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Book Chapter  

Modeling the carbonization process to develop a cost-effective, 

smokeless, continuous, down-draft rice husk carbonizer suitable for rice 

growing regions. 

R. F. Orgea*, M. P. McHenryb, and R. L. de Leonc 
aPhilippine Rice Research Institute (PhilRice), Philippines, bSchool of Engineering and Energy, Murdoch 

University, Western Australia, cCollege of Engineering, University of the Philippines, Diliman, Philippines. 

 

Abstract 

This work discusses modeling of the operational processes occurring in a small-scale, down-draft, 

continuous rice husk (40 kg h-1) carbonizer suitable for application in poor rice growing regions. The 

model was used as a tool to optimize the performance of a constructed carbonizer using material and 

heat balances. The carbonizer technology operating principles are discussed in terms of four operational 

“zones” and the possible reactions occurring in each zone. The material balance model was used to 

determine the amounts of each participating material at each zone, and the energy balance was 

generated using the material balance solutions. The final output of the model for O2, CO, and CO2 was 

reconciled with testing performance of the constructed carbonizer. The results suggested that 99.2% 

(weight basis) of the total CO produced during carbonization was burnt at the ignition chamber zone, 

resulting in only 0.8% CO emission from the chimney. The energy balance determined there was a high 

potential for the carbonizer to produce useful heat, for rice farm activities, with flue gasses calculated at 

724
o
C. The material and heat balance models were successfully verified by prototype testing. 

 

Keywords: Carbonizer; Rice husk; Energy; Model; Biochar. 

 

Nomenclature 

RH rice husk 

CHR carbonized rice husk 

Rp the matrix of the elemental composition (%) of the RH based on ultimate analyses  

Ap the matrix of the elemental composition of ambient air 

Ccrh C content (%) of the carbonized RH produced by the carbonizer 

Qr  the input capacity of the carbonizer, (kg RH h
-1

) 

Qa  the flow rate of air entering the side opening of the carbonizer, (kg h
-1

) 

Qb  the flow rate of air entering the bottom opening of the carbonizer, (kg h
-1

).  

Rw  matrix of the kg of RH components entering the carbonizer 
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Aws  matrix of the kg of air components entering the side opening  

Awb  matrix of the kg of air components entering the bottom opening  

t  accounting period considered (one hour) 

Ccrh  portion of the C present in RH remaining in the charcoal after carbonization 

Ca  the amount of gasified C taking part in the reaction 

Rw(1) the first element of the Rw matrix (%C) 

y yield of CRH (a ratio of the weight of CRH to input RH, in decimal form)  

Xair  X characteristic of the intake air  

Xrh  X characteristic of the RH 

Xcrh  X characteristic of the CRH 

Xfg  X characteristic of the flue gas 

m mass of the material 

Cp specific heat capacity, (J mole
-1

 K
-1

) 

∆T  difference between reference and final temperature, (
o
K) 

 

Introduction 

Carbonization is a complex process [1, 2] with some published literature equating carbonization 

with pyrolysis [3-5], while others consider pyrolysis a distinct process to accomplish carbonization [6-11], 

or as a sub-processes similar to gasification [12]. Several models describing the carbonization process 

have been developed [13-16], although no literature is currently available that sufficiently describes how 

the chemical elements in rice husk (RH) and air interact in the numerous reactions involved in the 

carbonization process. This work incorporates Hien’s [17] research on RH combustion systems, both 

Vinluan’s [18], and Rezaiyan and Cheremisinoff’s [5] research on gasification technologies, Basu’s [19] 

work on combustion and gasification, and Reed and Das’s [12] work on downdraft combustion systems 

to simplify the problem to equations to predict the behavior of a thermal system like a carbonizer [20]. 

Reed and Das [12] reported that adjusting the equivalence ratio of a gasifier at a level lower than 0.25 

favors the production of carbonized rice husk (CRH). This means a carbonizer is able to operate as a 

gasifier if an optimal equivalence ratio for gasification is achieved by influencing air intakes. This paper 

uses a combination of gasification and combustion theory to model the various chemical reactions 

taking place in the operation of a smokeless RH carbonizer, and how these elements interact during the 

process. The predictive model produced suitable quantitative inputs for assisting the design and 

optimization of the carbonization process and carbonizer. The results were tested by constructing a 

small-scale, motor-less downdraft RH carbonizer in the Philippines, designed to enabled future 

retrofitting of heat recovery components. The resultant carbonizer overcame many limitations of the 

batch carbonizers currently used in the region, including low heat recovery capability, and in particular 

the unacceptable operator emission/smoke exposures. 

Carbonizer operating principles 

RH is initially fed into the top of the carbonizer, filling the hopper, which is then tightly closed 

(Fig. 1). The model assumes that hopper cover and all of the hopper joints and connections are perfectly 
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sealed so ambient air taking part in the carbonization process enters only through the side opening 

where a portion of the RH bed is exposed. Once the carbonizer is ignited and starts to operate by itself, 

the model assumes the carbonizer operates with the same processes and reactions as that of a gasifier, 

since both systems operate with limited (below stoichiometric) levels of air. The flow of materials (RH, 

air, and CRH) entering and leaving the carbonizer is represented in Fig. 2. 

The RHs inside the hopper undergo changes in various zones, the boundaries of which overlap in 

practice [17], but are clearly divided diagrammatically for the discussion. Furthermore, the size of each 

zone will vary for each operation, primarily due to the changes in RH agitation frequency which is 

undertaken to allow the CRH to collect in the bottom chamber. In the drying zone the RHs are heated 

from the ambient temperature to pyrolysis temperatures of around 230oC [17]. In the immediate vicinity 

of the chimney’s base and the upper portion of the ignition chamber is the pyrolysis zone. The RHs are 

exposed to high temperatures in the absence of air as the air does not flow through this region of the 

carbonizer. Thus, the RHs lying in this region are ‘cooked’, transforming them into three products - solid 

(CRH), liquid (tar), and gas. The region in the immediate vicinity of the ignition chamber is the reduction 

zone. This zone lies along the path of the air wherein the following reactions are expected to occur in a 

similar manner as that of a gasifier [12]: 

C + 0.5 O2  �  CO + 110.52 kJ mol
-1

  (1) 

C + O2   �  CO2 + 393.77 kJ mol
-1

  (2) 

H2 + 0.5O2  �  H2O + 285.83 kJ mol
-1

  (3) 

C + H2O   �  CO + H2 – 131.40 kJ mol
-1

 (4) 

C + 2H2O   �  CO2 + 2H2 – 89.87 kJ mol
-1

  (5) 

C + CO2   �  2CO – 172.73 kJ mol
-1

   (6) 

C + 2H2   �  CH4 + 74.87 kJ mol
-1

   (7) 

CO + 3H2   �  CH4 + H2O + 205.82 kJ mol
-1

  (8) 

CO + H2O   �  H2 + CO2 – 41.43 kJ mol
-1

  (9) 

 

Reactions four and five are the water-gas reactions, reaction six is the Boudouard reaction, reaction 

seven is the methanation or hydro-gasification and reaction nine is the shift conversion or water-gas 

shift [5,19]. The combustion zone is bound by the walls of the ignition chamber. It is where secondary air 

entering through the bottom opening is introduced to the combustible gases. The reactions can be 

described as follows:  

CO + 0.5O2  �  CO2 + 283.25 kJ mol
-1

   (10) 

CH4 + 2O2  �  CO2 + 2H2O + 802.89 kJ mol
-1

  (11) 

H2 + 0.5O2  �  H2O + 285.83 kJ mol
-1 

 (12) 

 

In addition to the N2 component of air which did not play a reactionary role, gases entering into the 

combustion zone could be any or all of the following products of reactions one to nine: H2, CO, CO2, H2O, 

and CH4. As some of these products are reactants of the other reactions, some of the combustible gases 

may be consumed while in the reduction zone. 
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Fig. 1. Cross section representing material flows into and out of the carbonizer. 

 

Fig. 2. Flow of materials into and out of the carbonizer in a process diagram. 
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Methods 

The carbonization process was modeled based on the concept of material balance. As matter 

cannot be created nor destroyed, the total materials that constitute the RH and the ambient air taking 

place in the carbonization process remains the same at the point of entry and exit of the carbonizer. 

MATLAB
®
 was used to develop a program to model the carbonization process to accounted for reactions 

one to twelve to determine a condition wherein a ‘material balance’ exists, based on the zone boundary 

conditions. The program output displays a list of the materials and their relative amounts at the point of 

entry and exit in the carbonizer, and for each zone. Since the carbonizer is a continuous design, the 

program uses an accounting period of one hour. Thus, the amount of RH considered is equal to the 

carbonizer’s input capacity (kg RH h
-1

) multiplied by one hour.  

The model included input data from the input RHs and actual operation of the carbonizer. For the 

materials entering the carbonizer, the data were derived from elemental (ultimate) and proximate 

analyses of the RHs (Table 1). The data for the exiting materials were obtained during testing of the 

carbonizer (see Table 2 for testing results). The calculations in program were based on the following 

assumptions: 

1. The processes involved do not change with time (steady state) and are carried out at constant 

pressure (isobaric);  

2. Each reaction from one to nine took place during the carbonization process, and each of the C-

consuming reactions (such as reactions one, two, four, five, six, and seven) receive equal chance 

of obtaining carbon (C) from RH (as the main source), although each reaction may obtain 

unequal amounts depending on where material balance is attained. This assumption also applies 

to chemical substances/compounds which are produced in one reaction but are also utilized as 

reactants in another reaction;  

3. CO, a product of reactions one, four, and six, and reactant of reactions eight and nine, was 

allowed to exit the chimney unburnt. This was introduced to find a material balance solution to 

the measured CO gas at the chimney, in addition to satisfying the C allocation flexibility 

described in assumption 2 above; 

4. Both H2 and CH4, being more combustible than CO, were assumed to be completely burned 

before leaving the chimney. The H2 was assumed to be totally combusted in the reduction zone 

as it’s auto-ignition temperature is 400oC [21], well above reduction zone temperatures 

obtained in the performance tests results. The CH4 was assumed to be totally burnt by the time 

it exits the ignition chamber to pass through the carbonizer’s chimney. 
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Table 1. RH data used in the material and heat balance analysis. 

 

Parameter Value 

Proximate Analysis  

Moisture, % 7.8 

Ash, % 18.1 

Volatile, % 55.5 

Fixed C, % 18.6 

Ultimate Analysis  

C, % 38.2 

Hydrogen, % 5.5 

Oxygen, % 35.2 

Nitrogen, % 0.9 

Ash, % 20.2 

 

Table 2. Performance of the carbonizer. 

Performance Parameter Prototype 

Ignition time, min 3.2 

Total amount of RH consumed, kg 164.5 

Total operating time, h 4.1 

Input capacity, kg RH h
-1

 40.12 

Char yield, % 40.3 

Maximum temperature attained, oC 898.7 

Attendance time, % of total operating time 21.3 

Reloading with RH, % 8.6 

Agitation, % 8.6 

Collection of CRH, % 4.1 

Purity of CRH output, % 99.1 

Emission  

O2, % 8.9 

CO, ppm 431 

CO2, % 7.4 

 

Fig. 4 provides a visual representation of the sources and destinations of the materials involved in 

the carbonization process. The nine rows in each of the two grids represent the reactions occurring at 

the reduction zone (with the number designations indicated at the left). The columns represent the 

participating elements and compounds including N2. A shaded box where columns and rows intersect 

indicate the presence of an element or compound in a particular reaction. The main sources of these 
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elements/compounds are RH and ambient air which are displayed at the leftmost side as two 

independent sources. The only source of C was the RH, which were allocated to the six C-consuming 

reactions. This was the net amount of C after subtracting the C content of the CRH. In the model, one of 

the two reactants from each row was an independent reactant, and one considered as the independent 

reactant (the leftmost end of the row in Fig. 4. The calculated dependent reactant was subtracted from 

the input RH or ambient air material flows, and also the measured output products. Any excess reactant 

will proceed to the combustion zone, or if not utilized was considered as carbonizer emission gas. 

 

Fig. 3. Sources and possible destinations of reduction zone elements and compounds. 

The development of the model for the carbonization process followed the general algorithm shown 

in Fig. 4. The “balanced” condition was determined as when the modeled carbonizer emissions matched 

the measured emission data within a margin of error. The two loops created to filter the possible 

solution included one that varied the percentage of CO completely burnt at the ignition chamber, and 

the other was the allocation of C for the C-consuming reactions. 

The calculations in the computer model are described in this section. Let: 

Rp  = the matrix of the elemental composition (%) of the RH based from the results of     

   the ultimate analysis = [%C, %H2, %O2, %N2, %H2O, %Ash ]; 

Ap  = the matrix of the elemental composition of ambient air = [%O2, N2, %H2O];  

Ccrh  = C content (%) of the carbonized RH produced by the carbonizer; 

Qr  = the input capacity of the carbonizer, (kg RH h
-1

);  

Qa  = the flow rate of air entering the side opening of the carbonizer, (kg h
-1

);  

Qb  = flow rate of air entering the bottom opening of the carbonizer, (kg h
-1

); 
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Then the matrix of input quantities (kg) of RH components, and side and bottom air may be derived 

from: 

Rw  = Qr × Rp × t ×100-1    (13) 

Aws  = Qa × Ap× t × 100
-1

    (14) 

Awb  = Qb × Ap × t × 100
-1

    (15) 

 

where:  Rw  = matrix of the kg of RH components entering the carbonizer; 

Aws  = matrix of the kg of air components entering the side opening;  

Awb  = matrix of the kg of air components entering the bottom opening;  

t   = accounting period considered (one hour). 

 

A portion of the C present in RH remains in the charcoal after the carbonization process, defined as 

equal to Ccrh in the model. Therefore, the amount of gasified C (Ca) that took part in reactions one to 

nine is the difference in the amount of C present in the RH, and in the CRH: 

Ca  = Rw(1) - (Qr × y × t × Ccrh × 100
-1

)  (16) 

 

where: Rw(1)  = the first element of the Rw matrix (%C); 

y  = yield of CRH (the ratio of the weight of CRH recovered after the carbonization 

process, and the total weight of the input RH, in decimal form). 

 

The amounts of gasified C were allocated among the six C-consuming reactions (reactions one, two, 

four, five, six, and seven). The program itself generated C-allocation cases (up to 3,040,000) for use in 

the calculations. Each case was a vector of nine elements, representing the nine reactions occurring at 

the reduction zone. Three of these nine reactions (reactions three, eight and nine) had a zero C-

allocation throughout the generated cases. With the substitution of values for C, the other reactant and 

product amounts were calculable, following the procedure discussed by Joel [22].  

 

Vectors of the same size as the C-allocation matrix were created for each other participating 

element or compound. In cases where a particular element or compound was both a reactant in one 

reaction and a product in another, two unique vectors were created. The elements or compounds that 

proceeded to the ignition chamber in the model were those that remained after subtraction of all the 

reactants from the products. For combustible gases, such as H2, CO, and CH4 entering the ignition 

chamber, the introduction of air results in H2O and CO2 as described in reactions 12 to 14. This finally 

consolidated the calculated amounts of all the emitted gases from the chimney. For an allocation case to 

be accepted (and be considered realistic), the difference between the calculated emissions for O2, CO, 

and CO2 and those gathered from the carbonizer tests, should be equal to, or less than that the set 

margin of error. Any allocation case that yields an error equal to or less than the set value was displayed 

by the program. In cases where the program displayed more than one solution, the margin of error was 

lowered until only one solution was displayed. 
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Fig. 4. Algorithm for the computer model for the carbonization process. 

Model output  

Table 3 shows output from the MATLAB
®
 program for the carbonization process. With the 

accounting time of one hour, the gasified C from an input 40 kg RH was 8.4 kg. This was allocated to the 

six C-consuming reactions in the proportions shown in Table 3. This was the only solution out of the 

90,000 C allocation cases considered within the set margin of error of 7.51879%. The Table shows that 

37% of the total gasified C was utilized in reaction one, which demonstrates that the reduction zone 

reactions are mostly partial combustion of RH. Conversely, each of the reactions six and seven 

consumed 19% of the total available C while reactions two, four and five consumed 9%, 15% and 1%, 

respectively. The results also show that 99.2% of the total amount (by weight) of CO was burned at the 

ignition chamber, meaning the remaining 0.8 % escaped as an emission at the chimney.  
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Table 3. Output of the computer program for material balance. 

Possible allocation of C 

 Reaction 1: 3.11 kg (37%) 

 Reaction 2: 0.76 kg (9 %) 

 Reaction 4: 1.26 kg (15%) 

 Reaction 5: 0.08 kg (1 %) 

 Reaction 6: 1.60 kg (19%) 

 Reaction 7: 1.60 kg (19%) 

 TOTAL: 8.40 kg (100%) 

 Amount of gases entering the combustion chamber 

 H2: 0.00 kg 

 O2: 46.95 kg 

 CO: 14.18 kg 

 CO2: 1.23 kg 

 H2O: 15.47 kg 

 CH4: 3.55 kg 

 N2: 167.15 kg 

 CO burned: 99.20% of total 

 Emitted gases 

 H2: 0.00 kg (0.00%wt) (0.00%vol) 

 O2: 24.74 kg (10.05%wt) (8.84%vol) 

 CO: 0.11 kg (0.05%wt) (0.05%vol) 

 CO2: 30.61 kg (12.44%wt) (7.96%vol) 

 H2O: 23.44 kg (9.53%wt) (14.89%vol) 

 N2: 167.15 kg (67.93%wt) (68.26%vol) 

 Difference between calculated and actual data 

 for O2: 0.68% 

 for CO: 7.46% 

 for CO2: 7.52% 

====================================== 

Number of possible solution(s) found: 1  

>> 

 

All reactions are associated with either by an absorption or evolution of energy, which usually 

manifest themselves as heat [23]. The operation of the rice husk carbonizer generates a net heat output, 

as shown by the sum of reactions one to twelve. Since the generated heat is planned to be utilized for 

productive rice farming purposes, it is necessary to analyze the heat loss during operation to evaluate 

the potential of heat recovery unit retrofits. The heat balance model was calculated using the material 

balance conditions described in Table 3. Fig. 5 shows the temperatures at different zones in the 
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carbonizer based on data taken during performance testing. These heat balance equations are 

expressed as the enthalpies (H) of the materials entering and leaving the carbonizer:  

Hair + Hrh = Hcrh + Hfg + Heat loss,     (17) 

where: Hair = enthalpy of the air; Hrh = enthalpy of the RH; Hcrh = enthalpy of the CRH, and; Hfg = 

enthalpy of the flue gas. Since the total enthalpy of a material consists of three 

thermodynamic properties, heating value (HV), sensible heat (SH), and latent heat (LH).  

Equation 17 can also be rewritten to calculate heat loss: 

Heat loss = (HV, SH, LH)rh + (HV, SH, LH)air  – (HV, SH, LH)crh  – (HV, SH, LH)fg    (18) 

 

Fig. 5. Parameters used in the heat balance analysis 

For materials or substances that are composed of several constituents, the total enthalpy is taken 

as the sum of the enthalpies of the individual constituents (elements or compounds) of which it is 

composed of. For sensible heat in particular, the following equation applies: 

 

SH = mCp(∆T)      (19) 

 

where:  m = mass of the material or substance, Cp = specific heat capacity, and ∆T = difference 

between reference and final temperature. For the gases in the ideal state, the specific 

heat capacity at constant pressure is computed as follows [24]: 
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Cp = a + b × T + c ×T
2
 + d ×T

3
     (20) 

 

where:  Cp = in J mole
-1

 K
-1

, T = temperature in 
o
K, and where a, b, c, and b =  are constants with 

values for selected gases shown in Table 4.  

 

Table 5 shows the calculated results for HV, SH, and LH, at a reference temperature of 30
o
C (303

o
K) 

using values in Table 6. The analysis results show the calculated heat loss is 150,047 kJ, equivalent to 

25.8% of the total enthalpy of the system. 

 

Table 4. Constants for computing the specific heat capacity of selected gases. 

 

Constant H2 O2 CO CO2 H2O CH4 N2 

a 27.143 28.106 30.869 19.795 32.243 19.251 31.15 

b 0.0092738 -3.68E-06 -1.29E-02 7.34E-02 1.92E-03 5.21E-02 -1.36E-02 

c -1.38E-05 1.75E-05 2.79E-05 -5.60E-05 1.06E-05 1.20E-05 2.68E-05 

d 7.65E-09 -1.07E-08 -1.27E-08 1.72E-08 -3.60E-09 -1.13E-08 -1.17E-08 

 

Source: Towler and Sinnot [24]. 

 

Table 5. Summary of heat balance computations. 

Material Amount, kg HV, kJ SH, kJ LH, kJ Total 

IN 
     

Rice husk 40 571,080 0 0 571,080 

Moisture in 

RH 

3.12 0 0 0 0 

Air 222 0 0 0 0 

Moisture in air 4.78 0 0 10,786 10,786 

Sub-total 
 

571,080 0 10,786 581,866 

OUT 
     

Char 16 200,960 5,888 0 206,848 

Flue gas: 
     

O2 24.74 0 17,255 0 17,255 

CO 0.11 1,115 85 0 1,200 

CO2 30.61 0 22135 0 22,135 

N2 167.15 0 128071 0 128,071 

H2O 23.44 0 3406 52904 56,310 

Sub-total 
 

202,075 176,840 52,904 431,819 

Heat loss 
    

150,047 
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Table 6. Rice husk data used in the material and heat balance analysis. 

 

Parameter Value 

Proximate Analysis  

Moisture, % 7.8 

Ash, % 18.1 

Volatile, % 55.5 

Fixed Carbon, % 18.6 

Ultimate Analysis  

Carbon, % 38.2 

Hydrogen, % 5.5 

Oxygen, % 35.2 

Nitrogen, % 0.9 

Ash, % 20.2 

 

Conclusion 

This work describes the use of modeling to optimize carbonizer performance and to obtain a 

greater understanding of the operational processes of converting RH into CRH. The material balance 

analyzed the flow and fate of the elements and compounds constituting the RH and the ambient air. A 

low (0.8%) level (weight basis) of CO emissions out of the chimney was achieved.   

Likewise, the energy balance model determined there is a good potential for the carbonizer to be 

retrofitted with heat capture technology to utilize the continuously generated heat on-site from RH 

conversion into CRH. The constructed PhilRice continuous carbonizer prototype was able to process 40 

kg of RH in one hour at 40.3% CRH yield with a purity of 99.1%, and unlike current batch RH carbonizers 

in use, it produces much cleaner emission, and produces useful heat. 
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