

MURDOCH RESEARCH REPOSITORY

Hanselmann, T., Noakes, L. and Zaknich, A. (2005) Continuous
adaptive critic designs. In: International Joint Conference on

Neural Networks, IJCNN 2005, 31 July - 4 August,
Montreal, Canada.

http://researchrepository.murdoch.edu.au/11935/

 Copyright © 2005 IEEE

Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

http://researchrepository.murdoch.edu.au/11935/�

Continuous Adaptive Critic Designs

Thomas Hanselmann
Dept. of Electrical and Electronic Eng.

The University of Melbourne
Parkville, VIC 3010, Australia

E-mail: t.hanselmann@ee.mu.oz.au

Lyle Noakes
School of Mathematics and Statistics
The University of Western Australia

Perth, WA 6009, Australia
E-mail: lyle@maths.uwa.edu.au

Anthony Zaknich
School of Engineering Science

Murdoch University
Perth, WA 6150, Australia
E-mail: tonko@ieee.org

Abstract-A continuous formulation of an adaptive critic
design (ACD) is investigated. Connections to the discrete case
are made, where backpropagation through time (BPTT) and real-
time recurrent learning (RTRL) are prevalent. A second order
actor adaptation, based on Newton's method, is established for
fast actor convergence. Also a fast critic update for concurrent
actor-critic training is outlined that keeps the Bellman optimality
correct to first order approximation after actor changes.

I. INTRODUCTION
There are many terminologies used, depending from which

aspects the problem is viewed from, but basically adaptive
critic designs (ACDs) are a framework to approximate dy-
namic programming and are used in decision making with
the objective of a minimal long-term cost. ACDs approximate
dynamic programming in the way that they parameterize the
long-term cost, J(x), or its derivative (A-critic, dual heuristic
programming (DHP)), or a combination thereof (global dual
heuristic programming GDHP). Other terminologies are also
used, especially reinforcement learning, which was inspired
from a biological view-point. There are only a few publications
dealing with continuous adaptive critics [1], [2], [3]. In this
paper, the aim is to extend the discrete approach to continuous
systems of the form

x = f(x, u), system equations.
u = g(x; wa), control equations.

the continuous plant and utility or short-term cost and treating
them as ordered systems, where total derivatives can be easily
calculated by the formulae (5) or (6). This is basically the
chain-rule and was first introduced by Werbos in the context
of adaptin' parameters of a long-term cost-function [8]. The
notation a Zn means the total derivativeC9Zk

Zi = Zi(zli Z2 ... Zi-) Vzi,1 < i < n

O+zT zT n-1 aOT +ZT
Zk Zk j=k+l

+ Zk j

azT n-1 +zT azT
-9±

j=k+l aZ: aZ

(4)

(5)

(6)

The chain rule can be applied analogously for continuous
systems where x(t) represents the state of the system and
is under the influence of infinitesimal changes during the
infinitesimal time step dt. Given the setup of an adaptive
critic design where x = f(x, g(x; w)) the goal is to adapt the
weights w such that x is an optimal trajectory, in the sense
that it has a minimal long-term cost. Clearly, x can be seen
as a function only of x and w, so k = h(x; w).

(1)
(2)

with the objective of a minimal long-term cost function, given
by (3) and to find a suitable controller (2).

minJ(x) = min [q(x, 5)dt = min f q(x, u)dt (3)
u u Jt u Jt0

There is no space here to introduce BPTT and RTRL in depth,
but their details can be found in [4], [5] and [6], [7]. BPlTT
calculates total derivatives of a quantity that is a function of
previously evaluated functions with respect to some previous
argument, as seen by (4) and (6). RTRL, calculates total
derivatives dxT(t) forward in time based on a transition matrix
(t). In the context of ACDs, function approximators are used
like neural networks. Then, the state x(t) refers to all the nodes
in a network and its dimensionality can be quite large.

II. CONTINUOUS VERSION OF 'ORDERED' TOTAL
DERIVATIVES

A simple method for calculation of total derivatives for
ordered systems, defined by (4), was achieved by discretizing

x(t;w)

x(t0;w+w)
x txw (tjw)

Fig. 1. The neighboring trajectories are due to a slight change in the weights.
Multiplying all the vectors by bt makes clear that the order ofderivatives with
respect to time and weights can be exchanged, see equation (7).

A deviation 6w in w leads to a deviation in the trajectory x,
say x6w. Therefore it is (7), and the order of the differentia-
tions can be exchanged as defined by (8) to (10). See figure
1.

d d owI=nT(x6s,w+6w)-hT(x,w) (7)
d-t d W-6w hT/," W T(,W 7

3001

d dXT
dt dw

dhT dxT ahT ahT
=~ = 7-+ c, (8)w dw x a(
dxT afT dgT afT
dw ax dw au (9)
dXT [afT agT afT]- agT afT

= -W [a-+ - + aJ(10)dw Ax Ax Au ' Au

This relation proves to be very useful as it is just a differential
equation which can easily be integrated for the otherwise hard
to calculate total derivative dxT. Using a new variable q, the
differential equation can be rewritten as defined by (11) to
(13), ready to be solved by a standard integration routine.

q dxT (11)
dw

.afT agT afT -

4 = q _x+ Ax Au
with initial condition

q(to) = 0

agT OfT
+

w au

a cost-density function over a sufficiently long time interval
[to, t1]. The short-term cost is given by (18).

(t)
U(to, ti) = O(x, x")dt (18)

Given a long-term cost estimator (19), called a critic, with
some parameters w, which depend on the policy lr(Wa)
x(t) F g(x(t); Wa).

J(x(ti); wC) := (Wa) (x(ti); W (x(t), x(t))dt (19)

As seen before, in adaptive critic designs an estimator is
sought that is minimal with respect to its control output u, and
respectively to its parameters wa. Using Bellman's principle
of optimality (21, 22) must hold and two objectives can be
achieved simultaneously.

(20)
(13)

If this is expressed in an integral form the similarity with the
discrete ordered system is easily seen. In the discrete system
a summation is performed over the later dependencies of a
quantity whose target sensitivity is calculated, whereas here
an integration has to be performed, where the same total and
partial derivatives appear, only at infinitesimal time steps as
defined by (14) to (17).

(t t
x(ti) = x(to) + J (()(()9)d

to

dxT(ti)
dwa

ft| dfT(x(t), g(x(t); Wa))
=Ito dWa dt

ti[- dXT dfT 9TaT ~T]
= | [--+ --i dt

t0 dWa dx aWa Au

- i (x(t), x(t))dt + J 0(x(t), xc(t))dt(21)
to tl

= U(to, t1) + J (W) (x(tl); w,) (22)

Firstly, the critic weights w, can be adapted using the tradi-
tional adaptive critic updates, using an error (23) measuring
the temporal difference of the critic estimates.

E(x(to), to, ti;wa,wc) :=
jt)

O(x(t), x(t))dt + J(x(t1); w,) -J(x(to); wc) (23)(14)

Applying an adaptation law to the critic parameters w, to force
(15) the temporal error to zero, ensures optimality for the given

policy g(x; wa) with fixed parameters wa. For example, (24).
(16)

fti EdT Taf TagTT fT
ItotdWa (K@O + ax)±+ a2 j jdt (17)
to dWa lo-X C' 4U 'Wa (9U

Again, this is the integral formulation of the differential
equation (12) with initial condition (13) and dX q.
Therefore, the summation is exchanged by the integration and
the partial derivative has to be included in the integral. This is
not surprising, because in the discrete case total derivatives
of intermediate quantities are calculated recursively by the
same formula (6). Instead of a discrete ordered system, it is a
distributed (over time) and ordered (structural dependencies)
system in the continuous case, where infinitesimal changes
are expressed in terms of total time derivatives of the target
quantity x = f and split up into a part of total and partial
derivatives, for indirect and direct influence on the target
quantity, just as with the discrete case.
This trick of solving for a total derivative by integration is the
key to continuous adaptive critics.

A. Continuous Adaptive Critics
For continuous adaptive critics the plant and the cost-density

function are continuous and the one-step cost is an integral of

w, := -, Et)E(t)-~a; E(t (24)

Secondly, the policy can be improved by forcing (25,27) to be
zero.

d (U(to tl; wa) + Ji(wa)(x(t1); wc))
dwa

dU(to I ti; Wa)+ d(t) dJ7r(w-)(x(ti); w,)
dWa dWa dx(ti)

= 0
ti dXT(t) [aq$ a-T afT aq]

t0 dWa [aX Ox OU a dt
dxT(t1) dJ1r(w-)(x(ti);wc)
dWa dx(tl)

(25)

(26)

(27)

The superscript lr(Wa) indicates that this equation is only
valid for converged critics, given the current policy. Solving
(15) with initial condition (13) yields the result for the total
derivative dJ(a)(X(to);w) which can be used to update thedw,
actor weights Wa in the usual steepest gradient manner. This
is the continuous counterpart of the traditional adaptive critic
designs. A comparison with a discrete one-step critic shows

3002

11

J(X(to); WC) := J', ("L)
Xto); WC)

that in the continuous case indirect contribution to the total
derivative are always taken into account where as in the
discrete case the total derivatives taken over one step only,
misses out on the indirect contributions, as the following
examples shows. Naturally, a multi-step discrete version of the
temporal difference, starts approximating the continuous case
and this disadvantage starts disappearing. An example is a one-
step development of the state x(t + 1) = x(t) + f(x(t), u(t))
with some control u(t) = k(x(t);wa), such that the total
derivative of x(t + 1) with respect to the weights w is given
by (28) which is equal to (29) because dxwT = °

dxT(t + 1)
dwa

dxT(t) dxT(t) afT (x(t), u(t))
dWa dWa Ox(t)
dgT(x(t); Wa) afT (x(t), u(t))

dWa au(t)
_ gT(X(t); Wa) OfT(X(t), u(t))

O3Wa 19u(t)

If this procedure is now repeated at every time step and the
starting time to is always reset to the current time t, indirect
influence through x(t) and all its later dependencies, like
f(x(t), u(t)), are always going to be missed. This can amount
to a serious problem as substantial parts, like afT(X(t))

,9gT(X(t),u(t))
x)

or a(-(t-) , are ignored as well. That is the reason
why BPTT(h > 0) is so much more powerful than just
having the instantaneous gradient as in BPTT(0). The same
applies to the continuous formulation adopted here with the
additional benefit of having variable step size control from the
integration routine. One final remark to RTRL and BPTT.
The BPTT algorithm is considered more efficiently because
in its recursive formulation, gradients are calculated with
respect to a scalar target, while in RTRL the quantity (t)
is a gradient of a vector, resulting in a matrix quantity. The
same applies for the continuous calculation as well where
the matrix quantity 4 has to be integrated. However, as x
is the state vector of the system and not the vector of all
nodes as in a simultaneous recurrent network (SRN) using
the RTRL algorithm, x is most likely to be of much smaller
dimensionality. Therefore, having q as a matrix might not be
a too severe drawback.

B. Second Order Adaptation for Actor Training
As seen before, the short-term cost from time to to t1,

starting in state x(to) is given by (32).
{tl

U(x(to), to, ti; Wa) = j ¢b(X,x)dt (30)
= tj
= 0(xJ(x, g(x; w,,)))dt (31)

Jt

known as Bellman's optimality condition as in (33) and (34).

J(x(to);wa) = U(x(to), to, ti;wa) + J(x(tl); Wa) (33)
Jo = U+ Ji, for short. (34)

Where, J(X(to); wa) is the minimal cost in state x(to) follow-
ing the policy 7r: (x;wa). Thus, a better notation would be
JYr(Wa) (x(to)) to indicate that J is actually a pure function of
the state for a given policy. However, to simplify the notation
neither the superscript 7r(wa) nor the argument wa are used
if not necessary. In adaptive critic designs the long-term cost
function J(x; wa) is approximated by J(x; w,). This means
that if for a certain policy g(x; Wa) Bellman's principle of
optimality is satisfied, w, is determined by the cost density 0
and the policy parameters wa. An optimal policy is a policy
that minimizes J(x;wa) and therefore a necessary condition
is (35,36,37).

dJ(x(to))
dWa

dJo
dwa

dU(x(to), to, ti;wa) dJ(x(t1)) 0
= ~ ~ + = u (35)

dWa dWa
dU dJ1dU

+ 0= 0, for short (36)
dwa dWa
dU dxT dJl O (37)
dWa dWa dx

1) Newton's method: In traditional adaptive critic designs
(35) is used to train the actor parameters via a simple gradient
descent method. To speed up the traditional approach, New-
ton's method could be used, though with the additional cost
of computing the Jacobian of the function dJo with respect
to wa. In the context here, Newton's method for zero search
is given by (38) to (43).

F(X) = 0,
find X by iterating Xk Xk+l according to

xk+l = Xk- [-OF 1(Xk)[x F(X)

identifying
F := dJo

dWa
X := Wa

OF
ax

(38)

(39)

(40)

(41)

(42)d2J0
dwa7

yields

wk+1 =w. [d -1 dJoa Wa [dw2 dwa

Assuming a stationary environment, the long-term cost in state
x(to) and following the policy given by g(x; wa) is also

To calculate the Jacobian, equation (37) is differentiated again
with respect to wa, yielding (45) to (47), where dd and

dx imto
might be approximated by a backpropagated J-approximator

3003

Il

= (x, w,,)dt
to

(32)

(43)

or a A-critic and by a backpropagated A-critic, respectively.
d2J _ d I dU dxT dJ1'\

I=±l+ 1 (44)dw - dWa \dWa dWa dx /
d2U d dxT dJ (45)
dw2 dWa dWa dx)
d2U d2xTdJ+ d (dJl) dx
dw dw dx dWa dx dWa 6)
d2U d2xT dJ+ dxT d2J1 dx
dw ±dw2 dx dWa dx2 dWa

It has to be mentioned that d2XT is a third order tensor, but
with "the inner-product multipfication over the components
of x", the term dJl gets the correct dimensions. Matrix
notation starts to fall here and one is better advised to resort
to tensor notation with upper and lower indices, which is done
later for more complicated expressions.
An important note has to be made about derivatives of critics
and derivative (A-) critics. They represent not instantaneous
derivatives but rather averaged derivatives. Therefore, an av-
eraged version of (47) is used, given by (48), where the
expectation is taken over a set of sampled start states x(to)
according to their probability distribution from the domain of
interest.

_2J} d2U dim(x) d2xk dJ1 dxT d2J1 dx
E EJ=E

adwa dwa k=l dwa dXk + dwa dx2 dWa J

(48)

All the necessary terms in (48) can be fully expanded but due
to space limitations here will be publish later in an extended
version of this paper.
For the first actor training a mid-term interval [to, t1] could be
chosen with a critic output of zero, e.g. w = 0. In the next
cycle the actor weights Wa are fixed and the critic weights
wC are adapted, by forming the standard Bellman error EC
according to (49) and (50).

Ec := U(x(to),to, ti;wa) + J(wa)(x(tl); wc)
_Jlr(wa) (x(tj); wc) (49)

SwC := aEc Ec (50)
awc

After convergence of the critic has been achieved, the error EC
is close to zero, and the critic J'(Wa) (.; w,) is consistent with
the policy lr(Wa). A fast training method for the controller
has been achieved with Newton's method. However, after
one actor training cycle, the actor parameters Wa change to
Wa + SWa. To keep Bellman's optimality condition consistent,
the critic weights wc have to be adapted as well. Therefore,
for converged critics wc + 6wc and wc according to certain
policies with parameters wa + SWa and Wa, respectively, the
following conditions (51) and (52) must hold.

U(xO; Wa+&Wa) + J (w +6wa)(Xw; Wc+6wc)
J7r(Wa+6Wa) (Xo; WC+WC) ()

U(Xo, to tl; Wa) + J(wa)(x;wc) Jr(Wa)(;W) = 0 (52)

Where, x6wa means x(t) following the policy given by
g(x;wa + bwa), starting in state xo = x(to). This is used
in the simulation but due to space limitations it is impossible
to describe the full algorithm. The full algorithm will be
published in an extended paper later.

III. EXPERIMENT: LINEAR SYSTEM WITH QUADRATIC
COST-TO-GO FUNCTION (LQR)

The LQR system equations and cost-density are defined by
(53) to (54).

x=-=1 _-2 X [0.5 -1]
k=x+ u,A= 2]4 B=[0.5 2](3

O(x, x) = xTQ x+±TRk, Q = R = [] (54)

The control u = g(x, w) should be of a state-feedback
form with some parameters w and the cost-to-go function or
performance index is given by (55).

J(x, *) = j (x, x)dt (55)

A. Optimal LQR-control

To solve the system above with minimal performance index,
an Algebraic Riccati Equation (ARE) has to be solved. Details
can be found in an advanced book on modem control theory,
e.g. the excellent book by Brogan [9], chapter 14. However,
for numerical purposes, MATLAB's lqr-function can be used
to calculate the optimal feedback gain. To make use of
MATLAB's lqr-function the performance index has to be
changed to (56), where a simple comparison with the original
performance index yields Q = Q + ATRA, R = BTRB,
N = ATRB and RT = R. Additional requirements are that
the pair (A, B) be stabilizable, R > 0, Q -NR-NT > 0
and, that neither Q -NR-NT > 0 nor A - BR-NT has
an unobservable mode on the imaginary axis.

J(x,u) = J +(x, u)dt
- j (x'Q x + u R u + 2x Nu)dt (56)

The optimal control law has the form u(x) = g(x;K) =
-Kx with feedback matrix K which can be expressed as (57)
and (58).

K = ft-1(BTS+ &T) (57)
where S is the solution to the ARE:
0 = ATS + SA - (SBT+&N)R1(BTS + &T)+Q (58)

B. Numerical Example

3004

1) rank(K) = dim(x): Using the following system values
(59) to (61), the optimal feedback is given by (63).

A= [1 i2] eig(A) = {-2, -3} (59)

B [05 -1] (60)

Q=R=C=D [1] (61)

S= [1 0j solution to ARE (58). (62)

K*= ,op[0.3333 4.] ,optimal feedback by (57). (63)

In [3] there are also other feedback methods for LQR sys-
tems investigated for comparison to determine long-term costs
and controls. One of them is derived from the Calculus of
Variations (CoV), which is a theoretical equivalent method to
dynamic programming. If the matrix B is full rank, all the
(stable) methods investigated, achieve the same optimal result
for the feedback matrix K*.

2) rank(K) < dim(x): Lowering the dimension of the
control u, and therefore the rank of the control matrix B and
the feedback matrix K, to impose constraints on the possible
mappings g x U, fails all adaptive methods investigated
in [3], except the adaptive critic design and of course the
solution calculated via (57) and (58). The adaptation based on
CoV violates the independence conditions of the fundamental
lemma of the calculus of variations. In the case of a reduced
rank feedback matrix, an adaptation law based on CoV with
an augmented cost-functional and the introduction of Lagrange
multipliers would have to be developed. This seems far more
complicated then the approach via ACDs. The optimal reduced
rank feedback is given by (68), based on the system matrices
(64) to (66).

A= [1 -2], eig(A) = {-2,-3} (64)

B=[13] (65)

Q=R=C = D [] (66)

[1.0207 -0.1865]
S= [01865 2.68] solution to ARE (58) (67)

K* = [-0.2420 0.1777], optimal feedback by (57). (68)

Using traditional adaptive critics will find the correct opti-
mal values for K in both cases independent of the rank of K.
However, when used with the training methods introduced in
section II, only a few actor-critic training cycles are needed
and thus speed up the traditional adaptive critic training quite
considerably.
C. Results for Continuous ACDs with Newton's Method

In this section the Newton training is tested on the same
LQR example as has been used previously.

1) rank(K) = dim(x): Figure 2 shows the actor or
feedback parameters K. The solid lines represent only periods
of actor training with input and output values to the Newton
routine. To improve stability, Newton's method was extended
to only allow chan es dK which satisfy IIdKIloo < 101 IKIK I
otherwise dK := fdKIJ dK. It may occasionally happen that
Newton's method diverges from a random set of parameters,
e.g. if their values are too large and with that feedback
matrix even the short-term integral gets very large values and
numerical problems occur, or, the proposed clipping might
cause oscillations. In these relatively seldom cases, another
initialization is the fastest way to solve the problem. Figure 3
shows adaptation for the critic parameters w,. Remarkably,
the linearized critic update, outlined, works very well and
speeds up convergence, especially when actor changes are of
significant magnitudes.

2) rank(K) < dim(x): Similar observations are made as
in the case with a fully ranked feedback matrix and after only
4 actor-critic cycles the optimal values are achieved within
i0-5. Figures 4 and 5 show corresponding actor and critic
weight adaptation, respectively.

IV. CONCLUSION

There are some valid points in using continuous ACDs.
Plants are often described by differential equations like (1) and
those equations can be used directly, without discretization.
This is done implicit by the integration routine which is a
second advantage, as an automatic step-size integrator does an
adaptive sampling for free. In contrast to RTRL a "direct state
vector" x(t) can be used and no additional states, e.g. from
a neural network have to be introduced which increases the
computational load extensively due to the o(N3) and o(N4)
computational complexity in space and time, respectively, of
the general RTRL algorithm [4], where N = dim(x) is the
dimensionality of the state vector.

Another advantage is the improvement of a correction
algorithm for concurrent actor-critic training, which was only
outlined here and will be published in an extended version later
together with all the necessary adaptation equations for the
implementation of arbitrary system and critic approximators.
This allows critic correction just after an actor training cycle
to keep the Bellman optimality condition correct to first order
approximation of the introduced policy change by the actor
update. This works well, at least for low dimensional systems
as in the demonstrated LQR example. For more complicated
systems it might be of advantage to approximate global cost
functions by local quadratic ones as it was done very success-
fully by Ferrari in [10]. However, the equations used allow the
development for any system and any cost-function, not only
quadratic ones, as long as they are sufficiently differentiable.

ACKNOWLEDGMENT

The first author would like to thank Danil V. Prokhorov
and Paul J. Werbos for their valuable feedback as Ph.D.
thesis reviewers and acknowledges the useful suggestions
made therein which also had an influence on this paper, as

3005

0.3

[±-k, l
0.1

I c

l

I -0l

-0.4' -
40 60 80 100 120 140 160 180

Tr.i.g tir^ per second

,N. -.....

|-~~~~~~~~~~~I-'ll
20 40 60 80 100 120 140 160

TreIng tt. per 2

Fig. 2. Trajectory of the parameters K for the system given in section I11-
B. . The solid lines represent the time actor training via Newton's method.
During the time indicated by the dashed lines, actor parameters are frozen
and critic weights are adapted After four actor-critic cycles the parameters
are learned within an error better than 10-5.

14r

12

0.8
3u.

0.6

02

-02

-0.4'

H...

Fig. 4. Trajectory of the parameters K for the system given in section 111-
B.2. The solid lines represent the time actor training via Newton's method.
During the time indicated by the dashed lines, actor parameters are frozen
and critic weights are adapted After four actor-critic cycles the parameters
are learned within an error better than 10-5.

3-

2.5-

2-

I15

0

054

0 20 40 60 s0 100
Tr.ing tkn pe Wd

120 140 100 10 20 40 60 80 100 120 140 160
Tmlnt tbperp. ond

Fig. 3. Trajectory ofcritic parameters W,. The solid lines represent the time
critic training is performed. After the first actor-critic cycle the actor-critic
consistency is achieved and the proposed linear critic updates due to actor
changes can be applied. This is shown by the black lines which represent a
jump towards the optimal values, especially for the non-zero WI 1, W22 at the
second actor-critic cycle.

it is basically an excerpt from the first author's thesis [3].
This research was partly supported by the Australian Research
Council (ARC).

REFERENCES

[I] J. S. Dalton. A Critic based system for neural guidance and control.
Ph.d. dissertation in ee, University of Missoury Rolla, 1994.

[21 P. Werbos. Stable adaptive control using new critic designs.
http://xxx.lanl.gov/abs/adap-org/9810001, March 1998.

[3] Thomas Hanselmann. Approximate Dynamic Programming with Adap-
tive Critics and The Algebraic Perceptron as a Fast Neural Network
related to Support Vector Machines. Ph.d. dissertation, The Unviversity
of Western Australia, Perth, Australia, 2003. Available by request from
the author (thomash@ee.uwa.edu.au).

[4] S. Wdiliams and D. Zipser. Gradient-based learning algorithms for
recurrent networks and their computational complexity. In Chauvin
and Rumelhart, editors, Backpropagation: Theory, Architectures and
Applications, pages 433-486. LEA, 1995.

Fig. 5. Trajectory of critic parameters W. (note: W12 = W21. The solid
lines represent the time critic training is performed After the first actor-critic
cycle the actor-critic consistency is achieved and the proposed linear critic
updates due to actor changes can be applied. This is shown by the black lines
which represent a jump towards the optimal values, given by (67), especially
for the non-zero WI1 , W22 at the second actor-critic cycle.

[51 S. Haykin. Neural Networks a Comprehensive Foundation, chapter 15.
Prentice Hall, Upper Saddle River, NJ, 2nd edition, 1998.

[6] R. J. Williams and D. Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1989.

[7] T. Hanselmann, A. Zaknich, and Y. Attikiouzel. Connection between
bptt and rtrl. 3rd IMACS/IEEE International Multiconference on
Circuits, Systems, 4-8 July 1999 Athens, July 1999. Reprinted in
Computational Intelligence and Applications, Ed. Mastorakis, Nikos, E.,
World Scientific, ISBN 960-8052-05-X,1999.

[8] P. Werbos. Beyond regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. Ph.d. dissertation, Harvard Univ., Cambridge,
MA, 1974. Reprinted in The Roots of Backpropagation: From Ordered
Derivatives to Neural Networks and Political Forecasting.

[9] William L. Brogan. Modern Control Theory. Prentice Hall, Upper
Saddle River, New Jersey 07458, 3rd edition, 1991.

[10] S. Ferrari and R. Stengel. On-line adaptive critic flight control. Journal
of Guidance, Control and Dynamics, 27(5):777-786. Sept.-Oct. 2004.

3006

1- 1-1

'12
-uln

I

0

.._1-_--_--__1_---,_-.--

.......

F___I Il

'r-

	Cover page version IEEE
	continuous adaptive critic designs

