

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at <u>http://dx.doi.org/10.1016/j.vetmic.2013.04.002</u>

Hyndman, T.H., Shilton, C.M. and Marschang, R.E. (2013) Paramyxoviruses in reptiles: A review. Veterinary Microbiology, In Press.

http://researchrepository.murdoch.edu.au/15189/

Copyright: © 2013 Elsevier

It is posted here for your personal use. No further distribution is permitted.

Accepted Manuscript

Title: Paramyxoviruses in Reptiles: A Review

Author: Timothy H Hyndman Cathy M Shilton Rachel E Marschang

PII:	S0378-1135(13)00197-1
DOI:	http://dx.doi.org/doi:10.1016/j.vetmic.2013.04.002
Reference:	VETMIC 6167
To appear in:	VETMIC
Received date:	29-1-2013
Revised date:	26-3-2013
Accepted date:	1-4-2013

Please cite this article as: Hyndman, T.H., Shilton, C.M., Marschang, R.E., Paramyxoviruses in Reptiles: A Review, *Veterinary Microbiology* (2013), http://dx.doi.org/10.1016/j.vetmic.2013.04.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Paramyxoviruses in Reptiles: A Review

- 2 Timothy H Hyndman^a*, Cathy M Shilton^b & Rachel E Marschang^c
- ^aSchool of Veterinary and Life Sciences, Murdoch University, Murdoch,
 Western Australia, 6150, Australia
- ^bBerrimah Veterinary Laboratories, Northern Territory Government, GPO Box
 3000, Darwin, Northern Territory, 0801, Australia
- ^cInstitut für Umwelt und Tierhygiene, University of Hohenheim, Garbenstr. 30,
 70599 Stuttgart, Germany
- 9 *Corresponding author. Phone: +61 08 9360 7348. Fax: +61 08 9310 4144.
 10 Email: t.hyndman@murdoch.edu.au
- 11 Complete correspondence address: Murdoch University, Murdoch Drive,
- 12 Murdoch, WA, 6150, Australia. t.hyndman@murdoch.edu.au

13 Abstract

- 14 In 1972, an outbreak of neurorespiratory disease in a Swiss
- 15 serpentarium formed the basis for the first description of a
- 16 paramyxovirus isolated from a reptile. In the forty years since this
- 17 outbreak, there have been over 50 published reports about reptilian
- 18 paramyxoviruses from all over the world. The majority of these
- 19 investigations have concerned themselves with ferlaviruses (sometimes
- 20 previously referred to as ophidian paramyxoviruses, or OPMV). The
- 21 biology of these viruses is reviewed and this is followed by a review of
- 22 the clinical findings that are associated with ferlaviral infection and the
- 23 various diagnostic tests that are used to identify infected reptiles.
- 24 Recently, a second, and highly divergent, reptilian paramyxovirus,
- 25 Sunshine virus, was described in Australian pythons, so it is an
- 26 opportune time to reflect on the paramyxoviruses that infect reptiles.

27 Keywords

28 Reptile; snake; Ferlavirus; Sunshine virus; paramyxovirus; virus

29 Introduction

- 30 A wide range of viruses have been detected in reptiles throughout the
- 31 world and the interested reader is referred to the reviews by Wellehan
- 32 and Johnson (2005), Jacobson (2007), Marschang (2011) and Ariel (2011)
- 33 for more general overviews of these viruses. This review will focus on
- 34 the paramyxovirus infections of reptiles. Since an outbreak of
- 35 neurorespiratory disease in a Swiss serpentarium that was associated
- 36 with a paramyxovirus (Folsch and Leloup, 1976), reptilian
- 37 paramyxoviruses have been described in other regions of Europe (Ahne
- 38 et al., 1987; Blahak, 1995; Manvell et al., 2000; Franke et al., 2001), USA
- 39 (Jacobson et al., 1980; Jacobson et al., 1981; Potgieter et al., 1987;
- 40 Richter et al., 1996) and Brazil (Nogueira et al., 2002; Kolesnikovas et al.,
- 41 2006). Most recently, a novel paramyxovirus, named Sunshine virus,
- 42 was described in Australian pythons (Hyndman et al., 2012a; Hyndman
- 43 et al., 2012b) and so it is important to review the established and
- 44 emerging areas in this field.

45 **Taxonomy of Reptilian Paramyxoviruses**

- 46 Members of the family Paramyxoviridae are currently divided into two
- 47 subfamilies: Pneumovirinae and Paramyxovirinae (ICTV, 2013).
- 48 Paramyxovirinae currently contains seven genera, one of which is the

- 49 genus Ferlavirus. Prior to the discovery of Sunshine virus, all
- 50 phylogenetically-characterised reptilian paramyxoviruses have clustered
- 51 within Ferlavirus (Marschang et al., 2009). Sunshine virus clusters within
- 52 Paramyxoviridae but outside of both subfamilies and therefore
- 53 broadens our understanding of the diversity of paramyxoviruses that
- 54 infect reptiles (Hyndman et al., 2012a).

55 Ferlavirus

56	The literature has not shown conformity in how it refers to ferlaviruses.
57	Since the first characterisation of a snake paramyxovirus that was
58	named Fer de Lance Virus (FDLV) (Clark et al., 1979), the term ophidian
59	paramyxovirus (often abbreviated to OPMV or oPMV) has also been
60	used to describe the paramyxoviruses found in snakes (Lloyd and
61	Flanagan, 1991; Homer et al., 1995; Jacobson et al., 1997; Manvell et al.,
62	2000; Kindermann et al., 2001; Oros et al., 2001; Nogueira et al., 2002;
63	Kolesnikovas et al., 2006). In 2009, a proposal was put forward by
64	Kurath to the International Committee on Taxonomy of Viruses (ICTV) to
65	create the new genus Ferlavirus with Fer-de-Lance paramyxovirus (the
66	same virus as FDLV) as its type species. This proposal has been accepted
67	by the ICTV (2013) and all future work should refer to these viruses as
68	ferlaviruses. By avoiding the general term "ophidian paramyxovirus",
69	Sunshine virus and the ferlaviruses of snakes can be unambiguously
70	delineated.

71

72	Folsch and Leloup (1976) produced the first report of a reptilian
73	paramyxovirus following an outbreak of neurorespiratory disease in a
74	Swiss serpentarium. The physicochemical traits of this first isolate were
75	then characterised and described by Clark et al. (1979). The origin of the
76	ferlaviruses is unknown but one reference provides further insight. A
77	personal communication mentioned in a paper by Kolesnikovas et al.
78	(2006) states that the Brazilian lancehead vipers (Bothrops moojeni but
79	incorrectly referred to as Fer-de-Lance vipers [B.atrox] in earlier works)
80	in the Swiss serpentarium originated from Brazil. No further information
81	is provided.
82	
83	The entire genome of Fer-de-Lance paramyxovirus has been sequenced
84	(Kurath et al., 2004). The genome is 15,378 nucleotides long and is
85	made up of seven distinct genes: 3' – Nucleocapsid (N) – Unknown (U) –
86	Phosphoprotein/Protein V (P/V) – Matrix (M) – Fusion (F) –
87	Haemagglutinin-Neuraminidase (HN) – RNA-Dependent RNA
88	Polymerase (L). The fusion gene has been analysed by others (Franke et
89	al., 2006). Several authors have analysed the phylogenetic relationships
90	that exist between ferlaviruses (Ahne et al., 1999b; Franke et al., 2001;
91	Kindermann et al., 2001; Marschang et al., 2009; Papp et al., 2010a;
92	Papp et al., 2010b; Abbas et al., 2011) while others have compared the
93	ferlaviruses to other paramyxoviruses (Junqueira de Azevedo et al.,
94	2001; Kurath et al., 2004; Marschang et al., 2009). These studies
95	support the classification of the squamate ferlaviruses as a single genus

96	containing at least three distinct genogroups (A, B and C). The clinical		
97	significance and serodiagnostic implications of the different genotypes		
98	remains undefined.		
99			
100	The serological relatedness of ferlaviruses to other paramyxoviruses has		
101	been reported by several authors (Clark et al., 1979; Potgieter et al.,		
102	1987; Blahak, 1995; Richter et al., 1996; Ahne et al., 1999b). Clark et al.		
103	(1979) titrated antisera against 19 myxoviruses (16 paramyxoviruses		
104	and 3 orthomyxoviruses) against Fer-de-Lance paramyxovirus and then		
105	did the reverse by titrating ferlavirus antisera against the same suite of		
106	myxoviruses. No cross-reactivity was detected. Richter et al. (1996)		
107	showed that the antisera specific for eight paramyxoviruses did not		
108	inhibit the haemagglutinating ability of three ferlaviral isolates. Ahne et		
109	al. (1999b) was also unable to demonstrate any cross-reactivity		
110	between ferlaviral antisera and a range of paramyxoviruses.		
111			
112	In contrast to these findings, serological relationships between		
113	ferlaviruses and other paramyxoviruses have been shown by other		
114	authors. Blahak (1995) demonstrated a serological relationship between		
115	ferlavirus and Avian paramyxovirus types 1 and 7 (aPMV-1 and -7),		
116	while Gravendyck et al. (1998) reported on the cross-reactivity of a		
117	paramyxovirus from a monitor (Varanus prasinus) with aPMV-7. Later,		
118	Manvell et al. (2000) classified two isolates of ferlavirus as "ophidian		
119	paramyxovirus type 1 (PMV-1) and ophidian paramyxovirus type 7		

120	(PMV-7)" based on the strength of their serological cross-reactivity with
121	antisera against aPMV-1 and -7. In another report, Potgieter et al. (1987)
122	used immunohistochemical staining to detect ferlavirus in a section of
123	infected snake lung after the lung had been treated with the
124	fluorescently-labelled antisera of Parainfluenza virus type 2.
125	
126	The incongruence that exists in the conclusions of the studies on
127	ferlaviral serological relatedness could be explained by a serological
128	unrelatedness between the various ferlaviral isolates used in these
129	studies. Serological unrelatedness between ferlaviral isolates has been
130	shown in at least two studies (Marschang et al., 2002; Allender et al.,
131	2008). In general, however, it seems reasonable to conclude that the
132	serological relatedness of the ferlaviruses to other paramyxoviruses is
133	limited at most.
134	
135	All ferlaviruses are believed to have neuraminidase activity. Using a
136	substrate that is specifically cleaved by neuraminidase into an intensely
137	fluorescent product (Yolken et al., 1980), significant neuraminidase
138	activity was detected in three isolates of ferlavirus (Richter et al., 1996).
139	Clark et al. (1979) also demonstrated the presence of neuraminidase
140	activity in ferlavirus. After haemagglutinating chicken and guinea pig
141	erythrocytes with ferlavirus it was observed that these erythrocytes
142	could not be re-agglutinated by ferlavirus, implying that the virus has a

143 receptor destroying enzyme (neuraminidase).

144 Clinical Findings Associated with Infection

145	Ferlaviral infections have been associated with highly pathogenic	
146	disease outbreaks (Folsch and Leloup, 1976; Jacobson et al., 1980;	
147	Jacobson et al., 1981; Jacobson et al., 1992; Kolesnikovas et al., 2006).	
148	Infection has been detected in several snake families: Colubridae,	
149	Elapidae, Viperidae, Crotalidae, Boidae and Pythonidae (Jacobson et al.,	
150	1997; Ahne et al., 1999b; Oros et al., 2001). One report described the	
151	clinical signs associated with ferlaviral infection as being variable, often	
152	non-specific, and occasionally subtle (Sand et al., 2004). When clinical	
153	signs can be attributed to a particular organ system, they are most	
154	commonly localised to the respiratory tract (Jacobson, 2007) but there	
155	are also reports about snakes suffering from neurological disease. Table	
156	1 outlines the clinical signs reported by various authors.	
157		
158	In 1991, Lloyd and Flanagan described the clinical manifestations of	
159	ferlaviral infection as fitting into three discrete clinical syndromes:	
160	snakes affected acutely or peracutely; "poor doers"; and, clinically-	
161	healthy animals that shed virus in the face of high antibody titres. These	
162	observations were based on clinical experience and were not from a	
163	controlled study.	

164 Gross Pathology

Significant changes that are seen at necropsy are often localised to therespiratory system (Table 2). It is important to note that more than one

- 167 author has not detected any gross necropsy changes in snakes that
- 168 were later identified to be infected with ferlavirus.

169 *Histopathology*

- 170 There are no histological signs that are pathognomonic for ferlaviral
- 171 infection (Ritchie, 2006). Instead, a wide range of histopathological
- 172 findings have been reported that are most commonly attributed to the
- 173 respiratory and neurological systems (Table 3). Intranuclear or
- 174 intracytoplasmic viral inclusions may be seen and these should heighten
- the pathologist's suspicions of ferlaviral infection (Jacobson, 2007).
- 176 Ultrastructurally, these inclusions have been shown to consist of strands
- 177 of viral nucleocapsid (Jacobson, 2007). Although less specific for
- 178 ferlaviral infection than viral inclusions, proliferative pneumonia and
- 179 perivascular cuffing in the brain are changes commonly reported in the
- 180 literature. Jacobson et al. (2001) has noted that inclusion body disease
- 181 (IBD), mycoplasmosis and infection with orthoreovirus form important
- 182 rule-outs during an investigation of snakes affected with proliferative
- 183 pneumonia.
- 184

Through the use of immunohistochemistry, Homer et al. (1995) was
able to localise pulmonary infections to the luminal surface and
cytoplasm of faveolar epithelium. With a similar purpose, Sand et al.
(2004) used in situ hybridisation to locate ferlavirus in a variety of
infected organs. Virus was intranuclear in the brain while being

190	intracytoplasmic in hepatocytes,	Kupffer cells,	pulmonary alveolar
-----	----------------------------------	----------------	--------------------

- 191 [faveolar] macrophages, respiratory epithelial cells and renal tubular
- 192 epithelial cells.

193 Non-Ferlaviral Microbiological Findings

- 194 A number of authors have reported on the non-ferlaviral microbiological
- 195 findings in snakes infected with ferlavirus. Bacterial cultures from
- 196 various organs have identified several Gram negative bacterial
- 197 pathogens: Aeromonas, Citrobacter, Escherichia, Enterobacter,
- 198 Morganella, Proteus, Providencia, Pseudomonas, Salmonella and
- 199 Serratia (Folsch and Leloup, 1976; Jacobson et al., 1981; Blahak et al.,
- 200 1991; Jacobson et al., 1992; Homer et al., 1995; Oros et al., 2001;
- 201 Kolesnikovas et al., 2006; Jacobson, 2007). In one of these studies,
- 202 fungal elements could not be cultured (Kolesnikovas et al., 2006). It has
- 203 been suggested that ferlaviral infections may be immunosuppressive,
- 204 possibly due to lymphoid depletion (Oros et al., 2001), allowing
- secondary bacterial invaders (Kolesnikovas et al., 2006). So while it is
- 206 recommended that concurrent complicating bacterial infections be
- 207 Treated as early as possible (Jacobson et al., 1992; Kolesnikovas et al.,
- 208 2006), antibiotic use may not provide any improvement in already
- affected snakes (Folsch and Leloup, 1976; Jacobson et al., 1981).

210

- 211 Papp et al. (2010a) has described the isolation of orthoreoviruses from
- 212 various organs from four snakes that were positive by PCR for the

- 213 presence of ferlavirus. In a second study, Abbas et al. (2011)
- 214 simultaneously detected at least one atadenovirus, an orthoreovirus
- and a ferlavirus in each of three corn snakes. One of these snakes, a
- 216 juvenile, was vomiting and displayed dyspnoea before dying. These
- 217 recent studies form the first reports of mixed viral infections in snakes
- 218 infected with ferlavirus.

219 Transmission

Little is known about ferlaviral transmission. Koch's postulates were fulfilled after the successful infection (endotracheal inoculation) and reisolation of ferlavirus in a group of six naïve captive-bred Aruba Island rattlesnakes (Crotalus unicolor) (Jacobson et al., 1997). Another three snakes were sham-inoculated. Ferlavirus was successfully isolated from the lungs of all the snakes that had been inoculated with virus and none of the sham-inoculated snakes.

227

228	Pasmans et al. (2008) states that ferlavirus is easily transmitted through
229	both aerosols and contact, and terraria for individually housed snakes
230	provide little defense against the transmission of ferlavirus. It has also
231	been suggested that ferlavirus may be transmitted from snake to snake
232	by direct contact, respiratory secretions, fomites and ectoparasites
233	(especially mites) (Hernandez-Divers, 2006). In the first outbreak
234	described by Folsch and Leloup (1976), the infection spread from the
235	enclosures closest to the doors in two different rooms. It was

236	hypothesised that spread had occurred either by aerosol or via the
237	keepers. Considering that ferlaviruses have been isolated from the
238	sputum of a rattlesnake (Crotalus durissus terrificus) (Nogueira et al.,
239	2002), oral and cloacal swabs from corn snakes (Pantherophis guttatus)
240	(Abbas et al., 2011) and detected by polymerase chain reaction (PCR) in
241	oral and cloacal swabs (Papp et al., 2010a), it is reasonable to assume
242	that ferlavirus can be transmitted between snakes by both oral
243	secretions and cloacal excretions. To the best of our knowledge,
244	ferlavirus has not been isolated, or detected by PCR, from fomites or
245	ectoparasites. There are currently no reports concerning vertical
246	transmission of ferlavirus (Pasmans et al., 2008).
247	
248	The incubation period of ferlavirus in naturally-acquired infections is
249	unknown. There are claims that the incubation period for ferlavirus may
250	be as short as 21 days (Hernandez-Divers, 2006) but will generally
251	exceed 90 days (Hernandez-Divers, 2006; Ritchie, 2006). These claims
252	are not supported by controlled studies.
253	
254	The shedding patterns of ferlavirus are unknown (Jacobson and Origgi,
255	2007). Although Lloyd and Flanagan (1991) state that some snakes are
256	capable of shedding virus for an extended period of time, this claim is
257	based on the observation that some snakes have significant
250	
258	haemagglutination inhibition (HI) antibody titres for five months or

- 260 throughout that time. Ritchie (2006) suggests that asymptomatic
- 261 seropositive snakes may be persistently-infected shedders while others
- 262 may have mounted an appropriate immune response and cleared the
- 263 infection. There are no controlled studies to support any of these claims.

264 **Treatment**

- 265 No specific treatment has been identified as being effective against
- 266 ferlavirus (Marschang and Chitty, 2004). In people, the antiviral drug
- 267 ribavirin (Virazole®) is sometimes used in the treatment of Measles virus,
- 268 Respiratory syncytial cell virus and Parainfluenza virus infections
- 269 (Chakrabarti et al., 2001; Freeman et al., 2004). A drug named BCX 2798
- 270 that is capable of targeting paramyxoviral neuraminidase has been
- 271 shown to decrease viral titres in mice infected with a recombinant strain
- of Sendai virus (Alymova et al., 2005; Watanabe et al., 2009). Neither of
- 273 these compounds has been tested against ferlavirus either in vitro or in
- 274 vivo.
- 275
- 276 Symptomatic treatment has generally been provided by broad spectrum
- 277 antibiotics (Kolesnikovas et al., 2006). Bronson and Cranfield (2006)
- 278 have stated that the survival time of snakes infected with ferlavirus is
- 279 improved by targeting secondary protozoal and bacterial infections.

280 **Prevention**

281 Quarantine

- 282 To prevent the introduction of ferlavirus into a collection it is
- 283 recommended that new animals are only introduced after a period of
- 284 quarantine. Recommended lengths of quarantine vary between
- 285 references (Table 4) but there is a general trend where modern
- 286 recommendations are for longer periods of time. All of the
- 287 recommendations are empirical due to the limited information that is
- available about ferlaviral transmission and environmental viability.
- 289
- 290 Various authors have provided specific recommendations about caring
- 291 for a collection consisting of resident and quarantined animals
- 292 (Jacobson et al., 1999; Marschang and Chitty, 2004; Ritchie, 2006;
- 293 Pasmans et al., 2008). During quarantine, agent-specific testing can be
- used to help determine if a snake has been exposed to, or is infected
- 295 with, ferlavirus.

296 Vaccination

- 297 There have been only two reported attempts to develop a ferlavirus
- 298 vaccine. In one study, a sustained and significant concentration of
- 299 circulating anti-ferlavirus antibodies could not be elicited in a group of
- 300 western diamondback rattlesnakes (Crotalus atrox) following
- 301 inoculation with an inactivated (killed) strain of ferlavirus (Jacobson et
- al., 1991). Vaccinated snakes were not challenged with unattenuated

303	virus. Mayr et al.	(2000) has suggested that cell culture-adapted
-----	--------------------	--

- 304 ferlaviral isolates could be used in the production of live vaccines but in
- 305 a brief and limited report of a vaccine trial using a modified-live isolate
- 306 of ferlavirus, one snake died and another suffered severe illness (Lloyd
- and Flanagan, 1991).

308 Ferlavirus in Non-Captive Free-Ranging Snakes

309	Only a few reports have described ferlavirus in wild snakes. A survey of		
310	ten free-ranging anacondas (Eunectes murinus) from Venezuela involved		
311	serological testing against a number of pathogens, including ferlavirus		
312	(Calle et al., 2001). Ferlaviral-specific antibody titres were negative by		
313	haemagglutination inhibition (HI) in all snakes.		
314			
315	In two separate studies Allender et al. (2006; 2008) screened wild-		
316	caught eastern massasauga rattlesnakes (Sistrurus catenatus catenatus)		
317	for the presence of anti-ferlavirus antibodies using HI. All 20 snakes		
318	from the 2006 study were seropositive against two ferlaviral isolates at		
319	one diagnostic laboratory. In the 2008 study, 26 snakes were tested and		
320	zero to 26 of them were seropositive depending on the isolate that was		
321	used as antigen and the laboratory that the samples were sent to. These		
322	discordant antibody results on a standardised sample set highlighted		
323	the variability that existed between diagnostic laboratories. Additional		
324	testing that is capable of detecting ferlavirus (e.g. virus isolation,		
325	polymerase chain reaction, in situ hybridisation or electron microscopy)		

326	was not	performed.
-----	---------	------------

327 Ferlavirus in Non-Snake Reptilian Hosts

328 Lizards

- 329 Most of the paramyxoviruses that have been described in lizards have
- 330 not been associated with overt disease. A paramyxovirus was isolated
- from a false tegu (Callopistes maculatus) in 1988 (Ahne and Neubert,
- 1991) that was later identified as a ferlavirus by sequence analysis
- 333 (Ahne et al., 1999b). Similarly, a paramyxovirus was isolated from the
- 334 mouth of an apparently healthy monitor lizard (Varanus prasinus) that
- 335 was part of a reptile collection that had suffered an outbreak of
- ferlavirus in its snake population (Gravendyck et al., 1998).
- 337

338	In a serological survey of lizards, Gravendyck et al. (1998) collected
339	serum from 49 healthy free-ranging Honduran Island iguanas
340	(Ctenosaura bakeri, C.similis and Iguana iguana rhinolopha) to look for
341	evidence of paramyxoviral and reoviral infections. Using a reptilian
342	paramyxovirus isolated from a monitor lizard (Varanus prasinus) as
343	antigen, 41% of all 49 serum samples had antibodies that could be
344	detected by virus neutralisation. 34 serum samples were tested against
345	this paramyxovirus isolate by haemagglutination inhibition and only
346	three (9%) had antibody titres of ≥20 (maximum titre was 32). The
347	authors could not isolate any viruses from pharyngeal and cloacal swabs
348	from these lizards. In a similar study, Marschang et al. (2002) tested 30

349	wild-caught Mexican lizards (Xenosaurus grandis, X.platyceps and
350	Abronia graminea) for exposure to paramyxovirus and reovirus: 30 were
351	tested by virus isolation and 23 were tested by virus neutralisation
352	(reovirus) and HI (paramyxovirus). Anti-ferlavirus antibodies were
353	detected in four animals representing all three species but significantly,
354	a ferlavirus was isolated from the cloacal swab of X.platyceps. The
355	results of this report were unable to clarify the clinical significance of
356	finding ferlavirus and ferlaviral antibodies in these species.
357	
358	Lloyd et al. (2005) serologically tested the lizard population of a
359	zoological park where the resident snake collection had a history of
360	paramyxovirus-associated disease. In total, 59 lizards (from 12 families)
361	were tested for the presence of ferlavirus-specific antibodies by
362	haemagglutination inhibition (HI). All the lizards, except one, were
363	clinically normal. Seven lizards had HI titres that were considered
364	positive (\geq 16) for exposure to ferlavirus. These seven positive animals
365	were then retested 105 days later and six of them had either
366	maintained or increased their antibody titres. The authors concluded
367	that the six animals had active infection, were repeatedly exposed to
368	antigen or were in a carrier state. In another study, ferlavirus exposure
369	was serologically assessed in 32 geckos (Gecko monarchus and Gehyra
370	mutilata) that free-roamed the grounds of a zoological park (Kummrow
371	et al., 2004). Blood was pooled from these small geckos and 70% of
372	pooled blood samples tested positive for ferlavirus exposure by HI. The

373	authors speculate that the geckos may have a role as vectors for this
374	virus but more detailed investigations would be necessary to elucidate
375	this idea further.
376	
377	There are only two reports where a paramyxovirus was associated with
378	mortality in a lizard (Jacobson et al., 2001; Boyer et al., 2005). Three
379	separate epidemics of ferlavirus were seen between 1998 and 1999 in
380	caiman lizards (Dracena guianensis) that had been imported into the
381	USA from Peru (Jacobson et al., 2001). Many individuals were found
382	dead or were anorexic upon arrival. Histopathology showed severe
383	heterophilic and histiocytic pneumonia and ferlavirus was detected in
384	tissue sections by immunohistochemistry. A virus was isolated and
385	electron microscopic examination confirmed the presence of a
386	paramyxovirus. In the second report, paramyxovirus-like particles were
387	seen by electron microscopy in the respiratory tract of a Thai water
388	dragon (Physignathus concinus) (Boyer et al., 2005). Histological
389	assessment revealed a proliferative interstitial pneumonia and
390	eosinophilic intracytoplasmic inclusions of the pneumocytes and
391	pancreatic ductular epithelium. DNA probes could not detect a reptilian
392	paramyxovirus in paraffin-embedded sections.

393 Chelonians

394In 1983, Jackson and Needham reported on the discovery of anti-Sendai

395 virus haemagglutination inhibition (HI) titres of up to 256 in 34 tortoises

396	from three species: Testudo graeca (Greek tortoise), T.hermanni
397	(Herman's tortoise) and Geochelone elegans (Indian star tortoise).
398	Seven of these 34 tortoises were showing signs of rhinitis at the time of
399	blood sampling. There was little correlation between anti-Sendai virus
400	HI titre and the presence of clinical signs. The authors did not attempt
401	to isolate a paramyxovirus from any of these tortoises. In another study,
402	a collection of Mediterranean tortoises (Testudo graeca and T.hermanni)
403	were imported from Turkey to Switzerland and upon arrival many were
404	found to have a viral dermatitis (Zangger et al., 1991). Light microscopy
405	revealed intracytoplasmic inclusions in the stratum germinativum and
406	under electron microscopy, paramyxovirus-like particles were identified.
407	
408	In 1990, Oettle et al. (1990) reported on the death of 31 out of 83
409	African tortoises from four species: Psammobates tentorius (tent
410	tortoise), Homopus areolatus (beaked cape tortoise), Chersina angulata
411	(bowsprit tortoise) and Geochelone pardalis (leopard tortoise). Affected
412	tortoises displayed a wide range of clinical signs and pathological
413	changes but anorexia, progressive lethargy, severe ascites, hepatosis,
414	pneumonia and necrotic pseudomembranous stomatitis were seen
415	
41C	most commonly. Paramyxovirus-like inclusions were identified under
416	light microscopy in oesophageal cells from one tortoise. It is likely that a
416	
	light microscopy in oesophageal cells from one tortoise. It is likely that a

Page 18 of 49

- 420 In 1993, Witte found three out of 128 tortoises from ten different
- 421 collections revealed antibody titres against a snake paramyxovirus.
- 422 Titres were 1:16 in two Russian tortoises (Agrionemys [Testudo]
- 423 horsfieldii) and 1:32 in a Greek tortoise (Testudo graeca).
- 424
- 425 In 1999, a ferlavirus was isolated from a Hermann's tortoise (Testudo
- 426 hermanni) suffering from pneumonia (Marschang et al., 2009). The
- 427 identity of this ferlavirus was confirmed by sequence analysis. More
- 428 recently, several different ferlaviruses were detected by PCR from
- 429 various organs of a leopard tortoise (Geochelone pardalis babcocki)
- 430 suffering from respiratory distress (Papp et al., 2010b). There were large
- 431 amounts of mucopurulent discharge from its nares and mouth and on
- 432 necropsy, the lungs were bilaterally consolidated and filled with thick
- 433 serous exudate. The ferlaviruses detected by PCR could not be isolated
- into cell culture.
- 435
- 436 In the most recent study on ferlaviruses in tortoises, tortoise plasma
- 437 was screened for antibodies against ferlaviruses using
- 438 haemagglutination inhibition testing. Antibodies were found in several
- 439 tortoise species from several European countries (Rösler et al., 2013).

440 **Crocodiles**

- 441 Using electron microscopy, paramyxoviruses have been found in the
- 442 faeces of Nile crocodiles (Crocodylus niloticus) that had been fed

- 443 chickens from a farm that were having an outbreak of Newcastle
- disease virus (Huchzermeyer et al., 1994). This study also provided
- 445 limited information about a paramyxovirus that was seen in the faeces
- 446 of a crocodile not fed a diet of chickens.
- 447
- 448 Only a small proportion of the reports about ferlavirus in non-snake
- 449 reptiles show a strong association between disease and infection with
- 450 this pathogen but there is insufficient data to ignore the possibility that
- 451 lizards, chelonians and maybe even crocodiles, play important roles as
- 452 reservoir hosts for ferlavirus. This could have important implications
- 453 when attempting to eradicate ferlavirus or prevent its introduction in
- 454 collections that house snakes with other reptiles.

455 **Zoonotic Potential**

456	Ahne and Mayr (2000) investigated the capability of ferlavirus to infect
457	human blood mononuclear cell culture at the virus-permissive
458	temperature of 28°C. Viral replication could not be detected in this cell
459	line. Potgieter et al. (1987) successfully cultured a paramyxoviral isolate
460	from a snake in hamster kidney cells at 37^{0} C but this study found that
461	the highest haemagglutination titre, the greatest likelihood to grow in
462	cell culture and the most significant cytopathic effects were seen when
463	the isolate had been grown at 30 [°] C. Under the conditions described by
464	other authors, it was found that ferlavirus did not replicate at 37^{0} C
465	(Clark et al., 1979; Blahak, 1995; Ahne et al., 1999a; Ahne and Mayr,

- 466 2000). Clark et al. (1979) comprehensively investigated the susceptibility
- 467 of mice to infection with ferlavirus and could not detect any clinical or
- 468 histological evidence of disease. Based on this information it would
- 469 seem unlikely that ferlavirus would pose a serious zoonotic risk to
- 470 human health.

471 Diagnostic Tests

472 Virus Isolation

- 473 Tissue samples and oral and cloacal swabs are often used to isolate 474 viruses from infected reptiles (Marschang and Chitty, 2004). Table 5 475 provides a summary of the techniques that have been used to isolate 476 paramyxoviruses from reptiles. The cytopathic effect associated with 477 infection from reptilian paramyxoviruses has been described by a 478 number of authors (Table 6). Syncytial cell formation and cell lysis are 479 commonly reported. The time taken for CPE to emerge varies markedly 480 between references: from only 24 to 36 hours (Ahne et al., 1987) to 481 requiring serial passage (Jacobson et al., 1980). The successful isolation 482 and/or propagation of reptilian paramyxoviruses using embryonated 483 eggs have been reported (Clark et al., 1979; Ahne et al., 1999a). Similar 484 attempts by other authors were unsuccessful (Potgieter et al., 1987;
- 485 Manvell et al., 2000) (Table 5).

486 Electron Microscopy

487 Many authors have utilised transmission electron microscopy (TEM) to

488	identify reptilian paramyxoviruses	(Lunger and Clark, 1978; Clark et al.,
-----	------------------------------------	--

- 489 1979; Jacobson et al., 1980; Jacobson et al., 1981; Ahne et al., 1987;
- 490 Potgieter et al., 1987; Richter et al., 1996; Jacobson et al., 1997; Manvell
- 491 et al., 2000; Franke et al., 2001; Jacobson et al., 2001; West et al., 2001).
- 492 Ferlaviruses are medium-sized, have spiked envelopes and can be
- 493 spherical to pleomorphic in morphology (Jacobson and Samuelson,
- 494 2007). The nucleocapsid of a paramyxovirus forms the core of the virion
- 495 and has a distinct "herring bone" appearance (Ahne and Mayr, 2000).
- 496 Spherical and filamentous forms of ferlavirus have been seen budding
- 497 from infected cells (Jacobson et al., 1997).
- 498
- 499 Inclusion bodies have been identified under light microscopy in snake
- 500 tissue infected with ferlavirus (Jacobson et al., 1981; Potgieter et al.,
- 501 1987; Homer et al., 1995; Jacobson et al., 1997; West et al., 2001).
- 502 Ultrastructural assessment has shown these inclusions to be comprised
- of nucleocapsid strands (Jacobson et al., 1981; Jacobson et al., 1997).

504 Haemagglutination (HA) Assays

- 505 Large quantities of virus are needed for macroscopic haemagglutination
- so this method is considered to be relatively insensitive (Quinn et al.,
- 507 2002). In one study, ferlavirus-infected tissue homogenates did not
- 508 haemagglutinate chicken erythrocytes but ferlavirus could be isolated
- 509 onto viper heart cells and be detected by polymerase chain reaction
- 510 (Kolesnikovas et al., 2006). Only after replication in viper heart cells,

- 511 could haemagglutination be detected. Studies comparing the lower
- 512 limits of detection of haemagglutination to other diagnostic tests, such
- 513 as polymerase chain reaction, do not exist.
- 514

515 Haemagglutination Inhibition (HI)

- 516 Haemagglutination inhibition (HI) has been used widely as a serological
- 517 test for the detection of exposure to ferlavirus (Jacobson et al., 1981;
- 518 Potgieter et al., 1987; Jacobson et al., 1991; Jacobson et al., 1992;
- 519 Brousset et al., 1994; Blahak, 1995; Richter et al., 1996; Jacobson et al.,
- 520 1997; Gravendyck et al., 1998; Manvell et al., 2000; Calle et al., 2001;
- 521 Jacobson et al., 2001; Marschang et al., 2002; Lloyd et al., 2005;
- 522 Allender et al., 2006; Allender et al., 2008) and is offered commercially
- 523 by several diagnostic laboratories (Table 7).
- 524
- 525 Various vertebrate erythrocytes have been compared to each other in
- 526 their ability to haemagglutinate three isolates of ferlavirus (Richter et al.,
- 527 1996). Chicken and guinea pig erythrocytes reliably haemagglutinated
- 528 these three isolates and outperformed sheep, human type-O and rabbit
- 529 erythrocytes. Many, if not all, of the laboratories that offer HI
- 530 commercially utilise chicken or guinea pig erythrocytes as markers of
- 531 ferlavirus-induced haemagglutination (Allender et al., 2008).
- 532
- 533 There is disagreement in the literature about the titres that should be

534	considered positive for exposure to ferlavirus. Titres of greater than 10
535	(Jacobson et al., 1992) and 16 (Pasmans et al., 2008) have been
536	reported but it has also been suggested that less than 20 is negative,
537	between 40 and 80 is suspect and greater than 80 is positive (Jacobson
538	and Origgi, 2007).
539	
540	Pasmans et al. (2008) recommends that paired samples, eight weeks
541	apart, be taken to determine if a snake has a rising antibody titre. A
542	rising titre may indicate current exposure to ferlavirus, while a
543	"positive" titre that does not increase (i.e. stays the same or decreases)
544	may be indicative of previous exposure (Jacobson and Origgi, 2007). HI
545	assays quantify the ability of serum or plasma to inhibit macroscopic
546	haemagglutination without delineating the contributions to this
547	inhibition that were made by immunoglobulin M (IgM) and IgY (the
548	reptilian equivalent of IgG). In addition to this, controlled experiments
549	that were able to identify the antibody titres at several time points
550	during and after antigen exposure do not exist. So conclusions drawn
551	from rising, falling or unchanged anti-ferlavirus HI titres may not always
552	be reliable. Despite these limitations, reports do exist that provide
553	useful information about the HI titres that were seen during a
554	controlled transmission study and also naturally occurring outbreaks of
555	ferlavirus infection.
556	

557 An experimental transmission of ferlavirus in Aruba Island rattlesnakes

558	(Crotalus unicolor) forms the only study where ferlavirus was inoculated
559	into snakes under controlled conditions (Jacobson et al., 1997). In this
560	study, HI titres were only assessed at the time of death. The last death
561	occurred 22 days after inoculation. No snake had developed an antibody
562	response that could be detected by HI.
563	
564	In an outbreak of ferlavirus in a zoological collection, Jacobson et al.
565	(1992) tested 31 snakes for the presence of anti-ferlavirus antibodies by
566	HI. Twelve snakes showed positive titres (greater than 10) and these
567	animals were then retested a number of times over the next year. Many
568	cases showed high titres (5,120 to greater than 20,480) that decreased
569	to low titres (below 100) over three to seven months.
570	
571	In another outbreak of ferlavirus in reptiles, this time a collection of
572	caiman lizards (Draecena guianensis), HI testing was performed on
573	surviving animals several months after a ferlavirus had been isolated
574	from dead animals (Jacobson et al., 2001). From 17 animals tested,
575	there were seven titres of less than or equal to 20 and ten titres were
576	between 20 and 180.
577	
578	An HI titre is complicated by a long list of variables: the antibody's
579	affinity to the antigen, the integrity of the antigen being used, the
580	availability of antibody in the serum, the preservation of the sample and
581	lastly, the host's immune response, which itself is influenced by

582	temperature, the season, nutritional status, antigen concentration,
583	route of inoculation, frequency of exposure to the antigen and the type
584	of antigen (Lloyd et al., 2005). The influences that these factors have on
585	an HI titre have not been investigated in a controlled experiment and so
586	the consideration that should be made to each of these factors can only
587	be speculated. Some zoological collections and private institutions
588	require negative ferlavirus titres during quarantine before a snake is
589	released into the main collection (Allender et al., 2008) and the
590	difficulties in interpreting HI titres places the decision-making
591	veterinarian in a difficult position.
592	
593	According to Lloyd et al. (2005), if there is a serological unrelatedness
594	between the ferlavirus that has been used as antigen in an HI assay and
595	the ferlavirus the animal has been exposed to, negative HI titres may
596	occur. For this reason, other authors have recommended that two
597	different viral isolates are used as the antigen source to accommodate
598	serological differences that might exist between ferlavirus strains
599	(Pasmans et al., 2008). In a study of 60 snake serum samples that were
600	being tested by HI using two different strains of ferlavirus as antigens,
601	considerable variation in HI titre was seen between the two antigens
602	but most snakes that were considered to be positive, were positive
603	using either antigen (Kania et al., 2000).
604	
605	In contrast to the findings of Kania et al. (2000), Allender et al. (2008)

606	found there was considerable variation in the HI titres of 26 wild-caught
607	eastern massasaugas (Sistrurus catenatus catenatus) when analysed at
608	three American commercial laboratories, which between them, utilise
609	four different isolates of ferlavirus as antigen. Against two antigens, 100
610	percent of plasma samples were positive, 56 percent were positive
611	against the third and none were positive against the last. The diagnostic
612	implications of these results are unknown but making decisions based
613	on HI serology may be problematic.
614	Non-haemagglutination Inhibition Antibody Assays
615	Only two reports describe the detection of anti-ferlaviral antibodies

616 using non-haemagglutination inhibition assays. Serum neutralisation

617 was used by Gravendyck et al. (1998) to detect antibodies against a

618 reptilian paramyxovirus (isolated from a monitor lizard, Varanus

619 prasinus) in 49 free-ranging Honduran Island iguanas (Ctenosaura bakeri,

620 C.similis and Iguana iguana rhinolopha). It was found that 41% of the

621 serum samples had antibodies that could be detected by virus

622 neutralisation. This compares to 9% (out of a subset of 34 animals) that

- 623 had haemagglutination inhibition (HI) antibody titres of ≥20 (maximum
- titre was 32). In the second study, an enzyme-linked immunosorbent
- 625 assay (ELISA) was compared to HI for the detection of exposure to
- 626 ferlavirus (Kania et al., 2000). Although there were titre differences
- 627 between these two diagnostic tests, overall, there was agreement as to
- 628 whether a sample was positive or negative.

629 Immunohistochemistry (IHC)

630	Immunohistochemistry (IHC) requires the availability of animal-derived
631	polyclonal or monoclonal antibodies that are specific to the virus under
632	investigation (Sand et al., 2004). The use of polyclonal antibodies makes
633	this test difficult to standardise between laboratories (Homer et al.,
634	1995).
635	
636	The detection of ferlavirus by IHC has been reported by various authors.
637	Homer et al. (1995) inoculated rabbits with ferlavirus to produce a
638	source of anti-ferlavirus polyclonal antibodies. These antibodies were
639	then used to immunohistochemically identify ferlavirus antigen in
640	formalin-fixed paraffin-embedded tissues. This study demonstrated that
641	standard formalin-fixation practices did not prevent the identification of
642	ferlavirus in infected tissues. However, fixation times were not always
643	listed. Since this first report, IHC has been used to detect ferlavirus
644	antigen in ferlavirus-infected Vero cells (Richter et al., 1996),
645	experimentally-inoculated Aruba Island rattlesnakes (Crotalus unicolor)
646	(Jacobson et al., 1997), a caiman lizard (Draecena guianensis) (Jacobson
647	et al., 2001), six snakes from the Canary Islands (Oros et al., 2001) and
648	three pit vipers (Bothrops alternatus) from Brazil (Kolesnikovas et al.,
649	2006).

650 In Situ Hybridisation (ISH)

651 Two advantages that in situ hybridisation (ISH) has over IHC, is that

652	biologically-derived	polyclonal	or monoclona	l antibodies are not needed	
-----	----------------------	------------	--------------	-----------------------------	--

- and that viral transcripts can be detected (Sand et al., 2004). Using
- oligonucleotides as probes, Sand et al. (2004) were able to identify
- 655 segments of the ferlavirus haemagglutinin-neuraminidase attachment
- 656 gene (HN) in the tissue sections of 11 out of 14 snakes that had
- 657 histopathological findings that were consistent with a ferlavirus
- 658 infection. The 14 samples were then tested by polymerase chain
- 659 reaction (PCR) and the same 11 samples were positive. No further
- 660 investigations of the three negative results were reported. In another
- report, West et al. (2001) used a generic avian paramyxovirus probe to
- detect ferlavirus in the brain of a Boelen's python (Morelia boeleni) with
- 663 neurological signs.

664 **Polymerase Chain Reaction (PCR)**

- 665 As mentioned in the previous section on in situ hybridisation (ISH), Sand
- et al. (2004) used PCR to identify ferlaviral RNA in FFPE tissues. Primer
- 667 sequences that target the attachment gene (HN) were designed that
- 668 produce relatively small amplicons: 153 nucleotides.
- 669
- 670 PCR is dependent on an adequate quantity and quality of viral RNA
- being present in the sample. In a hypothetical example where a cloacal
- swab was tested by PCR and the swab was collected from a snake
- 673 infected with ferlavirus that is not shedding ferlavirus into its cloaca, the
- 674 PCR result will be negative. The shedding pattern of ferlavirus is not

ED

~--			<u> </u>	a a a = \					
675	known (Jac	obson and	Origgi.	2007).	SO PCR	results in	live snak	kes that	are

- 676 negative may not always be accurate representations of the animal's
- 677 disease status.
- 678

678	
679	In 1999, primer sequences were designed and then successfully used for
680	the detection of the polymerase (L) gene of ferlavirus (Ahne et al.,
681	1999b). This L gene primer set has been used for nucleic acid detection
682	by several authors (Ahne et al., 1999b; Franke et al., 2001; Nogueira et
683	al., 2002; Marschang et al., 2009; Papp et al., 2010a; Papp et al., 2010b;
684	Abbas et al., 2011) and diagnostic laboratories (Table 7). In contrast to
685	this, the haemagglutinin-neuraminidase (HN) gene has been targeted by
686	other investigators (Sand et al., 2004; Kolesnikovas et al., 2006). Kurath
687	et al. (2004) reported the order of conservation between paramyxoviral
688	proteins (most conserved to least conserved): V-carboxy domain > L >
689	M/F > N/HN > V > P. In agreement with this, Kindermann et al. (2001)
690	found the L gene, from a selection of ferlaviruses, to be more conserved
691	than the HN gene.
692	
693	In one study, a PCR targeting the HN gene was performed on 47 clinical

In one study, a PCR targeting the HN gene was performed on 47 clinical 693 694 samples (swabs, organs) that had previously been determined to be 695 positive for ferlavirus by an L gene PCR (Papp et al., 2010a). Only 34% 696 were positive when tested with the HN gene PCR. Because this study 697 first screened samples with the L gene PCR, there was no opportunity 698 that a sample could be discovered that was positive by the HN gene PCR

- and negative by the L gene PCR. In another study, Kolesnikovas et al.
- 700 (2006) used an HN gene primer set (Ahne et al., 1999b) to successfully
- amplify ferlavirus from cell culture supernatant and infected tissues.
- 702 Some tissue samples were negative using this primer set but these
- results were not pursued. Considering several reports have been able to
- 704 detect ferlaviruses using an L gene PCR but not with HN, F and/or U
- 705 gene PCRs (Ahne et al., 1999b; Franke et al., 2001; Marschang et al.,
- 2009; Papp et al., 2010a), it seems reasonable to target the L gene in
- 707 preference to other genes.
- 708
- Not all authors have used the primer sets designed by Ahne et al.
- 710 (1999b). In a retrospective study of 22 snakes from the Netherlands that
- 711 died with histological findings consistent with ferlavirus infection, ten
- 712 were positive for ferlavirus using newly designed primers (Kik et al.,
- 713 2004). Other studies have used novel degenerate primers to target the
- fusion (F) (Franke et al., 2001; Franke et al., 2006) and "unknown" (U)
- 715 (Marschang et al., 2009) genes of ferlavirus but neither primer set has
- 716 been used diagnostically.

717 **Commercially Available Diagnostic Tests**

- 718 The diagnostic tests for ferlavirus that are available to the clinical
- 719 practitioner are restricted to haemagglutination inhibition (HI),
- polymerase chain reaction (PCR) and virus isolation (Table 7). To the
- 721 best of our knowledge, these tests are only offered on a commercial

basis in Europe, the United States of America, and Australia.

723 Sunshine virus

724	In 2008, tissue and serum samples were collected following an outbreak
725	of neurorespiratory disease in an Australian collection of 70 pythons. A
726	syncytial-cell forming virus was isolated and using Illumina® high-
727	throughput sequencing, the virus was identified as a novel
728	paramyxovirus (Hyndman et al., 2012a). The virus was named Sunshine
729	virus after the geographical origin of the first isolate: the Sunshine Coast
730	of Queensland, Australia. This virus represents the first paramyxovirus
731	to be identified from a reptile that was not a ferlavirus. This virus has
732	not been detected outside of Australia although testing thus far has
733	been limited.
734	
735	A set of PCR primers has since been designed that has been able to

736 detect Sunshine virus in swabs and fresh and formalin-fixed paraffin-

737 embedded tissues (Hyndman et al., 2012b). Sunshine virus has so far

been detected in black-headed pythons (Aspidites melanocephalus),

739 woma pythons (A. ramsayi), spotted pythons (Antaresia maculosa) and

740 carpet pythons (Morelia spilota spp. and M.bredli). Clinical signs

associated with Sunshine virus, like ferlavirus, are non-specific (e.g.

- 742 lethargy, inappetance) and/or neurorespiratory in origin. Gross
- 743 pathology is usually unremarkable. Histopathology reliably exhibits
- hindbrain white matter spongiosis and gliosis with extension to the

- surrounding grey matter and neuronal necrosis is evident in severe
- 746 cases. A mild bronchointerstitial pneumonia is seen in some snakes. In
- 747 contrast to ferlavirus, which is most often detected in lung (Papp et al.,
- 748 2010a), Sunshine virus was detected most often in brain.

749 **Conclusion**

- 750 Over the last 40 years, more than 50 papers have been published about
- the paramyxoviruses that infect reptiles. The majority of these are
- 752 concerned with the ferlaviruses that infect snakes but recently, a
- 753 diverse paramyxovirus that infects snakes, named Sunshine virus, has
- been described. Outbreaks of ferlavirus have been associated with
- rts significant morbidity and mortalities, and so it is important that
- 756 herpetologists and veterinarians that work with reptiles are aware of
- the biology of these viruses and the clinical signs and pathological
- 758 findings that are associated with infection. There are still important
- 759 gaps in the knowledge concerning these viruses and their associated
- 760 infections. For example, the incubation periods and shedding kinetics of
- the paramyxoviruses from reptilian hosts, and the survivability of the
- 762 virus once outside the host, are all poorly understood and as
- 763 consequences, choosing appropriate quarantine periods, proper
- sampling times and suitable sample types is problematic. It is our hope
- that this review will help future researchers of this area identify these
- 766 knowledge gaps so they may contribute to this field as effectively as
- 767 possible.

768 **References**

- 769 Abbas, M.D., Marschang, R.E., Schmidt, V., Kasper, A., Papp, T., 2011, A
- 770 unique novel reptilian paramyxovirus, four atadenovirus types and a
- reovirus identified in a concurrent infection of a corn snake
- 772 (Pantherophis guttatus) collection in Germany. Veterinary Microbiology
- 773 150, 70-79.
- Ahne, W., Adrian, J., Mayr, A., 1999a, Replication of Reptilian
- Paramyxovirus in Avian Host Systems. Journal of Veterinary Medicine B46, 57-62.
- Ahne, W., Batts, W.N., Kurath, G., Winton, J.R., 1999b, Comparative
- 778 Sequence Analyses of Sixteen Reptilian Paramyxoviruses. Virus Research779 63, 65-74.
- 780 Ahne, W., Mayr, A., 2000, Reptilian Paramyxoviruses Induce Cytokine
- 781 Production in Human Leukocytes. Comparative Immunology,
- 782 Microbiology & Infectious Diseases 23, 9-13.
- 783 Ahne, W., Neubert, W., 1991. Isolation of paramyxovirus-like agents
- from teju (Callopsites maculatus) and python (Python regius). In:
- 785 Proceedings of the 2nd International Symposium of Viruses in Lower
- 786 Vertebrates, Oregan State University, OR, pp. 203-210.
- Ahne, W., Neubert, W.J., Thomson, I., 1987, Reptilian Viruses: Isolation
 of Myxovirus-like Particles from the Snake Elaphe oxycephala. Zentralbl
 Veterinarmed B 34, 607-612.
- 790 Allender, M.C., Mitchell, M.A., Dreslik, M.J., Phillips, C.A., Beasley, V.R.,
- 791 2008, Measuring agreement and discord among hemagglutination
- 792 inhibition assays against different ophidian paramyxovirus strains in the
- Fastern massasauga (Sistrurus catenatus catenatus). Journal of Zoo andWildlife Medicine 39, 358-361.
- Allender, M.C., Mitchell, M.A., Phillips, C.A., Grusznski, K., Beasley, V.R.,
 2006, Hematology, Plasma Biochemistry, and Antibodies to Select
- 797 Viruses in Wild-Caught Eastern Massasauga Rattlesnakes (Sistrurus
- 798 catenatus catenatus) from Illinois. Journal of Wildlife Diseases 42, 107-
- 799 114.
- Alymova, I.V., Taylor, G., Portner, A., 2005, Neuraminidase Inhibitors as
 Antiviral Agents. Current Drug Targets Infectious Diseases 5, 401-409.
- 802 Ariel, E., 2011, Viruses in reptiles. Veterinary Research 42, 100.
- 803 Blahak, S., 1994. Untersuchungen zum Vorkommen von Paramyxoviren
- 804 bei Schlangen und Charakterisierung ausgewählter Isolate. Justus-

805 Liebig-Universität Giessen,

- 806 Blahak, S., 1995, Isolation and Characterisation of Paramyxoviruses from
- 807 Snakes and their Relationship to Avian Paramyxoviruses. Zentralbl
- 808 Veterinarmed B. 42, 216-224.
- 809 Blahak, S., Göbel, T., Alexander, D.J., Manvell, R., 1991. Some
- 810 Investigations of the Occurrence of Paramyxoviruses in Snakes in
- 811 German Zoos. In: Proceedings of the 4th International Colloquium on
- 812 Pathology and Medicine of Reptiles and Amphibians, Bad Nauheim,
- 813 Germany, pp. 17-24.
- 814 Boyer, T.H., Garner, M.M., Latimer, K.S., 2005, Paramyxovirus Infection
- 815 in a Thai Water Dragon (Physignathus concinus). Proceedings of the
- 816 12th Annual Meeting of the Association of Reptilian and Amphibian
- 817 Veterinarians, 93-95.
- 818 Bronson, E., Cranfield, M.R., 2006, Paramyxovirus, In: Reptile Medicine 819 and Surgery. Elsevier, St. Louis, pp. 858-861.
- 820 Brousset, D., Lewy, C., Yarto, E., 1994. Detection of Antibodies Against
- 821 Paramyxovirus (OPMV) on Mexican Captive Snakes. In: Proceedings of
- the Association of Reptilian and Amphibian Veterinarians, p. 101.
- 823 Calle, P.P., Rivas, J., Munoz, M., Thorbjarnarson, J., Holmstrom, W.,
- 824 Karesh, W.B., 2001, Infectious Disease Serologic Survey in Free-Ranging
- 825 Venezuelan Anacondas (Eunectes murinus). Journal of Zoo and Wildlife
- 826 Medicine 32, 320-323.
- 827 Chakrabarti, S., Collingham, K.E., Holder, K., Fegan, C.D., Osman, H.,
- 828 Milligan, D.W., 2001, Pre-emptive Oral Ribavirin Therapy of
- 829 Paramyxovirus Infections after Haematopoietic Stem Cell
- 830 Transplantation: A Pilot Study. Bone Marrow Transplantation 28, 759-
- 831 763.
- 832 Clark, H.F., Lief, F.S., Lunger, P.D., Waters, D., Leloup, P., Foelsch, D.W.,
- 833 Wyler, R.W., 1979, Fer de Lance Virus (FDLV): A Probable Paramyxovirus
- 834 Isolated from a Reptile. Journal of General Virology 44, 405-418.
- 835 Folsch, D.W., Leloup, P., 1976, [Fatal endemic infection in a
- 836 serpentarium. Diagnosis, treatment and preventive measures]. Tierarztl
- 837 Prax 4, 527-536.
- 838 Franke, J., Batts, W.N., Ahne, W., Kurath, G., Winton, J.R., 2006,
- 839 Sequence Motifs and Prokaryotic Expression of the Reptilian
- 840 Paramyxovirus Fusion Protein. Archives of Virology 151, 449-464.
- 841 Franke, J., Essbauer, S., Ahne, W., Blahak, S., 2001, Identification and
- 842 Molecular Characterisation of 18 Paramyxoviruses Isolated from Snakes.

843 Virus Research 80, 67-74.

844 Freeman, A.F., Jacobsohn, D.A., Shulman, S.T., Bellini, W.J., Jaggi, P., de 845 Leon, G., Keating, G.F., Kim, F., Pachman, L.M., Kletzel, M., Duerst, R.E., 846 2004, A New Complication of Stem Cell Transplantation: Measles 847 Inclusion Body Encephalitis. Pediatrics 114, 657-660. 848 Gravendyck, M., Ammermann, P., Marschang, R.E., Kaleta, E.F., 1998, 849 Paramyxoviral and Reoviral Infections of Iguanas on Honduran Islands. 850 Journal of Wildlife Diseases 34, 33-38. 851 Hernandez-Divers, S.J., 2006, Appendix A Reptile Viral Diseases -852 Summary Table, In: Reptile Medicine and Surgery. Elsevier, St. Louis, pp. 853 1147-1158. 854 Homer, B.L., Sundberg, J.P., Gaskin, J.M., Schumacher, J., Jacobson, E.R., 855 1995, Immunoperoxidase Detection of Ophidian Paramyxovirus in Snake 856 Lung Using A Polyclonal Antibody. Journal of Veterinary Diagnostic 857 Investigation 7, 72-77. 858 Huchzermeyer, F., Gerdes, G., Putterill, J., 1994. Viruses and 859 mycoplasms from faeces of farmed Nile crocodiles. In: Proceedings of 860 the 12th Working Meeting of the Crocodile Specialist Group, Gland, 861 Switzerland, pp. 303-308. 862 Hyndman, T.H., Marschang, R.E., Wellehan, J.F., Jr., Nicholls, P.K., 2012a, 863 Isolation and molecular identification of Sunshine virus, a novel 864 paramyxovirus found in Australian snakes. Infection, Genetics and 865 Evolution 12, 1436-1446. 866 Hyndman, T.H., Shilton, C.M., Doneley, R.J.T., Nicholls, P.K., 2012b, 867 Sunshine virus in Australian pythons. Veterinary Microbiology 161, 77-868 87. 869 ICTV 2013. Virus Taxonomy: 2011 Release (International Committee on 870 Taxonomy of Viruses). 871 Jackson, O.F., Needham, J.R., 1983, Rhinitis and Virus Antibody Titres in 872 Chelonians. Journal of Small Animal Practitioners 24, 31-36. 873 Jacobson, E., Gaskin, J.M., Page, D., Iverson, W.O., Johnson, J.W., 1981, 874 Illness Associated with Paramyxo-like Virus Infection in a Zoologic 875 Collection of Snakes. Journal of the American Veterinary Medical 876 Association 179, 1227-1230. 877 Jacobson, E.R., 2007, Viruses and Viral Diseases of Reptiles, In: 878 Infectious Diseases and Pathology of Reptiles. Taylor & Francis Group,

880 Jacobson, E.R., Adams, H.P., Geisbert, T.W., Tucker, S.J., Hall, B.J., 881 Homer, B.L., 1997, Pulmonary Lesions in Experimental Ophidian 882 Paramyxovirus Pneumonia of Aruba Island Rattlesnakes, Crotalus 883 unicolor. Veterinary Pathology 34, 450-459. 884 Jacobson, E.R., Flanagan, J.P., Rideout, B.R., Ramsay, E.C., Morris, P., 885 1999, Ophidian Paramyxovirus - Roundtable Forum. Journal of 886 Herpetological Medicine and Surgery 9, 15-22. 887 Jacobson, E.R., Gaskin, J.M., Flanagan, J.P., Odum, R.A., 1991, Antibody 888 Responses of Western Diamondback Rattlesnakes (Crotalus atrox) to 889 Inactivated Ophidian Paramyxovirus Vaccines. Journal of Zoo and 890 Wildlife Medicine 22, 184-190. 891 Jacobson, E.R., Gaskin, J.M., Simpson, C.F., Terrell, T.G., 1980, 892 Paramyxo-like Virus Infection in a Rock Rattlesnake. Journal of the 893 American Veterinary Medical Association 177, 796-799. 894 Jacobson, E.R., Gaskin, J.M., Wells, S., Bowler, K., Schumacher, J., 1992, 895 Epizootic of Ophidian Paramyxovirus in a Zoological Collection: 896 Pathological, Microbiological, and Serological Findings. Journal of Zoo 897 and Wildlife Medicine 23, 318-327. 898 Jacobson, E.R., Origgi, F., Pessier, A.P., Lamirande, E.W., Walker, I., 899 Whitaker, B., Stalis, I.H., Nordhausen, R., Owens, J.W., Nichols, D.K., 900 Heard, D., Homer, B., 2001, Paramyxovirus Infection in Caiman Lizards 901 (Draecena guianensis). Journal of Veterinary Diagnostic Investigation 13, 902 143-151. 903 Jacobson, E.R., Origgi, F.C., 2007, Serodiagnostics, In: Infectious 904 Diseases and Pathology of Reptiles. Taylor & Francis Group, LLC, Florida, 905 pp. 381-394. 906 Jacobson, E.R., Samuelson, D.A., 2007, Identifying Reptile Pathogens 907 Using Electron Microscopy, In: Infectious Diseases and Pathology of 908 Reptiles. Taylor & Francis Group, LLC, Florida, pp. 299-350. 909 Junqueira de Azevedo, I.d.L.M., Prieto da Silva, A.R.B., Carmona, E., Lee 910 Ho, P., 2001, Characterisation of a Paramyxovirus from a Fer de Lance 911 Viper (Bothrops jararaca): partial nucleotide sequence of the Putative 912 Fusion Protein. Archives of Virology 146, 51-57. 913 Kania, S.A., Kennedy, M., Nowlin, N., Diderrich, V., Ramsay, E., 2000. 914 Development of an enzyme linked immunosorbent assay for the 915 diagnosis of ophidian paramyxovirus. In: Proceedings of the European 916 Association of Zoo and Wildlife Veterinarians, Third Scientific Meeting, 917 Paris, France, pp. 71-73.

918 Kik, M.J.L., Van Zon, R.T., Van Asten, F.J.A.M., 2004. Retrospective

919 Studies on Ophidian Paramyxovirus Infection in Snakes in the 920 Netherlands Using the Polymerase Chain Reaction (PCR). Preliminary 921 Results. In: Proceedings of the 7th International Symposium on 922 Pathology and Medicine in Reptiles and Amphibians, Berlin, pp. 43-48. 923 Kindermann, J., Kubber-Heiss, A., Kerschbaumer, P., Nowotny, N., 2001, 924 Phylogenetic Analysis of the L and HN Gene of Ophidian 925 Paramyxoviruses. Archives of Virology 146, 1021-1035. 926 Kolesnikovas, C.K.M., Grego, K.F., Rameh de Albuquerque, L.C., 927 Jacobson, E.R., Monezi, T.A., Mehnert, D.U., Catao-Dias, J.L., 2006, 928 Ophidian Paramyxovirus in Brazilian Vipers (Bothrops alternatus). 929 Veterinary Record 159, 390-392. 930 Kummrow, M., Lopez, J., Hatt, J., Dorrestein, G.M., 2004. Disease-risk 931 Assessment for Free-ranging Geckoes (Gecko monarchus, Gehyra 932 mutilata) in a Captive Reptile Stock. In: Proceedings of the AAZV, AAWV, 933 WDA Joint Conference, San Diego, CA, p. 591. 934 Kurath, G. 2009. Reptile paramyxoviruses: 1 new species and new genus, 935 Ferlavirus. 936 Kurath, G., Batts, W.N., Ahne, W., Winton, J.R., 2004, Complete Genome 937 Sequence of Fer-de-Lance Virus Reveals a Novel Gene in Reptilian 938 Paramyxoviruses. Journal of Virology 78, 2045-2056. 939 Lloyd, C., Manvell, R., Drury, S., Sainsbury, A.W., 2005, Seroprevalence 940 and Significance of Paramyxovirus Titres in a Zoological Collection of 941 Lizards. Veterinary Record 156, 578-580. 942 Lloyd, M.L., Flanagan, J., 1991. Recent Developments in Ophidian 943 Paramyxovirus Research and Recommendations on Control. In: 944 Proceedings of the American Association of Zoo Veterinarians, pp. 148-945 153. 946 Lunger, P.D., Clark, H.F., 1978, Reptilia-Related Viruses. Advances in 947 Virus Research 23, 159-204. 948 Manvell, R.J., Drury, S.E., Geach, M., Lewis, J.C.M., 2000, Isolation of 949 Ophidian Paramyxovirus type 7 from a Reticulated Python in the UK. 950 Veterinary Record 147, 696. 951 Marschang, R.E., 2011, Viruses Infecting Reptiles. Viruses 3, 2087-2126. 952 Marschang, R.E., Chitty, J., 2004, Infectious Diseases, In: BSAVA Manual 953 of Reptiles. British Small Animal Veterinary Association, Gloucester, pp. 954 330-345. 955 Marschang, R.E., Donahoe, S., Manvell, R., Lemos-Espinal, J., 2002,

956 Paramyxovirus and Reovirus Infections in Wild-caught Mexican Lizards 957 (Xenosaurus and Abronia sp.). Journal of Zoo and Wildlife Medicine 33, 958 317-321. 959 Marschang, R.E., Papp, T., Frost, J.W., 2009, Comparison of 960 paramyxovirus isolates from snakes, lizards and a tortoise. Virus 961 Research 144, 272-279. 962 Mayr, A., Franke, J., Ahne, W., 2000, Adaptation of Reptilian 963 Paramyxovirus to Mammalian Cells (Vero Cells). Journal of Veterinary 964 Medicine B 47, 95-98. 965 Nogueira, M.F., Barrella, T.H., Da Silva, R.J., Lopes, C.A.M., Araujo Junior, 966 J.P., 2002, Isolation of an Ophidian Paramyxovirus (OPMV) in a Captive 967 Rattlesnake (Crotalus durissus terrificus) from Botucatu, Sao Paulo State, 968 Brazil. Journal of Venomous Animals and Toxins 8, 168-173. 969 Oettle, E., Steytler, Y., Williams, M., 1990, High mortality in a tortoise 970 colony. South African Journal of Wildlife Research 20, 21-25. 971 Oros, J., Sicilia, J., Torrent, A., Castro, P., Deniz, S., Arencibia, A., 972 Jacobson, E.R., Homer, B.L., 2001, Immunohistochemical Detection of 973 Ophidian Paramyxovirus in Snakes in the Canary Islands. Veterinary 974 Record 149, 21-23. 975 Papp, T., Pees, M., Schmidt, V., Marschang, R.E., 2010a, RT-PCR 976 diagnosis followed by sequence characterization of paramyxoviruses in 977 clinical samples from snakes reveals concurrent infections within 978 populations and/or individuals. Veterinary Microbiology 144, 466-472. 979 Papp, T., Seybold, J., Marschang, R.E., 2010b, Paramyxovirus infection in 980 a leopard tortoise (Geochelone pardalis babcocki) with respiratory 981 disease. Journal of Herpetological Medicine and Surgery 20, 64-68. 982 Pasmans, F., Blahak, S., Martel, A., Pantchev, N., 2008, Introducing 983 Reptiles into a Captive Collection: The Role of the Veterinarian. The 984 Veterinary Journal 175, 53-68. 985 Potgieter, L.N.D., Sigler, R.E., Russell, R.G., 1987, Pneumonia in Ottoman 986 Vipers (Vipera xanthena xanthena) Associated with a Parainfluenza 2-987 like Virus. Journal of Wildlife Diseases 23, 355-360. 988 Quinn, P.J., Markey, B.K., Carter, M.E., Donnelly, W.J., Leonard, F.C., 989 2002, Paramyxoviridae, In: Veterinary Microbiology and Microbial 990 Disease. Blackwell Science Ltd, Oxford, pp. 381-389. 991 Richter, G.A., Homer, B.L., Moyer, S.A., Williams, D.S., Scherba, G., 992 Tucker, S.J., Hall, B.J., Pederson, J.C., Jacobson, E.R., 1996,

993 Characterisation of Paramyxoviruses Isolated from Three Snakes. Virus

994	Research 43, 77-83.
995	Ritchie, B., 2006, Virology, In: Medicine and Surgery of Reptiles.
996	Elsevier, St. Louis, pp. 391-417.
997 998 999	Rösler, R., Abbas, M.D., Papp, T., Marschang, R.E., 2013, Detection of antibodies against paramyxoviruses in tortoises. Journal of Zoo and Wildlife Medicine In press.
1000	Sand, M.A., Latimer, K.S., Gregory, C.R., Rakich, P.M., Jacobson, E.R.,
1001	Pennick, K.E., 2004, Molecular Diagnosis of Paramyxovirus Infection in
1002	Snakes using Reverse Transcriptase-Polymerase Chain Reaction and
1003	Complementary Deoxyribonucleic acid:Ribonucleic acid in situ
1004	Hybridisation. Journal of Veterinary Diagnostic Investigation 16, 442-448.
1005	Watanabe, M., Mishin, V.P., Brown, S.A., Russell, C.J., Boyd, K., Babu,
1006	Y.S., Taylor, G., Xiong, X., Yan, X., Portner, A., Alymova, I.V., 2009, Effect
1007	of hemagglutinin-neuraminidase inhibitors BCX 2798 and BCX 2855 on
1008	growth and pathogenicity of Sendai/human parainfluenza type 3
1009	chimera virus in mice. Antimicrobial Agents and Chemotherapy 53,
1010	3942-3951.
1011	Wellehan, J.F., Johnson, A.J., 2005, Reptile virology. The Veterinary
1012	Clinics of North America. Exotic Animal Practice 8, 27.
1013	West, G., Garner, M., Raymond, J., Latimer, K.S., Nordhausen, R., 2001,
1014	Meningoencephalitis in a Boelen's Python (Morelia boeleni) Associated
1015	with Paramyxovirus Infection. Journal of Zoo and Wildlife Medicine 32,
1016	360-365.
1017	Witte, A., 1993. Ein Beitrag zum Nachweis von Antikörpern gegen
1018	Herpes- und Paramyxoviren bei verschiedenen Landschildkrötenarten.
1019	Dissertation. Justus-Liebig-Universität Gießen.
1020	Yolken, R.H., Torsch, V.M., Berg, R., Murphy, B.R., Lee, Y.C., 1980,
1021	Fluorometric Assay for Measurement of Viral Neuraminidase -
1022	Application to the Rapid Detection of Influenza Virus in Nasal Wash
1023	Specimens. The Journal of Infectious Diseases 142, 516-523.
1024 1025 1026 1027 1028 1029 1030	Zangger, N., Muller, M., Pagan, O., 1991. Viral Dermatitis in the Spur- Tailed (Testudo graeca) and the Spur-Thighed Tortoise (Testudo hermanni) in Switzerland. In: Proceedings of the 4th International Colloquium on Pathology Medicine of Reptiles and Amphibians, Bad Nauheim, Germany, pp. 25-29.
1031	

1031

Clinical Sign	Reference
Nonspecific	
Anorexia	(Jacobson et al., 1992; Manvell et al., 2000; Kolesnikovas et al., 2006)
Regurgitation (occasional)	(Jacobson et al., 1981; Jacobson et al., 1992; Kolesnikovas et al., 2006)
Mucoid diarrhoea or malodorous stools	(Jacobson et al., 1981; Jacobson et al., 1992; Kolesnikovas et al., 2006)
Lethargy/Moribund	(Folsch and Leloup, 1976; Ahne et al., 1987)
Sudden death	(Jacobson et al., 1981; Jacobson et al., 1997; Marschang et al., 2009; Papp et al., 2010)
Respiratory	
Not seen	(Jacobson et al., 1992; West et al., 2001)
Not described further	(Blahak, 1995; Kolesnikovas et al., 2006; Marrahang et al., 2000)
Brown to haemorrhagic discharge from nostrils and/or trachea or in oral cavity	Marschang et al., 2009) (Jacobson et al., 1981; Jacobson et al., 1997)
Stridor and/or respiratory noise	(Manvell et al., 2000)
Pneumonia	(Blahak et al., 1991; Nogueira et al., 2002; Papp et al., 2010)
Clear mucus in mouth	(Potgieter et al., 1987)
Clear nasal discharge	(Manvell et al., 2000)
Mouth gaping	(Folsch and Leloup, 1976; Jacobson et al., 1981)
Neurological	
Not described further	(Blahak, 1995; Papp et al., 2010)
Complete flaccid paralysis	(West et al., 2001)
Decreased cutaneous sensation	(West et al., 2001)
Head tremors	(Jacobson et al., 1980; Jacobson et al., 1992; Kolesnikovas et al., 2006)
Abnormal posturing/disequilibrium i.e. opisthotonus (star gazing) or inability to right itself	(Folsch and Leloup, 1976; Jacobson et al., 1980; Blahak et al., 1991; Jacobson et al., 1992; Kolesnikovas et al., 2006; Papp et al., 2010)

1032 Table 1 Clinical signs associated with ferlaviral infection. Only the references

1033 that report on original data are included here.

SCRIP CCE T. 2

1034

Gross Pathology	Reference	
None	(Jacobson et al., 1997; Kolesnikovas et al., 2006)	
Pulmonary congestion or oedema	(Folsch and Leloup, 1976; Potgieter et al., 1987; Oros et al., 2001; Kolesnikovas et al., 2006; Jacobson, 2007)	
Haemorrhagic pneumonia	(Jacobson et al., 1992; Jacobson et al., 1997; Oros et al., 2001; West et al., 2001)	
Blood in oral cavity or free in coelom	(Jacobson et al., 1997; Jacobson, 2007)	
White nodules on liver	(Jacobson et al., 1992)	
Mucoid or caseous exudate in the lung	(Jacobson et al., 1980; Jacobson et al., 1981; Blahak et al., 1991)	
Diffuse to focal accumulations of caseous necrotic debris in pulmonary tissue	(Jacobson et al., 1992; Oros et al., 2001)	
Table 2 Gross pathological changes se	en associated with ferlaviral infection.	

1035 1036

1037

Ç

¥. ٠ 0

Histopathological Change	Reference
Respiratory	
Moderate to diffuse amounts of cellular debris and exudate filling airways	(Jacobson et al., 1980; Jacobson et al., 1981)
Varying amounts of mixed inflammatory cells in the interstitium	(Jacobson et al., 1980; Jacobson et al., 1981; Potgieter et al., 1987; Jacobson et al., 1992; Jacobson et al., 1997; Oros et al., 2001; West et al., 2001; Kolesnikovas et al., 2006; Jacobson, 2007)
Gram negative microorganisms seen	(Homer et al., 1995; Oros et al., 2001; Jacobson, 2007)
Hyperplastic alveolar [faveolar] cells	(Potgieter et al., 1987; Homer et al., 1995; Jacobson et al., 1997; Oros et al., 2001; Jacobson, 2007)
Thickened pulmonary septae	(Homer et al., 1995; Jacobson et al., 1997) Jacobson, 2007)
Hyperplasia and often hypertrophied epithelium	(Jacobson et al., 1981; Homer et al., 1995)
Small numbers of pale eosinophilic intracytoplasmic (or not described) inclusions	(Jacobson et al., 1981; Potgieter et al., 1987; Blahak et al., 1991; Homer et al., 1995; Jacobson et al., 1997)
Giant cell formation	(Homer et al., 1995; Kolesnikovas et al., 2006)
Lesion severity decreases from cranial to middle to caudal lung area*	(Jacobson et al., 1997)
Neurological [§]	
Eosinophilic intracytoplasmic inclusion bodies	(West et al., 2001)
Demyelination and degeneration of axon fibers	(Jacobson et al., 1980)
Multifocal neuronal degeneration	(West et al., 2001)
Lymphohistiocytic neuritis of oesophagus	(West et al., 2001)
Moderate axonal sheath ballooning	(Jacobson et al., 1980)
Multifocal gliosis	(Jacobson et al., 1980)
Perivascular cuffing in the brain	(Jacobson et al., 1980; West et al., 2001; Jacobson, 2007)
Other	
Intracytoplasmic inclusion bodies in the liver	(Blahak et al., 1991)
Pancreatitis and/or pancreatic	(Jacobson et al., 1980; Jacobson et al., 1992: Kolesnikovas et al., 2006: Jacobson,

Pancreatitis and/or pancreatic 1992; Kolesnikovas et al., 2006; Jacobson, necrosis and/or pancreatic fibrosis 2007)

-٠ ٠ A .

Pancreatitic giant cell formation	(Kolesnikovas et al., 2006)
Pyogranulomatous hepatitis	(Jacobson et al., 1992)
Gram negative infections seen in	(Jacobson et al., 1992)
many organs	
Table 3 Histopathological changes seen a	associated with ferlaviral infection.
*These findings were in snakes that were	
ferlavirus by endotracheal inoculation. §	3rain was not examined histological

- 1040 logically 1041 in Jacobson et al. (1981), Potgieter et al. (1987), Jacobson et al. (1992), Homer
- 1042 et al. (1995) or Jacobson et al. (1997). It is unclear whether the brain was
- 1043 examined in Oros et al. (2001) and Kolesnikovas et al. (2006).
- 1044

1038

- 1045
- 1046

NUSCRIPT ACCEP TED 111 7

1046

Quarantine Time	Reference
At least 30 days	(Jacobson et al., 1980)
Minimum of 60 days	(Lloyd and Flanagan, 1991)
Minimum of 60-90 days	(Bronson and Cranfield, 2006)
Up to 90 days	(Gillespie, 2006)
90 days	(Pasmans et al., 2007)
Minimum of 90 days for animal raised in captivity	(Ritchie, 2006)
Minimally 90 days in a clinically healthy collection	(Jacobson et al., 1992; Marschang and Chitty, 2004)
At least two months since the last death in an affected collection	(Jacobson et al., 1992)
Minimum of three months with serology done at beginning and end	(Jacobson et al., 1999)
Four months	(Hernandez-Divers, 2006)
Six months or 180 days	(Keeble, 2004; Ritchie, 2006; Rossi, 2006)
Table 4 The various quarantine periods that are	e recommended in the ferlaviral

- 1048 literature.
- 1049

Virus Isolation Techniques	Reference
Successful attempts	
Sputum inoculated directly onto Vero cells	(Nogueira et al., 2002)
Fulfilling Koch's postulates: Vero cell-adapted ferlavirus was transmitted to naïve snakes and then lung homogenates were recovered at necropsy and used to reisolate ferlavirus onto Vero cells	(Jacobson et al., 1997)
Lung suspension inoculated onto fathead minnow skin cells (FHM, a piscine cell line), hamster kidney cells (BHK-21), swine testicular cells (ST), Vero cells and primary bovine turbinate cells (BTU)	(Potgieter et al., 1987)
Lung suspension inoculated into embryonated snake eggs and then subcultured onto nine reptilian and four mammalian cell lines	(Clark et al., 1979)
Pooled and/or individual snake organs inoculated onto monolayer of VH2 and/or IgH2 cells	(Jacobson et al., 1980; Jacobson et al., 1981; Ahne et al., 1987; Blahak, 1994; Homer et al., 1995; Kolesnikovas et al., 2006; Papp et al., 2010a; Abbas et al., 2011)
Various lizard organs inoculated onto VH2 and TH1 cells. After eight passages in TH1 cells, was adapted to Vero cells	(Jacobson et al., 2001)
Ferlavirus replicating in VH2 cells adapted to Vero cells	(Blahak, 1995; Richter et al., 1996; Mayr et al., 2000)
Ferlavirus replicating in IgH2 cells adapted to Vero cells	(Richter et al., 1996; Mayr et al., 2000)
Ferlavirus replicating in IgH2 cells adapted to chicken embryo fibroblasts (LSCC-H32) and embryonated chicken eggs	(Ahne et al., 1999)
Ferlavirus replicating in VH2 cells adapted to chicken embryo fibroblasts	(Blahak, 1994)
Ferlavirus replicating in VH2 cells adapted to Madin Darby bovine kidney cells (MDBK) and rabbit kidney cells (RK-13)	(Blahak, 1995)
Lung suspension inoculated into snake embryo fibroblasts	(Manvell et al., 2000)
Unsuccessful attempts*	

	Pooled and/or individual snake organs		
	inoculated onto monolayer of IgH2 cells	(Jacobson et al., 1980)	_
	Lung suspension inoculated into embryonated snake eggs and then subcultured onto three piscine cell lines	(Clark et al., 1979)	
	Lung suspension inoculated into the allantois of SPF embryonated chicken eggs and onto chicken embryo fibroblasts and Vero cells	(Manvell et al., 2000)	
	Lung suspension inoculated onto VH2 cells and feline kidney cells (CRFK)	(Potgieter et al., 1987)	
	Reptilian paramyxovirus replicating in fathead minnow cells could not be subcultured into the allantois of SPF embryonated chicken eggs	(Potgieter et al., 1987)	
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060	Table 5 The methods that have been reported in the li paramyxoviruses from reptiles. VH2 = viper heart cells cells. IgH2 = iguana heart cells. SPF = specific pathoger attempts where a paramyxovirus was successfully isola biological substrate are mentioned. This is to exclude t unsuccessful attempt was because there was simply in However, the possibility that the virus did grow in these detected cannot be ruled out as further testing (e.g. pr was not performed.	. TH1 = terrapene heart n free. *Only those ated using a different the possibility that the o virus in the inoculum. se cells but was not	

1000

		Cell line					
Cytopathic Effect	Viper heart cells (VH2)	Terrapene heart cells (TH1)	Vero cells	lguana heart cells (IgH2)	Chicken embryo fibroblasts (LSCC- H32)	Fathead minnow skin (FHM)	Various
Syncytial/giant cell formation Cytoplasmic	$(Abbas et al., 2011)^{\phi}$ (Jacobson et al., 1980; Jacobson et al., 1981; Blahak, 1995; Homer et al., 1995; Jacobson et al., 2001) (Jacobson et	(Jacobson et al., 2001) [#]	(Richter et al., 1996) ¹ (Mayr et al., 2000) ² (Jacobson et al., 2001) ³ (Mayr et	(Ahne et al., 1987; Ahne et al., 1999b)	(Ahne et al., 1999a) ²	(Potgieter et al., 1987)*	(Clark et al., 1979)
inclusion bodies	al., 1981)		al., 2000) ²				
Cell lysis/monolayer destruction	$(Abbas et al., 2011)^{\Phi}$ (Jacobson et al., 1981; Blahak, 1995; Homer et al., 1995; Kolesnikovas et al., 2006)		(Mayr et al., 2000) ²	(Ahne et al., 1987; Ahne et al., 1999b)	(Ahne et al., 1999a) ²	(Potgieter et al., 1987)*	(Clark et al., 1979)
Elongation of cell processes	(Homer et al., 1995)						
Cell vacuolisation					(Ahne et al., 1999a) ²		
Cell rounding	(Kolesnikovas et al., 2006)						

1067 testicular cells (ST), Vero cells and primary bovine turbinate cells (BTU). [#]This

1068 isolate was obtained from a caiman lizard (Draecena guianensis). [•] Tissue

1069 homogenates were inoculated onto VH2 and IgH2 cells but cell line that the

1070 isolate was successful isolated with is not specified.

1071

1071

Laboratory	Reference
Haemagglutination Inhibition (HI)	
Hohenheim University, Germany	(Heard et al., 2004)
Chemical and Veterinary Investigation Office (CVUA) of East Westphalia-Lippe, Germany	(R. Marschang, pers. comm.)
Veterinary Laboratories Agency (VLA), UK	(Keeble, 2004)
The University of Florida, USA	(Heard et al., 2004)
The University of Tennessee, USA	(Heard et al., 2004)
Texas State Diagnostic Laboratory, USA	(Ritchie, 2006)
Polymerase Chain Reaction (PCR)	
Hohenheim University, Germany*	(R. Marschang, pers. comm.)
Chemical and Veterinary Investigation Office (CVUA) of East Westphalia-Lippe, Germany*	(R. Marschang, pers. comm.
IDEXX Vet Med Labor, Germany	http://www.idexx.de
Laboklin, Germany	http://www.laboklin.de/
The University of Florida, USA*	(Heard et al., 2004)
Murdoch University, Australia*	(T. Hyndman, pers. comm.)
Virus Isolation	
Hohenheim University, Germany	(R. Marschang, pers. comm.
Chemical and Veterinary Investigation Office (CVUA) of East Westphalia-Lippe, Germany	(R. Marschang, pers. comm.)

1072 Table 7 Diagnostic tests for ferlavirus that are commercially available. *Known
1073 to use the primer pairs designed by Ahne et al. (1999b) targeting the L gene.