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Similarly to differential cross sections for one-electron photoionization, the doubly-differential
cross section (DDCS) for double photoionization (DPI) may be conveniently described by four
parameters: the singly-differential (with respect to energy sharing) cross section (σ0), the dipole
asymmetry parameter (β), and two nondipole asymmetry parameters (γ and δ). Here we derive two
model-independent representations for these parameters for DPI from a 1S0 atomic bound state:
(i) in terms of one-dimensional integrals of the polarization-invariant DPI amplitudes and (ii) in
terms of the exact two-electron reduced matrix elements. For DPI of He at excess energies, Eexc, of
100 eV, 450 eV, and 1 keV, we present numerical results for the asymmetry parameters within the
framework of the convergent close-coupling (CCC) theory and compare them with results of lowest-
order (in the interelectron interaction) perturbation theory (LOPT). The results for Eexc = 1 keV
exhibit a nondipole asymmetry that is large enough to be easily measured experimentally. We find
excellent agreement between our LOPT results and other theoretical predictions and experimental
data for total cross sections and ratios of double to single ionization cross sections for K-shell DPI
from several multi-electron atoms.

PACS numbers: 32.80.Fb

I. INTRODUCTION

The process of double photoionization (DPI), espe-
cially for the He atom, has been a subject of intense
experimental and theoretical studies in atomic physics
during the last decade [1–3]. This is because DPI of
He represents a prototype of the complete breakup of a
three-body atomic system whose fragments interact via
long-range Coulomb forces in both the initial (bound)
and the final (continuum) states. Understanding the role
of electron correlations in this seemingly simple process,
involving two electrons, provides insights to the treat-
ment of electron correlations in this and other breakup
processes involving many-electron atoms.

The final state following DPI from the initial 1S0-state
involves two photoelectrons whose total (excess) energy is
determined by the incident photon energy and the double
ionization threshold energy; such a DPI process is thus
generally characterized by four different types of cross
sections. The triply-differential cross section (TDCS),
which is differential in the ejection angles of both elec-
trons as well as in their energy sharing, provides the
most detailed information on the dynamics of the pro-
cess by means of the two-electron angular distributions;
its calculation and comparison with experiment serves as

the most stringent test of theoretical models employed to
evaluate the wave functions of the initial and final states.
In view of these circumstances, the TDCS for PDI of He
has been analyzed in great detail both theoretically and
experimentally (see [1–3] and references therein). Theo-
retical analyses have established the general parametriza-
tions for the TDCS in terms of polarization-independent
amplitudes and scalar products of vectors that enter
the DPI process within the electric dipole approxima-
tion (EDA) [1, 4, 5]. Similar parametrizations for the
TDCS that include the lowest-order nondipole correc-
tions were derived in Refs. [6–8]. Moreover, in both
cases the polarization-invariant amplitudes are expressed
in terms of Legendre polynomials and exact two-electron
reduced matrix elements. These matrix elements are
the only quantities which are to be evaluated numerically
within a particular dynamical model. Such parametriza-
tions allow one to deduce the symmetry properties and
selection rules for the TDCS; they also have proved help-
ful in analyzing the experimental TDCS data. Dynami-
cal studies of the TDCSs for various photon energies and
excess energy sharings, employing particular models for
initial and final state wavefunctions, provide one with a
general understanding of the physical mechanisms under-
lying the DPI process in particular regimes.
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There are three other types of DPI cross sections,
which are obtained from the TDCS by its integration
over the ejection solid angles of one or both electrons
and over the energy sharing. Upon integration of the
TDCS over the ejection solid angle of one electron, the
resulting doubly-differential cross section (DDCS) has a
form that is identical to the differential (in angles) cross
section for the one-electron photoeffect, and may thus be
characterized by the usual asymmetry parameters. In-
tegration over the remaining ejection solid angle yields
the singly-differential (in energy sharing) cross section
(SDCS); integration over energy sharing yields the to-
tal cross section. Studies of these cross sections pro-
vide a broader picture of the DPI process. Total DPI
cross sections and ratios of double to single ionization
cross sections for various atoms are of practical interest
for plasma physics and astrophysics, where the precise
knowledge of these quantities is necessary to characterize
radiation propagation in a gaseous medium. Such cross
sections have been analyzed both theoretically (see, e.g.,
Refs. [9–13]) and experimentally [14–18]). Unlike for the
TDCS, however, no parametrizations for the nondipole
components of the DDCS (or, equivalently, for the corre-
sponding nondipole asymmetry parameters), have been
reported in the literature [19]. Also, unlike for the nu-
merical analyses of PDI cross sections in the EDA (in
which case a number of numerical methods for accurate
calculations of the PDI amplitude has been developed),
the existing estimations for the magnitude of nondipole
effects at excess energies Eexc < 1 keV are based only
on a lowest-order perturbation theory (LOPT) account
of interelectron correlations [6–8, 12, 13].

In the present work we analyze DPI angle-integrated
cross sections as follows. First, in Sec. II we apply
angular momentum techniques similar to those used in
Refs. [4, 6, 8] to derive model-independent represen-
tations for the dipole and lowest-order nondipole pa-
rameters that characterize the DDCS and the SDCS
for DPI from the 1S0 state at two different levels of
detail: (i) in terms of polarization-independent ampli-
tudes (which may be useful in analyzing experimental
data) and (ii) in terms of exact two-electron matrix ele-
ments (which may be useful for theoretical calculations).
Second, in Sec. III.A we analyze these cross sections
for DPI of He quantitatively (including the lowest-order
nondipole corrections to the EDA) by means of two meth-
ods: (i) the convergent close-coupling (CCC) theory [20],
whose EDA predictions for the TDCS are in excellent
agreement with existing experiments for He (see, e.g.,
Ref. [21]), and (ii) the LOPT, which provides EDA re-
sults for the TDCS of reasonable accuracy for low excess
energies [22, 23] and which has been used recently for
analyses of nondipole effects in the TDCS for Eexc ≤ 450
eV [6–8]). These results thus allow us: (i) to provide
reliable CCC predictions for the dipole and nondipole
asymmetry parameters (and thus for the magnitude of
nondipole effects at particular excess energies), and (ii) to
assess the accuracy of the LOPT predictions for these pa-

rameters by comparing them to the CCC results. Third,
in Sec. III.B we apply the LOPT approach to calculate
the total cross sections and the ratio of double to single
ionization cross sections for K-shell DPI of multi-electron
neutral atoms. For this case, our LOPT results are in ex-
cellent agreement with available experimental data and
confirm the prior predictions of Ref. [13].

II. THEORY

The TDCS for DPI from the singlet 1S0 state, taking
into account the lowest-order nondipole corrections, has
the following form:

d3σ

dΩp1
dΩp2

dE1
= A

[

|Ad|2 + 2Re(AdA
∗
q)
]

, (1)

where Ad and Aq are the EDA and electric-quadrupole
transition amplitudes, respectively, and where we have
neglected the quadrupole-quadrupole term |Aq|2; A =
4π2αp1p2/ω is a normalization factor, α = 1/137.036 is
the fine structure constant, and atomic units are used
throughout the paper. The parametrization of the am-
plitudes Ad and Aq in terms of the exact dipole and
quadrupole two-electron matrix elements were presented
in Refs. [4] and [6], respectively.

The integration of the dipole-quadrupole TDCS over
the ejection angles of one of the electrons yields the
dipole-quadrupole DDCS. The angular distribution of
one electron, described by the DDCS, has a shape that is
similar to that of the angle-differential cross section for
single photoionization (SPI) that accounts for nondipole
effects and that is conventionally characterized by four
parameters:

dσSPI

dΩp

=
σSPI

0

4π

{

1 + βSPIP2(|e · p̂|)

+ (δSPI + γSPI |e · p̂|2)(k̂ · p̂)
}

, (2)

where k̂ defines the direction of the photon wave vec-

tor, k [k = (ω/c)k̂], P2(|e · p̂|) = (3|e · p̂|2 − 1)/2, σSPI
0

is the total SPI cross section, and the parameter βSPI

characterizes the dipole asymmetry of the cross section,
while γSPI and δSPI characterize the nondipole asym-
metry. Parametrization (2) is valid for any elliptic po-
larization described by the generally complex photon po-
larization vector e [(e · e∗) = 1]. For linear polarization

(e = e∗ ≡ ǫ̂), (ǫ̂ · p̂) = cos θ and (k̂ · p̂) = sin θ cosϕ,
where the angles θ and ϕ are the spherical angles of the
vector p in the coordinate frame whose x- and z-axes
are directed along the vectors k and ǫ̂, respectively. For

circular polarization, |e · p̂|2 = [k̂ × p̂]2/2 = (sinα)2/2,

where α is the angle between the vectors p̂ and k̂; there-
fore P2(|e · p̂|) is proportional to the Legendre polyno-
mial P2(cosα): P2(|e · p̂|) = (−1/2)P2(cosα). As follows
from rotational invariance (cf. [4]), the dipole-quadrupole
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DDCS for DPI may be presented in a form that is iden-
tical to that in Eq. (2),

d2σ

dΩp1
dE1

=
σ0(E1)

4π

{

1 + β(E1)P2(|e · p̂1|)

+
[

δ(E1) + γ(E1)|e · p̂1|2
]

(k̂ · p̂1)
}

, (3)

where, however, besides their dependence upon the pho-
ton frequency ω, the parameters σ0(E1), β(E1), γ(E1),
and δ(E1) depend also upon the energy of one of
the photoelectrons, E1. By integrating Eq. (2) over
Ωp and Eq. (3) over Ωp1

, one obtains the total SPI cross
section, σSPI

0 , and the DPI SDCS,

dσ

dE1
≡ σ0(E1), (4)

respectively. The total DPI cross section is then given
by [13],

σ++ =

Eexc/2
∫

0

σ0(E1)dE1, (5)

where Eexc = ω − I++ is the excess energy and I++ is
the double ionization threshold energy.

The parametrizations of the dipole and nondipole co-
efficients for SPI in Eq. (2) in terms of the exact ma-
trix elements are well-known. By using the parametriza-
tions for the DPI amplitudes and the TDCS given in
Refs. [4, 6] and the techniques developed in Ref. [4], it is
possible to derive ab initio parametrizations for the co-
efficients σ0(E1), β(E1), γ(E1), and δ(E1) in Eq. (3) in
terms of (i) polarization-invariant amplitudes and (ii) ex-
act two-electron reduced matrix elements. These two
parametrizations are derived below.

A. DPI transition amplitude

For DPI from a 1S0-state |0〉, the transition amplitude
A taking into account nondipole effects to lowest order
involves dipole and quadrupole components and has the
following form [8]:

A = Ad +Aq = 〈p1p2|(e · D + ({k̂ ⊗ e}2 ·Q2)|0〉. (6)

In the velocity gauge, D = −i(∇1 + ∇2) and Q2m =
αω({r1⊗∇1}2m+{r2⊗∇2}2m). (Standard notations [24]
for irreducible tensor products, 6j-symbols, etc., are
used.)

The parametrizations for the amplitudes Ad and Aq as
well as for the TDCS in Eq. (1) are derived using the
following expansion of the two-electron final state |p1p2〉
in terms of modified bipolar harmonics, Cl1l2

lm

∗
(p̂1, p̂2):

|p1p2〉 =
∑

l1l2lm

Cl1l2
lm

∗
(p̂1, p̂2)|p1p2; (l1l2)lm〉, (7)

where

Cll′

LM (r̂, r̂′) =
∑

m,m′

CLM
lml′m′Clm(r̂)Cl′m′(r̂′)

≡ {Clm(r̂) ⊗ Cl′m′(r̂′)}LM , (8)

Clm(r̂) ≡
√

4π/(2l + 1)Ylm(r̂) is a modified spherical
harmonic [24], and CLM

lml′m′ is a Clebsch-Gordon coef-
ficient. With these definitions, the dipole (Ad) and
quadrupole (Aq) components of the DPI transition am-
plitude are given by [4, 6],

Ad =
1√
3

∞
∑

l1,l2=0

dl1l2(p1, p2)
(

e · Cl1,l2
1 (p̂1, p̂2)

)

, (9)

Aq =
1√
5

∞
∑

l1,l2=0

ql1l2(p1, p2)
(

{e ⊗ k̂}2 · Cl1,l2
2 (p̂1, p̂2)

)

,

(10)

where

dll′(p, p
′) ≡ 〈pp′; (ll′)1||D||0〉,

qll′(p, p
′) ≡ 〈pp′; (ll′)2||Q2||0〉 (11)

are the reduced matrix elements of the electric-dipole and
electric-quadrupole operators between the 1S0-state and
the P -wave and D-wave components of the two-electron
continuum state |pp′〉 having individual photoelectron
angular momenta l and l′, respectively. The reduced
matrix elements are defined by the Wigner-Eckart the-
orem [24], taking into account Eq. (7). Note that only
dl1l2(p1, p2) with l2 = l1 ± 1 are nonzero in the dipole
amplitude, while only ql1l2(p1, p2) with l2 = l1, l1 ± 2 are
nonzero in the quadrupole amplitude.

Eqs. (9) and (10) reduce to the following model-
independent parametrizations for Ad and Aq [4, 6]:

Ad = f1(e · p̂1) + f2(e · p̂2), (12)

Aq = g1(e · p̂1)(p̂1 · k̂) + g2(e · p̂2)(p̂2 · k̂)

+ gs

[

(e · p̂1)(p̂2 · k̂) + (e · p̂2)(p̂1 · k̂)
]

, (13)

where the polarization-invariant amplitudes f1,2, g1,2,
and gs depend upon the photoelectron momenta, p1 and
p2, and upon cos θ ≡ (p̂1 · p̂2), where θ is their mutual
ejection angle. Here we use the following notations: f1 ≡
f(p1, p2, cos θ), f2 ≡ f(p2, p1, cos θ), g1 ≡ g(p1, p2, cos θ),
and g2 ≡ g(p2, p1, cos θ), where

f(p, p′, cos θ) =
∞
∑

l=1

(−1)l+1

[

∑

l′=l±1

Dll′(p, p
′)

]

P
(1)
l (cos θ),

(14)
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gs(p, p
′, cos θ) =

∞
∑

l=1

(−1)l+1

[

∑

l′=l±2

Qll′(p, p
′)P

(2)
l+l′

2

(cos θ)

+
√

6Qll(p, p
′)

(

P
(2)
l+1(cos θ) − 2l + 3

2
P

(1)
l (cos θ)

)

]

,

g(p, p′, cos θ) =
∞
∑

l=2

(−1)l

[

∑

l′=l±2

Qll′(p, p
′)

+
√

6Qll(p, p
′)

]

P
(2)
l (cos θ), (15)

and where P
(n)
l (x) is the n-th derivative of the Legendre

polynomial Pl(x), P
(n)
l (x) = (dn/dxn)Pl(x). The dy-

namical factors Dl1l2(p1, p2) and Ql1l2(p1, p2) are defined
as follows:

Dll′(p, p
′) =

dll′(p, p
′)

√

(2l + 1)(2l′ + 1)max(l, l′)
,

Qll′(p, p
′) =

√

4(l + l′ − 2)!

(l + l′ + 3)!
qll′(p, p

′). (16)

B. Parametrization of the DDCS and SDCS in

terms of the polarization-invariant amplitudes

The formulae for the DPI transition amplitude
given above allow one to derive model-independent
parametrizations for the DDCS parameters σ0, β, γ, and
δ in Eq. (3) in terms of the polarization-invariant am-
plitudes f1,2(cos θ), g1,2(cos θ), and gs(cos θ). The in-
tegration of the TDCS in Eq. (1) over Ωp2

reduces to
evaluation of the following integrals:

I1 =

∫

dΩp2
(a · p̂2)u1(cos θ),

I2 =

∫

dΩp2
(a · p̂2)(b · p̂2)u2(cos θ),

I3 =

∫

dΩp2
(a · p̂2)(b · p̂2)(c · p̂2)u3(cos θ), (17)

where the functions u1,2,3 involve combinations of
the polarization-invariant amplitudes that depend
upon cos θ. These integrals are evaluated in Appendix A.
The resulting explicit expressions for the coefficients σ0,

β, γ and δ in Eq. (3) are:

σ0 = A8π2

3

1
∫

−1

[

|f1|2 + |f2|2 + 2Re(f1f
∗
2 )x
]

dx, (18)

β = 2 −A8π2

σ0

1
∫

−1

|f2|2(1 − x2)dx, (19)

γ = A (4π)2

σ0

1
∫

−1

Re
{

f∗1
[

g1 + g2P2(x) + 2gsx
]

+ f∗2
[

g1x+ g2P3(x) + 2gsP2(x)
]

}

dx, (20)

δ = A8π2

σ0

1
∫

−1

Re
[

f2(g
∗
s + g∗2x)

]

(1 − x2)dx, (21)

where the polarization-invariant amplitudes f1,2(x),
g1,2(x), and gs(x) depend upon the integration vari-
able x ≡ cos θ. It is interesting to note that the EDA
amplitude f1 and the quadrupole amplitude g1 do not
contribute to the nondipole asymmetry parameter δ. The
expressions above give parametrizations for σ0, β, γ, and
δ that are independent of the approach used to calculate
the polarization-invariant amplitudes.

C. Parametrization of the DDCS and SDCS in

terms of the two-electron matrix elements

Parametrization of the quantities σ0, β, γ and δ in
terms of the reduced matrix elements in Eq. (11) may be
obtained by direct substitution of the expressions for the
polarization-invariant amplitudes [cf. Eqs. (14) and (15)
and the immediately preceding text] into Eqs. (18) - (21)
followed by evaluation of the multiple integrals involv-
ing combinations of Legendre polynomials. A more con-
venient alternative, however, is to perform the integra-
tion of the TDCS over the ejection angles of one electron
Ωp2

≡ (θ2, ϕ2) by integrating Eq. (1), where the ampli-
tudes Ad and Aq are given by Eqs. (9) and (10).

The integration of the dipole-dipole term |Ad|2 in
Eq. (1) may be performed as follows. First, one ex-
pands all tensor products in terms of tensor spherical
components and performs the integration over Ωp2

of the
two spherical functions that depend upon p̂2. Then, one
presents the result as a sum of scalar products of ten-
sors having the form

(

{e⊗Cl1(p̂1)}l2 · {e∗⊗Cl′
1
(p̂1)}l2

)

,
where l1, l

′
1 = l2 ± 1. After recoupling, the result is

formally presented as a sum of scalar products
(

{e ⊗
e∗}g · Cl1,l′1

g (p̂1, p̂1)
)

, where g = 0, 2. Finally, each bipo-
lar harmonic that depends upon two equal arguments is
expressed in terms of a single spherical harmonic. The
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result of the integration of the dipole-dipole term is thus

∫

dΩp2
AdA

∗
d = 4π

∑

g=0,2

(

{e ⊗ e∗}g · Cg(p̂1)
)

×
∞
∑

l2=0

∑

l1 = l2 ± 1
l′1 = l2 ± 1

(−1)l2

2l2 + 1
Cg0

l10l′
1
0

{

1 l′1 l2
l1 1 g

}

dl1l2d
∗
l′
1
l2
.

(22)

The integration of the dipole-quadrupole term AdA
∗
q in

Eq. (1) may be performed similarly and yields

∫

dΩp2
AdA

∗
q = 4π

∑

g=1,3

(

{{e ⊗ k̂}2 ⊗ e}g · Cg(p̂1)
)

×
∞
∑

l2=2

∑

l1 = l2 ± 1
l′1 = l2, l2 ± 2

(−1)l2

2l2 + 1
Cg0

l10l′
1
0

{

2 l′1 l2
l1 1 g

}

dl1l2q
∗
l′
1
l2
.

(23)

After rewriting the scalar products of the tensors in-

volving the vectors e and k̂ with the spherical harmonic
Cg(p̂1) in Eqs. (22) and (23) in terms of the scalar prod-

ucts (e · p̂1) and (k̂ · p̂1), the parametrizations for the
coefficients σ0, β, γ and δ in Eq. (3) may readily be ob-
tained:

σ0 = (4π)2
A
3

∞
∑

l2=0

∑

l1=l2±1

|dl1l2 |2
(2l1 + 1)(2l2 + 1)

, (24)

β =
(4π)2

σ0
A
√

2

3

∞
∑

l2=0

∑

l1 = l2 ± 1
l′1 = l2 ± 1

(−1)l2

2l2 + 1

× C20
l10l′

1
0

{

1 l′1 l2
l1 1 2

}

dl1l2d
∗
l′
1
l2
, (25)

γ = − (4π)2

σ0

√
10A

∞
∑

l2=2

∑

l1 = l2 ± 1
l′1 = l2, l2 ± 2

(−1)l2

2l2 + 1

× C30
l10l′

1
0

{

2 l′1 l2
l1 1 3

}

Re(dl1l2q
∗
l′
1
l2

), (26)

δ =
(4π)2

σ0

A√
5

∞
∑

l2=2

∑

l1 = l2 ± 1
l′1 = l2, l2 ± 2

(−1)l2

2l2 + 1
Re(dl1l2q

∗
l′
1
l2

)

×
(

√
3C10

l10l′
1
0

{

2 l′1 l2
l1 1 1

}

+
√

2C30
l10l′

1
0

{

2 l′1 l2
l1 1 3

}

)

.

(27)

One sees that dipole-quadrupole terms, which are of
the order of ω/c, do not appear in the SDCS given by the
parameter σ0 in Eqs. (18) and (24), i.e., the lowest-order
nondipole corrections that contribute to the SDCS are
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the quadrupole-quadrupole and dipole-octupole terms,
which are of the order (ω/c)2 (and hence are not con-
sidered here). Also, it is interesting to note that the
parameter δ is generally non-zero. This is in contrast to
SPI, for which δSPI vanishes for ionization from atomic
s subshells [25].
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FIG. 3: DDCS for DPI of He for an excess energy of 1 keV,
linear polarization, and coplanar geometry. Directions of the
photon wave vector k̂ and polarization ǫ̂ are as shown in (a).
Angular distributions for the electron having energy E1 are
shown. Curves are defined as in Fig. 1.

III. NUMERICAL RESULTS

A. Double ionization of He

In this subsection we present numerical CCC and
LOPT results for DDCSs and SDCSs for DPI of He at
three excess energies, 100 eV, 450 eV, and 921 eV. The
LOPT results presented are gauge-invariant as they in-
clude both final state (FS) and ground state (GS) cor-
relations to lowest (first) order in 1/Z and use a single
basis set of Coulomb orbitals with Z = 2. The technical
details of the calculation of the dipole and quadrupole re-
duced matrix elements within the LOPT approach are
given in Refs. [23] and [8], respectively. The CCC results
are gauge-invariant as well, as they effectively include FS
and GS correlations to all orders (in the ground state,
by using a 20-term Hylleraas expansion for the ground-
state wave function, and in the final state, by means of a
convergent close-coupling expansion for the two-electron
continuum [11]). The reduced matrix elements of the
electric-quadrupole operator have been extracted from
the (e, 3e) CCC calculation described in Ref. [26] (see
Appendix B for details). In Eqs. (24)-(27), the re-
duced matrix elements dl1l2 and ql1l2 with l2 up to
l2 = 6 have been included in both the CCC and
LOPT calculations.

0

0.5
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2.5

3

0 50 100 150 200 250 300 350 400 450

Electron energy E1 (eV)

S
D

C
S

(b
eV

−
1
)

Excess energy of 450 eV

FIG. 4: SDCS for DPI of He at an excess energy of 450 eV.
Full curve: present LOPT results; dashed curve: CCC results
from Ref. [29]; the experimental data (from Ref. [29]) are
normalized to the CCC results.

1. Doubly-differential cross sections

Here we present numerical results for the DDCSs. It
is assumed that one of the electrons is detected in the
plane spanned by the vectors e and k. The results for
100 eV and 450 eV are presented for those energy shar-
ings for which experimental measurements of DDCSs and
theoretical EDA predictions exist in the literature, i.e.,
(99 eV+1 eV) [27, 28], (448 eV+2 eV) [28, 29], and
(420 eV+30 eV) [28, 29]. We note that lowest-order
nondipole corrections have been included by means of the
asymmetry parameters γ and δ in Eqs. (26) and (27).

Fig. 1 shows results for the dipole and dipole-
quadrupole DDCS for Eexc = 100 eV calculated by the
CCC and LOPT approaches, in comparison with the ex-
perimental data [27] (which are normalized to the CCC
results). One sees that the nondipole forward-backward
asymmetries at this excess energy are barely noticeable,
and that the predictions of both the CCC and LOPT
approaches are in reasonable agreement with each other
and with the experimental data.

In Fig. 2 we present the DDCS for an excess energy of
450 eV, which is the highest one for which DDCS exper-
imental data are available. One sees that the nondipole
asymmetries for this case are more pronounced than
for 100 eV, particularly for angular distributions of the
fast electron. For extremely asymmetric energy sharing
[see Fig. 2(a,b)] we find reasonable agreement of LOPT
predictions with both the CCC results and normalized
experimental data [29], although the LOPT-calculated
cross sections are somewhat larger than the CCC results.
For less asymmetric energy sharings [see Fig. 2(c,d)], the
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TABLE I: Photoelectron angular distribution parameters σ0, β, γ, and δ evaluated according to Eqs. (24)-(27) by the CCC
(length gauge) and LOPT approaches for three excess energies, Eexc, and various energy sharings.

Eexc E1

(eV) (eV) CCC LOPT

σ0 β γ δ σ0 β γ δ
(b/eV) (b/eV)

100 99 99.9 1.44 0.13 0.015 118.3 1.57 0.14 0.012
1 99.9 0.28 -0.007 -0.0025 118.3 0.23 -0.016 0.023

450 448 2.54 1.92 0.50 0.0055 3.06 1.93 0.51 0.0043
2 2.54 -0.11 0.0040 0.0008 3.06 0.031 -0.0054 0.020

420 0.73 1.74 0.43 0.013 1.19 1.83 0.46 0.011
30 0.73 -0.35 -0.009 0.021 1.19 -0.084 -0.019 0.039

400 0.44 1.58 0.36 0.022 0.76 1.74 0.42 0.016
50 0.44 -0.34 -0.050 0.031 0.76 -0.061 -0.038 0.049

1000 995 0.200 1.97 0.76 0.0030 0.262 1.98 0.77 0.0023
5 0.200 -0.31 -0.047 0.023 0.262 -0.045 -0.0006 0.021

920 0.015 1.70 0.71 0.016 0.033 1.86 0.73 0.013
80 0.015 -0.34 -0.15 0.062 0.033 -0.14 -0.066 0.062

LOPT results overestimate the absolute magnitude of the
DDCSs even more. However, the nondipole asymmetries
predicted by the CCC and LOPT approaches are in good
qualitative agreement.

To illustrate the importance of nondipole effects in
photoelectron angular distributions at higher photon en-
ergies, we present DDCS predictions for an excess energy
of 1 keV (i.e., for a photon energy of 1.079 keV) in Fig. 3.
The energy ratios, R = E2/E1, that we have chosen are
similar to those in Fig. 2. As expected, one sees that
for an excess energy of 1 keV the nondipole asymmetries
in the angular distributions of the fast electron become
more significant than for 450 eV, and should be observ-
able in experiments.

The DDCSs in Figs. 1 - 3 have been calculated using
Eq. (3), where the parameters σ0, β, γ, and δ have been
evaluated by the CCC and LOPT approaches. These
parameters are summarized in Table I and allow one to
formulate some general conclusions on the magnitude of
asymmetry effects in the DDCS. Similarly to the param-
eter βSPI , the parameter β for DPI must be within the
range −1 ≤ β ≤ 2. One sees from Table I that this rule
is satisfied; β is close to 2 for the angular distribution of
the faster electron, and becomes small for the angular dis-
tribution of the slower electron. The dipole-quadrupole
parameter γ is large only for the angular distributions of
the faster electron, but it always remains smaller than β.
In contrast to SPI from atomic s subshells, the dipole-
quadrupole parameter δ in Table I is nonzero in all cases.
For the angular distribution of the faster electron, it is
found to be much smaller than γ, while for the angular
distribution of the slower electron, γ and δ are of com-
parable magnitude and in some cases δ is larger than γ.
In general, the parameter γ is positive and considerably
less sensitive to the energy sharing than β and γ.

Table I allows also for quantitative assessment of the
accuracy of the LOPT results for the DDCS by compar-

ing them to the corresponding results obtained by the
CCC approach. As has already been found in Figs. 2-
4, the LOPT approach generally overestimates the mag-
nitude of the SDCS σ0(E1). One sees however, that
for angular distributions of the faster electron (i.e., for
E1 > Eexc/2), there is excellent agreement between the
CCC and LOPT predictions for the asymmetry parame-
ters β, γ, and δ. This is because the definitions of these
asymmetry parameters involve ratios of the dipole and
quadrupole matrix elements, and are thus in general less
sensitive to the absolute quantitative accuracy of a par-
ticular model. However, for angular distributions of the
slower electron (i.e., for E1 < Eexc/2), the level of agree-
ment (or disagreement) between the CCC and LOPT pre-
dictions varies considerably. For angular distributions of
the slower electron, there are also instances of disagree-
ment between the parameters calculated by the CCC
approach in the velocity gauge (not shown) and length
gauge. This suggests that angular distributions of the
slower electron are extremely sensitive to the accuracy
within which the two-electron reduced matrix elements
are calculated.

2. Singly-differential cross sections

In Fig. 4 we compare the LOPT results for the SDCS,
σ0(E1), for an excess energy of 450 eV, for which exper-
imental measurements and CCC results were reported
in Ref. [29]. For symmetric energy sharing, the LOPT
results overestimate the SDCS by approximately a fac-
tor of 2.5 as compared to the CCC results. For strongly
asymmetric sharing, the LOPT results agree with the
CCC results. The magnitudes of the SDCS (given by the
parameter σ0) are presented in Table I for three excess
energies and different energy sharings.
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TABLE II: Total DPI cross section σ++ and ratio of double to single ionization cross sections, R = σ++/σ+, for photon energy
ω for double ionization from the K-shell of a neutral multi-electron atom having nuclear charge Z and experimental K-shell
single-ionization potential Iexpt. Present LOPT results are compared to predictions in Ref. [13] and experimental data where
available.

Neutral Z Zeff Iexpt ω σ++(ω) R(ω) = σ++(ω)/σ+(ω)
atom (keV) (keV) (b)

LOPT Exp. [15] LOPT Theory [13] Exp. Ref.

He 2 2.0 0.0246 0.53 126.0 86.4a 0.31× 10−1 - 0.282× 10−1b [15]
Ne 10 8.0 0.87 5 3.63 - 0.28× 10−2 0.28× 10−2 0.32(4)× 10−2 [18]
Ti 22 19.11 4.97 17.4 0.51 - 0.51× 10−3 0.51× 10−3 0.53× 10−3 [14]
Cr 24 20.98 5.99 17.4 0.53 - 0.37× 10−3 0.37× 10−3 0.38× 10−3 [14]
Fe 26 22.88 7.12 17.4 0.45 - 0.224× 10−3 0.23× 10−3 0.24× 10−3 [14]
Ni 28 24.76 8.34 17.4 - - - 0.51× 10−4 1.1× 10−4 [14]
Cu 29 25.70 8.99 20 0.24 - 1.13× 10−4 1.1× 10−4 1.3(3)× 10−4 [17]
Mo 42 38.35 20.01 50 0.058 - 0.87× 10−4 0.87× 10−4 3.4(6)× 10−4 [16]

aThis value corresponds to ω = 0.50 keV [15].
bThis value corresponds to ω = 0.52 keV [15].

B. Total cross sections for K-shell double

ionization of multi-electron neutral atoms

The two quantities that are usually measured in ex-
periments on K-shell DPI of neutral atoms are the total
K-shell double ionization cross section, σ++, and the ra-
tio of double to single ionization cross sections,

R(ω) =
σ++(ω)

σ+(ω)
, (28)

where σ+(ω) is the K-shell single-ionization cross section.
The absolute total cross section σ++(ω) and the ratio
R(ω) for He were measured in the experiment of Ref. [15].
The experimental measurements of the ratio R(ω) for K-
shell DPI of several other neutral atoms were reported in
Refs. [14, 16–18].

From a theoretical perspective, the K-shell DPI pro-
cess presents an additional challenge owing to the fact
that K-shell electrons do not experience a purely Coulom-
bic potential of the nucleus, even in the zero-order ap-
proximation in the interelectron interaction. Because in
high-Z atoms the K-shell electrons are localized near the
nucleus while the outer electrons are relatively far from
the nucleus, the screening effect of the outer electrons on
the K-shell electrons may be approximated by using an
effective charge, Zeff , defined as Zeff =

√
2Iexpt, where

Iexpt is the value of the single-ionization potential for
the K-shell [13]. Using this approximation as the basis
for a LOPT account of electron correlations within the
K-shell, Ref. [13] reports theoretical predictions for the
ratio R(ω) for Ne, Ti, Cr, Fe, Ni, Co, and Mo, most of
which are in excellent agreement with the experimental
data in Refs. [14, 16–18]. Significant discrepancies with
experiment do exist for Ni (in which case the photon en-
ergy is very close to the double ionization threshold) and
for Mo (whose nuclear charge is rather high) [13].

Owing to the importance of K-shell DPI cross sections

and branching ratios for multi-electron neutral atoms, in
the present work we revisit the calculations of Ref. [13] in
an attempt to resolve the discrepancies mentioned above.
To calculate a total cross section σ+(ω) for K-shell sin-
gle ionization we use the independent-particle approxi-
mation, as in Ref. [13]. In this approximation, σ+(ω)
is equal to twice the hydrogen-like ion ionization cross
section, σ+

H(ω):

σ+
H(ω) =

210

3
π2αω

η10

Z4(1 + η2)5
e−4η arctan(1/η)

1 − e−2πη
, (29)

where η = Z/p, where p is the photoelectron momentum,
and Z = Zeff .

In Table II we present our predictions for the abso-
lute total DPI cross sections and for the ratios R(ω) for
He and other multi-electron atoms. For the case of He,
whose K-shell is the only one, we use the bare nuclear
charge, Z = 2. Our predictions for He are compared with
the experimental data in Ref. [15], while predictions for
other atoms are compared with those in Ref. [13] and
with the experimental data in Refs. [14, 16–18]. For DPI
of He one sees that our results overestimate the total
cross section (by about 46%) and R(ω) (by about 10%)
as compared to the experimental results [15]. For atoms
with higher Z, however, in most cases there is excellent
agreement of our results for R(ω) with the experimental
data as well as with the calculations in Ref. [13]. We note
that for Mo we confirm the result of Ref. [13], in spite
of the fact that it disagrees with experiment [16]. For
the case of Ni we have not been able to obtain a reliable
prediction to be compared with that of Ref. [13] owing
to the photon energy being close to the double ionization
threshold. Also, Mikhailov et al. [13] mention that for Ni
there are large uncertainties in both their prediction and
the result of the experimental measurement [14].
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IV. CONCLUSIONS

We have derived two alternative, model-independent
representations for the dipole and quadrupole angular
distribution asymmetry parameters for the DDCS of
DPI from a 1S0-state: (i) in terms of the polarization-
invariant amplitudes [cf. Eqs. (18)-(21)] and (ii) in
terms of the exact two-electron reduced matrix elements
[cf. Eqs. (24)-(27)]. The first parametrization may be
most suitable for analyzing experimental data (e.g., when
polarization-invariant amplitudes are extracted from the
TDCS measurements), while the second parametrization
may be most suitable for theoretical calculations (when
the reduced matrix elements are evaluated within a par-
ticular dynamical model). We have found that in con-
trast to SPI, for which the dipole-quadrupole parameter
δSPI vanishes for ionization from initial atomic s sub-
shells, the parameter δ for DPI from a 1S0-state is gener-
ally non-zero. Therefore, the parametrizations for the
dipole-quadrupole TDCS in Ref. [8], the parametriza-
tions for the DDCS in Eqs. (24)-(27), and either the
set of reduced matrix elements [defined in Eq. (11)] or
the dynamical factors [defined in Eq. (16)] permit one
to reconstruct the dipole-quadrupole TDCS and DDCS
for any experimental geometry and for any polarization
state of a photon beam. We note that the reduced ma-
trix elements or dynamical factors are the only quantities
that should be calculated numerically for a given photon
frequency and excess energy sharing within a particular
dynamical model of DPI.

We have used the parametrizations in Eqs. (24)-(27) to
calculate DDCSs and SDCSs within the CCC and LOPT
approaches. Our results for the DDCS account for the
lowest-order nondipole effects (described by the asym-
metry parameters γ and δ) and exhibit forward-backward
asymmetries, which become very significant for an excess
energy of 1 keV. The CCC results presented here thus
provide the first accurate numerical predictions for the
magnitude of nondipole effects in angle-integrated DPI
cross sections. We find good agreement between CCC
and LOPT results for the asymmetry parameters β, γ,
and δ for angular distributions of the faster electron; for
angular distributions of the slower electron (in which case
the asymmetry parameters are much smaller), the level
of agreement (or disagreement) of the two results varies
from case to case.

We have also used our parametrization for σ0 together
with the LOPT approach to calculate total DPI cross
sections and ratios of double to single ionization cross
sections for double ejection from the K-shell of He and
other multi-electron neutral atoms. For the case of the
He atom, our results generally overestimate the absolute
experimental data, as would be expected for a pertur-
bative treatment. For atoms with higher Z (i.e., when
electron correlations are less important) our predictions
are in excellent agreement with the results of other theo-
retical calculations and with experimental measurements,
except for the case when the photon energy is close to the

double ionization threshold.
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APPENDIX A: EVALUATION OF INTEGRALS

WITH SCALAR PRODUCTS

Here we evaluate the three kinds of integrals involv-
ing scalar products that appear in Eqs. (17). We shall
assume that the z-axis of the coordinate frame for the
vector p̂2 is directed along the vector p̂1.

The integration of the term (a · p̂2)u1(cos θ) is trivial
and yields the following result:

∫

dΩp2
(a · p̂2)u1(cos θ) = 2π(a · p̂1)

1
∫

−1

x u1(x)dx, (A1)

where we have used the fact that az = (a · p̂1).

The integral of the term (a · p̂2)(b · p̂2)u2(cos θ) can be
evaluated by employing the tensor decomposition [24]

(a · p̂2)(b · p̂2) =
2
∑

k=0

(−1)k({a ⊗ b}k · {p̂2 ⊗ p̂2}k)

=
1

3
(a · b) +

√

2

3
({a ⊗ b}2 · C2(θ, φ2)), (A2)

where C2µ(θ, φ2) is the modified spherical harmonic. By
noting that

2π
∫

0

C2µ(θ, φ2)dφ2 = 2πP2(cos θ) δµ,0 (A3)

and

{a ⊗ b}20 = ({a ⊗ b}2 · C2(p̂1))

=

√

3

2

(

(a · p̂1)(a · p̂1) −
1

3
(a · b)

)

, (A4)
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we obtain the result:
∫

dΩp2
(a · p̂2)(b · p̂2)u2(cos θ)

=
2π

3
(a · b)

1
∫

−1

u2(x)(1 − P2(x))dx

+ 2π(a · p̂1)(b · p̂1)

1
∫

−1

u2(x)P2(x)dx. (A5)

The integral of the term (a · p̂2)(b · p̂2)(c · p̂2)u3(cos θ)
can be evaluated similarly using the tensor decomposition

(a · p̂2)(b · p̂2)(c · p̂2)

=

2
∑

k=0

k+1
∑

q=|k−1|

({{a ⊗ b}k ⊗ c}q · {{p̂2 ⊗ p̂2}k ⊗ p̂2}q)

=
1

5

(

(a · p̂2)(b · c) + (b · p̂2)(a · c) + (c · p̂2)(a · b)
)

+

√

2

5
({{a ⊗ b}2 ⊗ c}3 · C3(θ, φ2)). (A6)

The integral of the first term (involving a single
scalar product) in this equation is evaluated accord-
ing to Eq. (A1). The integration of the second term
[involving C3(θ, φ2)] over φ2 yields the scalar product
(

{{a ⊗ b}2 ⊗ c}3 · {p̂1}3

)

(where {p̂}3 ≡ {{p̂ ⊗ p̂}2 ⊗
p̂}3). The expression for this scalar product may be ob-
tained from Eq. (A6) by making substitutions (p̂2, ϕ2) →
(p̂1, ϕ1) and by noting that C3(θ, φ1) =

√

(5/2){p̂1}3.
One finds therefore,
(

{{a ⊗ b}2 ⊗ c}3 · {p̂1}3

)

= (a · p̂1)(b · p̂1)(b · p̂1)

−1

5

(

(a · p̂1)(b · c) + (b · p̂1)(a · c) + (c · p̂1)(a · b)
)

.(A7)

Consequently, we arrive at the following expression:
∫

dΩp2
(a · p̂2)(b · p̂2)(c · p̂2)u3(cos θ)

= 2π(a · p̂1)(b · p̂1)(c · p̂1)

1
∫

−1

u3(x)P3(x)dx

+
2π

5

(

(a · p̂1)(b · c)+(b · p̂1)(a · c)+(c · p̂1)(a · b)
)

×
1
∫

−1

u3(x)[x− P3(x)]dx. (A8)

APPENDIX B: EVALUATION OF THE DPI

QUADRUPOLE MATRIX ELEMENTS BY THE

CCC APPROACH

The reduced matrix elements, dl1l2(p1, p2) and
ql1l2(p1, p2), of the dipole and quadrupole electromag-
netic interaction operators that appear in Eqs. (24)-(27)

have been evaluated as the limit q → 0 of the matrix
elements of the Born operator eiq·r, which have been cal-
culated within the CCC approach for study of the (e, 3e)
process in He [26]. For a geometry in which the vector
q is directed along the z-axis, the matrix elements that
have been evaluated numerically by the CCC approach
have the following form:

〈ψp1p2
|eiqz1 + eiqz2 |ψE0

〉 = − 1√
3

∞
∑

J=0

∑

l1m1

∑

l2m2

iJ−l1−l2

× Π2
JC

10
l1m1l2m2

Yl1m1
(p̂1)Yl2m2

(p̂2)Bl1l2J(p1, p2; q),

where Bl1l2J(p1, p2; q) is the product of the T-
matrix integrated Born matrix element (in-
cluding Coulomb phases) and the projection
of the Coulomb wave onto the matching en-
ergy pseudostate (see Ref. [26] for details);

Πab...c ≡
√

(2a+ 1)(2b+ 1) . . . (2c+ 1). The quantity
Bl1l2J (p1, p2; q) can be calculated by the existing (e, 3e)
CCC code. Therefore, the goal here is to relate this quan-
tity to the DPI reduced matrix elements, dll′(p1, p2) and
qll′(p1, p2) (calculated using the length-form of the dipole
and quadrupole electromagnetic interaction operators).

First, for an arbitrarily directed vector q, one obtains

〈ψp1p2
|eiq·r1 + eiq·r2 |ψE0

〉 =

√

4π

3

∞
∑

J=0

J
∑

M=−J

(−1)M+1

× ΠJYJM (q̂)
∑

l1m1

∑

l2m2

iJ−l1−l2C1−M
l1m1l2m2

× Yl1m1
(p̂1)Yl2m2

(p̂2)Bl1l2J(p1, p2; q). (B1)

Second, using the standard multipole expansion,

eiq·r = 4π
∞
∑

J=0

iJjJ(qr)
J
∑

M=−J

Y ∗
JM (q̂)YJM (r̂), (B2)

and the asymptotic formula

jJ(qr) → (qr)J

(2J + 1)!!
as q → 0, (B3)

in the left-hand-side of Eq. (B1), one obtains the follow-
ing relation:

〈ψp1p2
|rJ

1 YJM (r̂1) + rJ
2 YJM (r̂2)|ψE0

〉

= (−1)J (2J + 1)!!

(4π)3/2

∑

l1,l2

i−(l1+l2)Πl1l2Cl1l2
JM (p̂1, p̂2)

× lim
q→0

[

q−JBl1l2J(p1, p2; q)
]

, (B4)

where Cl1l2
JM (p̂1, p̂2) is a modified bipolar harmonic. By

means of Eq. (B4) it is now possible to obtain the de-
sired relations between length-form matrix elements dll′

and qll′ and the quantity Bll′J(p1, p2; q) for q ≪ 1. By
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rewriting the dipole and quadrupole operators as

D = iω

√

4π

3
[r1Y1(r̂1) + r1Y1(r̂1)], (B5)

Q2 = −1

2
αω2

√

8π

15
[r21Y2(r̂1) + r2Y2(r̂1)], (B6)

and comparing Eq. (B4) for J = 1, 2 and Eqs. (B5)
and (B6) to Eqs. (9)-(11), one obtains:

dl1l2(p1, p2) = 3il1+l2+1 Πl1l2

4π
ω lim

q→0

Bl1l21(p1, p2; q)

q
, (B7)

ql1l2(p1, p2) = 5il1+l2

√

3

2

Πl1l2

4π
αω2 lim

q→0

Bl1l22(p1, p2; q)

q2
.

In numerical calculations, the value of q = 0.01 has been
used. It has been shown that the dipole matrix elements
calculated according to Eq. (B7) agree well with those
calculated using the CCC code for DPI. It has also been
checked that the variation of the value of q near q =
0.01 does not change the results within several significant
figures.
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