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Abstract. The theory of electron impact ionization of one- and two-electron atoms has advanced
significantly in the past two years. This paper will summarize the progress that the members of our
research center have contributed to.
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INTRODUCTION

We wish to report on our recent progress in several aspects ofthe electron-impact
ionization from atoms. First we summarize the considerabledevelopments in the formal
aspects of the theory of ionization. Then we turn to a discussion of recent near-threshold
numerical studies of electron impact from an atomic hydrogen target. This is followed by
some examples of our recent work on electron impact ionization from the two-electron
atoms, including helium and calcium.

FORMAL THEORY

The theoretical development we wish to report concerns the three body scattering wave
function. We were able to derive the asymptotic form of the three-body scattering wave
function [1, 2] and use it to establish integral representations for the scattering amplitude
that are free of divergence problems characteristic of previous formulations.

It is well known that the ionization amplitude can be represented in terms of a trial
integral which has a structure well suited for practical calculations. Here we show that
it can be written in similar form without recourse to external trial quantities which is
the requirement of a formally complete scattering theory. First we note that the total
scattering waveΦ+

i developed from the initial two-fragment stateΦ(i) satisfies (in
notation of Ref. [2])

(E−H)Φ(sc)+
i (rrr1,rrr2) = V iΦ(i)(rrr1,rrr2), (1)

whereV i is the projectile-target interaction potential, and we separatedΦ+
i according to

Φ+
i = Φ(i) +Φ(sc)+

i . Therefore, for the ionization amplitude in prior form we can write
that

T (prior)(kkk1,kkk2) ≡
〈

Ψ−f |V i|Φ(i)〉
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=
〈

Ψ−f |E−
−→
H |Φ(sc)+

i

〉

=
〈

Ψ−f |
←−
H −E|Φ(sc)+

i

〉

+
〈

Ψ−f |E−
−→
H |Φ(sc)+

i

〉

=
〈

Ψ−f |
←−
H 0−

−→
H 0|Φ

(sc)+
i

〉

≡ T (a)(kkk1,kkk2), (2)

where a left (right) arrow on the differential Hamiltonian operator indicates that it acts
on thebra (ket) state. This is a new surface-integral form for the ionization amplitude.

Next we note that the total scattering waveΨ+
f developed from the final three-

fragment stateΨ( f )− satisfies

(E−H0)Ψ−f (rrr1,rrr2) = V Ψ−f (rrr1,rrr2). (3)

In addition, we note that

(E−H0)Φ(i)(rrr1,rrr2) = ViΦ(i)(rrr1,rrr2). (4)

In the light of Eqs. (3) and (4) we get

T (prior)(kkk1,kkk2) ≡
〈

Ψ−f |V −Vi|Φ(i)〉

=
〈

Ψ−f |E−
←−
H 0− (E−

−→
H 0)|Φ(i)〉

= −
〈

Ψ−f |
←−
H 0−

−→
H 0|Φ(i)〉≡ T (b)(kkk1,kkk2). (5)

If we separate the unscattered and scattered parts of wave functionΨ−f according to

Ψ−f = Ψ( f )−+Ψ(sc)−
f then we can also introduce

T (c)(kkk1,kkk2) =
〈

Ψ( f )−|
←−
H 0−

−→
H 0|Φ+

i

〉

, (6)

T (d)(kkk1,kkk2) = −
〈

Ψ(sc)−
f |

←−
H 0−

−→
H 0|Φ+

i

〉

. (7)

Forms T (a), T (b), T (c) and T (d) are convenient for numerical calculations as the
result depends only on the asymptotic behaviour of the scattered wave functions. The
asymptotic forms ofΦ+

i andΨ−f have been given in [2, 3].

We emphasize the importance of the new form of the ionizationamplitudeT (c) given
by Eq. (6), from the point of view of the general scattering theory. Eq. (6) leads to
a well-defined conventional volume-integral form of the ionization amplitude in terms
of the total three-body scattering wave functionΦ+

i , being developed from the initial
two-fragment channelΦ(i). In the stationary-state scattering theory thepost form of the
breakup amplitude is defined by

T (post)(kkk1,kkk2) =
〈

kkk1,kkk2|V |Φ+
i

〉

, (8)

where
〈

rrr1,rrr2|kkk1,kkk2
〉

= eikkk1·rrr1+ikkk2·rrr2 is the undistorted three-body plane wave. However,
this form is valid only when interaction between particles is short-ranged. The com-
monly accepted stationary theory of scattering fails to define the same for long-range

37

Downloaded 08 Mar 2010 to 134.115.152.130. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



interactions. At the same time from thec-form of the ionization amplitude we get

T (c)(kkk1,kkk2) =
〈

Ψ( f )−|
←−
H 0 +V −E−

−→
H 0−V +E|Φ+

i

〉

(9)

=
〈

Ψ( f )−|
←−
H 0 +V −E|Φ+

i

〉

. (10)

This allows us to introduce

T (post)(kkk1,kkk2) =
〈

Ψ( f )−|
←−
H −E|Φ+

i

〉

. (11)

Eq. (11) takes the form of Eq. (8) when the full interaction isshort-ranged. Thus, Eq. (11)
extends the definition of thepost-form of the breakup amplitude to long-range potentials
including the Coulomb interaction.

e–H NUMERICAL SOLUTION

We have recently made important progress in the direct numerical solution of electron-
hydrogen ionizing collisions. Our method, propagating exterior complex scaling
(PECS), combines exterior complex scaling [4] with a highlyefficient numerical tech-
nique to obtain solutions to the full time-independent Schrödinger equation fore–H
collisions in coordinate space [5]. This method was used to calculate accurate total
and differential ionization cross sections at energies to within 0.01 a.u. of threshold
[6], which provided convincing fully-quantalab initio support for the Wannier [7] and
related ionization threshold laws.

Our TICS results, shown in Fig. 1a, are scaled byE1.127 to give emphasis to the low-
energy results and highlight the improvement in precision over older convergent close-
coupling (CCC) and R-matrix with pseudo states (RMPS) calculations. The estimated
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FIGURE 1. PECS calculations fore–H ionizing collisions near threshold. (a) Total ionization cross
section (TICS) scaled byE1.127, and (b) Full-width-half-maximum (FWHM) of the angle between ejected
electrons scaled byE1/4. CCC and RMPS calculations from [8] and measurements from [9].
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standard errors of our calculations range from±3% at 0.01 a.u. to±1% as 0.10 a.u.. We
applied non-linear curve-fitting techniques to these results and calculated the threshold
power law to beσ ∝ E1.122±0.015, and theL=0 triplet power law to beσ ∝ E3.36±0.02,
in accord with Wannier theory. Analysis of the single-differential cross sections showed
a deviation of approximately 4% from energy-independence of the outgoing electrons,
and we estimated the spin-asymmetry to approach the limiting valueAs = 0.54±0.01,
as threshold is approached.

Wannier theory predicts that the full-width-half-maximumof the angular separation
of the outgoing electrons is given by(θ12)FWHM = αE1/4, but there is disagreement on
the value ofα (see [6] and references therein). An important outcome fromour near-
threshold calculations was that we were able to establish that α = 3.0±0.2 (in atomic
units), which is in the middle of the range of values predicted by semi-classical methods
(2.66 to 3.55). Figure 1b shows our results for(θ12)FWHM as a function ofρE, whereρ is
the hyperradius where the cross sections are calculated, and scaled byE1/4. The results
have not fully converged with respect to increasingρE, but give convincing evidence of
a E1/4 relationship, and an estimate forα was made from an asymptotic extrapolation.
For the energies considered here, we estimate that full convergence ofα would require
a calculation grid extending toρ ≈ 2000 a0, well beyond the 180a0 used for these
calculations, and well beyond our present computational resources.

TWO-ELECTRON TARGETS

Two electron-atoms present a more challenging vista for theorists. As we have indicated,
the atomic three-body problem is largely solved numerically. The treatment of the four-
body problem requires further simplifying assumptions to reduce it to a form suitable for
practical solution. In this section we illustrate how the CCC method can be applied to the
problem of electron impact ionization of two-electron atoms. We will consider the case
of equal-energy sharing for the ionizing collisions as the CCC theory for this case is has
received detailed analysis and is now well understood. We will contrast recent studies
for Helium where there are numerous investigations with Calcium which has been far
less studied.

Helium

Helium is the ideal target for the experimentalists with by far the most data available
than for any other target. What is particularly helpful is that much of these data are on
the absolute scale allowing for quantitative comparison with theory. From the theoretical
perspective while helium is not as ideal as atomic hydrogen,it turns out that by far the
most dominant transitions involve the excitation of only one electron. This allows the
treatment of the e-He problem as predominantly a three-bodyproblem. The details of
the CCC theory for e-He ionization have been given some time ago [10, 11]. The case
of calculating electron-helium ionization with equal-energy outgoing electrons has been
studied in great detail very recently [12]. Here, in Fig. 2, we show a representative ex-
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FIGURE 2. 26.6 eV electron-impact ionization of He with two 1 eV outgoing electrons. The theory and
experiment are from Refs. [12] and [13], respectively.

ample of the excellent quantitative agreement between the CCC theory and experiment.

Calcium

We treat the calcium target as a two-electron atom with an inert Hartree-Fock core
[15]. This way the theory developed for ionization of heliumis equally applicable to
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FIGURE 3. 19.6 eV e-Ca ionisation with two 6.75 eV outgoing electrons.The relative measurements
of Murray and Cvejanovic [14] have been normalised to the present CCC calculation.
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calcium. In Fig. 3 we give the results of a previously unpublished CCC calculation
and compare with existing measurements [14]. While agreement looks excellent for the
case considered, as the threshold is approached substantial discrepancies arise. This is
currently under investigation.

CONCLUDING REMARKS

The review has presented snapshots of our most recent work. The progress in our
understanding of the theory that has led to the closing of some formal long-standing
problems is satisfying. Our next work will be to fully implement the new approach as
a viable calculational framework. Similarly for electron-hydrogen scattering, following
on from the earlier successes of CCC and ECS methods the PECS calculations have
been able to reveal details of the near threshold ionizationbehaviour and to confirm the
predictions of the semiclassical models. Our continuing focus will be now to model the
two-electron systems in detail. While complete solution ofthe full Schrödinger equation
for a three-electron system is still not possible, it shouldbe within the next few years.
One line of our research will be to extend the PECS method to this system. From a
practical point of view the CCC formulation of ionization iswell advanced and it now
remains to investigate more fully application to quasi two-electron targets.
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