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ABSTRACT
Intrascan and interscan intensity inhomogeneities have been

identified as a common source of making many advanced seg-
mentation techniques fail to produce satisfactory results in sepa-
rating brains tissues from multi-spectral magnetic resonance (MR)
images. A common solution is to correct the inhomogeneity be-
fore applying the segmentation techniques. This paper presents a
method that is able to achieve simultaneous semi-supervised MAP
(maximum a-posterior probability) estimation of the inhomogene-
ity field and segmentation of brain tissues, where the inhomogene-
ity is parameterized. Our method can incorporate any available in-
complete training data and their contribution can be controlled in a
flexible manner and therefore the segmentation of the brain tissues
can be optimised. Experiments on both simulated and real MR
images have demonstrated that the proposed method estimated the
inhomogeneity field accurately and improved the segmentation.

1. INTRODUCTION

Segmentation of Magnetic Resonance (MR) images is a process of
delineating regions representing different types of tissues and/or
lesions. In general, the following sources of information may be
used in this process:

• for each pixel (or voxel) an observation which may contain
a vector of values, usually intensities, to characterise it,

• a known tendency of neighbouring pixels to be of the same
type of tissue (spatial coherence), and

• anatomical knowledge about the images which could be
the globally geometric distribution of anatomical structures,
expected intensity of various tissues and so forth.

After more than a decade of research, techniques for segment-
ing MR images are gradually converging to MAP (maximum a-
posterior probability) segmentation based on Gibbs Random Field
(GRF) or Markov Random Field (MRF) [13, 16, 12, 17, 15] and
FCM (Fuzzy C-means) based classification [4, 18, 1]. Numerous
advanced algorithms have been developed [7, 3, 5] and most of
them were employed in a fully unsupervised manner. Particu-
larly, Bensaid et. al [2, 9] introduced semi-supervised FCM (ss-
FCM) and Li et. al [8] recently developed semi-supervised MAP
(ssMAP) segmentation. In comparison to FCM based approach,
MAP approach has been proven to be more flexible to make use of
all sources of information in a unified framework.

However, the intrascan and interscan inhomogeneities [7] severely
interfere with the segmentation. They have been identified as a
common source of making many advanced segmentation techniques
fail to produce satisfactory results. Intensity inhomogeneity in MR

images usually results from shading artifacts and inherent nonuni-
formity of tissue properties [7] and it can substantially change the
intensity distribution of the tissues and make the widely adopted
Gaussian model indiscriminative. A number of methods has been
proposed in the past to reduce the effect of the inhomogeneity
on segmentation. One approach is to estimate the inhomogene-
ity from phantom or real images and then subtract it from the im-
ages before segmentation. Another approach is based on maxi-
mum likelihood estimation such as in [14]. Detailed review can be
found in [7].

In this paper, we introduce a parameterised inhomogeneity
model into the ssMAP segmentation [8]. The MAP estimation of
the model parameters and segmentation of the tissues are achieved
simultaneously.

2. SEMI-SUPERVISED MAP SEGMENTATION

Let {yt}
M
t=1 be unlabelled pixels in a MR slice to be segmented

and they are considered as a realisation of a random field defined
on a lattice L, where t ∈ L. {yc

t : t = 1, 2, · · · , nc; c =
1, 2, · · · , K} denotes all labelled pixels for K types of tissues.
The labelled pixels for the ith tissue are denoted as {yi

t}
ni
t=1, where

ni ≥ 0, the number of labelled pixels for the ith tissue, and
P

i ni = N .
The true but unknown tissue labels of all pixels are assumed

to be a realisation of the random field X = {Xt : t ∈ L}, denoted
by x∗ = {xt : t ∈ L}, where xt labels the tissue type at site t.

Assume X is a local Markov Random Field (MRF) defined
in a neighbourhood system and the labelled pixels do not supply
any spatial knowledge of their labelled tissues. Using Bayes rule,
a maximum a posteriori (MAP) estimation of the pixel labels, x̂,
is

x̂ = arg max
x∈Ω

Y

t∈L

f(yt|xt)p(xt|x∂t)
Y

s∈ζ

f(yc
s|x

c
s) (1)

where f(yr|xr) is the conditional density of random variables
{Yr : 1 ≤ r ≤ M} dependent on x, usually known as data model.
p(xr|x∂r) = e−v(xr |ηr)

Zr
is the prior probability or prior model of

xr given its neighbours, x∂r is defined in a neighbourhood system
ηr , where Zr is a partition function and v(·) is usually referred as
an energy function.

We empirically define the prior model, or specifically the en-
ergy function v(·), over cliques in a second-order neighbourhood
system based on the posterior probabilities (soft labels) rather than
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over discrete (hard) labels [7]

v(xt = k|η2
t ) = −α(k) − βG∂t(k) (2)

G∂t(k) =
X

r∈∂t

zrk, (3)

where α(k) represents global information about the probability of
tissue k. β is a parameter to be set and zrk is the posterior proba-
bility of pixel r belonging to tissue k.

3. DATA MODEL WITH INHOMOGENEITY

In the absence of tissue’s prior model, the success of the MAP
segmentation is dependent primarily on the discriminative power
of the likelihood model for the data. Previous research [13] sug-
gests that f(yt|xt) can be reasonably approximated as a multivari-
ate Gaussian. Unfortunately, intensity inhomogeneity makes the
assumption of Gaussian distribution no longer valid.

Study [7] has shown that inhomogeneity is realised as a low
spatial frequency component that modulates, i.e. multiplies, the
intensity of the true data set and it is same for all echoes in a mul-
tiecho sequence. The low spatial frequency assumption allows us
to model the inhomogeneity as a low order spatial function and
the multiplicative assumption suggests that a log transform of the
observed intensity is necessary to remove the inhomogeneity.

3.1. Modeling inhomogeneity
Let dj = (dj1, dj2, · · · , djp) be the log intensity vector of p
bands (echoes) for pixel j, j = 1, 2, · · · , M , where M is the num-
ber of pixels. The function vector b(x, y, ξ) = (b(x, y, ξ1), b(x, y, ξ2), · · · , b(x, y, ξp))
represents the inhomogeneity fields, where b(x, y, ξi) means the
inhomogeneity field of the ith band (echo); ξ = (ξ1, ξ2, · · · , ξp)
is the parameter vector if the inhomogeneity is modelled by pa-
rameterised functions and ξi is the sub-parameter vector for the
ith inhomogeneity field; x, y are intraslice Cartesian coordinates
of a pixel.

Let q() be the intensity of tissues uncorrupted by inhomogene-
ity and t̂() be the estimate of t(), for any function t(). According
to the assumption, we have

d(x, y) = q(x, y) + b(x, y)

q̂(x, y) = d(x, y) − b̂(x, y)

Note that we have dropped the subscript indicating the band for
the sake of simplicity as the relationship holds for every band. The
intensities (values of q̂) for each tissue follow normal distribution.
Thus, the conditional density function for a pixel, say j, of tissue
k to have intensity dj is

f(dj |k) =
1

(2π)
p
2 |Σk|

1
2

e
−

1
2
(dj−µk−βj)T Σ−1

k
(dj−µk−βj)

, (4)

where µk and Σk are the mean vector and covariance matrix re-
spectively of the Gaussian describing the probability density of
tissue k without inhomogeneity corruption; βj = b(xj , yj , ξ)

T is
called the biased mean vector, the inhomogeneity field at pixel j
with coordinates (xj , yj). The intensity distribution of a p band
multispectral MRI slice can therefore be specified as a mixture
with K biased normal components if there are K discernible tis-
sues, i.e.

f(d|Φ, ξ) =

K
X

k=1

wkf(d|k), (5)

where Φ = {µk, Σk, wk}
K
k=1, called the model parameters, is the

parameter vector consisting of the means, covariance matrices and
the mixture proportions satisfying

PK

k=1 wk = 1; ξ is a parameter
vector for biased means describing the inhomogeneity.

Suppose there are N =
PK

k=1 nk, nk ≥ 0, labelled pixels, in
which nk pixels are from tissue k. Let d

k
t and (xtk, ytk) denote

respectively the intensity vector and coordinates of pixel t in train-
ing pixels for the kth tissue. Assuming the independence of the
potential tissue labels over pixels, the fitting of the mixture model
to a slice S with M pixels can be measured by the total log likeli-
hood given the underlying tissue types:

L(S|Φ, ξ) =
M

X

t=1

log(
K

X

k=1

wkf(dt|k)) +
K

X

c=1

nc
X

t=1

log(f(dc
t |c)).

(6)
Assume inhomogeneity can be modelled as a parameterised

function of the coordinates of pixels, then both parameters for the
biased means, ξ, and the model parameters, Φ, can possibly be
estimated through the EM algorithm which maximises the total
log likelihood of Equation 6.

(Φ̂, ξ̂) = arg max
ΩΦ,Ωξ

L(S|Φ, ξ), (7)

where ΩΦ and Ωξ represent the feasible spaces of Φ and ξ respec-
tively. The estimation leads to the following iterative equations
for the model parameters with an incorporation of the confidence
weights, γk

t and αk
t , of the labelled pixel t for tissue k to the model

parameters and inhomogeneity coefficients respectively.:

w
r+1
k =

1

M

M
X

i=1

z
r
ik (8)

µ
r+1
k =

Pnk
i=1 γk

i (dk
i ) +

PM

i=1 zikdi
Pnk

i=1 γk
i +

PM

i=1 zr
ik

, (9)

Σr+1
k =

Pnk
i=1 γk

i (dk
i − µk − βi)(d

k
i − µk − βi)

T

Pnk
i=1 γk

i +
PM

i=1 zr
ik

+

PM

i=1 zik(di − µr+1
i − βi)(di − µr+1

i − βi)
T

Pnk
i=1 γk

i +
PM

i=1 zr
ik

,(10)

z
r
ik =

wr
kf(di|k)

PK

j=1 wr
j f(di|j)

(11)

Similarly, substituting the Equations 4 and 6 in Equation 7, we
have

M
X

t=1

K
X

k=1

ztk

p
X

l=1



σ
k
il(dtl − µkl − βlt)

»

∂βi

∂[ξi]j

–

t

ff

+

K
X

k=1

nk
X

t=1

α
k
t

p
X

l=1



σ
k
il(d

k
tl − µkl − βlt)

»

∂βi

∂[ξi]j

–

t

ff

= 0, (12)

where [ξi]j is the jth parameter of the sub-parameter set used for
modelling the ith band’s inhomogeneity; σk

il is the (i, l) element
of the kth inverse covariance matrix; dtl is the intensity value of
the lth band at pixel t; µkl denotes the lth element of the kth mean
vector; βlt = b(xt, yt, ξl) represents the lth band inhomogeneity
at pixel t; and βi = b(x, y, ξi) is the i′th band inhomogeneity
function. By specifying the functional form of βi, the ML esti-
mation of its parameters, in principle, can be obtained by solving
Equation 12.



3.2. Polynomial modelling of inhomogeneity

Previous study [10, 11, 6] has shown that a second order polyno-
mial function can fit the inhomogeneity obtained through phantom
scans or training data quite well. In this section, we will consider
an application of the new model to dual-spin echo MR images, i.e.
p = 2. The inhomogeneity is modelled by a second order poly-
nomial. We assume that all the echoes’ inhomogeneity fields have
same functional forms, but may differ in the polynomial coeffi-
cients.

Let the ith echo inhomogeneity be

βi = b(x, y, ξi)
= Aix + Biy + Cixy + Dix

2 + Eiy
2 + Fi i = 1, 2 ,

(13)
where ξi = (Ai, Bi, Ci, Di, Ei, Fi) are the polynomial coeffi-
cients and (x, y) represents the coordinates of a pixel.

Substituting Equation 13 in Equation 12, we will have twelve
linear equations for the twelve polynomial coefficients which can
be expressed as

UC = V, (14)
where C = [A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2, F2]

T ;
U = [uij ] and V = [vi]

T , for i = 1, 2, · · · , 12 and j = 1, 2, · · · , 12.
Let

H = [hi]
6
i=1 = [xt, yt, xtyt, x

2
t , y

2
t , 1]T .

The elements of matrices U and V can be written as

uij =

K
X

k=1

nk
X

t=1

α
k
t h[ i+1

2 ]σ
k

[ i+1
2 ][ j+5

6 ]h[ j+1
2 ] +

M
X

t=1

K
X

k=1

ztkh[ i+1
2 ]σ

k

[ i+1
2 ][ j+5

6 ]h[ j+1
2 ] (15)

vi =

K
X

k=1

nk
X

t=1

α
k
t h[ i+1

2 ]

2
X

l=1

h

Σk

[ i+1
2 ]l(dtl − µkl)

i

+

M
X

t=1

K
X

k=1

ztkh[ i+1
2 ]

2
X

l=1

h

Σk

[ i+1
2 ]l(dtl − µkl)

i

(16)

where [I] denotes the greatest integer which is less than I .
Equation 14 can be solved using Singular Value Decomposi-

tion (SVD) technique.

4. EXPERIMENTAL RESULTS

Simulated MR images and slices from the 12 real MRI data sets
were used to test the proposed methods. The simulated MR im-
ages were generated based on the physics of MR imaging [7] and
the 12 data sets were scanned with a spin echo pulse sequence at
repetition times from 1800 msec to 3000 msec. Each data set con-
sisted of about 20 slices covering almost the whole brain and each
slice had dual spin echoes: PWD and T2W images. PDW and
T2W images were scanned at TE = 16 msec and TE = 98 msec
respectively.

4.1. Simulated MRI
We first generated a inhomogeneity-free MRI slice at noise level
12 which consisted of dual spin echoes: PDW and T2W images,
as shown in Figure 1(a). The inhomogeneity fields shown in Fig-
ure 1(b) were then added to both PDW and T2W images by scaling

(a) (b)

(c) (d) (e) (f)

Fig. 1. Polynomial modelling of inhomogeneity and its ML esti-
mation on a simulated dual spin-echo MRI slice. (a) Simulated
slice at noise level 12 without inhomogeneity.(b)inhomogeneity
field to be added to (a). (c)&(d) estimated inhomogeneity for the
first and second echo respectively. (e)&(f) segmented results with-
out and with inhomogeneity correction

the fields so that the maximum intensity (600) of the inhomogene-
ity is 25% of the maximum intensity (2400) of the inhomogeneity-
free slice. Figure 1(c)&(d) are estimated inhomogeneity fields for
PDW and T2W images respectively and they are almost identical
to (Figure 1(b).

Figure 1(e)&(f)shows the segmentation without and with in-
homogeneity correction. It is easy to see the significant improve-
ment, especially in the frontal lobe and occipital lobe regions.
Without inhomogeneity correction, the WM is over-segmented in
the frontal lobe region and it extends to the surface of the brain.

4.2. Real Patient MRI

Figure 2(a) is slice 10 of patient 2 (normal). We manually labelled
294 pixels as training data for the six normal tissues. Noticing that
there were 27028 pixels in the selected ROI, the training data was
only about 1% of the unlabelled data.

Figure 2(b)&(c) are the estimated inhomogeneity fields and
(d)&(e) are the segmentation results. Notice that inhomogeneity
fields has been scaled for display purpose. The actual fields are
very small due to the original slice was not corrupted by inhomo-
geneity. Even in such a case, Our method has improved the over-
segmented GM in the Putamen region and under-segmented GM
in the occipital lobe region that are obtained by MAP segmentation
without inhomogeneity correction.

4.3. Comparative study

We compared the unsupervised, semi-supervised and supervised
segmentation against manual segmentation confirmed by a radiol-
ogist. First a small number of pixels for six normal tissues: SKIN,
FAT, SKULL, GM, WM and CSF were labelled manually. The
number of labbled pixels occupies only 0.5% to 1.0% of the true
size of the corresponding tissues. it was not possible for those
labelled pixels to catch either the cluster centers or the cluster
shapes. Then, the MR images are segmented in unsupervised man-
ner where none of the labelled pixels are used, semi-supervised
manner where each labelled pixel has an appropriate finite weight
(50.0 at most cases), and supervised manner where each labelled
pixel is weighted virtually infinitely.

Noticeably there were few differences in the intracranial re-
gion separation from the slice among the supervised, semi-automatic



(a)

(b) (c) (d) (e)

Fig. 2. Polynomial modelling of inhomogeneity and segmentation
of slice 10, patient 2. (a) Original images: PDW (left) and T2W
(right) images. (b)&(c) Estimated inhomogeneity fields contained
respectively in PDW and T2W images. (d)&(e) Intensity-based
segmentation without and with inhomogeneity correction respec-
tively.

and automatic approaches. However, there was significant im-
provement in the separation of CSF, WM, and GM. The segmen-
tation errors were reduced from 13%, 31%, and 22% in supervised
segmentation to 3%, 2.6% and 4% in semi-supervised segmenta-
tion for these three brain tissues respectively. Compared to the
unsupervised approach, the segmentation errors are also reduced
by about 5% on average for CSF, WM and GM.

5. DISCUSSION

We have proposed a ssMAP with a new data model for multispec-
tral MRI which is capable of correcting inhomogeneity by intro-
ducing biased means into the normal distribution modelling of tis-
sue intensities. The inhomogeneity can be represented either in
discrete values (field) or as a parameterised function. When the in-
homogeneity is modelled by a function, the ML estimation of the
function parameters has been formulated. Specifically, a solution
was derived when the inhomogeneity was modelled by a second
order polynomial.

The advantages of the model are obvious and have been partly
illustrated by our simulated and real data. By using the data model,
the stochastic model would be able to deal with noise, inhomo-
geneity and partial volume effects. The main drawback of the al-
gorithm would be that more local maxima might be introduced as
the parameter space has been enlarged by the parameters for in-
homogeneity functions. Hence, the initialisation becomes more
difficult than it is with previous algorithms.
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