

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at

http://dx.doi.org/10.1016/j.virusres.2012.10.003

Wylie, S.J., Li, H., Dixon, K.W., Richards, H. and Jones, M.G.K. (2013) Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia.
 Virus Research, 171 (1). pp. 22-32.

http://researchrepository.murdoch.edu.au/13176/

Copyright: © 2012 Elsevier B.V. It is posted here for your personal use. No further distribution is permitted.

Accepted Manuscript

Title: Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (*Diuris* species) in Australia

Authors: Stephen J. Wylie, Hua Li, Kingsley W. Dixon, Helen Richards, Michael G.K. Jones

PII:	S0168-1702(12)00373-5
DOI:	doi:10.1016/j.virusres.2012.10.003
Reference:	VIRUS 95842
To appear in:	Virus Research
Received date:	6-7-2012
Revised date:	2-10-2012
Accepted date:	3-10-2012

Please cite this article as: Wylie, S.J., Li, H., Dixon, K.W., Richards, H., Jones, M.G.K., Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (*Diuris* species) in Australia, *Virus Research* (2010), doi:10.1016/j.virusres.2012.10.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Exotic and indigenous viruses infect wild populations and captive collections of
2	temperate terrestrial orchids (<i>Diuris</i> species) in Australia
3	
4	Stephen J. Wylie ¹ *, Hua Li ¹ , Kingsley W. Dixon ² , Helen Richards ³ , Michael G.K. Jones ¹
5	
6	¹ Plant Virology Section, Plant Biotechnology Research Group, Western Australian State
7	Agricultural Biotechnology Centre, School of Biological Sciences and Biotechnology,
8	Murdoch University, Perth, Western Australia 6150, Australia.
9	² Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth,
10	Western Australia 6005, Australia.
11	³ Australian Orchid Foundation, PO Box 322, Essendon North, Victoria 3041, Australia.
12	
13	*corresponding author
14	Stephen J. Wylie
15	Plant Virology Section, Plant Biotechnology Research Group, Western Australian State
16	Agricultural Biotechnology Centre, School of Biological Sciences and Biotechnology,
17	Murdoch University, Perth, WA 6150, Australia.
18	Phone: +61 89360 6600
19	Fax: +61 89360 6303
20	Email: <u>s.wylie@murdoch.edu.au</u>
21	

0	0
Z	Z
_	_

23

24 Abstract

25	Four species of <i>Diuris</i> temperate terrestrial orchids from wild and captive populations
26	were tested for the presence of polyadenylated RNA viruses. The genomes of three exotic
27	viruses were determined: two potyviruses, Bean yellow mosaic virus and Ornithogalum
28	mosaic virus, and the polerovirus Turnip yellows virus. The genomes of five indigenous
29	viruses were detected, including four novel species. They were the potyvirus Blue squill
30	virus A, another potyvirus, two proposed capilloviruses, and a partitivirus. Partitivirus
31	infection is of interest as this group of viruses is also associated with endophytic fungi
32	(mycorrhizae) that are necessary for the germination, growth, development of many
33	terrestrial orchids. Sequence divergence data indicate post-european, pre-european, and
34	endemic origins for these viruses via inoculum from introduced and native plants. The
35	implications of the findings of this study for orchid conservation, and particularly
36	reintroduction programs where viruses may be spread inadvertently to wild populations
37	from infected propagation sources, are discussed.

38

39 1. Introduction

40 The family *Orchidaceae* is one of the three largest groups of flowering plants in the
41 world, with more than 25,000 species described from over 800 genera with orchid
42 hybrids being major horticultural crops (Roberts and Dixon, 2008). While most tropical

and subtropical orchids are epiphytic, some are soil dwelling, and southern Australia is a
centre of biodiversity for temperate terrestrial (geophytic) species (Jones, 1993; Brown et
al., 2008).

46

Research in Australia revealed that a range of viruses, both indigenous and exotic, infect 47 native orchids (Mackenzie et al., 1998; Gibbs et al., 2000). In the most comprehensive 48 49 study, 850 individual Australian native orchid plants representing 72 genera were tested 50 using generic primers (Gibbs et al., 2000). A mixture of exotic and indigenous viruses 51 from five genera (Potexvirus, Potyvirus, Rhabdovirus, Tobamovirus, Tospovirus) was 52 found. Some exotic viruses of commercial orchids (Orchid fleck virus, Cymbidium 53 mosaic virus, and others) were found infecting native orchids, but other viruses (Diuris 54 virus Y, Ceratobium mosaic virus, Pterostylis virus Y) were previously unknown and may 55 represent endemic Australian groups (Mackenzie et al., 1998; Gibbs et al., 2000). 56 57 The terrestrial orchid genus *Diuris* was named after the long lateral sepals on the flowers, 58 although the distinctive ear-like petals have given them their common name of Donkey 59 Orchid. Over 50 species of *Diuris* orchids have been described, and all but one are

60 endemic to Australia. While some *Diuris* species are relatively common, others are

61 threatened, often as a result of habitat loss. Activities such as land clearing, browsing by

62 introduced herbivores, competition by weeds, and infection by introduced pathogens all

63 threaten some populations and species.

64

65	Here, we describe investigations to identify viruses infecting Diuris orchid plants
66	growing in natural habitats and those propagated in <i>ex situ</i> collections by non-
67	government organizations and conservation agencies for re-introduction programs into
68	populations where plants are diminished in number or have become extinct. We describe
69	the viruses found, consider whether they represent recent or long-standing associations
70	with their hosts, and speculate on implications for orchid conservation. The Diuris
71	species studied were D. magnifica D.L.Jones (pansy orchid) (Jones, 1991), D. corymbosa
72	Lindl. (common donkey orchid) (Lindley, 1840), and D. laxiflora Lindl. (bee orchid)
73	(Lindley, 1840), which are not considered threatened in the southwest of Western
74	Australia where they are endemic (Hoffman and Brown 2011). The fourth species, D.
75	pendunculata R.Br. (small snake orchid) (Brown, 1810) is endemic to two regions in the
76	north-east and south-east of New South Wales, where it is listed as endangered under the
77	Federal Environment Protection and Biodiversity Conservation Act 1999, the New South
78	Wales Threatened Species Conservation Act 1995, and under Appendix II of CITES
79	(Convention on International Trade in Endangered Species).
80	

- 81 2. Materials and Methods
- 82 2.1. Plant materials and RNA extraction

83 Total RNA was extracted from samples of eighteen *Diuris* plants: five *D. magnifica* from

84 a major *ex situ* conservation orchid collection in Western Australia, three *D*.

85	pendunculata plants from a private conservation collection from Victoria, Australia, and
86	five each of <i>D corymbosa</i> and <i>D. laxifolia</i> plants from two remnant forest sites near the
87	town of Brookton, Western Australia. Total RNA was extracted using an RNeasy Plant
88	RNA kit (Qiagen). Total RNA was quantified and its quality measured (RNA integrity
89	number >6.5) using a Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies)
90	and Bioanalyszer 2100 (Agilent) before 5 μ g RNA from each plant was pooled.
91	
92	2.2. Sequencing and analysis
93	Purification of polyadenylated RNA from total RNA using Oligo-dT labeled beads,
94	nebulization of RNA prior to adaptor ligation, library construction, amplification, and
95	single-end sequencing of 101 nt reads using Illumina HiSeq2000 technology was done by
96	Macrogen Inc, Seoul, South Korea, and paired-end sequencing of 90 nt reads using the
97	same technology by Beijing Genomics Institute (BGI), Shenzhen, China. Three Illumina
98	sequencing reactions were done. Reaction KP (Macrogen Inc) was with two D. magnifica
99	plants from the ex situ population in Perth, Western Australia. Reaction SW3.1 (BGI)
100	was with one wild D. laxiflora and three wild D. corymbosa plants sampled from a
101	remnant forest site near Brookton township, Western Australia. Sequencing reaction
102	SW3.3 (BGI) was done with one wild D. laxiflora plant sampled from a remnant forest
103	site near Brookton, and one <i>D. pendunculata</i> plant from an <i>ex situ</i> population in Victoria,
104	Australia (Table 1).

106	De novo assembly of contigs was carried out using CLC Genomics Workbench v4.8
107	(www.clcbio.com) and Geneious Pro v5.5.6 (Drummond et al., 2012). Parameters for the
108	assembly of contigs were minimum overlap of 50% of read length (50 nt), 10%
109	maximum gaps per read, and independent assemblies were done using 85%, 90% and
110	95% minimum overlap identity. Resulting contigs were sorted according to length and
111	those less than 2 kb were removed. Batches of remaining contigs were subjected to
112	Blastn, Blastx and Blastp analysis against appropriate GenBank databases. Putative virus
113	sequences identified were edited manually where necessary to remove gaps and
114	determine where aberrant reads were sequencing errors, i.e. when aberrant bases occurred
115	1-5% of the time. Final virus consensus sequences were constructed using contigs from
116	both assemblers. Open reading frames and identities of deduced proteins, mature
117	peptides, and domains encoded by them were predicted within Geneious Pro, the NCBI
118	Conserved Domain Database (CDD), InterProScan
119	(http://www.ebi.ac.uk/Tools/pfa/iprscan), and by identity after alignment with
120	characterized virus sequences. Pairwise identities were calculated after alignment of
121	nucleotide (nt) and amino acid (aa) sequences using ClustalW in Geneious Pro.
122	Phylogenetic trees of aa sequences were constructed using Neighbor-joining (NJ),
123	Maximum Likelihood (ML), and Maximum Parsimony (MP) methods in MEGA5 [16]
124	after ClustalW pairwise alignment of sequences with a Gonnet protein weight matrix, a
125	gap open penalty of 10, a gap separation distance of 4, and a gap extension penalty of 0.2.
126	Tests of phylogeny were done using 1000 bootstrap replications. Host plants were

- 127 matched with viruses using RT-PCR assays with virus-specific primers, as described
- 128 previously (Wylie et al., 2012a), followed by Sanger sequencing of amplicons. Primers
- 129 (5'>3'; F = forward; R = reverse) used to detect viruses in plants were as follows:
- 130 BSVAF, AGCGGCAGTAGGGGCTCAGT; BSVAR,
- 131 AACATCTCTTGCCCAACCCACCA; BYMVF, GCGCGTGAGCAACAGAAGCG;
- 132 BYMVR, CCTCCCCCAAGCACTCCTGC; DiVAF, CCCCAACCTGTGGGGGGCTCT;
- 133 DiVAR, TTCCGAACAAACGGGGCGGG; DiVBF, ACAGTCGGATTCCCGGGCGA;
- 134 DiVBR, AGCTTCCGCGGACAGGGACT; DOVAF, CGAACCGACACGACCGCTGG;
- 135 DOVAR, TTGCACCAGTGCCCTGAGCC; DPCVF, CGCTGTCGCCCGGTTCACTT;
- 136 DPCVR, GACGCC CCAGATGGTTCGCA; OrMVF, TTTCGAGGCCTTCGTGCGGC;
- 137 OrMVR, TTCACGCGACCA ACTCGCCC; TuYVF,
- 138 AGAGTTTTACTATCCCGCAAAGC; TuYVR, TGCTTCTGCGTAGAG ATTCTCG.
- 139 Total RNA was extracted from plants as described above. First strand cDNA synthesis
- 140 was done using the reverse primer in the presence of Improm-IITM reverse transcriptase
- 141 (Promega). PCRs were carried out over 40 cycles in the presence of GoTaq® polymerase
- 142 (Promega) using an annealing temperature of 60° C. Amplicons were sequenced with the
- 143 primers used to create them using the Sanger method (AB 3730) after purification
- 144 through MinElute® columns (Qiagen).
- 145

146 **3. Results**

147 Three sequence data sets were obtained after Illumina sequencing. Two datasets of

148	26,753,454 and 26,468,430 reads were of 90 nt paired-end reads, and one dataset of
149	18,668,558 was of 101 nt single-end reads. De novo assembly of each dataset was done
150	independently using two software packages and contig size was limited to >2,000 nt.
151	Contig sets for each assembly were assembled against one another to identify duplicate
152	sequences that could be removed. After this analysis, 18,661 contigs remained. When
153	these were analysed through Blastn and Blastx against appropriate databases, the majority
154	(18,499) had >60% identity with sequences of eukaryotic origin, usually plants, or
155	transposable elements. The remainder matched prokaryotic sequences, had no matches
156	on GenBank (orphans), or matched plant viral sequences. Orphan sequences were
157	analysed for conserved virus-like motifs such as RNA-dependent RNA polymerases
158	(RdRp), but none was identified.
159	
160	Eleven contigs had virus-like motifs or sequence identity with described plant viruses.
161	After manual editing to remove sequencing errors at the ends of reads where necessary,
162	the genomic architecture of each sequence was predicted by identifying possible open
163	reading frames (ORF), analysis against the NCBI Conserved Domain Database (CDD),
164	and InterProScan. Eleven viral sequences belonging to distinct isolates of eight species

- 165 belonging to four families were identified from the eight *Diuris* plants tested. Using
- 166 specific primers in RT-PCR assays followed by sequencing of amplicons, one virus
- 167 isolate was identified in each of seven plants tested, and four virus isolates were
- 168 identified in one plant (Table 1).

169	
170	3.1. Potyvirus
171	The genome sequences of seven isolates of four potyvirus species were detected from
172	three <i>Diuris</i> species in both <i>ex situ</i> and wild populations (Table 1).
173	
174	3.1.1 Blue squill virus A
175	A sequence representing the complete genome of Blue squill virus A (BSVA) isolate
176	SW3.1 was from a wild plant of <i>D. corymbosa</i> (Table 1). The consensus sequence was
177	assembled from 155,838 reads (0.582% total reads) with a coverage range of 66-6,263X
178	across the genome and mean coverage of 1,425X. It was subsequently detected in another
179	plant in the same population using an RT-PCR-based assay with specific primers. Both
180	plants had mild leaf mottling visible on young leaves. There were no flowers or immature
181	flower spikes on infected plants. Of the uninfected D. corymbosa plants growing nearby,
182	only approximately one third of them had flowers or flower spikes. The BSVA sequence
183	shared 87% nt and 95% aa identities with the near-complete genome sequence of BSVA-
184	KP1 described previously from the Australian non-orchidaceous monocot plant
185	Chamaescilla corymbosa (Blue Squill) (Asparagaceae) (Wylie et al., 2012a). These high
186	sequence identities confirm that the new isolate is a member of the BSVA species
187	(Adams et al., 2005). BSVA is closely aligned with other potyviruses within the Bean
188	common mosaic virus (BCMV) subgroup that are identified only from Australia,
189	Hardenbergia mosaic virus, Passionfruit woodiness virus (Fig. 1) (Gibbs et al., 2008;

190	Wylie and Jones, 2011a, b; Wylie et al., 2012a). The new isolate shared 71-77% aa
191	identity with them across their complete polyprotein sequences (Table 2). Genome
192	organization of BSVA was typical of potyviruses. There was one large ORF encoding a
193	polyprotein of 3064 aa and calculated mass of 349.6 kDa. The ORF begins at AUG (nt
194	260-262) and terminates at UAA (nt 9521-9523). The polyprotein is processed into 10
195	mature proteins, and an ORF within the P3 domain +2 frame encoded the PIPO (Table 3)
196	(Chung et al., 2008). This represents the first complete genome sequence of an isolate of
197	BSVA.
198	
199	3.1.2. Bean yellow mosaic virus
200	Two similar sequences were detected in wild D. corymbosa and ex situ D. magnifica
201	plants that exhibited quite severe leaf and flower spike distortion and patches of dead
202	cells on the leaves (Fig. 2; Table 1). Blastn and Blastx analyses showed that the
203	sequences closely resembled the genomes of Bean yellow mosaic virus (BYMV) isolates
204	from international locations and from a range of host species, including orchids (Wylie et
205	al., 2008). The genomes of the two new BYMV isolates shared 97% aa identity and 95%
206	nt identity with one another (Table 2). The sequence of the genome of BYMV isolate
207	SW3.1 was constructed from 2,523 reads (0.009% total reads) with a coverage range of
208	3-49X and mean coverage of 24X. The sequence of BYMV isolate KP2 was constructed
209	from 11,121 reads (0.059% total reads), with a coverage range of 12-388X and mean
210	coverage was 118X. When the complete polyprotein sequences were aligned with those

211	of the six other BYMV isolates for which complete genomes were available, the new
212	isolates shared closest aa identity (94-97%) with isolate Fr (GenBank accession
213	FJ492961) from Freesia plants collected in South Korea. They shared least aa identity
214	(76-77%) with isolate CS (AB373203) from Pisum sativum in Japan. The coat protein
215	(CP) sequences shared 98-99% identity with isolates of BYMV from an Australian
216	legume Kennedia prostrata (GenBank accessions DQ901434, DQ901435), the
217	agricultural legume Lupinus angustifolius (narrow-leafed lupin) originally from the
218	Mediterranean but cultivated in Australia (GenBank accessions AF192781, AF192782,
219	EU082121), and <i>Gladiolus</i> plants from India (GenBank accession AM398198) and Japan
220	(GenBank accession AB041972). Genomic organization was typical of that of BYMV
221	isolates and potyviruses generally (Table 3). The wild plant of <i>D. corymbosa</i> in which
222	BYMV isolate SW3.1 was detected grew in a patch of remnant native vegetation on a
223	road verge surrounded by clover pastures and lupin crops, both of which are reservoirs of
224	BYMV (Wylie et al., 2008). The captive <i>D. magnifica</i> plant where BYMV isolate KP2
225	was detected showed characteristic leaf mottling and patches of necrosis. When species-
226	specific primers were used to screen five other D. magnifica plants in the population that
227	exhibited similar symptoms, and five that did not show symptoms, the virus was present
228	in all of the symptomatic plants and three of the asymptomatic plants.
220	

229

230 3.1.3. Ornithogalum mosaic virus

231	Three sequences shared 98.0% nt and 98.2% aa identity with one another. They were
232	identified as genomes of isolates of OrMV (Table 1) by their sequence identity (81-82%)
233	with a near-complete genome sequence of OrMV from Iris in Australia (JN127345) (Fig.
234	1, Table 2). The isolates were detected in wild <i>D. corymbosa</i> and <i>D. laxifolia</i> plants and
235	in a captive D. magnifica plant, all of which had symptoms typical of virus infection
236	(Table 1). The number of reads that corresponded to OrMV isolates KP1, SW3.1, and
237	SW3.3 were 9,002 (0.048% total reads), 23,256 (0.086%) and 6,333 (0.023%)
238	respectively. The coverage ranges were 7-433X, 18-1,144X, and 7-321X, respectively.
239	Mean coverage was 96X, 222X, and 60X respectively. A screening of other captive
240	plants of the same species using virus-specific primers showed that the virus was present
241	in 5/5 symptomatic and 0/5 asymptomatic plants tested. Blastp analysis of the CP
242	sequences revealed they shared high aa identity (98-99%) with partial genome sequences
243	of isolates of Pterostylis virus Y (PtVY), a virus first described from Pterostylis and
244	Eriochilus orchids endemic to southeastern Australia (Gibbs et al., 2000). The sequences
245	shared high % identity to Ornithogalum mosaic virus (OrMV) isolates from around the
246	world, including those from orchids such as Vanilla. When all 32 available complete
247	OrMV and PtVY coat protein (CP) sequences were aligned, highest aa identities (96-
248	97%) were with OrMV isolates from Lachnalia in South Africa (GenBank accession
249	FJ159371) and USA (GenBank accession FJ159373), and from Ornithogalum in Japan
250	(GenBank accession AB079647). Least aa identities (65%) were with CPs of isolates
251	from Gladiolus in India (e.g. GenBank accession JN692498), the low identity indicating

3 63 73

252	these "OrMV" sequences probably belong to another species. Genome organization of
253	the three new OrMV isolates was almost identical to one another and typical of potyvirus
254	genomes. The deduced polyprotein was 3016 aa with a calculated mass of 341.5 kDa.
255	The ORF began at an AUG start codon (nt 125-127) and terminated at UGA (nt 9167-
256	9169). The PIPO was in the +2 frame at nt 2747-2967 within the P3 and encoded a
257	putative protein of 73 aa with a mass of 8.5 kDa (Table 3). These represent the first
258	complete genome sequences of isolates of OrMV.
259	
260	3.1.4. Donkey orchid virus A
261	A sequence of 9,867 nt representing the complete or near-complete genome of a novel
262	potyvirus was identified from a wild plant of <i>D. laxiflora</i> that did not exhibit symptoms
263	(Table 1). The genome sequence was determined by assembly of 2,286 reads (0.008% of
264	total reads) with a range of coverage of 2-65X and with mean coverage of 21X. The

265 deduced polyprotein sequence was approximately equidistant from other potyviruses for

which a complete polyprotein sequence was available, it shared 38-41% aa identity with

them (Fig. 1, Table 2). The name Donkey orchid virus A (DOVA), isolate SW3.1 was

applied. Its predicted genome organization was typical of those of other potyviruses,

consisting of 10 gene products within the polyprotein, and a small ORF encoding the

- 270 PIPO protein located in the +2 frame within the P3. The polyprotein encoded a
- 271 polyprotein of 3183 aa with a calculated mass of 360 kDa. The ORF began at an AUG
- start codon (nt 118-120) and terminated at UGA (nt 9664-9666). Mature protein positions

273	and sizes within the polyprotein were typical of potyviruses (Table 3). The putative PIPO
274	ORF encoded a protein of 72 aa with a calculated mass of 8.4 kDa. The PIPO gene
275	began at the conserved GGAAAAAA motif (nt 3186-3193) (Chung et al., 2008) and
276	terminated at a UGA stop codon (nt 3404-3406). There was no AUG translation initiation
277	codon present in the PIPO gene. The aa sequence of the DOVA CP shared highest
278	identity, 56-61%, with isolates of BYMV (e.g. AB041971), tobacco vein banding virus
279	(e.g. GU904046), and potato virus Y (e.g. AY742733). Although the viral vector was not
280	identified, the highly conserved aphid transmission motifs of RITC (nt 1204-1214) and
281	PTK (nt 2290-2298) at the N- and C-terminal regions, respectively, of the HC-Pro, and
282	the DAG motif (nt 8890-8898) at the N-terminus of the CP were present, indicating that it
283	is most likely transferred from plant to plant via aphids. Unlike most other potyviruses
284	thought to have evolved in Australia (Gibbs et al., 2008; Webster et al., 2008), DOVA is
285	not closely aligned with potyviruses of the BCMV subgroup (Fig. 1).
286	

287 3.2. Betaflexivirus

288 Analysis of two virus-like sequences from two captive-grown D. pendunculata plants

determined they shared 65% nt identity. Blast analyses suggested they were genomes of

- 290 betaflexiviruses. Nucleotide identity between the sequences was below the species
- demarcation point (72%) for flexiviruses (Adams et al., 2004), so they were given the
- species names Diuris virus A (DiVA) and Diuris virus B (DiVB). The genome sequences
- of DiVA and DiVB were assembled from 125,394 (0.473% total reads) and 25,133 reads

294	(0.094%), respectively. Coverage range was 29-6,852X and 12-1,385X and mean
295	coverage was 1,626X and 323X, respectively. Each of the genomes shared a similar
296	degree of nt identity, 62-63%, with that of Hardenbergia virus A (HarVA, GenBank
297	accession NC_015395). HarVA is an unassigned member of the family <i>Betaflexiviridae</i>
298	recently identified from an Australian endemic legume, Hardenbergia comptoniana
299	(Wylie and Jones 2011c). Although HarVA is not currently assigned a genus, its genome
300	organization and phylogeny aligns it closely with Cherry virus A (CVA), a member of the
301	genus Capillovirus (Jelkman 1995), and more distantly to Apple stem grooving virus
302	(ASGV), the type species of the genus (Wang et al., 2010). The genomic organizations of
303	DiVA and DiVB were predicted through comparison with the genomes of HarVA, CVA
304	and ASGV, and by analysis with InterProScan and CDD. DiVA and DiVB shared highly
305	similar genome architectures with one another and with HarVA (Fig. 3). In common
306	with HarVA and the two capilloviruses, the DiVA and DiVB genomes were distinctive in
307	that they lacked an in-frame stop codon at the C-terminus of the replicase. The extent of
308	the replicases of both DiVA and DiVB genomes were estimated to be from nt 39-5003,
309	encoding a protein of 1655 aa with a calculated mass of 192.5 kDa. Like HarVA and
310	capilloviruses, in DiVA and DiVB replicases there were four domains: methyltransferase
311	(Met); papain-like protease (P-Pro); UvrD helicase (Hel); and an RNA-dependent RNA
312	polymerase (RdRp). Conserved motifs were present in the same positions for each of the
313	new viruses, and they were highly similar to those of HarVA (Wylie and Jones, 2011c).
314	As with HarVA, the conserved Met motif DEAD/H was present as DECH (nt 561-572)

315	(Rozanov et al., 1992; Hirata et al., 2010). The calalytic Cys residue (Koonin and Dolja,
316	1993) in the P-Pro domain was present at nt 2073-2075. Conserved Hel motifs A (GKS)
317	and B (DE) (Koonin and Dolja, 1993) were identified at nt positions 2631-2639 and
318	2826–2831, respectively. The conserved RdRp core motif S/TGx3 Tx3 NS/Tx22 GDD
319	(Koonin, 1991) was present as TGx3 Tx3 NTx22 GDD at nt 4548-4655. Replicase
320	sequences of DiVA and DiVB shared 66% nt and 61% aa identities, confirming they are
321	distinct species. Complete replicase aa sequences were aligned with homologous
322	sequences of isolates of alpha-, beta-, and gamma- flexiviruses, and NJ, MP and ML
323	analyses were done. All phylogenetic methods placed DiVA, DiVB, and HarVA closely
324	together, and the capillovirus CVA clustered nearby (Fig. 4). Closest aa identities with
325	the replicase sequences of DiVA and DiVB were with those of CVA (28%), ASGV
326	(26%), Cherry mottle leaf virus (Trichovirus) (26% DiVA, 28% DiVB), Apple chlorotic
327	leaf virus (Trichovirus) (26% DiVA, 27% DiVB) and Banana mild mosaic virus
328	(unassigned a genus) (26% DiVA, 28% DiVB), and the lowest of 14% identity was with
329	the fungal alpha- and gammaflexiviruses Sclerotinia sclerotiorum debilitation-associated
330	RNA virus (Sclerodarnavirus) and Botrytis virus F (Mycoflexivirus), respectively. The
331	extent of the CPs of DiVA and DiVB were predicted by comparison with CPs of
332	betaflexiviruses, and by analysis on CDD. The start codons for CPs were predicted to
333	begin at the methionine located at nt 6018-6020 (DiVA) and nt 6021-6023 (DiVB) in the
334	contexts AGCCAUGGU and GAACAUGG, respectively. Translation from there yields
335	a protein of 232 aa with a calculated mass of 26 kDa for each virus, which closely

336	matches the masses of CPs of ASGV strains (26.3-27.1 kDa). CP sequences of DiVA
337	and DiVB shared 70% nt and 76% aa identities. CPs of HarVA shared 68% nt and 74%
338	aa identity with DiVA and 71% nt and 78% aa identity with DiVB. These figures are
339	close to the flexivirus species demarcation point for CPs (<72% nt and <80% aa identites
340	for CPs or replicases) proposed by Adams et al. (2004), and confirm that DiVA, DiVB,
341	and HarVA are distinct, although closely related virus species.
342	
343	A 30K-like movement protein (MP) occurred in the +2 reading frame where its C-
344	terminus overlapped the N-terminal region of the predicted CP (Fig. 4). In both DiVA
345	and DiVB the protein was initiated with AUG at nt 5045-5047. In DiVA the extent of the
346	MP was 389 aa with a predicted mass of 43.8 kDa, terminating at UGA. In DiVB it was
347	slightly smaller at 380 aa with a predicted mass of 42.7 kDa, terminating at UAA (Fig. 4).
348	The conserved MP motif DxR was present at nt 5381-5389 as DGR in both viruses. The
349	MPs of DiVA and DiVB shared 64% nt and 53% aa and identity with one another. The
350	MP of DiVA shared 56% identity with that of HarVA, and DiVB shared 48% identity
351	with it. They shared low identity with capilloviruses CVA (DiVA 23%, DiVB 18%) and
352	ASGV (DiVA 16%, DiVB 22%). Type members of the betaflexivirus genera Citrivirus,
353	Tepovirus, Trichovirus and Vitivirus, that also have 30K-like MPs, shared 17-24% aa
354	identity with the MPs of DiVA and DiVB.
255	

355

356 3.3. Partitivirus

357	Two sequences of 2,010 and 1,806 nt were detected from the plant of <i>D. pendunculata</i>
358	tested, the same plant co-infected with DiVA and DiVB. The consensus sequence of the
359	larger sequence was assembled from 3,346 reads (0.012% total reads) with a range of
360	coverage of 12-398X and mean coverage of 150X. The smaller sequence was assembled
361	from 2,805 reads (0.010% total reads) with a range of coverage of 15-305X and mean
362	coverage of 140X. Blastx analysis revealed that the large segment shared highest aa
363	identity (64%) with the complete replicase segment of an unclassified member of the
364	Partitiviridae, Heterobasidion RNA virus 5 (HetRV5) (GenBank accession HQ541326),
365	and lower identity with other partitiviruses (Fig. 5). The nt sequence of the smaller
366	segment shared very little identity with any available sequence, but the aa sequence of the
367	single putative ORF shared 30% identity with the CP of Heterobasidion RNA virus 1
368	(Genbank accession HQ541324), and 24% identity with the CP of Amaysa cherry
369	disease-associated mycovirus (GenBank accession NC_006440). Partitiviruses are
370	bisegmented double-stranded RNA viruses, with one segment encoding a coat protein
371	and the other a replicase. The large segment of the new virus encodes the putative
372	replicase and the smaller the CP. The replicase sequence had one predicted ORF of 1866
373	nt that started at AUG (nt 83-85) and ended at UGA (nt 1946-1948). The ORF encodes a
374	RdRp-like protein of 622 aa with a calculated mass of 73 kDa. The RdRp core motif
375	S/TGx3 Tx3 NS/Tx22 GDD (Koonin, 1991) was present as SGx3 Tx3 DSx26 GDD (nt
376	1283-1402). This RdRp motif was conserved amongst the 14 partitiviruses analyzed with
377	the exceptions of Sclerotinia sclerotiorum partitivirus S and Raphanus sativus cryptic

378	virus 1, where there were 27 and 28 aa residues between the DS and GDD motifs,
379	respectively. A polyadenylation signal as such was not present. Instead, the 3' end of the
380	genome segment has an AU-rich sequence (nt 1965-2010) where adenosines accounted
381	for 61% of the nucleotides and uracils 24%. This AU-rich sequence, called the
382	'interrupted' poly (A) tail, is reported in other partitiviruses (e.g. Lim et al., 2005). The
383	putative CP segment has one predicted ORFflanked on either side by a 5' UTR of 103 nt
384	and a 3'UTR of 212 nt. The 3' UTR of the CP segment has an interupted poly (A) tail, in
385	this case of 60 nt (nt 1747-1806). The ORF of 1,491 nt begins at AUG (nt 104-106) and
386	ends at UGA (nt 1592-1594). It encodes a protein of 497 aa with MW 54.7 kDa. Hence
387	the sequence identities and predicted gene functions of these two segments of RNA
388	indicate that they represent the complete genome of a partitivirus, designated as Diuris
389	pendunculata cryptic virus (DPCV) (Table 1).
390	

391 3.4. *Polerovirus*

A sequence of 5629 nt was isolated from the *D. pendunculata* plant co-infected with DiVA, DiVB and DPCV. The whole nt sequence shared 89% identity with the complete genome sequence of the type isolate of *Turnip yellows virus* (TuYV-FL1), and 80% nt identity with complete genome sequences of *Brassica yellows virus* (BrYV). The consensus sequence was assembled from 2,031 reads (0.007% total reads) with a coverage range of 4-224X and mean coverage of 150X. The sequence is approximately the same size as the genome of TuYV-FL1 (5641 nt). As with isolate TuYV-FL, the new

399	sequence is predicted to have six ORFs (ORF0-ORF5), a 5'UTR of 31 nt, an intergenic
400	non-coding region of 203 nt (nt 3209-3411) between ORF2 and ORF3, and a 3' UTR of
401	85 nt. The 5'-terminal nts were ACAAAA, identical to those of many poleroviruses. One
402	of the species demarcation criteria for viruses of the family <i>Luteoviridae</i> is that
403	differences in aa sequences of any gene product should be greater than 10% (D'Arcy and
404	Domier, 2005). Five deduced protein sequences encoded by the new TuYV genome
405	shared greater than 90% aa identity with homologous sequences of TuYV-FL1, but the
406	read-through protein (ORF5) shared slightly less, at 87% identity. With the exception of
407	the read-through domain (RTD), all proteins in this isolate met the species identity
408	criterion, so it is proposed that this new sequence represents the genome of an isolate of
409	TuYV. The isolate was designated as TuYV-SW3.1 (Table 1).

410

411 **4. Discussion**

Eleven complete or partial genome sequences of eight virus species from four Diuris 412 413 species, both wild and captive plants, were identified. Of the virus species discovered, three - BYMV, OrMV, TuYV - are clearly recent arrivals into Australia because they 414 have international distribution in other hosts. The other five species represent endemic 415 taxa that may have evolved in Australia. BSVA was recently described from a non-416 417 orchidaceous indigenous plant (Wylie et al., 2012a). Four others had not been described, 418 although they concur with established families with members distributed internationally. Some infected plants exhibited symptoms typical of virus infection, whilst others 419

420 remained symptomless. Notably, a plant of the rare species D. pendunculata was co-

421 infected with four viruses from three families, including one exotic virus, yet appeared

422 asymptomatic.

- 423
- 424 4.1. Exotic and indigenous potyviruses

Potyviruses are an extremely successful genus, having global distribution from a wide 425 426 phylogenetic spread of host plants. Many aphid species are vectors. It is suggested that 427 potyviruses adapted to agricultural expansion over 7000 years ago in the fertile crescent 428 and subsequently spread and evolved as humans carried plant propagules with them to 429 new lands (Gibbs and Ohshima, 2010). Several potyviruses are described only from 430 Australia, including HarMV and BSVA, and phylogeny places most in the BCMV 431 subgroup. Nucleotide identities of these "Australian BCMV-like potyviruses" is usually 432 within the range of 75-77% (Wylie and Jones, 2011a), figures that hover very close to the 433 species demarcation point for potyviruses (<75-76%) (Adams et al., 2005), indicating 434 they have a recent common ancestor that evolved as it encountered new hosts (Gibbs et 435 al., 2008). Recent plant-virus associations generally induce more severe symptoms than 436 older associations, which may be of a mutualistic nature (Roossinck, 2011). It is 437 estimated from nucleotide substitution rates in potyviruses that BCMV-like potyviruses 438 arrived in Australia only about 2000 years ago, possibly transported by Austronesians on 439 their crop plants as they colonized the Pacific (Gibbs et al., 2010). Indeed, both HarMV 440 and BSVA induce symptoms in natural host species, suggestive that these are quite recent

441	associations (Wylie and Jones, 2011a, Wylie et al., 2012a). The potyvirus DOVA is
442	unusual because its nucleotide sequence reveals that it does not belong to the BCMV
443	subgroup and it did not induce symptoms on the host plant. It is not closely allied to any
444	known potyvirus group, signifying that it has evolved in isolation. It's polyprotein
445	sequence is approximately equidistant (38-41% aa identity) from all other known
446	potyviruses, signifying that it has probably evolved in isolation for a long period. Along
447	with another Australian orchid virus in the Potyviridae, the proposed poacevirus
448	Caladenia virus A (Wylie et al 2012b), its presence is an indication that potyviruses may
449	have invaded Australia on more than one occasion during pre-history, and perhaps at a
450	much earlier time than previously speculated (Gibbs et al., 2010), thereby enabling more
451	mature (asymptomatic) relationships between host and virus to develop. Conversely, it
452	may represent a recent incursion by an unknown potyvirus. Obtaining sequence data
453	from further DOVA isolates should address this question because greatest sequence
454	diversity exists in the region where a species evolved (Thresh, 1980; Gibbs et al., 2008).
455	
456	In our study, exotic viruses BYMV and OrMV induced severe symptoms typical of virus
457	infection, including necrotic patches on the leaves, whereas the other exotic virus, TuYV,
458	did not. The presumed indigenous viruses did not induce visible symptoms.
459	
460	The presence of the exotic potyviruses BYMV and OrMV infecting both wild and captive

461 orchid populations is of concern, and further studies to determine host ranges and

462	incidences amongst other orchid species should be undertaken. BYMV has been isolated
463	from several orchid species internationally, including the Australian species Pterostylis
464	curta (GenBank accession AF185960) (Gibbs et al., 2000), and from a wide range of
465	non-orchidaceous species (Wylie et al., 2008). The new isolates closely resemble those
466	described from introduced leguminous crops in the region, and these are the likely origin
467	of the virus. Infected Diuris plants exhibited quite severe symptoms of infection (leaf
468	and flower stem distortion, chlorosis) that may reduce host fecundity and lifespan, but
469	this has not been proven experimentally. Less clear is the origin of OrMV isolates. The
470	virus was recently identified for the first time in Western Australia from cultivated
471	(introduced) Iris plants growing in a home garden (Wylie et al., 2012a). Other members
472	of the Iridaceae are also hosts (Wei et al., 2006), notably Gladiolus (e.g. GenBank
473	accession FJ573184). Several iridaceous genera including Gladiolus, Homeria, Ixia, and
474	Freesia are naturalized weeds of African origin widespread in Australian forests and
475	shrubland, but these have not been tested as hosts of OrMV. The presence of highly
476	identical OrMV sequences from widely distributed Diuris populations indicates that a
477	single introduction into the region has occurred. Isolates with high % identity from
478	Pterostylis and Eriochilus orchids in eastern Australia were given the name Pterostylis
479	virus Y (Gibbs et al., 2000), and this name should be changed to Ornithogalum mosaic
480	virus.

481

482 4.2. Australian flexiviruses

483	High sequence identity and similar genome organizations of DiVA, DiVB and HarVA
484	place them together with members of the genus Capillovirus, especially to CVA. We
485	propose that Diuris virus A, Diuris virus B, and Hardenbergia virus A are placed together
486	with ASGV and CVA in the genus Capillovirus. The Australian capilloviruses are
487	genetically equidistant from one another, suggesting simultaneous divergence from a
488	common ancestor. Together with Scaevola virus A, a member of the closely related
489	genus Trichovirus (Martelli et al., 2007; Hirata et al., 2010) described from a non-
490	orchidaceous species of the Australian flora (Wylie et al., 2012a), these viruses hint at a
491	long presence of flexiviruses on the Australian continent.
492	

493 4.3. Partitiviruses and orchids

494 To our knowledge, the partitivirus DPCV is the first to be identified in Australia and the first from orchids. Partitiviruses are persistent dsRNA viruses with bisegmented genomes 495 that are vertically transmitted through the gametes, but not via grafts, manual inoculations 496 or vectors (Blanc, 2007). Partitiviruses infect fungi, plants and protozoa. Phylogenetic 497 498 analysis of the partitivirus RdRp genes suggests that they have been transmitted between 499 plants and fungi (Roossinck, 2010). This is of particular interest in orchids as they are 500 dependent on fungal associations to germinate and grow. Many Australian terrestrial 501 orchids have reduced root systems and so are highly dependent on mycorrhizal 502 associations for mineral nutrition (Brundrett, 2007). In most cases, orchids associate with 503 basidiomycetes (Smith and Read, 2008). The DPCV sequence clustered closest to that of

504	the basidiomycete fungus virus HetRV5. In another plant/fungus/dsRNA virus system,
505	all three partners were required in a mutualistic association that imparted heat tolerance to
506	a grass that grew in an active thermal area (Marquez et al., 2007). Partitivirus-like partial
507	CP and RdRp sequences are found stably integrated in some plant genomes (Chiba et al.,
508	2011), but we consider it unlikely that DPCV is an example of integration because its
509	sequence was transcribed and the complete replicase RNA segment was obtained.
510	
511	4.4. Exotic polerovirus
512	TuYV is an exotic virus described from Tasmania, Australia, in cultivated brassicas and
513	peas, but until now has not been described from orchids. Luteovirids are restricted to the
514	phloem tissue of host plants and are transmitted by aphids in a persistent manner (Grey
515	and Gidow, 2003). This virus's presence is alarming because the host is a rare species and
516	any impact on plant growth by the virus may adversely affect the long-term survival of
517	the species.

518

519 4.5 Method used

520 Although detection of only polyadenylated RNA viruses was expected using this method

- 521 (oligo-dT bead purification of mRNAs prior to library construction), the partitivirus
- 522 RdRp sequence was determined despite its lack of a poly (A) tail sensu stricto. It is
- 523 probable that non-polyadenylated RNA viruses, viroids, and DNA viruses also co-infect
- 524 the tested plants, but these could not be detected with the method used. Others have

525	enriched samples for viral sequences before library construction by extracting dsRNA
526	(e.g. Roossinck et al., 2010), partially purifying virus particles (e.g. Thapa et al., 2012),
527	and sequencing short-interfering RNAs (siRNAs) (e.g. Kreuze et al., 2009). Addition of
528	genetic tags (barcodes) to sample sequences before pooling (e.g. Roossinck et al., 2010)
529	would simplify the process of matching viruses with host plants, although in this case
530	where there were a small number of samples sequenced per sequencing reaction, the
531	method used of designing specific primers to match virus with host in RT-PCR and
532	Sanger sequencing assays was simple and efficient.
533	
534	Sequence coverage was generally lowest at the 5' and 3' ends of the genomes. Peaks
535	of coverage occurred in places along the genomes, seemingly independent of the
536	genome sequence. For example in the three ORMV isolates sequenced no pattern of
537	coverage was observed, suggesting that the patterns of peaks and troughs of
538	coverage observed is an artefact of library preparation or sequencing.
539	
540	4.6 Implications for conservation
541	This study of only eight <i>Diuris</i> orchid plants of four species revealed a surprising number
542	and variety of RNA viruses, indicative that a rich indigenous viral flora, as well as an

543 aggressive exotic viral flora, exists in Australia's temperate terrestrial orchids, and in its

544 flora generally.

546	The presence of exotic viruses is of particular concern. BYMV and OrMV were present
547	in wild and captive populations, so the source of infection to the captive population was
548	probably via infected wild tubers. This study highlights the need to quarantine newly
549	collected propagules until plants are examined for symptoms, and ideally assayed for
550	viruses before introducing them to ex situ conservation or horticultural collections. In
551	captive populations where plants are grown in pots on benches, conditions exist for rapid
552	spread of viruses by vectors. The case of TuYV is of particular concern because the virus
553	is probably exotic and visible symptoms of infection were not apparent.
554	
555	Elimination of exotic viruses from threatened orchid populations is certainly desirous for
556	their long-term survival. Except in the probable case of the partitivirus, it is uncertain
557	whether any of the identified viruses are transmitted through seed (Wong et al., 1994),
558	and this should be examined, as seed is a possible route to generate virus-free plants. Heat
559	and chemical treatments and <i>in-vitro</i> meristem culture have also been used to establish
560	virus-free orchid stocks (Lim et al., 1993).
561	
562	It is not known what impacts the newly found indigenous viruses have on plant growth
563	and development. Indeed, it is possible some represent beneficial associations (Marquez
564	et al., 2007; Roossinck, 2011), and as such should be maintained. This study highlights
565	the need to gain a greater understanding of the roles viruses play in long-term
566	partnerships with plants, particularly for plants of conservation concern.

567	
568	Importantly, conservation programs for orchids have considered virus infection, but
569	usually only associated with epiphytic taxa. This research highlights the need to study
570	the ecological roles of indigenous and exotic viruses as well as assess phyto-health risks
571	to conservation of <i>ex situ</i> and wild orchid populations.
572	
573	Acknowlegements
574	This study was funded by Australian Research Council Linkage Grant LP110200180 with
575	support from the Western Australian Botanic Gardens and Parks Authority and the
576	Australian Orchid Foundation.
577	
578	References
579	Adams, M.J., Antoniw, J.F., Fauquet, C.M., 2005. Molecular criteria for genus and
580	species discrimination within the family Potyviridae. Arch. Virol. 150, 459–479.
581	
582	Adams, M.J., Antoniw, J.F., Bar-Joseph, M., Brunt, A.A., Candresse, T., Foster, G.D.,
583	Martelli, G.P., Milne, R.G., Fauquet, C.M., 2004. The new plant virus family <i>Flexiviridae</i>

- and assessment of molecular criteria for species demarcation. Arch. Virol. 149, 1045–
- 585 1060.
- 586
- 587 Blanc, S,. 2007. Virus transmission-getting in and out, in: Waigman, E., Heinlein,

- 588 M.(Eds.), Viral transport in plants, Springer, Berlin, pp. 1–28.
- 589
- 590 Brown, R., 1810. Diuris pedunculata. Prodromus Florae Novae Hollandia et Insulae Van
- 591 Diemen, 316.

592

- 593 Brown, A., Dixon, K., Hopper, S., Dundas, P., 2008. Orchids of Western Australia,
- 594 University of Western Australia Press, Perth.

- 596 Brundrett, M.C., 2007. Scientific approaches to Australian temperate terrestrial orchid
- 597 conservation. Austral. J. Bot. 55, 293-307.
- 598
- 599 Chiba, S., Kondo, H., Tani, A., Saisho, D., Sakamoto, W., Kanematsu, S., Suzuki, N.,
- 600 2011. Widespread endogenization of genome sequences of non-retroviral RNA viruses
- 601 into plant genomes. PLoS Pathog 7: e1002146. doi:10.1371/journal.ppat.1002146.
- 602
- 603 Chung, B. Y-W., Miller, W.A., Atkins, J.F., Firth, A.E., 2008. An overlapping essential
- 604 gene in the *Potyviridae*. PNAS 105, 5897–5902.
- 605
- 606 Crawford, L.J., Osman, T.A.M., Booy, F.P., Coutts, R.H.A., Brasier, C.M., Buck, K.W.,
- 607 2006. Molecular characterization of a partitivirus from *Ophiostoma himal-ulmi*. Virus
- 608 Genes 33, 33-39.

6	0	ç

- 610 D'Arcy, C.J., Domier, L.L., 2005. Luteoviridae, in: Fauquet, C.M., Mayo, M.A.,
- 611 Maniloff, J., Desselberger, U., Ball, L.A., (Eds.) Virus Taxonomy: VIIIth Report of the
- 612 ICTV, Elsevier Academic Press, London, pp. 891–900.
- 613
- 614 Drummond, A.J., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas,
- 615 S., Thierer, T., Wilson, A., 2012 Geneious v. 5.6.4, http://www.geneious.com.
- 616
- 617 Gibbs, A., Mackenzie, A., Blanchfield, A., Cross, P., Wilson, C., Kitajima, E.,
- 618 Nightingale, M., Clements, M., 2000. Viruses of orchids in Australia: their identification,
- 619 biology and control. Austral. Orchid Rev. 65, 10-21.
- 620
- 621 Gibbs, A.J., MacKenzie, A.M., Wei, K.-J., Gibbs, M.J., 2008. The potyviruses of
- 622 Australia. Arch. Virol. 153, 1411-1420.
- 623
- 624 Gibbs, A.J., Fargette, D., Garcia-Arenal, F., Gibbs, M.J., 2010. Time the emerging
- dimension of plant virus studies. J. Gen. Virol. 91, 13-22.
- 626
- 627 Gibbs. A.J., Ohshima, K., 2010. Potyviruses and the digital revolution. Ann. Rev.
- 628 Phytopathol. 48, 205-223.
- 629

630	Gray, S., Gildow, F.E., 2003. Luteovirus-aphid interactions. Ann. Rev. Phytopathol. 41,
631	539-566.
632	
633	Hirata, H., Yamaji, Y., Komatsu, K., Kagiwada, S., Oshima, K., Okano, Y., Takahashi,
634	S., Ugaki, M., Namba, S., 2010. Pseudo-polyprotein translated from the full-length ORF1
635	of a capillovirus is important for pathogenicity, but a truncated ORF1 protein without
636	variable and CP regions is sufficient for replication. Virus Res. 152, 1–9.
637	
638	Jelkmann, W., 1995. Cherry virus A: cDNA cloning of dsRNA, nucleotide sequence
639	analysis and serology reveal a new plant capillovirus in sweet cherry. J. Gen. Virol. 76,
640	2015-2024.
641	
642	Jones, D.L., 1991. Diuris magnifica. Austral. Orchid Res. 2, 58.
643	
644	Jones, D.L., 1993. Native Orchids of Australia. Imago Publishing Ltd., Hong Kong.
645	
646	Koonin, E.V., Dolja, V.V., 1993. Evolution and taxonomy of positive-strand RNA
647	viruses: implications of comparative analysis of amino acid sequences. Crit. Rev.
648	Biochem. Mol. Biol. 28, 375–430.
649	

650	Kozlowska-Makulska, A.,	Guilley, H.	, Szyndel, M.S.	, Beuve, M.,	Lemaire, O	., Herrbach,
-----	-------------------------	-------------	-----------------	--------------	------------	--------------

- E., Bouzoubaa, S., 2010. P0 proteins of European beet-infecting poleroviruses display
- variable RNA silencing suppression activity. J.Gen. Virol. 91, 1082–1091.
- 653
- Kreuze, J.F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I., Simon, R.,
- 655 2009. Complete viral genome sequence and discovery of novel viruses by deep
- 656 sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of
- 657 viruses. Virol. 388, 1–7.
- 658
- Lim, S.T., Wong, S.M., Goh, C.J., 1993. Elimination of cymbidium mosaic virus and
- odontoglossum ringspot virus from orchids by meristem culture and thin section culture
- 661 with chemotherapy. Ann. Appl. Biol. 122, 289-297.
- 662
- 663 Lim. W.-S., Jeong, J.H., Jeong, R.-D., Yoo, Y.B., Yie, S.W., Kim, K.-H., 2005. Complete
- nucleotide sequence and genome organization of a dsRNA partitivirus infecting
- 665 Pleurotus ostreatus. Virus Res. 108, 111-119.
- 666
- 667 Lindley, J., 1840. *Diuris corymbosa*. Sketches of Vegetation of the Swan River Colony,
- 668 51.
- 669

670	Mackenzie, A.M., Nolan, M., Wei, KJ., Clements, M.A., Gowanlock, D., Wallace, B.J.,
671	Gibbs, A.J., 1998. Ceratobium mosaic potyvirus: another virus from orchids. Arch. Virol.
672	143, 903-914.
673	
674	Márquez, L.M., Redman, R.S., Rodriguez, R.J., Roossinck, M.J., 2007. A virus in a
675	fungus in a plant – three way symbiosis required for thermal tolerance. Science 315, 513–
676	515.
677	
678	Martelli, G.P., Adams, M.J., Kreuze, J.F., Dolja, V.V., 2007. Family Flexiviridae: a case
679	study in virion and genome plasticity. Ann. Rev. Phytopathol. 45, 73-100.
680	
681	Roberts, D. L. & Dixon, K. W. 2008. Orchids. Curr. Biol. 18, R325-R329.
682	
683	Roossinck, M.J., 2010. Lifestyles of viruses. Phil. Trans. Royal Soc. B 365, 1899-1905.
684	
685	Roossinck, M,J., Saha. P., Wiley, G.B., Quan, J., White, J.D., Lai, H., Chavarr'ia, F.,
686	Shen, G., Roe, B.A., 2010. Ecogenomics: using massively parallel pyrosequencing to
687	understand virus ecology. Mol. Ecol. 19 (Suppl. 1), 81-88.
688	
689	Roossinck, M.J., 2011. The good viruses: viral mutualistic symbioses. Nature Rev.
690	Microbiol. 9, 99-108.
691	

692 Rozanov, M.N., Koonin, E.V., Gorbalenya, A.E., 1992. Conservation of the putative

- 693 methyl-transferase domain: a hallmark of the 'Sindbis-like' supergroup of positive-strand
- 694 RNA viruses. J. Gen. Virol. 73, 2129–2134.
- 695
- 696 Smith, F.F., Brierly, P., 1944. Ornithogalum mosaic. Phytopathol. 34, 497-503.
- 697
- 698 Smith, S.E., Read, D.J., 2008 Mycorrhizal symbiosis. Third Ed. Academic Press,
- Elsevier, London.
- 700
- 701 Thapa, V., Melcher, U., Wiley, G.B., Doust, A., Palmer, M.W., Roewe, K., Roe, B.A.,
- 702 Shen, G., Roossinck, M.J., Wang, Y.M., Kamath, N., 2012. Detection of members of the
- 703 Secoviridae in the Tallgrass Prairie Preserve, Osage County, Oklahoma, USA. Virus Res.
- 704 167, 34-42.
- 705
- 706 Thresh, J.M., 1980. The origins and epidemiolology of some important plant virus
- 707 diseases. Appl. Biol. 5, 1–65.
- 708
- 709 Wei, T., Pearson, M. N., Cohen, D., 2006. First report of Ornithogalum mosaic virus and
- 710 Ornithogalum virus 2 in New Zealand. Plant Pathol. 55, 820.
- 711
- 712 Wang, L.P., Hong, N., Wang, G.P., Xu, W.X., Michelutti, R., Wang, A.M., 2010.
- 713 Distribution of apple stem grooving virus and apple chlorotic leaf spot virus in infected in

- vitro pear shoots. Crop Prot. 29, 1447-1451.
- 715
- 716 Wong, S.M., Chong, C.G., Lee, Y.H., Tan, K., Zettler, F,W., 1994. Incidence of
- 717 cymbidium mosaic and odontoglossum ringspot viruses and their significance in orchid
- cultivation in Singapore. Crop Prot. 13, 235-239.
- 719
- 720 Wylie, S.J., Coutts, B.A., Jones, M.G.K., Jones, R.A.C., 2008. Phylogenetic analysis of
- bean yellow mosaic virus isolates from four continents: relationship between the seven
- distinct groups found and their natural isolation hosts and geographical origins. Plant Dis.
- 723 92, 1596-1603.
- 724
- 725 Wylie, S.J., Jones, M.G.K., 2011^a. Characterisation and quantitation of mutant and wild-
- type genomes of hardenbergia mosaic virus isolates co-infecting a wild plant of
- 727 Hardenbergia comptoniana. Arch. Virol. 156, 1287-1290.
- 728
- 729 Wylie, S.J., Jones, M.G.K., 2011^b. The complete genome sequence of passionfruit
- 730 woodiness virus determined using deep sequencing, and its relationship to other
- 731 potyviruses. Arch. Virol. 156, 479-482.
- 732

- 733 Wylie, S.J., Jones, M.G.K., 2011^c. Hardenbergia virus A, a novel member of the
- 734 Betaflexiviridae from a wild legume in South-west Australia. Arch. Virol. 156, 1245-
- 735 1250.
- 736
- 737 Wylie, S.J., Luo, H., Li, H., Jones, M.G.K., 2012^a. Multiple polyadenylated RNA viruses
- detected in pooled cultivated and wild plant samples. Arch. Virol. 157, 271-284.
- 739
- 740 Wylie, S.J., Tan, A., Li, H., Dixon K.W., Jones M.G.K., 2012^b. Caladenia virus A, an
- value of the *Potyviridae* from terrestrial orchids in Western Australia.
- 742 Arch. Virol. (available online first)

743

744	Figure Legends
745	
746	Figure 1 Neighbor-joining tree of amino acid sequences of complete polyproteins of
747	potyviruses found in Diuris orchids (boxed) with other complete or near-complete
748	potyvirus polyproteins. GenBank accessions, virus name and isolate (if given) are shown.
749	Branch robustness was assessed by 1000 bootstraps shown as percentages. Those with
750	confidence values below 60% are not shown. Relationships calculated using Maximum
751	Parsimony and Maximum Likelihood methods gave essentially the same tree. The tree is
752	drawn to scale, with evolutionary distance used to infer the branch length in nucleotide
753	substitutions per site.
754	
755	Figure 2 Potted plants of <i>Diuris magnifica</i> . The plant on the right is infected with Bean
756	yellow mosaic virus isolate KP2. Visible is leaf distortion on the whole plant, and
757	chlorotic leaf mottle and necrotic streaks on the leaf (inset).
758 759	
760	Figure 3 Predicted genome organization of proposed species (A) Diuris virus A (DiVA)
761	and Diuris virus B (nucleotide positions that differ from DiVA in parentheses) compared
762	to (B) the genome organization of Hardenbergia virus A. Predicted nucleotide positions
763	of the borders of the regions described are given above or below the blocks representing
764	domains or genes, and the lengths of the untranslated regions (UTR) are given. Replicase

765	and coat protein (CP) genes of open reading frame 1 (ORF1) are represented by the upper
766	block. Shaded regions within ORF1 represent the methyltransferase (Met), papain-like
767	protease (P-pro), helicase (Hel), and RNA-dependent RNA polymerase (RdRp) domains
768	of the replicase gene (its predicted extent indicated by arrow). The movement protein
769	(MP) gene of ORF2 is represented in the lower block.
770	
771	Figure 4 Neighbor-joining tree of amino acid sequences of complete replicase proteins of
772	type isolates of 26 species within the families Alpha-, Beta-, and Gammaflexivirus. The
773	positions of the proposed species Diuris virus A and Diuris virus B (boxed) are shown in
774	relation to other species. GenBank accessions, species and genus names are shown.
775	Branch robustness was assessed by 1000 bootstraps shown as a percentage. Those with
776	confidence values below 60% are not shown. Relationships calculated using Maximum
777	Parsimony and Maximum Likelihood methods gave essentially the same tree. The tree is
778	drawn to scale, with evolutionary distance used to infer the branch length in nucleotide
779	substitutions per site.
780	

- 786 Maximum Parsimony and Maximum Likelihood methods gave essentially the same tree.
- 787 The tree is drawn to scale, with evolutionary distance used to infer the branch length in
- 788 nucleotide substitutions per site.

Virus ^a	Isolate	Sequence length (nt) ^b	Classification Family, Genus	<i>Diuris</i> host species (plant/pot number)	Symptoms ^c	Host situation	Host location ^d	GPS location ^e	GenBank Accession number
BYMV	KP2	9533	Potyviridae,	D. magnifica	CLM, LD,	Captive	Perth, WA	-31.955976,	JX173278
			Potyvirus	(pot K43)	FSD, NPL			115.842469	
BYMV	SW3.1	9530	Potyviridae,	D. corymbosa	CLM	Wild	Brookton,	-32.397438,	JX156423
			Potyvirus	(plant B11)			WA	116.880024	
DOVA	SW3.1	9867	Potyviridae,	D. laxiflora	NVS	Wild	Brookton,	-32.397175,	JX156422
			Potyvirus	(plant B9)			WA	116.880653	
BSVA	SW3.1	9842	Potyviridae,	D. corymbosa	MM	Wild	Brookton,	-32.397148,	JQ807999
			Potyvirus	(plant B8)			WA	116.880618	
OrMV	KP1	9445	Potyviridae,	D. magnifica	CLM, FSD	Captive	Perth, WA	-31.955976,	JQ807997
			Potyvirus	(pot K44)				115.842469	
OrMV	SW3.1	9445	Potyviridae,	D. corymbosa	CLM	Wild	Brookton,	-32.397481,	JQ807995
			Potyvirus	(plant B10)			WA	116.879478	
OrMV	SW3.3	9447	Potyviridae,	D. laxifolia	CLM	Wild	Brookton,	-32.396921,	JQ807996
			Potyvirus	(plant B22)			WA	116.881236	
DiVA	SW3.3	6941	Betaflexiviridae,	D. pendunculata	NVS	Captive	Yarra Glen,	unknown	JX173276
			Capillovirus	(pot 2081)			Vic		
DiVB	SW3.3	7001	Betaflexiviridae,	D. pendunculata	NVS	Captive	Yarra Glen,	unknown	JX173277
			Capillovirus	(pot 2081)			Vic		
DPCV	SW3.3	2010	Partitiviridae,	D. pendunculata	NVS	Captive	Yarra Glen,	unknown	JX156423
(Rep)			unclassified,	(pot 2081)		-	Vic		
DPCV	SW3.3	1806	Partitiviridae,	D. pendunculata	NVS	Captive	Yarra Glen,	unknown	TBA
(CP)			unclassified,	(pot 2081)		-	Vic		
TuVY	WA-1	5629	Luteoviridae,	D. pendunculata	NVS	Captive	Yarra Glen,	unknown	JQ862472
			Polerovirus	(pot 2081)		-	Vic		

 Table 1 Virus species and isolates identified in *Diuris* orchids.

a BYMV, bean yellow mosaic virus; DOVA, donkey orchid virus A; BSVA, blue squill virus A; OrMV, ornithogalum mosaic virus; DiVA, Diuris virus A; DiVB, Diuris virus B, DPCV (Rep), Diuris pendunculata cryptic virus, replicase segment; DPCV (CP), Diuris pendunculata cryptic virus, coat protein segment; TuVY, turnip yellows virus

b. Complete genome sequence length excluding poly (A) tail if present

c. CLM, chlorotic leaf mottle; FSD, flower spike distortion; LD, leaf distortion; MM, mild mottle; NPL, necrotic patches on leaves; NVS, no visible symptoms

d. Location of plants used in this study. WA, Western Australia; Vic, Victoria, Australia

e. Original locations of samples provided from an ex situ collection in Victoria could not be determined

Table 2 Pairwise identities (%) between amino acid sequences of complete and near-complete polyproteins of the potyviruses donkey orchid virus A, ornithogalum mosaic virus, blue squill virus A, and bean yellow mosaic virus found infecting *Diuris* orchids, and those of other potyviruses

				OrM	OrM		BSV	BYM												
	DOV	0.101	0.101	V	V	DOLL	A	V			DOM	<i></i>				50137	<i>a v i</i>	D 14		TD 10
Virus ^a	A	SW3 1	SW3 3A	KPI	9 ^b	SW3 1	KP1 [*]	SW3.	HarM (PW V	BCM V	SM V	WVM V	WM V	H1M V	V PSDM	SrM V	V V	PLM V	TNS V
OrMV SW3.1	41.2	5115.1	5113.311		,	5 1 5.1		1	Ó							•		•	Ţ	•
OrMV SW3.3A	41.1	98.4																		
OrMV KP1	41.3	98.1	98.0																	
OrMV Bate9	40.1	81.9	82.3	81.6																
BSVA SW3.1	40.3	44.9	44.8	45.8	46.9															
BSVA KP1	40.7	45.1	45.1	44.9	46.9	94.5														
BYMV SW3.1	40.8	45.1	45.1	45.0	47.7	44.2	44.0													
HarMV	39.8	45.4	45.3	45.3	47.4	76.9	76.9	43.3												
PWV	40.2	44.4	44.5	44.6	46.6	71.2	71.1	44.3	71.3											
BCMV	39.5	45.2	45.2	45.3	47.1	64.2	66.4	45.3	64.3	65										
SMV	41.1	45.8	45.7	45.5	47.5	67.7	68.4	44.5	68.1	68.8	67.2									
WVMV	40.5	45.1	45.1	45.5	47.2	68.2	68.6	44.7	67.7	68.4	67.1	80.4								
WMV	39.1	45.1	44.9	45.3	47.1	65.3	67.7	44.2	64.9	65.2	68.6	81.8	76.6							
HiMV	37.8	42.9	43.4	43.5	45.8	40.7	41.2	41.3	41.5	41.4	39.7	41.5	41.6	39.8						
PSbMV	39.1	44.3	43.9	44.0	47.1	41.3	42.7	43.9	41.9	41.7	41.1	42.4	42.3	41	41.7					
SrMV	39.7	42.3	42.4	42.0	44.6	42.1	43.1	42.2	41.8	41.9	41.9	43.2	42.9	42.6	39.5	42				
PenMV	40.4	43.8	43.7	43.5	45.9	42.4	43.2	42.2	42.4	42.7	43.1	44	44.2	43.5	39.9	43.3	71.8			
PLMV	40.7	46.2	46.1	46.8	49.1	49.2	49.5	44.8	49.5	49.2	48.2	49.7	49.5	47.6	40.6	43.2	43	43.2		
TNSV	40.6	44.6	44.4	44.5	47.4	44	43.9	45.3	43.4	44	42.8	44.9	45.3	43	41.1	43.5	41.7	43.1	43.6	
PepMoV	39.8	44.3	44.3	44.2	46.5	43.9	43.9	44.8	43	43.5	42	43.3	44.1	41.8	41.2	42.5	41.5	41.7	43.7	57.7

^a DOVA SW3.1 JX156422, Donkey orchid virus A isolate SW3.1; OrMV SW3.1, JQ807995 ornithogalum mosaic virus isolate SW3.1; OrMV SW3.3A, JQ807996 ornithogalum mosaic virus isolate 3.3A; OrMV-KP1, JQ807997 ornithogalum mosaic virus isolate KP1; OrMV Bate9, JN127345 Ornithogalum mosaic virus isolate Bate9; BSVA SW3.1, JQ807999 Blue Squill virus isolate SW3.1; BSVA KP1, JN052072 Blue Squill virus isolate SW3.1HarMV, HQ161081 Hardenbergia mosaic virus isolate 57.2; PWV, HQ122652 Passion fruit woodiness virus isolate MU-2; BCMV, AJ312437 Bean common mosaic

virus cowpea isolate R; SMV, FJ640972 Soybean mosaic virus isolate WS160; WVMV, AY656816 Wisteria vein mosaic virus isolate Beijing; WMV, HQ384216 Watermelon mosaic virus isolate Dendrobium; PSbMV, X89997 Pea seed-borne mosaic virus; HiMV, JQ395040 Hippeastrum mosaic virus isolate Marijiniup 1; TNSV, JQ314463 Tomato necrotic stunt virus isolate MX9354; PLMV, DQ851494 Peace lily mosaic virus isolate Haiphong; SrMV, AJ310198 Sorghum mosaic virus; PepMoV, EU586131 Pepper mottle virus isolate 205137; PenMV, DQ977725 Pennisetum mosaic virus isolate C b near-complete polyprotein sequence

Virus ^a	a DOVA				BSVA OrMV-KP1, SW3.1 ^b					0	rMV-SW	3.3		BYMV-K	P1	BYMV-SW3.1			
Genome	nt	size	mass	nt	size	mass	nt	size	mass	nt	size	mass	nt	size	mass	nt	size	mass	
feature ^b		aa	kDa		aa	kDa		aa	kDa		aa	kDa		aa	kDa		aa	kDa	
Polyprotein	118-	3182	360.5	260-	3088	352.0	127-	3016	341.5	125-	3016	341.5	192-	3056	347.3	189-	3056	347.3	
••	9666			9523			9174			9169			9362			9440			
5'UTR	1-117	-	-	1-259	-	-	1-126		-	1-124	-	-	1-191	-	-	1-188	-	-	
P1	118-	311	34.7	260-	317	36.4	127-927	267	29.6	125-925	267	29.6	192-	284	32.7	189-	284	32.7	
	1050			1210									1043			1040			
HC-Pro	1051-	562	64.0	1211-	457	51.9	928-	455	51.3	926-	455	51.3	1044-	457	51.9	1041-	457	51.9	
	2736			2581			2292			2290			2414			2411			
P3	2737-	347	40.2	2582-	349	40.3	2293-	348	40.5	2291-	347	40.2	2415-	348	40.3	2412-	348	40.5	
	3777			3628			3336			3331			3458			3455			
PIPO	3186-	72	8.4	3034-	74	8.8	2752-	73	8.4	2747-	73	8.5	2876-	80	9.3	2873-	80	9.4	
	3404			3255			2972			2967			3118			3115			
6K1	3778-	52	5.8	3629-	52	5.8	3337-	50	5.6	3332-	52	5.8	3459-	53	5.9	3456-	53	5.9	
	3933			3784			3487			3487			3617			3614			
CI	3934-	639	71.6	3785-	634	71.4	3488-	635	70.9	3488-	634	70.7	3618-	635	71.2	3615-	635	71.2	
	5850			5686			5394			5389			5522			5519			
6K2	5851-	53	5.8	5687-	53	6.1	5395-	50	5.6	5390-	53	5.9	5523-	53	6.0	5520-	53	6.0	
	6009			5845			5553			5548			5681			5678			
NIa-VPg	6010-	193	21.8	5846-	190	21.8	5554-	192	21.5	5549-	192	21.5	5682-	191	22.1	5679-	191	22.0	
	6588			6415			6129			6124			6254			6251			
NIa-Pro	6589-	242	27.4	6416-	243	27.8	6130-	243	27.5	6125-	243	27.4	6255-	243	27.2	6252-	243	27.1	
	7314			7144			6858			6853			6983			6980			
NIb	7315-	519	59.3	7145-	517	59.5	6859-	518	59.5	6854-	518	59.4	6984-	519	59.0	6981-	519	59.0	
	8871			8695			8412			8407			8540			8537			
CP	8872-	265	29.6	8696-	276	30.7	8413-	254	28.9	8408-	254	28.9	8541-	273	30.7	8538-	273	30.8	
	9666			9523			9174			9169			9362			9356			
3'UTR	9667-	-	-	9524-	-	-	9175-	-	-	9170-	-	-	9363-	-	-	9357-	-	-	
	9867			9842			9445			9447			9533			9530			

Table 3 Genome organization, predicted protein sizes and masses of new isolates of donkey orchid virus A, blue squill virus A, ornithogalum mosaic virus and bean yellow mosaic virus from *Diuris* orchids

a DOVA, donkey orchid virus A; BSVA, blue squill virus A; OrMV, ornithogalum mosaic virus; BYMV, bean yellow mosaic virus

b Isolates OrMV-KP1 and OrMV-SW3.3 had identical genome organization so are presented together

b UTR, untranslated region; P1, protein 1; HC-Pro, helper component protease; P3, protein 3; PIPO, pretty interesting potyvirus ORF; 6K1, six kilodalton peptide 1; CI,

cylindrical inclusion; 6K2, six kilodalton peptide 2; NIa-VPg, nuclear inclusion A, viral protein genome-linked; NIa-Pro, nuclear inclusion A protease; NIb, nuclear inclusion B; CP, coat (capsid) protein

Figure(s)

ACCEPTED MANUSCRIP

В

Fig 5

