)

if(parent task conf inherited from(child conf))
retval = parent task conf

return retval

Fig. 16 Function parent task conf

in Section 2.4) is used to decide whether to restrict

the process to a limited policy, confine it using its par-

ent’s policy (unconfined if the parent was unconfined),

or deny the execution. If the program is permitted to

run, the function manage propagation is then called to

modify the process ancestry (if required due to a parent

running with the execute shell operation).

The remaining functions described in this section

perform other steps necessary for process start to func-

tion. The process ancestry is maintained separately for

each task confinement, since each confinement can rep-

resent separate rules. Therefore, a process can have a

different ancestry of rules that needs to be considered

for each task confinement. The function parent task -

conf, shown in Figure 16, simply retrieves and returns

the parent task confinement for a given task confine-

ment, by searching for one that is associated with the

parent process and is inherited from the same confine-

ment.

The function find propagation type, shown in Fig-

ure 17, queries a task confinement for the authority

to start a program. If no privilege allows the program

to run, the function returns NONE and process start

stops the process from starting. Otherwise, the opera-

tion used to authorise the process to start is returned.

As shown in the algorithm below, the operations are

checked in the following order of precedence: execute -

as current app, execute as interpreted, execute shell, ex-

ecute load profile, then execute. The function conf has -

authority (as defined later in the access control deci-

sion logic) is used to check if starting the program with

one of these operations is authorised. If the parent was

started using execute shell or execute as current app,

then the confinement’s parent’s privileges are queried

(i.e. the parent’s parent, and so on recursively).

The find application function, shown in Figure 18,

simply searches all the application in a confinement,

for an application that has an executable matching the

executable path argument.

The function build task tree, shown in Figure 19,

creates the new records and establishes the relation-

ships between records to represent the presence of a

new process on the system. As shown in the algorithm,

the new process is first associated with the user entity.



The Functionality-based Application Confinement Model 27

Fig. 14 The FBAC Model, Showing Set Association Function Names

Function process start
Parameters: path, user, parent, newprocess
Returns: Boolean

boolean permit = TRUE
for each conf in set CAU(USER user)

parent conf = parent task conf(conf, parent)
if(parent conf != NO PARENT CONF)

add parent conf to set TT(CHILD TASK CONFINEMENT conf)
op = find propagation type(path, parent conf)

else
op = execute load profile

if(op != NONE)
app = find application(path, conf)
if(app == NOT FOUND)

switch(conf.no profile)
case confine with restricted profile:

permit = build task tree (conf, RESTRICTED APPLICATION, newprocess, user, execute)
case unconfined:

op = execute as current app
permit = TRUE

case deny execution:
permit = FALSE

else
permit = build task tree(conf, app, newprocess, user, op)

manage propagation(op, conf, parent conf)
else

permit = FALSE

Fig. 15 Function process start
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Function find propagation type
Parameters: executable path, confinement
Returns: OPERATION {execute as current app, execute as interpreted, execute shell, execute load profile, or execute}

prop type = NONE
set execute operations {execute as current app, execute as interpreted, execute shell, execute load profile, execute}
if(confinement.propagate == execute as current app OR confinement.propagate == execute shell)

prop type = find propagation type(TT (CHILD TASK CONFINEMENT confinement), path)
else

for each eop in execute operations
if(conf has authority(eop, executable path, conf) == TRUE)

prop type = eop
break for

return prop type

Fig. 17 Function find propagation type

Function find application
Parameters: executable path, confinement
Returns: APPLICATION

for each app in set AC(CONFINEMENT confinement)
for each exec in set AE(APPLICATION app)

if(exec matches(executable path))
return app

return NOT FOUND

Fig. 18 Function find application

A new task confinement is created as an instance of the

confinement and is associated with the process. The ap-

plication is associated with the new task confinement.

All the functionalities associated with the application

(and recursively all contained functionalities) are cre-

ated as functionality instances and associated with the

new process.

The function create func instance recursive, shown

in Figure 20, is called by build task tree, and simply

creates and establishes the relationships between con-

tained functionality instances.

After everything else has successfully been estab-

lished, the function manage propagation, shown in Fig-

ure 21, is called by process start to set the propaga-

tion type of the new process. If the parent confinement

was running as execute shell and the operation used to

authorise the process to start was execute load profile,

then the operation is reset to execute (so that the shell

can be used to launch helper programs, as described in

Section 3). The operation that has been calculated is

associated with the task confinement.

A.2 Access Decision

The logic used to make access control decisions is de-

fined in this section. The function task has privilege,

shown in Figure 22, is the interface to the decision

logic. It reports whether a process is authorised to per-

form an action, given the operation and the specifics

of the resources to be accessed (specified via the ‘argu-

ments’ function parameter). As shown in the algorithm,

task has privilege uses the conf has authority function

to check that every task confinement for a process au-

thorises the proposed access. This enforces the require-

ment that the resulting permission is an intersection of

these confinements.

The function conf has authority, shown in Figure

23, returns whether a given task confinement authorises

the action. This function takes the type of propagation

into account. Depending on the type of propagation, it

may call itself recursively for its parent and may check

the privileges associated with the task confinement us-

ing the test all app privileges with op function. If there

is no task confinement supplied (that is, there is no par-

ent task confinement), the recursive call returns TRUE,

and the intersection of the previous task confinements
is returned. This enforces the requirement that the au-

thority granted by a task confinement is an intersection

of the hierarchy of task confinements for the process’s

ancestry.

The function test all app privileges with op, shown

in Figure 24, is used by conf has authority to check

whether an application for a specific task confinement

grants the authority to perform an action. This is achieved

by calling the function test all func privileges with op

to check whether any of the functionality instances as-

sociated with a task confinement’s application autho-

rise the activity. Subsequently test all func privileges -

with op, shown in Figure 25, recursively calls itself to

check if any functionality instances contained within

the functionality grant the access. For every function-

ality, test direct privs is used to test the privileges di-

rectly assigned to each functionality.

The function test direct privs, shown in Figure 26,

searches for privileges matching the specified operation,
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Function build task tree
Parameters: confinement, application, newprocess, parent, user, op

add newprocess to set UP(USER user)
create task confinement(confinement)
add task confinement to set PT(PROCESS newprocess)
add application to set TA(TASK CONFINEMENT task confinement)

for each func in set AF(APPLICATION application)
create func instance recursive(func, task confinement)

Fig. 19 Function build task tree

Function create func instance recursive
Parameters: functionality, task confinement

create func instance(functionality)
add func instance to set IT((TASK CONFINEMENT task confinement)
for each func in set II(PARENT FUNCTIONALITY functionality)

create func instance recursive(func, task confinement)

Fig. 20 Function create func instance recursive

Function manage propagation
Parameters: op, child conf, parent conf

if(parent conf != NO PARENT CONF AND parent conf.propagate == execute shell AND op == execute load profile)
op = execute
child conf.propagate = op

Fig. 21 Function manage propagation

Function task has privilege
Parameters: operation, arguments, current process
Returns: Boolean

boolean permit = TRUE
for each task confinement in set PT(PROCESS current process)

permit = permit AND conf has authority(operation, arguments, process, task confinement)
return permit

Fig. 22 Function task has privilege

Function conf has authority
Parameters: operation, arguments, task confinement
Returns: Boolean

boolean permit
if(task confinement == ∅)

return TRUE
switch(task confinement.propagate)

case execute:
permit = conf has authority(operation, arguments, TT(CHILD TASK CONFINEMENT task confinement) AND test all app -

privileges with op(operation, TA(APPLICATION task confinement), arguments)
case execute as interpreted:

permit = conf has authority(operation, arguments, TT(CHILD TASK CONFINEMENT task confinement) OR test all app -
privileges with op(operation, TA(APPLICATION task confinement), arguments)

case execute shell:
permit = conf has authority(operation, arguments, TT(CHILD TASK CONFINEMENT task confinement)

case execute as current app:
permit = conf has authority(operation, arguments, TT(CHILD TASK CONFINEMENT task confinement)

case execute load profile:
if(TT(CHILD TASK CONFINEMENT task confinement).propagate == execute shell)

permit = conf has authority(operation, arguments, TT(CHILD TASK CONFINEMENT task confinement) AND test all app -
privileges with op(operation, TA(APPLICATION task confinement), arguments)

else
permit = test all app privileges with op( operation, task confinement, arguments)

return permit

Fig. 23 Function conf has authority
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Function test all app privileges with op
Parameters: operation, task confinement, arguments
Returns: Boolean

boolean permit = FALSE
for each functionality in set IT(TASK CONFINEMENT task confinement) while permit == FALSE

permit = test all func privileges with op(operation, functionality, arguments)
if(permit == TRUE)

break for
return permit

Fig. 24 Function test all app privileges with op

Function test all func privileges with op
Parameters: operation, functionality, arguments
Returns: Boolean

Boolean permit
permit = test direct privs(operation, FP(FUNCTIONALITY FI(FUN INSTANCE functionality)), arguments)
if(!permit)

for each func child in set II(FUNCTIONALITY functionality)
permit = test all func privileges with op(operation, func child, arguments)
if(permit == TRUE)

break for
return permit

Fig. 25 Function test all func privileges with op

Function test direct privs
Parameters: operation, privileges, arguments
Returns: Boolean

Boolean permit = FALSE
for each privilege in set privileges

if(privilege.operation == operation)
if(test permission(operation, privilege, arguments) == TRUE)

permit = TRUE
break

return permit

Fig. 26 Function test direct privs

and calls test permission to test if that privilege grants

access.

The function test permission, shown in Figure 27,

calls the implementation dependent has privilege to check

if the arguments supplied to the decision logic are a

match for any resource descriptors associated with the

privilege. This can involve different types of compar-

isons based on the type of resource being accessed.

As previously discussed in Section 2, this may involve

pattern matching between the patterns specified in re-

source descriptors and the strings representing the re-

source in the parameter arguments. Resolving param-

eters, as described in the next section, can be used at

this stage to determine non-literal parameter argument

values.

A.3 Resolving Parameter Arguments to Privileges

As previously discussed in Section 2.3, application poli-

cies or functionalities can supply literal arguments (in

other words, actual descriptions of resources) to param-

eters. These associations are represented in Figure 14 as

AA and FA. However, parameters can also refer to other

parameters contained in parent functionalities. This is

represented as PP in the figure. It is necessary to re-

solve these parameters to literal arguments in order to

make access decisions.

The algorithm presented in this section resolves re-

source descriptors that refer to parameters to the literal

argument values that describe the resources the opera-

tion grants access to.

The function resolve nonliteral resource descriptor,

shown in Figure 28, returns a literal result that de-

scribes resources. If the ‘resource descr’ argument is al-

ready literal (that is, it is not associated with a pa-

rameter), it is simply returned. If it is non-literal (it

is associated with a parameter) then the function re-

solve argument is used to return the literal parameter

argument.

The function resolve argument, shown in Figure 29,

checks whether a parameter is associated with a parent

parameter. If it is, the function calls itself recursively

until all parents have been traversed and a literal value

is found. If the parameter has no parent parameters,

then the corresponding literal argument is returned.
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Function test permission
Parameters: operation, privilege, arguments
Returns: Boolean

return [has privilege](operation, privilege, arguments)

Fig. 27 Function test permission

Function resolve nonliteral resource descriptor
Parameters: resource descr
Returns: ARGUMENT or RESOURCE DESCRIPTOR (if literal)

param = OR(RESOURCE DESCRIPTOR resource descr)
if param != ∅

return resolve argument(param)
else

return resource descr

Fig. 28 Function resolve nonliteral resource descriptor

Function resolve argument
Parameters: parameter
Returns: ARGUMENT

parent param = PP(CHILD PARAMETER parameter)
if parent param != ∅

return PA(PARAMETER parameter)
else

return resolve argument(parent param)

Fig. 29 Function resolve argument
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