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Abstract: 4 

A newly emerging microbiological soil stabilization method, known as microbially 5 

induced calcite precipitation (MICP), is tested for geotechnical engineering 6 

applications. MICP is a promising technique that utilizes the metabolic pathways of 7 

bacteria to form calcite precipitation throughout the soil matrix, leading to an increase 8 

in soil strength and stiffness. This paper investigates the geotechnical properties of a 9 

sand bio-cemented under different degrees of saturation. A series of laboratory 10 

experiments was conducted, including sieve analysis, permeability, unconfined 11 

compressive strength, consolidated undrained triaxial, and durability tests. The results 12 

indicate that higher soil strength can be obtained at similar CaCO3 content when the 13 

treatment is performed under low degree of saturation. Fine sand samples exhibited 14 

higher cohesion but lower friction angle than coarse sand samples with similar CaCO3 15 

content. The results also confirm the potential of MICP as a viable alternative technique 16 

for soil improvement in many geotechnical engineering applications, including 17 

liquefiable sand deposits, slope stabilization and subgrade reinforcement. The freeze 18 

thaw and acid rain resistance of MICP treated sand has also been tested. 19 

CE Database keywords: Soil stabilization; Cementation; Microorganisms; Calcium 20 

carbonate; Durability. 21 
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1 Introduction 22 

Current soil improvement applications include soil replacement, preloading for 23 

achieving consolidation, chemical admixture and grouting stabilization. These 24 

techniques are time consuming, expensive and in the case of grouting and admixture 25 

stabilization are environmentally detrimental (DeJong et al. 2010). In 1974 in Japan a 26 

case study documented by Karol (2003) illustrated the environmental impact when 27 

acrylamide grout leached into waterways causing five substantiated cases of water 28 

poisoning. As a result a ban was placed on nearly all chemical grouts, further 29 

reverberating to other countries to apply similar prohibition (Karol 2003). Therefore, 30 

continuing studies into finding alternative soil improvement methods are vital to 31 

achieve optimum performance, economic viability and environmental sustainability. 32 

Calcite in-situ precipitation system (CIPS) and microbially induced calcite precipitation 33 

(MICP) have been the subjects of research for several industrial applications. 34 

Improvement of soil mechanical properties by MICP is currently of particular interest to 35 

engineers and microbiologists, and has been demonstrated by several researchers at 36 

varying scales (DeJong et al. 2006; Whiffin et al. 2007; van Paassen et al. 2010). The 37 

technique can alter the soil characteristics to increase the shear strength and stiffness, 38 

while maintaining adequate permeability (Burbank et al. 2011). The technique involves 39 

introducing aerobically cultivated bacteria with highly active urease enzyme into soil, 40 

harnessing the urease enzyme to catalyze the hydrolysis of urea to produce ammonium 41 

and carbonate ions. The chemical reaction involved in this process is shown as follows 42 

(Eq. 1): 43 
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[1] CO(NH2)2 +2H2O → 2NH4
+
 + CO3

2-
      44 

In the presence of an introduced calcium source, often calcium chloride (CaCl2), the 45 

calcium carbonate (CaCO3, calcite) forms throughout the soil matrix based on the 46 

following chemical reaction (Eq. 2):  47 

[2]  Ca
2+

 + CO3
2-

→ CaCO3 (s)                     48 

The produced microbially induced CaCO3 precipitates bridge adjacent soil particles by 49 

cementing the soil grains together to form cemented sand illustrative of calcareous rock 50 

(DeJong et al. 2006).  51 

Controlling the MICP process and predicting the resulting material properties are 52 

essential in improving the engineering properties of porous solid materials (e.g. soil). 53 

Many researchers have investigated the empirical correlations between the amount of 54 

precipitated CaCO3 crystals and soil engineering parameters such as the soil porosity, 55 

strength, stiffness and permeability (Ismail et al. 2002a, 2002b; Whiffin et al. 2007). 56 

The initial properties of soils and the precipitated CaCO3 crystals can vary in mineral 57 

type, density, shape, size distribution and texture (Mitchell and Ferris 2006; Ismail et al. 58 

2002a; Warren et al. 2001), which might give an explanation for the observed 59 

differences in the resulting engineering properties of MICP treated soils. 60 

In a previous study carried out by Cheng and Cord-Ruwisch (2012), more effective 61 

crystals precipitating at the sand particles contact points were achieved under a low 62 

degree of saturation. This suggested that by controlling the in-situ saturation conditions 63 

during the MICP process, the distribution of crystals can be predominantly controlled 64 
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and restricted to the inter-particle contact points. In the current paper, the feasibility of 65 

MICP as a promising ground improvement technique is evaluated via a series of 66 

laboratory tests using sand columns under various saturation conditions. The laboratory 67 

results demonstrate the potential of this technique for geotechnical engineering 68 

applications such as preventing liquefaction and improving the stability of 69 

embankments. 70 

2 Materials and Testing Methods 71 

2.1 Sand Soil Tested  72 

Two different types of pure silica sand (Cook Industrial, Minerals Pty. Ltd. Western 73 

Australia) were selected for the current study. Sieve analysis was performed for both 74 

fine and coarse grained sands to determine the particle size distribution, which is one of 75 

the primary components that govern the mechanical behavior of soils. The particle size 76 

distribution curves of the fine and coarse sands used are shown in Figure 1. Both sands 77 

are classified as poorly graded sand according to the Unified Soil Classification System 78 

(USCS). Poorly graded sands were selected as they exhibit undesirable engineering 79 

behavior for most geotechnical engineering applications. Both sands have a specific 80 

gravity of 2.62. 81 

2.2 Bacterial Suspension and Cementation Solution for MICP System  82 

The urease active strain of Bacillus sphaericus (MCP-11) (DSM 23526, available now 83 

from DSMZ, Germany), which was isolated from the previous study (AI-Thawadi and 84 

Cord-Ruwisch 2012), was used in the current experiments. The isolated strain (MCP11) 85 

was cultivated under sterile aerobic batch condition in yeast extract based medium (20 86 
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g/L yeast extract, 0.17 M ammonium sulphate, 0.1 mM NiCl26H2O, pH 9.25). After 24 87 

hours incubation at 28
o
C, the culture was harvested and stored at 4

o
C prior to use. The 88 

optical density (OD600) of the harvested bacterial suspension varied between 1.5 to 2.0, 89 

and the urease activity was approximately 10 U/ml (1 U = 1 mol urea hydrolyzed per 90 

min). The CaCO3 precipitation rate, depending on the amount of urease activity 91 

introduced, can affect the size of the crystals and in turn the bonding force of the CaCO3 92 

crystal bridges and corresponding strength of the treated soil (Ismail et al. 2002a). In 93 

this study, the average CaCO3 precipitation rate was about 10 g/L (solution)/h. The 94 

cementation solution consisted of 1 M urea and 1 M CaCl2. 95 

2.3 Sample Preparation 96 

The sample preparation started with packing the dry sand (fine and coarse) into a PVC 97 

column of 160 mm in height and 55 mm inner diameter. The final dry density and 98 

porosity of the sand samples were about 1.62-1.63 g/cm
3
 and 39%, respectively. 99 

Various amounts of water were then flushed from top to bottom to provide the desired 100 

degree of saturation within the sand matrix. The degree of saturation is the volume of 101 

water in the voids, expressed as percentage of the total volume of voids, according the 102 

following equation (Eq. 3): 103 

[3] Saturation Degree, 100(%) 
voids

water

V

V
S      104 

where; Vwater is the volume of water in the soil matrix and Vvoids is the volume of voids. 105 

Unless otherwise stated, the sample preparation consisted of the following three steps: 106 
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1) Alternating injection of equal volumes of bacterial suspension and cementation 107 

solution with an inflow rate of about 1 L/hour. The total volume of the introduced 108 

solutions was the same as the aforementioned water volume so as to keep a 109 

constant degree of saturation. A vacuum pump was connected to the bottom of the 110 

PVC column to remove the excess solution.  111 

2) Curing for 12 hours at 25±1
o
C to allow the bacterial fixation process to complete.  112 

3) Percolation of cementation solution with the same flow rate followed by another 113 

curing period of 12 hours at 25±1
o
C. This step was carried out twice. 114 

It should be noted that, to obtain different mechanical properties of the soil samples, the 115 

above-mentioned three steps might be conducted more than once.  116 

The key issue of the above process is to keep a constant degree of saturation throughout 117 

the tests by managing the volume of extracted solution to be equal to that of the injected 118 

solution. Meanwhile, to avoid solution accumulation at the bottom of the sand column 119 

by gravity, the PVC columns were horizontally placed during the curing period. The 120 

saturation degrees over the entire 15 cm long sand columns were determined. The local 121 

saturation of the columns between 2.5 to 12.5 cm depth was relatively homogenously 122 

distributed with a deviation not greater than ±6% saturation. Therefore, the specimens 123 

prepared for the mechanical property analyses were taken from about 2 to 13 cm depth 124 

of the sand columns.  125 
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2.4 Microscopy Investigation 126 

In order to characterize the shapes and locations of the precipitated CaCO3 and to 127 

investigate the bonding behaviour between the grain hosts and cement agent, 128 

microscopy analysis was conducted on the cemented soil samples, which were taken 129 

from the centre of the cemented sand columns. Before conducting the microscopy 130 

investigation, all samples were flushed with tap water and dried at 60 °C for 24 hours. 131 

The microscopy investigation was carried out using scanning electron microscopy 132 

(SEM) PHILIPS XL20 Scanning Electron Microscope, Eindhoven, the Netherlands.  133 

2.5 Unconfined Compressive Strength (UCS) Tests 134 

To quantify the strength imparted into the MICP treated silica sand under different 135 

saturation conditions, the unconfined compressive strength (UCS) tests were conducted 136 

on cemented specimens of 55 mm in diameter with a selected diameter to height ratio of 137 

1:1.5 to 1:2. The axial load was applied at a constant rate of 1.0 mm/min. Before 138 

carrying out the tests, the sand samples were treated with different amounts of MICP 139 

under 20%, 40%, 80% and 100% degrees of saturation.  140 

2.6 Triaxial Compression Tests 141 

The triaxial compression test was employed to provide verification for the MICP as a 142 

soil stabilization technique. This test is considered to be the most reliable test to 143 

measure the shear strength parameters of soils. In this study, a series of single-stage 144 

consolidated undrained triaxial tests with pore water pressure measurement were carried 145 

out to establish the effective shear strength parameters (i.e., cohesion, c’, and friction 146 

angle, ϕ’) of the bio-cemented sand. Specimens were set under one confining pressure 147 
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and sheared till failure. The effective cohesion and friction angle were determined using 148 

the Mohr-Coulomb failure envelopes established from three individual samples. All 149 

tests were conducted in accordance with the procedures set out by Head (1998). Before 150 

carrying out the triaxial tests, the bio-cemented specimens were treated at different 151 

degrees of saturation of 30%, 65% and 100%. Each triaxial test started with saturating 152 

the sand specimens with tap water so as to achieve a Skempton’s B value of at least 153 

95%. The specimens were then subjected to confining pressures of 50, 100 and 200 kPa, 154 

respectively, and an axial stress was then applied to failure at a strain rate of 1 mm/min. 155 

All triaxial tests were performed on specimens of 55 mm in diameter with a selected 156 

diameter to height ratio of approximately 1:2. A baseline sample of untreated sand was 157 

also tested to allow comparison of the soil improvement properties.  158 

2.7 Permeability Tests 159 

Permeability is a primary factor that controls the behavior of porous materials under 160 

saturated conditions and thus dictates the suitability of a specific material for certain 161 

applications (Shahin et al. 2011). Porous materials with high permeability can prevent 162 

the development of excess pore water pressure during loading. To identify the 163 

permeability of cemented sand treated with different amounts of CaCO3 precipitates, 164 

more samples were prepared at degrees of saturation of 30%, 65% and 100%, and 165 

permeability tests were conducted. The permeability test was also conducted on the 166 

untreated samples for the purpose of comparison with the treated samples. The 167 

untreated fine sand has a hydraulic conductivity of 9.2  10
-5

 m/s, whereas it is 44.7  168 

10
-5

 m/s for the untreated coarse sand. 169 
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Laboratory determination of the permeability of the untreated and bio-cemented sand 170 

was conducted using constant head permeability test with a rigid side wall device in 171 

accordance with the Australian Standards AS 1289 (2007). All specimens were 172 

saturated prior to the permeability test by flushing through 2 L tap water under 15 kPa 173 

back pressure (hydraulic head of about 150 cm) to remove most of the remained pore 174 

air.  175 

In order to compare the permeability of the MICP improved soil with conventional soil 176 

improvement using chemical additives, a series of mixtures of fine sand with various 177 

proportions of Portland cement were prepared and tested for their strength and 178 

permeability. The details of the Portland cement samples are listed in Table 1. The 179 

mixtures were poured into PVC columns with the same dimension of that used for bio-180 

cementation, and a strong vibration was applied to avoid any air bubbles that might 181 

remain in the mixture. The prepared mixtures were then cured at the room temperature 182 

(201 
o
C) for 7 days prior to the UCS and permeability measurements. 183 

2.8 Durability Tests 184 

2.8.1 Freeze-Thaw Durability 185 

To test the resistance of MICP cemented samples to freeze-thaw (FT) cycling, a series 186 

of fine sand samples (110 mm in height and 55 mm in diameter) treated by MICP and 187 

Portland cement, as described previously, was subjected to 10 cycles of FT actions. 188 

Each cycle test involves subjecting the samples to a 12-hour freeze at ‒14 
o
C followed 189 

by a 12-hour thaw under ambient conditions (20±1 
o
C). All samples were immersed in 190 

water throughout the cycling FT testing. 191 
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2.8.2 Acid Rain Durability 192 

Artificial acid rain was made according to Haneef et al. (1992) and the final pH of acid 193 

rain was adjusted to 3.5 by adding additional H2SO4. The artificial acid rain was 194 

injected from the top of the cemented fine sand columns (180 mm in height and 55 mm 195 

in diameter) with a flow rate of approximately 3 mL/min. The weight of the sand 196 

column was measured periodically, after it was washed by DI water and dried at 105 
o
C 197 

for 12 hours. All samples were cut in half prior to the shear strength test and the 198 

strength of the top and bottom parts of the sand samples (eroded and un-eroded) was 199 

recorded.  200 

3 Presentation of Results 201 

3.1 Effect of Degree of Saturation on UCS Results of MICP Cemented Coarse 202 

Sand  203 

Figures 2 and 3 show the results of the UCS tests carried out on the coarse sand treated 204 

with different amounts of MICP under various saturation degrees of 20%, 40%, 80% 205 

and 100%. It can be seen that both unconfined compressive strength (qucs) and stiffness 206 

(or elastic modulus, E) increase with the increase of CaCO3 content for all treated 207 

samples. Both qucs and E follow exponential relationships with the content of CaCO3, 208 

which are in line with previous results reported by van Paassen et al. (2010). It can also 209 

be seen that for the same amount of CaCO3 precipitation, both qucs and E increase with 210 

the reduction in the degree of saturation. Saturation degree higher than 80% was found 211 

to have little impact on qucs and E of MICP treated coarse sands.  212 
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It is worthwhile mentioning that the failure mechanism of the cemented sand was 213 

different from the strong to the weak samples. In the weak samples, the broken cores 214 

completely lost strength at the grain scale around the failure plane, or through the entire 215 

sample when the failure planes were not clear. This was consistent with previous 216 

observation by van Paassen et al. (2009). In the strong samples, however, tensile cracks 217 

appeared vertically from top to bottom along the sample and the failure planes can be 218 

distinguished clearly, which was also similar to the previous observation by van 219 

Paassen et al. (2009).  220 

It is of interest to examine the location of MICP treated coarse silica sand in the 221 

spectrum of other geomaterials in terms of the relationship between E and qucs, as shown 222 

in Figure 4. The change in the rigidity of the MICP treated silica sand is also shown in 223 

Figure 5 (rigidity = E/qucs = 1/εf, where εf is the axial strain at failure). It can be seen that 224 

the rigidity increases (in an exponential law fashion) with increase of CaCO3 content, 225 

but was independent of the degree of saturation. It can also be seen that at similar 226 

amount of CaCO3, the rigidity of the samples cemented at lower degree of saturation 227 

was higher than that of the samples treated with higher degree of saturation.  Similar to 228 

the effect of saturation on qucs, a degree of saturation higher than 80% had marginal 229 

impact on the rigidity of MICP cemented sand for certain amount of CaCO3 content.   230 

3.2 Microscopy Images of MICP Cemented Sand at 20% and 100% Saturation 231 

In this part, an attempt is made to investigate the reason for increasing strength and 232 

stiffness of the MICP treated sand at lower degree of saturation. It is believed that the 233 

micro-features of precipitated crystals around the sand grains and the creation of hinges 234 

can be responsible for the different mechanical responses of MICP treated porous 235 
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materials obtained at different saturation conditions (Paraskeva et al. 2000).  In order to 236 

investigate this matter, the micro-structure of the treated sands was investigated through 237 

the microscopy images shown in Figures 6 and 7 for soil treated at degrees of saturation 238 

of 100% and 20%, respectively.    239 

It can be seen from the images shown in Figure 6 that the CaCO3 crystals produced at 240 

100% saturation take rhombohedron form in which the agglomerated rhombohedral 241 

crystals precipitate not only in the inter-particle contact points but also on the grain 242 

surface, or suspend in the pore spaces, leading to insufficient connections between the 243 

sand grains. For the sand treated at 20% saturation (Figure 7), a strong coating effect of 244 

the MICP process is predominant. This coating effect is likely attributed to the 245 

homogeneously adsorbed solution on the sand grains surface due to the surface tension 246 

force, which allows the MICP solution to access the full surface of the grains. One 247 

important feature that can be derived from Figure 7 is that the gaps between the host 248 

grains are almost completely filled with crystals, which is likely due to the fact that the 249 

retained MICP solution located between the grains takes a menisci form, where the 250 

crystals are produced and precipitated out of the aqueous solution to fill the gaps. This 251 

feature may affect the adhesion mechanism amongst the host grains and, consequently, 252 

the mechanical behavior of the entire soil matrix.  253 

It should be noted that both samples treated at 100% saturation (Figure 6) and 20% 254 

saturation (Figure 7) demonstrate similar qucs of 1 MPa and 1.14 MPa，respectively, 255 

but they differ in the CaCO3 content. It is apparent that the development of the CaCO3 256 

at the contact boundary is vastly different in both cases, and in comparison it can be 257 

identified that an excess precipitation of the CaCO3 at the sand grain boundary exists for 258 
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the case of 100% saturation condition. As a result, the sample treated at 20% saturation 259 

contained fewer CaCO3 crystals less than half of that precipitated at 100% saturation 260 

(i.e. 0.143 g/g sand). This indicates that the mechanical strength of the MICP treated 261 

samples is due to the effectiveness of CaCO3 formation that precipitated in the inter-262 

particles contact points, rather than the total amount of the CaCO3 crystals formed. 263 

The schematic diagram shown in Figure 8 can provide further explanation of the 264 

previous observation. For partially saturated condition, the air occupies the center of the 265 

pores and the total surface of the grains is covered with adsorbed solution, which is 266 

predominantly concentrated at the inter-particles connection points (corner) forming 267 

menisci shape (Tuller et al. 1999). Therefore, the crystal precipitation has mainly 268 

occurred at the contact points of the grains (Figure 8), which contributes to the strength 269 

improvement. In the case of full saturation, as the MICP solution occupies the entire 270 

pore space, the crystals are free to precipitate without being restricted to the size and 271 

location, resulting in the agglomerated crystals to be formed on both the host grain 272 

surface and grain gaps. From the above discussion, it can be stated that the crystals 273 

formation varies in size and location according to the distribution of pore solution, 274 

which is influenced by the saturation conditions.     275 

3.3 Mathematical Model of Total Volume of Effective Hinges  276 

In Sections 3.2 and 3.3, it was experimentally shown (through microscopy images and 277 

results of UCS tests) that the degree of saturation at which a sand soil is treated by 278 

MICP has a significant impact on the resulting strength and stiffness. Also the particle 279 

size of the constituent soil affects the cementation process, because it has a significant 280 

impact on the retained pore water in terms of the content, shapes and distribution under 281 
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various saturation conditions, consecutively on the cementation process. In this section, 282 

a mathematical model is developed in order to measure the impact of the saturation 283 

degree and particle size on the effective “hinge” formation within a soil matrix treated 284 

with MICP.  285 

In order to develop the mathematical model, a soil matrix with uniform spherical 286 

particles is assumed. All spherical particles are packed in a tetrahedral packing form 287 

having the closest packing order with a void ratio of 0.34. The total volume of the sand 288 

matrix (V) and void volume (Vvoid) can be approximately calculated as follows: 289 

[4] )34.01/()3/4( 3  RNV   290 

[5] VVvoid  34.0   291 

where; N is the number of particle spheres and R is the radius of the sphere (see Figure 292 

9).  293 

In the assumed tetrahedral packing, each particle has 12 contact points with the 294 

surrounding particles and there are 6 full water lenses in each unit volume of 5.66R
3
 (Lu 295 

and Likos 2004). The total number of water lenses (Nlens) in the sand matrix therefore 296 

can be calculated as follows: 297 

[6] )66.5/(6 3RVN lens   298 

The crystals are assumed to be homogeneously precipitated on the surface of spheres, 299 

where the water lenses are attached, and the crystal “hinges” formed in point-to-point 300 
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contacts contribute to the bonding force. In general, it is reasonable to make the 301 

hypothesis that the bigger volume of “hinges” causes stronger bonding force. From 302 

Figure 9b, the total volume of effective hinges (VT-hinges) in the soil matrix can be 303 

calculated as follows: 304 

[7] ))'3('3/2'2( 22 hrhhrNVNV lenshingelenshingesT    305 

where; Vhinge presents the volume of each hinge, and h’ & r are as illustrated in Figure 306 

9b, which can be obtained based on the following geometric calculations: 307 

[8] 22' rRRh                          308 

[9] 22)( RhRr                    309 

In Eqns. 8 and 9, h is the thickness of crystals on each sphere and can be estimated as 310 

follows: 311 

[10] )2/( surfacecrystals SVh        312 

where; Vcrystals is the volume of CaCO3 crystals precipitated on each sphere and Ssurface is 313 

the contact surface between the water lens and the sphere (see Figure 9a and b). Both 314 

Vcrystals and Ssurface can be calculated according to the following expressions: 315 

[11]  Vcrystals =Ccrystals ´V / rcrystal /Nlens    316 

[12]  ))cos()(()(2 2   hRRhRSsurface               317 
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where; Ccrystals is the CaCO3 crystals content (g/cm
3
) and crystals is density of CaCO3 318 

crystals (i.e. 2.71 g/cm
3
).  319 

The degree of saturation of the soil matrix can also be obtained as follows: 320 

[13]  voidlenslensvoidwatersaturation VVNVVS //%     321 

where; Vlens is the volume of each water lens, which can be calculated in accordance 322 

with Dallavalle (1943), as follows: 323 

[14]  )]tan()2/(1[)1)cos(/1(2 23   RVlens    324 

The developed mathematical model (i.e. Eqns. 7 and 14) was used to illustrate the 325 

dependency of the total volume of effective “hinges” formed in the same volume of 326 

sand matrixes on the degree of saturation and particle size (see Figure 10). The number 327 

of spherical particles, N, is inversely proportional to the particle size (R), providing the 328 

same total matrix volume. This means that if the coarse sand particle has a radius R 329 

while the fine sand particle has a radius R/2, the number of particles of the fine sand 330 

will be eight times that of the coarse sand. Consequently, the total number of water 331 

lenses (Nlens) in the fine sand matrix will be eight times that of the coarse sand.  332 

The model predictions shown in Figure 10 indicate that a greater volume of effective 333 

hinges is formed in the fine sand compared to the coarse sand having similar amount of 334 

CaCO3 precipitation, indicating that the strength is improved with the decrease in 335 

particle size. This model also derives that a lower degree of saturation leads to a greater 336 

number of effective hinges at the same CaCO3 content and consequently an improved 337 
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mechanical behavior (i.e. UCS). The model predictions are supported by the previous 338 

experimental UCS tests and microscopy images of the coarse sand. 339 

To further investigate the real effect of particle size and degree of saturation on the 340 

shear strength parameters of treated sand (i.e., cohesion, c’, and friction angle, ’), 341 

which are more relevant to most geotechnical engineering applications, the results of the 342 

undrained triaxial tests are presented below.  343 

3.4 Mechanical Behavior of Stabilized Sand in Triaxial Tests 344 

The effective shear strength parameters (i.e. cohesion, c’, and friction angle, ’) of the 345 

silica sand treated with different amounts of CaCO3 were determined from the Mohr-346 

Coulomb envelopes. These were developed from the peak shear stress values obtained 347 

from the triaxial tests. Results are shown in Figures 11 and 12, for coarse and fine 348 

sands, respectively.  349 

Coarse Sand  350 

Figure 11 shows that both the cohesion, c’, and friction angle, ’, increase with the 351 

increase of the CaCO3 content at all degrees of saturation.  At a fixed amount of CaCO3 352 

a lower saturation degree increased the c’ and ’ values compared to those at higher 353 

saturation degrees. Under lower saturation degree condition, the precipitated crystals 354 

contributed more to improving cohesion than to improving friction angle. At higher 355 

saturation degrees of 65% and 100%, the impact on improving the friction angle was 356 

even less. As mentioned earlier, the effect of degree of saturation on improving the 357 

shear strength behavior of soil and thus the shear strength parameters is attributed to 358 
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restricting the crystal formation mainly to the connection points. The well-placed 359 

crystals are efficient in increasing the inter-particle connection, thereby, enhancing the 360 

soil cohesion and friction angle. The increase in both cohesion and friction angle at 361 

higher CaCO3 content that has occurred regardless of the saturation degree is likely due 362 

to the fact that precipitated crystals start filling the pore spaces.  One important feature 363 

that can be derived from Figure 11 is that at low CaCO3 content the friction angle had 364 

only marginally increased under all saturation conditions, which was probably due to 365 

the slight increase in the dry density. The optimum condition for c’ and ’ has occurred 366 

at the saturation condition of 30%.  367 

Fine Sand 368 

Figure 12 shows that the overall correlation between the shear strength parameters and 369 

the CaCO3 content at different saturation degrees is similar to that of the coarse sand. 370 

By comparing the results of the two sands used, it can be concluded that under the same 371 

saturation condition, the coarse sand demonstrates higher friction angle than the fine 372 

sand at similar CaCO3 content. The fine sand with similar CaCO3 content showed 373 

significantly higher values of cohesion compared to the coarse sand. This can be 374 

explained as follows. Smaller particles have two effects including: (a) providing more 375 

inter-particle contact points for microbially induced CaCO3 to precipitate; and (b) 376 

reducing the stress acting per particle contact. MICP acts most efficiently at a particle 377 

contact just as cementation begins, and continued expansion of cementation around a 378 

particle contact has decreased effect. Therefore, reallocating the CaCO3 crystals to two 379 

contact locations instead of one would be more effective. At the same time, the contact 380 

stress decreases as a function of the particle radius squared. Therefore, smaller particles 381 
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provide two compounding benefits: (1) more efficient MICP; and (2) lower particle 382 

contact stresses.  383 

3.5 Effect of MICP Treated Sand on Permeability   384 

Figure 13 shows the results of permeability tests conducted in the current study. It can 385 

be seen that a reduction in permeability was encountered for all bio-cemented sand 386 

samples. In contrast to the phenomenon reported by Whiffin et al. (2007), the 387 

permeability decreased with an increase in CaCO3 content for both fine and coarse 388 

sands, irrespective of the saturation degree. Results suggest that it is preferable to 389 

conduct the MICP process under lower saturation conditions, as it enabled improved 390 

mechanical behavior at the same time as maintaining relatively high residual 391 

permeability. 392 

Figure 14 shows the results of comparison between sand samples treated with Portland 393 

cement and bio-cement. It can be seen that the bio-cement samples have higher strength 394 

in the range of lower cement agents content (< 0.1 g/g sand) compared to the Portland 395 

cement samples after 7 days of curing. However, this comparison would differ 396 

depending on the applied curing time of the Portland cement samples. The permeability 397 

of the biocementation samples is significantly higher than that of the Portland cement 398 

samples. As an example, a mixture with 7% (0.07 g/g sand) Portland cement 399 

dramatically decreased permeability by 98%. Cement content higher than 9.6% (0.096 400 

g/g sand) produced a poor drainage material with permeability less than 1  10
-6

 m/s.  401 

The significant loss of permeability in the Portland cement samples is due to the 402 

occupation of the pore space by the water insoluble hydrates formed from the cement 403 

hydration reaction with the pore water. In contrast, the loss of permeability in bio-404 
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cement samples is caused by the pore spaces becoming occupied by the calcite crystals, 405 

which only causes a smaller volume change compared to the hydrates.  406 

From the previous results, it can be concluded that apart from the significant increase in 407 

soil strength and stiffness, one advantage of biocementation is attributed to the relative 408 

ability to retain soil permeability after treatment, compared to the traditional chemical 409 

treatment by Portland cement.  410 

3.6 Effect of MICP Treatment on Sand Freeze-Thaw Durability  411 

Destruction of porous materials caused by freezing and thawing has been of great 412 

concern to engineers for more than 200 years (Johnson 1952). The phase change of 413 

water adsorbed in the soil pores is the most significant cause of deterioration of exposed 414 

porous materials.  Porous solids with high porosity or permeability usually have a good 415 

service record after free-thaw (FT) action (Litvan 1980). Indicated by the previous 416 

permeability results, the sand samples treated with MICP have a high residual 417 

permeability, which may favor the samples to endure the cycled FT action.  418 

By comparing the UCS of MICP tested samples before and after FT cycling, less than 419 

10% decrease in strength occurred irrespective of the treatment conditions (Figure 15). 420 

The severity of the mechanical damage is proportional to the water content of the 421 

porous solid (Litvan 1980); however, the high porosity and permeability allow more 422 

rapid water mass transfer in the sand matrix, which can increase the FT resistance. For 423 

MICP samples, the crystals formed at the contact points can maintain the connection of 424 

pores without restricting the pore water mobility, which is also proved by the previous 425 
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permeability tests.  For the Portland cement samples, the FT cycles caused serious 426 

damage, as expected, with about 40% decrease in strength. 427 

3.6.1 Acid Rain Erosion Durability 428 

Acid rain is detrimental to many construction materials, particularly those made from 429 

limestone or sand stone with high CaCO3 content. The chemical reaction between the 430 

calcium carbonate and sulfuric acid (the primary acid component of acid rain) causes 431 

the dissolution of CaCO3, resulting in destruction of such materials. In the MICP treated 432 

sand, the strength of sand matrix is the result of the sand particles bonded by the 433 

bridging CaCO3 crystals. Therefore, the CaCO3 crystals eroded by the acid rain will 434 

result in destruction of the connections between the sand particles, leading to severe 435 

damaging in mechanical properties.  436 

In order to test erosion and residual strength of the MICP treated sand samples after 437 

exposure to the acid rain, in time mass detection of the sand matrix and UCS tests were 438 

carried out and the results are presented in Figure 16. It can be seen that, as expected, 439 

the artificial acid rain (pH=3.5) continuously eroded the biocement samples, resulting in 440 

a loss of weight.  The pH of the effluent stayed around 7.5, which indicated that the 441 

protons (H
+
) in the acid rain were consumed by reacting with CaCO3, similar to the acid 442 

rain erosion of limestone and marble.  After flushing 12 L of acid rain through the sand 443 

column, corresponding to 5 years of rainfall (1000 mm/year), the UCS results of the 444 

eroded samples reflected that no obvious damage occurred at the bottom part of the 445 

sand column (9-18 cm). However, the strength of the top part of the sand column was 446 

decreased by about 40%, as shown in Figure 16. As the effect of the acid rain is chronic 447 
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and long-term acidification results from years of acidic rainfall, a long-term simulation 448 

experiment (decades) is worthwhile to carry out in the future.  449 

4 Discussion 450 

This study verified that the bio-cementation technology applied to partially saturated 451 

soils lead to improved mechanical behavior of MICP treated soil matrix in terms of 452 

cohesion, friction angle and UCS, with fewer calcite crystals compared to MICP at fully 453 

saturated condition. In other words, to produce similar soil strength, partially saturated 454 

soils require fewer crystals, enabling bio-cemented soils to be produced more 455 

economically due to lower requirement for the urease enzyme, urea and CaCl2. To this 456 

end, the technique can be applied to many geotechnical-engineering applications in both 457 

fully and partially saturated conditions. In wet fully saturated condition, MICP solution 458 

is introduced into the soil by saturated flow (van Paassen et al. 2010; Whiffin et al. 459 

2007). In dry or partially saturated condition, MICP solution can be introduced by 460 

surface percolation and the excess of MICP solution moves deeper into the soil pores, 461 

which allows the retained MICP solution to accumulate at the connection points as a 462 

meniscus shape (Cheng and Cord-Ruwisch 2012). The restricted distribution of MICP 463 

solution enables the crystals formed at the particular position, which contributes the 464 

most to strength development. However, an obvious main challenge for MICP treatment 465 

under unsaturated conditions is achieving homogenous distribution of CaCO3 and 466 

strength, which will be investigated in subsequent phase of this work. 467 

A principal engineering problem produced by current available soil improvement 468 

methods is the tendency of significantly decreasing permeability of treated soils. For 469 
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example, the reduction in permeability due to grouting ranges between 2 and 3 orders of 470 

magnitude (Karol 2003). Consequently, the reduction in permeability disturbs natural 471 

groundwater flow paths, permits the increase of pore water pressure in the soil, thus 472 

increasing the risk of failure in both earth and foundation structures. The ability of 473 

MICP to retain high permeability conditions is a clear advantage compared to the 474 

alternative of using Portland cement. A reduction in the cost of construction and 475 

installation of drainage systems would be apparent, as fewer systems would need to be 476 

integrated than those typically utilizing traditional cementing agents. Another advantage 477 

of MICP and its retention of in-situ permeability during bio-cementation application is 478 

that it will permit additional applications of treatment allowing engineers to control the 479 

final strength.  480 

Engineering examples of the utilization of MICP and the associated benefits of 481 

permeability retention would be in the reinforcement of transport subgrades and 482 

embankments. During subgrade construction it is important to provide adequate 483 

drainage at all times to prevent water from standing on the subgrade. Therefore, soil 484 

stabilization by MICP technique with the capability of high permeability retention 485 

would eliminate the need for additional drainage systems. Due to the minimal 486 

interference with soil material hydrology, embankments strengthened with MICP will 487 

have the potential to allow immediate dissipation of excess pore water pressures caused 488 

by operational surcharge loads.  489 

Geotechnical engineering structures exposed to dynamic loads associated with 490 

earthquakes under saturated conditions can be subject to significant structural damage. 491 

In this case, the soil loses most of its static strength and significant deformations occur. 492 



 

25 

When such deformations are large, soils liquefy (Cornforth 2005). The soil types most 493 

susceptible to liquefaction are loose granular sands that have no cementation between 494 

the soil grains. Given the improvements in the undrained shear strength of sands trialed 495 

in this study, MICP can be used as a viable solution to improve the properties of un-496 

cemented granular soils by creating cemented zones that will be no longer liquefiable.  497 

5 Conclusions 498 

This paper has investigated the influence of degree of saturation and soil particle size on 499 

the mechanical response of calcite bio-cemented silica sand. Samples examined under 500 

SEM indicated different patterns of calcite precipitation for each degree of saturation, 501 

with fully saturated condition forming agglomerated rhombohedral crystals scattered on 502 

the sand grain surface. The lower saturated conditions formed strong calcite coating on 503 

the host grains and bridging between sand grains. A mathematical model has been also 504 

developed, which measures the impact of the degree of saturation and particle size on 505 

the effectiveness of CaCO3 precipitates in MICP treated soils.  506 

Findings of this study confirmed that higher strengths were obtained at lower saturation 507 

degrees, challenging most studies on MICP so far, in which biocementation was 508 

performed under fully saturated condition. This important finding indicates that 509 

optimum performance of this stabilization process can be achieved with lower costs, 510 

making it economically viable while reducing the need for water and chemicals, hence, 511 

becoming more environmentally sustainable than formerly believed. 512 

The results from the durability tests have shown that MICP produced cemented samples 513 

with highly durable resistance to freeze-thaw erosion, and resistless to the acid rain 514 
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erosion. Both the permeability and shear strength of bio-cemented soils displayed 515 

results that would support the MICP as a promising soil improvement technique. MICP 516 

has been approved to be a viable alternative for engineering soil improvement 517 

applications such as soil embankments, liquefiable sand deposits and subgrade 518 

reinforcement. 519 

The results obtained from the UCS and triaxial tests have shown that, despite having the 520 

same amount of calcite crystals, the engineering response of treated sand varies 521 

significantly, mainly because of the different location of the calcite deposited. The 522 

calcite crystals formed under lower degree of saturation showed that more crystals are 523 

formed in the contact points, which contributed to the strength of the cemented samples.  524 
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Table 1. Mix proportions of Portland cement samples. 598 

Mix ID Cement (g) Sand (g) Water (mL) Density (g/cm
3
) 

1 40 

580 124 1.93±0.01 
2 56 

3 72 

4 84 

599 
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Figure Captions: 600 

 601 

Figure 1. Grain size distribution curves for the sand used. 602 

Figure 2.Variation of UCS with CaCO3 content and different saturation conditions for 603 

coarse sand. 604 

Figure 3. Variation of stiffness with CaCO3 content and different saturation conditions 605 

for coarse sand. 606 

Figure 4. Relationship between elastic modulus (E) and qucs of the MICP treated silica 607 

sand compared with other geomaterials. 608 

Figure 5. Relationship between rigidity and CaCO3 content for silica sand treated with 609 

MICP under different water saturation degree conditions. 610 

Figure 6. Formation of CaCO3 crystals for samples treated at 100% saturation (note: 611 

CaCO3 content = 0.143 g/g sand, UCS = 1 MPa). 612 

Figure 7. Formation of CaCO3 crystals for samples treated at 20% saturation (note: 613 

CaCO3 content = 0.057 g/g sand, UCS =1.14 MPa). 614 

Figure 8. Conceptual illustration of pore cementation solution distributed in the sand 615 

matrix under different saturation conditions. 616 

Figure 9. Schematic diagram of two-dimensional meniscus between spherical particles: 617 

(a) water lens between two particles; and (b) simple two-dimensional geometrical 618 

illustration of hinge formation between two particles. 619 

Figure 10. Results of mathematical model showing the correlation of the CaCO3 620 

content and volume of effective hinges within the soil matrix for coarse and fine sands 621 

(RCS and RFS represent the radii of the coarse and fine particles, N represents the 622 

number of particle spheres.). 623 

Figure 11. Effect of saturation conditions on shear strength parameters of coarse silica 624 

sand having different amount of CaCO3. 625 

Figure 12. Effect of saturation conditions on shear strength parameters of fine silica 626 

sand having different amount of CaCO3. 627 

Figure 13. Permeability of cemented sand columns treated at different saturation 628 

conditions for: (a) coarse sand; and (b) fine sand.  629 

Figure 14. UCS and permeability of sand samples cemented with bio-cement CaCO3 630 

(100% saturation) and Portland cement. 631 

Figure 15. UCS of cemented fine sand samples before and after 10 cycles of Freeze-632 

Thaw (FT) action (one cycle per day).  (Note: CaCO3 content was about 0.06-0.065 g/g 633 

sand and Portland cement content was 0.096 g/g sand). 634 
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Figure 16. UCS and loss of weight of MICP cemented fine sand samples during the 635 

acid rain erosion experiments (Note: sand columns were treated under fully saturated 636 

condition with CaCO3 content of about 0.1-0.105 g/g sand). 637 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7  
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Fig. 8  
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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Fig. 14  
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Fig. 16 
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