Murdoch

UNIVERSITY

MURDOCH RESEARCH REPOSITORY

http://researchrepository.murdoch.edu.au/

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination.

The definitive version is available at
http://dx.doi.org/10.1109/PESC.2006.1712032

Agelidis, V.G. and Balouktsis, A.I. (2006) A Seven-level defined selective harmonic elimination PWM strategy. In: Power Electronics Specialists Conference (PESC '06) 2006, 18-22 June 2006, Korea.
http://researchrepository.murdoch.edu.au/12042/

Copyright © 2006 IEEE
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

A Seven-Level Defined Selective Harmonic Elimination PWM Strategy

Vassilios G. Agelidis
School of Engineering Science
Murdoch University, Dixon Road, Rockingham, 6168
WESTERN AUSTRALIA
v.agelidis@murdoch.edu.au

Anastasios I. Balouktsis
Department of Informatics \& Communications
Technological Institution of Serres
Terma Magnesias, 62124, Serres, GREECE
tasosb@teiser.gr

Abstract

Selective harmonic elimination pulse-width modulation (SHE-PWM) techniques offer an optimized control approach for a given converter and are therefore suitable for the low switching frequency high-power applications. Optimization techniques can be successfully used to obtain the solutions of the equations defining the SHE-PWM waveform. In this paper, a seven-level multilevel strategy (MSHE-PWM) defined on the line-to-neutral basis and based on a ratio of a variable number of angles distributed over three levels to be able to calculate the transition points is reported. The technique provides eighteen switching transitions for every quarter period in the standard modulation index range. In the overmodulation region, this can be changed in order to increase the gain of the modulator which in turn results in a compromised bandwidth. The switching angles as a function of the modulation index are reported for the standard as well as the overmodulation range. Selected simulation results are presented to verify the effectiveness and feasibility of the proposed method.

I. INTRODUCTION

Selective harmonic elimination pulse-width modulation (SHE-PWM) techniques have been extensively studied for a two-level, three-level and recently for multilevel converters [1]-[20]. There have been many approaches to the SHE-PWM problem reported in the technical literature including: sequential homotopy-based computation [6], resultants theory [7], optimization search [8], Walsh functions [9]-[10], optimal methods [11]. The bipolar waveform has been treated in detail in [12] where a minimization technique is employed along with a biased optimization search method to get the multiple sets as predicted in [6].

These methods were extended in multilevel systems where the staircase waveform was used to find the angles and per unit values in order to minimize a number of harmonics and synthesize multilevel waveforms [13]. Such a waveform is shown in Fig. 1. This was further investigated and reported in [14], [15], [16] introducing an extra switching angle to address the limitations of the previous methods [14] in areas where optimized switching angles cannot be found. Specifically, the theory of resultants and its performance for a multilevel staircase waveform was reported in [14]. A unified approach was presented in [15]. More recently, the use of symmetric polynomials is combined with the resultant theory for a multilevel converter [16].
Multilevel SHE-PWM (MSHE-PWM) systems have been controlled using the unipolar (three-level) waveform and phase-shifted techniques [17]. Other approaches have also been reported including one where the harmonic elimination

Fig. 1. The generalized staircase waveform suitable for multilevel systems and related angles of transition between the various voltage levels.
is combined with a programmed method [18] and another where a criterion based on power equalization between various cascaded connected H -bridge converters is used to obtain the angles of the harmonic elimination method [19].

A recent paper [20] reported a MSHE-PWM strategy defined for five-levels as shown in Fig. 2. This method did not only seek single transitions (Fig. 1) but rather found multiple switching angles in order to establish a PWM waveform (Fig. 2). The switching angles were reported and the comparison of the MSHE-PWM technique against the well-know sinusoidal PWM employing phase-shifted carriers confirmed the superiority of the former.

The objective of this paper is to report switching angles for a seven-level waveform. This extends our knowledge of MSHE-PWM techniques for the first time into a seven-level case (Fig. 3). Solutions for the switching angles for the entire range of modulation indices, i.e. standard and overmodulation are reported in the paper and verified to confirm the effectiveness of the proposed strategy.

The paper is organized as follows. Section II presents in detail the proposed seven-level MSHE-PWM. Switching angles as a function of the modulation indices are reported. The standard modulation index range and the overmodulation are investigated and results are presented in Section III and conclusions are summarized in Section IV.

II. Proposed Seven-Level MSHE-PWM

The proposed MSHE-PWM strategy is defined according to the waveform shown in Fig. 3 and represents the line-toneutral waveform of the converter. The number of levels of the waveform is assumed to be seven, i.e., 1p.u., 2 p.u., 3 p.u., 0 p.u., -1p.u., -2 p.u. and -3 p.u.

The problem is formulated in a generalized form as follows. Let P be the number of levels of the waveform and the case where this number is odd is considered although an even number can be equally studied. In this paper we

Fig. 2. A five-level defined (line-to-neutral) SHE-PWM waveform shown for a distribution ratio of $5 / 12\left(z_{1}=5, z_{2}=12, N=z_{1}+z_{2}=17\right)$.

Fig. 3. A seven-level defined (line-to-neutral) SHE-PWM waveform shown for a distribution ratio of 5/7/6 $\left(z_{1}=5, z_{2}=7, z_{3}=6, N=z_{1}+z_{2}+z_{3}=18\right)$.
consider $P=7$. Let N be the number of switching transitions (angles) of the waveform sought within the quarter of the period of the waveform. Let z_{i} be the switching angles (transitions) in every level and
$i=1,2,3 \ldots . .\left(\frac{P-1}{2}\right)$
The equation that describes the Fourier analysis of the multilevel waveform is then:

$$
\begin{align*}
& f_{h}=\sum_{k=1}^{z_{1}}(-1)^{k-1} \cos \left(h \cdot \alpha_{k}\right)+ \\
& +\sum_{n=2}^{\langle P-1\rangle / 2} \sum_{k=1+\sum_{q=1}^{n-1} z_{q}}^{\sum_{q=1}^{n} z_{q}}(-1)^{k-1-\sum_{q=1}^{n-1} z_{q}} \cos \left(h \cdot \alpha_{k}\right) \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
\sum_{q=1}^{(P-1) / 2} z_{q}=N \tag{3}
\end{equation*}
$$

The problem is solved through constraint minimization [8] and the following function when $N=$ even is considered:

$$
\begin{equation*}
\operatorname{MIN}\left\{\left(f_{1}-M\right)^{2}+f_{5}^{2}+f_{7}^{2}+\ldots \ldots \ldots . .+f_{3 N-1}^{2}\right\} \tag{4}
\end{equation*}
$$

with the constraints:
$0<\alpha_{1}<\alpha_{2}<\ldots \ldots<\alpha_{\mathrm{N}}<\frac{\pi}{2}$
The idea here is the classic SHE method that tries to find switching angles in order to eliminate a number of harmonics and control simultaneously the fundamental component. The challenge of the proposed method is that for the first time such method is applied to a seven-level multilevel PWM waveform (Fig. 3). The typical half-wave and quarter wave symmetries are followed for the waveform, i.e., simply when the switching angles for all modulation indices are obtained
for the angles between zero and $\pi / 2$, the usual reflection occurs to find the rest of the angles. Since there are N switching angles (i.e., $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{N}$), N-1 harmonics can be eliminated if solutions can be found. For a three-phase inverter, the harmonics to be eliminated from the waveform are assumed to be non-triplen odd harmonics (i.e., $5^{\text {th }}, 7^{\text {th }}$, $11^{\text {th }}, 13^{\text {th }}, n^{\text {th }}$ where $n=3 N-1$ when $N=$ even and $n=3 N-2$ when $N=$ odd). The strategy then relies on the structure of the power circuit in order to remove the triplen ones from the line-to-line voltage waveforms. For the seven-level case we have:
$0 \leq M \leq 3$
If V_{1} is the amplitude of the fundamental component to be generated, then
$V_{1}=\frac{4 M}{\pi}$
whereas the square-waveform of 3p.u. amplitude can generate $(12 / \pi)$ p.u. maximum value at fundamental frequency.

III. Results and Discussion

The minimization technique proposed in [8] has been applied and software is used to investigate the method [21]. For this paper $N=18$. However, this number and the various ratios can be changed as desired and the proposed method would provide the respective solutions provided they exist.

A. Standard Modulation Range

The standard modulation rage includes areas of M where solutions can be found. The maximum value found is $M=2.58$ for the case of $1 / 1 / 16$ (Fig. 4(p)). It should be noted that the result obtained from the proposed method when the ratio is chosen to be 18/0/0 (Fig. 4(a)) provides solutions for all modulation indices up to 0.73 (continuous solutions) and other sets can increase the maximum obtainable M to 0.83 (Fig. 4(b)). Further results for all combinations of ratios are plotted in Fig. 4. The results are summarized in Table 1. Scanning the results presented in Fig. 4, one can see that there is an overlap between the regions, ensuring the method can be implemented for the entire range of modulation indices. The last harmonic that can be eliminated according to equation (4) is the 53p.u. and this is confirmed in Fig. 6. Specifically, Fig. 6(a) shows this waveform and its spectrum confirms that it does have only multiple of triplen harmonics (Fig. 6(a)). These triplen harmonics are cancelled out in a three-phase system from the line-to-line waveforms (Fig. $6(\mathrm{c})$). This is confirmed through the associated spectrum of the line-to-line voltage waveform shown in Fig. 6(d).

B. Overmodulation

In order to increase the modulation index further, a pulse-dropping approach can be adopted and the same method [8] can be used to obtain the switching angles. In this paper, a number of variations are investigated and reported. The respective switching angles are presented in Fig. 5. The results are summarized in Table 2. The number of harmonics controlled in the overmodulation region is dropped and N

(b)

(c)

(d)

(e)

(t)

(g)

(h)

(i)

(i)

(k)

(1)

(m)

(n)
2.4

(o)

(p)

Fig. 4. Selected switching transitions for the seven-level SHE-PWM technique for various combinations of switching transitions versus modulation index. The results are summarized in Table 1. (a) Case $18 / 0 / 0,0 \leq M \leq 0.73$ (b) Case $18 / 0 / 0,0.68 \leq M \leq 0.83$ (c) Case $9 / 9 / 0,0.84 \leq M \leq 0.92$ (d) Case $9 / 9 / 0$, $0.92 \leq M \leq 1.05$ (e) Case $7 / 11 / 0,1.05 \leq M \leq 1.21$ (f) Case $3 / 15 / 01.22 \leq M \leq 1.43$ (g) Case $3 / 15 / 0,1.44 \leq M \leq 1.54$ (h) Case $3 / 15 / 0,1.54 \leq M \leq 1.72$ (i) Case $3 / 9 / 6$, $1.91 \leq M \leq 2.01$ (j) Case $3 / 9 / 61.7 \leq M \leq 1.84$ (k) Case $3 / 7 / 81.81 \leq M \leq 1.91$ (1) Case $3 / 7 / 8,1.94 \leq M \leq 2.12$ (m) Case $3 / 3 / 12,2.23 \leq M \leq 2.35$ (n) Case $1 / 3 / 14$, $2.09 \leq M \leq 2.27$ (o) Case $1 / 3 / 14,2.31 \leq M \leq 2.54$ (p) Case $1 / 1 / 16,2.52 \leq M \leq 2.58$.

Fig. 5. Selected switching transitions for the seven-level SHE-PWM technique for various combinations of switching transitions versus modulation index in the overmodulation region. The results are summarized in Table 2. (a) Case $1 / 1 / 8,2.61 \leq M \leq 2.72$ (b) Case $1 / 1 / 9,2.48 \leq M \leq 2.66$ (c) Case $1 / 1 / 9,2.66 \leq M \leq 2.72$ (d) Case $1 / 1 / 10,2.58 \leq M \leq 2.71$ (e) Case $1 / 1 / 11,2.48 \leq M \leq 2.57$ (f) Case $1 / 1 / 122.445 \leq M \leq 2.605$ (g) Case $1 / 1 / 13,2.545 \leq M \leq 2.59$ (h) Case $1 / 1 / 14,2.41 \leq M \leq$ 2.59 .

Fig. 6: Implementation of the proposed technique for the following case within the standard modulation index range: $1 / 3 / 14, M=2.2$. (a) Line to neutral voltage waveform. (b) Spectrum of the line-to-neutral voltage waveform. (c) Line-to-line voltage waveform. (d) Spectrum of the line-to-line voltage waveform.
a)

b)

c)

d)

Fig. 7: Implementation of the proposed technique for the following case within the overmodulation index range: $1 / 1 / 9, M=2.7$ controlling 10 non-triplen harmonics. (a) Line to neutral voltage waveform. (b) Spectrum of the line-to-neutral voltage waveform (c) Line-to-line voltage waveform. (d) Spectrum of the line-to-line voltage waveform.

Table 1: Summary of solutions for switching angles in regions when the variable ratio of distribution of the switching angles changes between the multiple levels ($N=18$).

$z_{1} / z_{2} / z_{3}$	Standard Modulation Region
$18 / 0 / 0$	$0 \leq M \leq 0.73 \& 0.68 \leq M \leq 0.83$
$9 / 9 / 0$	$0.84 \leq M \leq 0.92 \& 0.92 \leq M \leq 1.05$
$7 / 11 / 0$	$1.05 \leq M \leq 1.21$
$3 / 15 / 0$	$1.22 \leq M \leq 1.43 \& 1.44 \leq M \leq 1.54$
	$1.54 \leq M \leq 1.72$
$3 / 9 / 6$	$1.91 \leq M \leq 2.01 \& 1.7 \leq M \leq 1.84$
$3 / 7 / 8$	$1.81 \leq M \leq 1.91 \& 1.94 \leq M \leq 2.12$
$3 / 3 / 12$	$2.23 \leq M \leq 2.35$
$1 / 3 / 14$	$2.09 \leq M \leq 2.27 \& 2.31 \leq M \leq 2.54$
$1 / 1 / 16$	$2.52 \leq M \leq 2.58$

Table 2: Summary of solutions for switching angles in the overmodulation regions when the variable ratio of distribution of the switching angles changes between the multiple levels ($N=$ varies).

$z_{1} / z_{2} / z_{3}$	Overmodulation Region
$1 / 1 / 8, N=10$	$2.61 \leq M \leq 2.72$
$1 / 1 / 9, N=11$	$2.48 \leq M \leq 2.66 \& 2.66 \leq M \leq 2.72$
$1 / 1 / 10, N=12$	$2.58 \leq M \leq 2.71$
$1 / 1 / 11, N=13$	$2.48 \leq M \leq 2.57$
$1 / 1 / 12, N=14$	$2.445 \leq M \leq 2.605$
$1 / 1 / 13, N=15$	$2.545 \leq M \leq 2.59$
$1 / 1 / 14, N=16$	$2.41 \leq M \leq 2.59$

varies. To confirm the validity of the method, the line-to-neutral and the line-to-line voltage waveforms are plotted in Fig. 7(a) and (c) respectively for $M=2.7$ and the case of $1 / 1 / 9$. The spectrum of both waveforms presented in Fig. 7(b) and 7(d) respectively confirm that the bandwidth is compromised but the harmonics are still tightly controlled confirming the superiority of the proposed method. Since $N=11,10$ non-triplen harmonics are controlled. By investigating other ratios of switching angles a further increase of the modulation index can be obtained but it compromises the harmonic bandwidth even further.

IV. CONCLUSIONS

A seven-level MSHE-PWM strategy suitable for multilevel converters has been documented in this paper. The method is mathematically defined in order to eliminate a number of harmonics from the waveform. It is shown that by distributing a number of switching angles over multiple levels, solutions can be found offering a degree of overlapping and thus redundancy, allowing implementation of the proposed method over the entire range of modulation indices. Switching angles have been reported for both the standard and the overmodulation range. The spectrum of both the line-to-neutral and therefore the line-to-line waveforms are well controlled. This is confirmed through selected results presented to validate the theory.

References

[1] H.S. Patel and R.G. Hoft, "Generalized harmonic elimination and voltage control in thyristor inverters: part I - harmonic elimination", in IEEE Transactions on Industry Applications, Vol. 9, pp. 310-317, May/June 1973.
[2] H.S. Patel and R.G. Hoft, "Generalized harmonic elimination and voltage control in thyristor inverters: part II - voltage control technique", in IEEE Transactions on Industry Applications, Vol. 10, pp. 666-673, September/October 1974.
[3] P. Enjeti and J.F. Lindsay, "Solving nonlinear equations of harmonic elimination PWM in power control", in IEE Electronics Letters, Vol. 23, No. 12, pp. 656-657, June 1987.
[4] P.N. Enjeti, P.D. Ziogas, J.F. Lindsay, "Programmed PWM techniques to eliminate harmonics: a critical evaluation", in IEEE Transactions on Industry Applications, Vol. 26, No 2, pp. 302-316, March/April 1990.
[5] Kato, T., "Precise PWM waveform analysis of inverter for selected harmonic elimination", in Conf. Rec. of IEEE Industry Applications Society Annual Meeting, 1986, pp. 611-616.
[6] T. Kato, "Sequential homotopy-based computation of multiple solutions for selected harmonic elimination in PWM inverters", in IEEE Trans. On Circuits and Systems - I: Fundamental Theory and Applications, Vol. 46, No. 5, pp. 586-593, May 1999.
[7] J. Chiasson, L.M. Tolbert, K. McKenzie, and Z. Du, "A complete solution to the harmonic elimination problem", in IEEE Transactions on Power Electronics, Vol. 19, No 2, pp. 491-499, March 2004.
[8] V.G. Agelidis, A. Balouktsis, and I. Balouktsis, "On applying a minimization technique to the harmonic elimination PWM control: the bipolar waveform", in IEEE Power Electronics Letters, Vol. 2, No 2, June 2004, pp. 41-44.
[9] F. Swift and A. Kamberis, "A new Walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters", in IEEE Transactions on Power Electronics, Vol. 8, No. 2, April 1993, pp. 170-185.
[10] T.J. Liang, R.M. O'Connell and R.G. Hoft, "Inverter harmonic reduction using Walsh function harmonic elimination method", in IEEE Transactions on Power Electronics, Vol. 12, No. 6, November 1997, pp. 971-982.
[11] J.R. Wells, B.M. Nee, P.L. Chapman, and P.T. Krein, "Optimal harmonic elimination control", in Conf. Proc. of IEEE Power Electronics Specialists Conference 2004, pp. 4214-4219.
$[12]$ V.G. Agelidis, A. Balouktsis, I. Balouktsis, and C. Cossar, "Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental results", in IEEE Transactions on Power Electronics 2005, Vol. 21, No. 2, March 2006, p. 415-421.
[13] P.M. Bhagwat and V.R. Stefanovic, "Generalized structure of a multilevel PWM inverter", in IEEE Transactions on Industry Applications, Vol. IA-19, No. 6, Nov./Dec. 1983, pp. 1057-1069.
[14] J.N. Chiasson, L.M. Tolbert, K.J. McKenzie and Z. Du, "Control of a multilevel converter using resultant theory", in IEEE Transactions on Control Systems Technology, Vol. 11, no. 3, May 2003. pp. 345-354.
[15] J.N. Chiasson, L.M. Tolbert, K.J. McKenzie, Z.Du, "A unified approach to solving the harmonic elimination equations in multilevel converters", in IEEE Transactions on Power Electronics, Vol. 19, No. 2, March 2004, pp 478-490
[16] J.N. Chiasson, L.M. Tolbert, K.J. McKenzie, and D. Zhong, "Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants", in IEEE Transactions on Control Systems Technology, Vol. 13, No. 2, March 2005, pp. 216-223.
[17] L.Li, D. Czarkowski, Y. Liu and P. Pilay, "Multilevel selective harmonic elimination PWM technique in series-connected voltage inverters", in IEEE Transactions on Industry Applications, Vol. 36, No. 1, Jan./Feb. 2000, pp. 160-170.
[18] Z. Du, L.M. Tolbert and J.N. Chiasson, "Harmonic elimination in multilevel converter with programmed PWM method", in IEEE Industry Applications Society Annual Meeting 2004, pp. 2210-2215.
[19] J. Vassallo, J.C. Clare, P.W. Wheeler, "A power-equalized harmonic elimination scheme for utility-connected cascaded H-bridge multilevel converters" in IEEE IECON 2003, Vol. 2, pp. 1185-1190.
[20] V.G. Agelidis, A. Balouktsis, I. Balouktsis, C. Cossar, "Five-level selective harmonic elimination PWM strategies and multicarrier phase-shifted sinusoidal PWM: a comparison", in Conf. Rec. of IEEE $36^{\text {th }}$ PESC 2005, Recife, Brazil, June 2005, p. 1685-1691.
[21] Mathematica 5.0, Wolfram Research Inc.

