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Multiple Sets of Solutions for Harmonic Elimination
PWM Bipolar Waveforms: Analysis

and Experimental Verification
Vassilios G. Agelidis, Senior Member, IEEE, Anastasios Balouktsis, Ioannis Balouktsis, and

Calum Cossar, Member, IEEE

Abstract—Multiple sets of solutions for the selective harmonic
elimination pulse-width modulation method for inverter control
exist. These sets present an independent solution to the same
problem but further investigation reveals that certain sets may
offer an improved overall harmonic performance. In this paper,
a minimization method is discussed as a way to obtain these
multiple sets of switching angles. A simple distortion harmonic
factor that takes into account the first two most significant har-
monics present in the generated waveform is considered in order
to evaluate the performance of each set. The bipolar waveform is
thoroughly analyzed and two cases are considered; single-phase
patterns which eliminate all odd harmonics and three-phase
counterparts which eliminate only the nontriplen odd harmonics
from the line-to-neutral pattern but such harmonics are naturally
eliminated from the line-to-line waveform. Experimental results
support the theoretical considerations reported in the paper.

Index Terms—Selective harmonic elimination pulse-width mod-
ulation (SHEPWM).

I. INTRODUCTION

THE elimination of specific harmonics from a given voltage
waveform generated by a voltage-source inverter (VSI)

using pulse-width modulation (PWM) has been dealt with in
numerous papers [1]–[8]. These methods are known in the tech-
nical literature as selective harmonic elimination (SHE) or pro-
grammed PWM techniques. Originally, such methods presented
solutions regarding the angles that eliminate a number of har-
monics [1], [2]. The main challenge associated with such tech-
niques is to obtain the analytical solutions of nonlinear transcen-
dental equations that contain trigonometric terms which natu-
rally exhibit multiple solutions [5]. Other methods do exist, such
as the sinusoidal PWM (SPWM) based on a comparison of a ref-
erence (sinusoidal) waveform with a carrier (triangular) wave-
form offer a specific well controlled spectrum and bandwidth
[9] but the focus of this paper is the SHEPWM one only.

Many algorithms have been proposed to deal with the
SHEPWM problem. In [3], an algorithm based on two straight

Manuscript received May 20, 2004; revised June 29, 2005. Recommended by
Associate Editor J. R. Rodriguez.

V. G. Agelidis was with the Department of Electronics and Electrical Engi-
neering, University of Glasgow, Glasgow G12 8LT, U.K. He is now with the
School of Engineering Science, Murdoch University, Rockingham 6168, Aus-
tralia (e-mail: v.agelidis@murdoch.edu.au).

A. Balouktsis and I. Balouktsis are with the Department of Informatics and
Communications, Technological Education Institution of Serres, Serres, Greece.

C. Cossar is with the Department of Electronics and Electrical Engineering,
University of Glasgow, Glasgow G12 8LT, U.K.

Digital Object Identifier 10.1109/TPEL.2005.869752

lines with positive and negative slopes that closely approximate
the exact solution pattern of the nonlinear equations has been
proposed. The starting values for obtaining exact solutions
using numerical techniques can be found even for large number
of harmonics to be eliminated. Moreover, the close proximity of
the starting values to the exact solutions ensures convergence.
However, although the letter reports the algorithm and discusses
the case of multiple solutions for a three-phase case, it does not
report the performance of the said technique against its ability
to find all possible solutions. The algorithm seems to be a good
approximation for a relatively large number of harmonics to be
eliminated.

The performance of these techniques was later analyzed in
[4] where the techniques are studied with two systems in mind:
the single-phase (line-to-neutral patterns) and three-phase
(line-to-line patterns). Specifically, it reported techniques that
seek switching angles within 60 and another set that seeks
solutions within 90 . However, the paper does not report any
different sets of solutions that exist for each case, i.e., for the
specific elimination of a given number of harmonics.

A systematic method that makes it possible to solve the HE
problem is proposed in [6]. This method is based on a homotopy
method which finds multiple solutions for a specific degree of
freedom from those existing for 1 sequentially by the
mathematical induction by varying a fundamental component
value as the homotopy parameter. However, the method is long
and cumbersome and the paper does not make any contribution
toward which set of solutions from the multiple available ones
is optimum against overall harmonic performance and presents
no experimental results to confirm the analysis.

Recently, a new method to the problem has been reported in
[7], where the theory of resultants has been employed to get
the solutions for the problem. Specifically, the transcendental
equations that describe the harmonic elimination problem are
converted into an equivalent set of polynomial equations using
trigonometric identities. The theory of resultants is then used to
compute the resultant polynomial and then work backward in
order to find all unknown, i.e., switching angles. This method
also finds all possible sets of solutions. However, the method
introduces another step into the problem through the manipu-
lation of high order polynomials that their order increases as
the number of harmonics to be eliminated also increases. Fur-
thermore, it has limited chance to work for a high order of har-
monics and it is easy to apply only when such number is low.
Moreover, the paper briefly treats the bipolar waveform and only
reports the angles to minimize the fifth and seventh harmonics.

0885-8993/$20.00 © 2006 IEEE
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It confirms though that a second set of solutions exists for this
case. Although both sets result in the elimination of the fifth and
seventh harmonic, one seems better from the harmonic perfor-
mance point of view as it also results in lower value of the first
significant harmonic that generates. Finally, it does not discuss
how such method performs for the case where the single phase
system is considered, i.e., all odd harmonics are eliminated.

In [8], a minimization technique combined with a random
search and biased pattern for the initial values and applied di-
rectly to the set of the transcendental equations results in all so-
lutions of a specified HE problem being obtained in one rela-
tively simple step has been reported. The method is of the opti-
mization type, and therefore does not seek values for the angles
that make the coefficients zero but rather tries to find ones that
minimize the function resulting in a more efficient algorithm.
This approach could compute angles even beyond the point that
other methods do not converge. When physical solutions to the
elimination problem do not exist, i.e., in certain overmodulation
region, the proposed method can still find the closest alternative
angles where the amplitude of such harmonics is as low as pos-
sible.

The objective of this paper is to report complete results for the
bipolar SHEPWM technique for both single-phase and three-
phase converters where all odd harmonics and only the non-
triplen odd harmonics are eliminated respectively. The results
reported include only the case where quarter and half-wave sym-
metry exists for the switching patterns. Moreover, a harmonic
distortion factor and the amplitude of the most significant har-
monic are studied further in order to identify a potentially better
set of solutions if it exists. Selected cases are confirmed experi-
mentally and results are presented to support the theoretical ar-
guments.

The paper is organized as follows. In Section II, the char-
acteristics of the bipolar waveform and the definition of the
problem are provided in brief. In Section III, the minimization
technique is explained. In Section IV results are presented for
six cases, namely when 2, 4, and 6 where is the number
of harmonics to be eliminated. The first three cases discuss the
single-phase systems and the last three cases the three-phase
ones. Selected waveforms obtained from laboratory prototypes
operating with SHEPWM techniques based on the theoretical
work of this paper are presented in Section V to support the ro-
bustness of the proposed method. Finally, conclusions of this
work are summarized in Section VI.

II. BIPOLAR PWM WAVEFORM FOR

HARMONIC ELIMINATION

The bipolar SHEPWM technique offers solutions that are
suitable either for single-phase or three-phase converters. Fig. 1
shows the waveform and illustrates the problem under consider-
ation. That is, to find appropriate angles where

1 so that the odd harmonics (i.e., third, fifth, seventh,
ninth, 11th, 13th th where 2 1 for single-phase
systems and 3 1 for three-phase systems) are elimi-
nated and control of the fundamental is also achieved. The case
where the fundamental frequency component is constant could
be also studied [1] but it is beyond the scope of this paper. The
method discussed in this paper [8] can also deal with such case.

Fig. 1. Bipolar switching waveform.

The value of the dc bus voltage of the inverter is assumed to be
1 p.u. as shown in Fig. 1.

The SHEPWM technique establishes the Fourier series ex-
pansion of the waveform first. This is given in

(1)

The problem then is formulated based on the desired value of the
fundamental component to be generated and the method then
seeks to find the angles that would provide such amplitude and
furthermore would result in the elimination of a number of se-
lected harmonics. The waveform shown in Fig. 1 has half-wave
and quarter-wave symmetry.

Generalized Case: As stated above, in order to eliminate
odd harmonics, 1 angles need to be found, if possible, and
the following system of equations must be solved:

(2)

where

for single-phase systems (3)

when even for three-phase systems

when odd for three-phase systems

(4)

and

(5)

If is the amplitude of the fundamental component to be gen-
erated then from (1) yields

(6)

It should be noted that for the bipolar waveform when 1
0, the independent solutions for the angles to be found

will result in a PWM waveform that has a phase-shift of 180
against the square-wave.
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III. PROPOSED MINIMIZATION TECHNIQUE

The previously described set of equations must be solved in
order to get the desired values of the angles for any value of .
It is proposed that the following function is minimized first:

(7)

with the constrain that

(8)

The minimization problem to find the first set of solutions for
one value of can be dealt with using a genetic algorithm or the
Nelder–Mead simplex algorithm [8]. The proposed technique
in combination with a random search and biased pattern for the
initial values finds all the sets of possible solutions for one value
of , i.e., 0.1 and then such information is used as initial
value to find all possible sets of solutions for all values of .
Specifically, for the next value of , the solutions from the
previous value of are used as initial point. At this particular
phase, iterative algorithm such as Newton-Raphson can be used
to obtain the desired solutions for the angles. This is done in
order to further improve the speed of the method.

The mathematical explanation of the method is beyond the
scope of this paper which is aiming only at presenting analysis
of the multiple sets and experimental verification. The imple-
mentation of the proposed method can be done using a software
package such as Mathematica [10].

IV. RESULTS

The method described in Section III has been successfully
applied to a number of cases in order to illustrate its robustness.
The results for a number of cases are presented and discussed in
this Section.

However, first a simple harmonic distortion factor (HDF) is
defined as follows:

for single-phase systems (9)

even for three-phase systems

odd for three-phase systems (10)

A. Single-Phase Patterns

Case I: Harmonics to be Eliminated: 3-5: The solutions for
this case are presented in Fig. 2(a). There are solutions when

Fig. 2. Case I: Harmonics to be eliminated: 3-5. (a) Switching angles in
degrees versus jM j: set 1 ( ) set 2 (---) (jM j � 0.83). (b) Amplitude of
seventh harmonic versus jM j: set 1 ( ) set 2 (---). (c) Harmonic distortion
factor taking into account the seventh and ninth harmonic versus jM j: set 1
( ) set 2 (---). (d) Switching waveform for M = �0.5. (e) Switching
waveform forM = 0.5.

0.83. Since there are two clear sets, the seventh har-
monic is also plotted in Fig. 2(b) in order to study the perfor-
mance of each set against the first significant harmonic gener-
ated. The respective HDF is plotted in Fig. 2(c). It is shown that
there is no clear benefit for choosing one set against the other as
both techniques would result in similar distortion when the first
two significant harmonics are taken into account. However, for
a narrow range, at high modulation index, one method results
in lower distortion and this may offer a benefit, but this is con-
sidered marginal. In order to illustrate the phase-shifting result
of the negative value of , the two waveforms are plotted in
Fig. 2(d) 0 and Fig. 2(e) 0 .

Case II: Harmonics to be Eliminated: 3-5-7-9: There are
also two sets of solutions for this case for 0.8 [Fig. 3(a)].
The 11th harmonic is plotted in Fig. 3(b) indicating very little
difference between the two sets. The HDF shown in Fig. 3(c)
confirms the same point.

Case III: Harmonics to be Eliminated:
3-5-7-9-11-13: Likewise, there are two sets for

0.79 [Fig. 4(a)]. Once again there is no difference
between the two sets when the amplitude of the 15th harmonic
is taken into account [Fig. 4(b)] along with the HDF [Fig. 4(c)].

B. Three-Phase Patterns

Case IV: Harmonics to be Eliminated: 5–7: The switching
angles for the said harmonics to be eliminated are plotted in
Fig. 5(a). It is confirmed that the proposed elimination method
finds all set of solutions for this specific waveform and solutions
exist only when is negative. No solution exists which results
in the complete elimination of the harmonics in question when
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Fig. 3. Case II: Harmonics to be eliminated: 3–5–7–9. (a) Switching angles
in degrees versus jM j: set 1 ( ) set 2 (---) (jM j � 0:8). (b) Amplitude
of 11th harmonic versus jM j: set 1 ( ) set 2 (---). (c) Harmonic distortion
factor taking into account the 11th and 13th harmonic versus jM j.

0.93 (set 1) and 0.91 (set 2). Clearly there are
two sets of solutions throughout all values of (set 1: , set
2: ---). It is therefore important that the optimum one is identi-
fied with respect to harmonic performance. It is clear that the set
2 --- offers a better harmonic performance and this has also
been reported in [7]. To illustrate this even further, the ampli-
tude of the first nontriplen odd significant harmonic present in
the generated waveform is plotted in Fig. 5(b) for both sets for
all values of . Once again set 2 --- results in lower ampli-
tude of such harmonic further indicating that it is better than set
1 for all values of . The HDF is plotted in Fig. 5(c) to confirm
the same finding.

Case V: Harmonics to be Eliminated: 5–7–11–13: The
switching angles for the said harmonics to be eliminated are
plotted in Fig. 6(a) and (b). It is important to note that the
proposed minimization method finds all sets of solution. In this
case, there are two sets of solutions throughout all values of
when 0.91 0 (set 1: , set 2: ---) and two more for
0 0.91 (set 3: , set 4: ---). Once again no solution
exists when 0.91 or 0.91. The amplitude of the
first nontriplen odd significant harmonic (i.e., 17th) present in
the generated waveform is plotted in Fig. 6(c) for all sets for all
values of . Sets 3 and 4 result in a lower amplitude of such

Fig. 4. Case III: Harmonics to be eliminated: 3–5–7–9–11–13. (a) Switching
angles in degrees versus jM j: set 1 ( ) set 2 (---) (jM j � 0.79). (b)
Amplitude of 15th harmonic versus jM j: set 1 ( ) set 2 (---). (c) Harmonic
distortion factor taking into account the 15th and 17th harmonic versus jM j:
set 1 ( ) set 2 (---).

harmonic further indicating their potential to perform better
overall throughout the complete region of . The HDF is
plotted for both negative and positive values of [Fig. 6(d)].
It is found that set 2, set 3, and set 4 perform better than set 1.

Case VI: Harmonics to be Eliminated: 5–7–11–13–
17–19: In this case seven angles are sought in order to
eliminate the above mentioned harmonics from the waveform.
It is interesting to note that the solutions for the switching
angles form a number of sets. Specifically, there are four
independent sets of solutions that eliminate these harmonics
only for negative values for . No solution can be found for
positive values of . The amplitude of the first nontriplen odd
harmonic, i.e., the 23rd is also plotted for all values of and
for all four sets in Fig. 4(c). It is confirmed that set 3 seems
slightly better than all others. The HDF factor is plotted in
Fig. 7(d). Although each set of solutions provides a different
performance, it is also clear that set 3 [Fig. 7(d)] offer almost
similar performance and are clearly better than the other two
sets.

Finally, in order to illustrate the effect of on the solutions,
in Fig. 8 all possible PWM switching patterns are generated for
the case of 4 and for set 1 0.5 , set 2 0.5 ,
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Fig. 5. Case IV: Harmonics to be eliminated: 5–7. (a) Switching angles in
degrees versus M : Set 1 ( ) (M � �0.93). Set 2 (---) (M � �0.91).
(b) Amplitude of the 11th harmonic (p.u.) versusM : set 1 ( ) set 2 (---).
(c) Harmonic distortion factor taking into account the 11th and 13th harmonic
versusM : set 1 ( ) set 2 (---).

set 3 0.5 and set 4 0.5 . As previously mentioned,
the value of implies that the resulting solutions generate a
PWM waveform without the eliminated harmonics but also with
a phase difference of 0 0 or 180 0 .

V. EXPERIMENTAL VERIFICATION

Selected results have been verified experimentally, especially
concerning the harmonic spectrum of waveforms with the
angles specified by the proposed method. These results are
presented in Figs. 9 and 10. Specifically, for Case V: Harmonics
to be eliminated 5–7–11–13: and for | | 0.5, there are four
sets of solutions. These waveforms have been plotted using
computer software in Fig. 9. For each set, the resulting PWM
switching waveform is plotted along with the spectrum. It is
clear that the experimental waveforms are in agreement with the
simulated ones, constitute four independent sets as predicted
theoretically and have only triplen odd harmonics within the
band where the nontriplen ones are eliminated. Finally, these
waveforms are applied across an inductive load ( 10 mH
and 2.5 ) in order to study the load currents. In Fig. 10,

Fig. 6. Case V: Harmonics to be eliminated: 5–7–11–13. (a) Switching angles
in degrees versusM(�0.91 �M � 0); Set 1 ( ). Set 2 (---). (b) Switching
angles in degrees versus M(0 � M � 0.91); Set 3 ( ). Set 4 (---).
(c) Normalized amplitude of the 17th harmonic (p.u.) versus jM j for all sets.
(d) Harmonic distortion factor taking into account the 17th and 19th harmonic
versus jM j for all sets (set 1 ( ) set 2 (--) set 3 (-- --) set 4 (----- -----)).

Fig. 7. Case VI: Harmonics to be eliminated 5–7–11–13–17–19. (a) Switching
angles in degrees versus M(�0.91 � M � 0); set 1 ( ) set 2 (--). (b)
Switching angles in degrees versusM(�0.91 � M � 0); set 3 ( ) set 4
(--). (c) Amplitude of the 23rd harmonic for all sets versusM ; set 1 ( ) set
2 (--) set 3 (-- --) set 4 (----- -----).(d) Harmonic distortion factor taking into
account the 23rd and 25th harmonic versusM ; for set 1 ( ) set 2 (--) set 3
(-- --) set 4 (----- -----).

the current waveforms along with their spectrum for all sets
are presented. Inspecting these results indicates that set three
offers a solution that generates the lowest 17th harmonic and
for this operating point, it is beneficial to use it. Such superior
performance by one set of solutions may not be maintained
within the complete range of the modulation index and this
needs to be studied for each case separately.

In order to confirm that the proposed minimization method
does not have any difficulty in finding switching angles for a
high number of harmonics to be eliminated, its performance
has been tested experimentally for single and three phase case.
Specifically, Fig. 11 presents the PWM switching waveform for
the first 50 odd harmonics to be eliminated. Clearly the spectrum
shown in Fig. 11(a) confirms that the first significant harmonic
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Fig. 8. Case V: Harmonics to be eliminated: 5–7–11–13. (a) PWM switching
pattern for set 1 and M = �0.5. (b) PWM switching pattern for set 2 and
M = �0.5. (c) PWM switching pattern for set 3 and M = 0.5. (d) PWM
switching pattern for set 4 andM = 0.5.

Fig. 9. Case V: Harmonics to be eliminated: 5–7–11–13 (50 V/div,
fundamental frequency 25 Hz and cursor at 425 Hz, i.e., 17th). (a) PWM
switching pattern and associated harmonic spectrum for set 1 andM = �0.5.
(b) PWM switching pattern and associated harmonic spectrum for set 2 and
M = �0.5. (c) PWM switching pattern and associated harmonic spectrum
for set 3 and M = 0.5. (d) PWM switching pattern and associated harmonic
spectrum for set 4 andM = 0.5.

is the 103rd harmonic at 2.575 kHz confirming the theory. The
current confirms the same and it is shown in Fig. 11(b).

Fig. 12 shows the performance of the SHEPWM technique
for a three-phase case where the first 50 nontriplen odd har-
monics are eliminated from the line-to-neutral PWM switching
[Fig. 12(a)]. This solution is randomly taken from a large pool
of acceptable ones. The line-to-line voltage has no triplen
harmonic and the first one is located at 153rd harmonic, i.e.,
3825 Hz as predicted [Fig. 12(b)]. Finally, the line current of
the load is also presented in Fig. 12(c) to prove the performance
of the method. A close up of the low frequency harmonic
spectrum shown in Fig. 12(d) indicates that no third harmonic
exists (base frequency 25 Hz, cursor at 75 Hz third with zero
amplitude).

Fig. 10. Case V: Harmonics to be eliminated: 5–7–11–13 (5 A/div,
fundamental frequency 25 Hz and cursor at 425 Hz, i.e., 17th). (a) Line current
and associated harmonic spectrum for set 1 andM = �0.5. (b) Line current
and associated harmonic spectrum for set 2 and M = �0.5. (c) Line current
and associated harmonic spectrum for set 3 andM =0.5. (d) Line current and
associated harmonic spectrum for set 4 andM =0.5.

Fig. 11. Single-phase pattern to eliminate the first 50 odd harmonics (50 V/div,
5 A/div, fundamental frequency 25 Hz and cursor at 2.575 kHz i.e., 103rd
harmonic). (a) PWM switching pattern (showing a quarter of the period) and
associated harmonic spectrum for set 1 andM = �0.5. (b) Line current and
associated harmonic spectrum for set 1 andM = �0.5.

VI. CONCLUSION

A minimization technique to solve the SHEPWM control
method for inverters has been discussed in this paper. The
method finds the complete set of solutions of a given problem
and confirms that multiple ones exist. The advantage of this
method is that no conversion of the problem to a set of polyno-
mial equations is needed, further reducing the computational
and/or human effort. Moreover, an optimum solution is always
guaranteed even though when other methods may fail to con-
verge. This is simply because the problem is formulated in a
way that the equations do not need to become zero but rather
one function needs to be minimized. Results presented confirm
that there exist a set of solutions that offer better harmonic
performance and such set has been identified through the
investigation of a simple harmonic distortion factor plotted for
all values of modulation index.
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Fig. 12. Three-phase pattern to eliminate the first 50 nontriplen odd
harmonics (50 V/div, 5 A/div, fundamental frequency 25 Hz and cursor at
3825 Hz, i.e.,153rd harmonic). (a) PWM switching pattern and associated
harmonic spectrum for one set and M = �0.5 including third harmonic and
multiples. (b) Line-to-line voltage waveform and spectrum free from third
harmonic and multiples. (c) Line current and associated harmonic spectrum for
one set andM = �0.5. (d) Line current and associated harmonic spectrum for
one set andM = �0.5 (low frequency zoom in spectrum cursor at 75 Hz, i.e.,
third harmonic having zero amplitude).
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