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Abstract. Estimation of missing precipitation records is one of the important 

tasks in hydrological study. The completeness of precipitation data leads to 

more accurate results from the hydrological models. This study proposes the 

use of modular artificial neural networks to estimate missing monthly rainfall 

data in the northeast region of Thailand. The simultaneous rainfall data from 

neighboring control stations are used to estimate missing rainfall data at the 

target station. The proposed method uses two artificial neural networks to learn 

the generalized relationship of rainfall recorded in dry and wet periods. Inverse 

distance weighting method and optimized weight of subspace reconstruction 

method are used to aggregate the final estimation value from both networks. 

The experimental results showed that modular artificial neural networks 

provided a higher accuracy than single artificial neural network and other 

conventional methods in terms of mean absolute error.  

Keywords: Missing precipitation records, Modular artificial neural networks, 

Northeast region of Thailand, Inverse distance weighting method, Optimized 

weight of subspace reconstruction method. 

1 Introduction 

Precipitation data are one of the most important variables used in hydrological 

modeling in the assessment of streamflow and rainfall-runoff. These models 

fundamentally require the complete and reliable rainfall data records [1]. Normally, 

ground-based observations are the primary sources of rainfall data. A large number of 

rain gauge stations are installed throughout the study area to record the rainfall. 

However, in practice, rainfall records often contain missing data values due to 

malfunctioning of the equipment and/or other conditions. Such imperfect rainfall 

record could affect the performance of the hydrological models. Therefore, estimating 

missing rainfall data is an important task in hydrological modeling [2]. This study 

proposes the use of Modular Artificial Neural Networks (MANN) to estimate missing 

monthly rainfall data. This paper is organized as follows: Section 2 describes some of 

the related works. Section 3 illustrates four case studies and the dataset being used. 

Section 4 describes the details of MANN used in this study. Section 5 shows the 
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experimental results and an analysis of the outcomes. Finally, a conclusion is 

presented in Section 6. 

2 Related Works 

In the last decade, many studies have been dedicated to address the missing rainfall 

data problem. Teegavarapu et al. [2] examined Inverse Distance Weighting Method 

(IDWM) and its variants to estimate the missing precipitation data. They suggested 

several ways to improve IDWM by defining some parameters and surrogate measures 

for distance used in IDWM. They concluded that using correlation coefficient as 

weight for revised IDWM and Artificial Neural Network (ANN) yielded better 

accuracy. Later, Teegavarapu et al. [3] improved Ordinary Kriging (OK) by using 

ANN to create semivariogram instead of using a prior definition of a mathematical 

function. This revised technique was used to estimate the missing precipitation data. 

The results showed that the use of ANN with OK had more advantages than the 

original OK. Nevertheless, Teegavarapu et al. [4] purposed a fixed functional set 

genetic algorithm method to derive the optimal functional forms for estimating the 

missing precipitation data. The method used genetic algorithm and non-linear 

optimization formulation to obtain functional form and its coefficients. The proposed 

method was compared with IDWM and Correlation Coefficient Weighting Method 

(CCWM). Their method showed improvement to IDWM and CCWM in term of root 

mean square error. Kim et al. [1] applied Regression Tree (RT) and ANN to construct 

missing precipitation data. Regression tree was used to create the list of influenced 

stations. These stations were then used to estimate the missing precipitation data by 

ANN models. The result showed that the use of RT + ANN provided better estimation 

than the use of RT or ANN alone. Piazza et al. [5] compared various spatial 

interpolation methods to create a serially complete monthly precipitation time series. 

Their study suggested that the best estimation result could be derived from the use of 

a combination method called residual kriging in which the residual from linear 

regression are interpolated by ordinary kriging method. Another comparison work is 

Kajornrit et al. [6]. They compared several spatial interpolation methods to estimate 

missing rainfall data in the northeast region of Thailand. They suggested the use of 

statistics of dataset as a guideline to select the appropriate estimation techniques. All 

works mentioned above used the single model to estimate missing rainfall data. Since 

the nature of rainfall data could be grouped into dry and wet period, the use of 

modular models may improve the estimation accuracy. Therefore, this study proposes 

the use of modular artificial neural networks to perform this task.  

3 Four Case Studies and Dataset  

The case study area selected sites in the northeast region of Thailand as illustrated in 

Figure 1. In this study, four rainfall stations are assumed to have missing rainfall data 



records (target station). The simultaneous rainfall data from neighboring stations 

(control station) are used to estimate the missing data at target station. Many 

researchers have recommended the use of three or four closest stations for application 

of IDWM [2]. This suggestion related to the work of Eischeid [7], which showed that 

inclusion of more than four stations does not significantly improve the interpolation 

and may in fact degrade the estimate.  

This study selected three closest control stations to estimate the missing data at 

the target station. An additional reason to select only three control stations is due to 
the availability of data. Since the dataset contains a few real missing data, the data 

records that have missing data must be removed. The number of available data 

records decreases when the number of control stations increases. Thus, the use of 

three control stations is deemed to be an appropriate selection for this study. 

However, it does not necessarily mean it is the best. 

The rainfall data range from 1981 to 2001. The data from 1981 to 1998 are used 

to calibrate the models, and data from 1999 to 2001 are used to validate the 

developed models. Since there are a few real missing data records in control stations 

in the earlier period, such records have been removed. After removing missing 

records from calibration data, the proportion between validation and calibration data 

falls between 18 to 20 percents approximately. To validate the models, Mean 

Absolute Error (MAE) is adopted as given in equation (1).  
 

𝑀𝐴𝐸 =   𝑂𝑖 − 𝑃𝑖 𝑚
𝑖=1 𝑚  .          (1) 

 

where Oi and Pi is the observed the estimated value respectively, m is the number of 

missing data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Four selected case study sites in the northeast region of Thailand, case 1: ST356010, 

case 2: ST381010, case 3: ST388002, case 4: ST407005. Case 1 and Case 3 sites are located 

over and under the Phu-Phan mountains range. Case 2 sites are located in the Northern Sakon-

Nakhon plain and Case 4 sites are located in the Southern Khorat plain. 
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4 The Modular Artificial Neural Networks 

Figure 2 shows an overview of the proposed model. The proposed methodology could 

be divided into two steps. The first step is to partition the data and create the 

estimation modules. In this step, the training data are clustered into different groups 

and then the data in each group are used to train an ANN. The second step is to create 

an aggregation module. The function of this module is to finalize the decision value 

from those networks. In this study two aggregation methods are introduced. Both 

methods are based on the concept of Tobler’s first law, “Everything is related to 

everything else, but near things are more related than distant things” [8].   

In the first step, since the nature of rainfall data could be divided into dry and wet 

period, the proposed method partitions the data into two clusters according to the 

seasons. All the input-output pairs are then clustered by using Fuzzy C-Mean (FCM) 

clustering technique. Once the two training data are prepared, supervised neural 

network are used to capture the relationship between these input-output pairs. Among 

several types of supervised neural network, Back-Propagation Neural Network 

(BPNN) has been widely used in hydrological study. In this study one hidden layer 

BPNN is used to learn from the training data. The numbers of input node, hidden 

node and output node are three, four and one respectively. The transfer functional 

used in the model is sigmoid function. 

The second step is to create an aggregation module. This study proposed two 

aggregation methods, Inverse Distance Weighting Method (MANN-IDWM) and 

Optimized Weight of Subspace Reconstruction Method (MANN-OWSR). In the first 

method, the final decision output should be closer to the decision output from closer 

ANN than farther ANN. The distance between the data point and the center of clusters 

are used to weight the final decision value from both ANNs inversely. The 

mathematic formula of MANN-IDWM is 
 

𝑧𝑜 = [𝑧1
1

𝑑1
𝑘 + 𝑧2

1

𝑑2
𝑘]  

1

𝑑1
𝑘 +

1

𝑑2
𝑘    .                 (2) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The architectural overview of the proposed model. The first and second ANN captures 

the relationship of rainfall in the dry and wet period respectively. In the aggregation module, 

the training data are used only for the MANN-OWSR model. 
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where Z1 is predicted value from ANN1 and Z2 is the predicted value from ANN2, d1 

and d2 are the distance between the data point to the centroid of cluster 1 and cluster 2 

respectively. k is the power parameter. The optimized k parameter can be found from 

training data.  

In the second method, the optimized weight of subspace reconstruction method, 

based on the idea that if the weight assigned to a data point in order to weight final 

decision value from both ANNs is optimal, this weight value should also be optimal 

for the nearest data points in the same manner. Assume δ to be a small region around 

an input vector Zs and a set of data points {Z1, Z2,…,Zk} to be the data points around 

the region δ in which  
 

 𝑍𝑖 − 𝑍𝑠 ≪ 𝛿 .     (3) 
 

If the weight applied to Zs is the optimal weight. That weight should be the optimal 

value for all the points in the region. So, if the weight applies to all the points in that 

region is optimal, the error of equation shown below should be minimal. 
 

𝜀 =
1

𝑘
  𝑧𝑖

′ − 𝑧𝑖 
2𝑘

𝑖=1  .         (4) 

 

where ε is mean square error, k = number of data point in the region δ, 𝑧′  is predicted 

value from MANN and z is the observed value. Considering this case study, the final 

decision value comes from two ANNs. The final estimated value is 𝑧′ = 𝛼𝑧𝑑
′ +  𝛽𝑧𝑤

′  

and 𝛼 +  𝛽 = 1  Then  
 

𝑧′ = 𝛼𝑧𝑑
′ +  (1 − 𝛼)𝑧𝑤

′   .               (5) 
 

where 𝑧′  is final predicted results and α is weight applied. Replace equation (5) into 

equation (4). Then 
 

𝜀 =
1

𝑘
  (𝛼𝑧𝑑𝑖

′ +  (1 − 𝛼)𝑧𝑤𝑖
′ ) − 𝑧𝑖 

2𝑘
𝑖=1  .        (6) 

 

The equation (6) is the cost function that we have to minimize in order to find the 

optimal value of α. Then the problem is to optimize one variable equation. In order to 

optimize the cost function, this study uses a MATLAB function call "fminbnd" to 

minimize MSE. The function "fminbnd" is used to find the minimum of the single 

variable function of a fix interval. It finds a minimum for a problem specified by   

minx f(x), subject to x1 < x < x2 where x1, x, x2 are scalars and f(x) is a function that 

returns a scalar. Its algorithm is based on golden section search and parabolic 

interpolation. More details have been described in references [9] and [10]. 

In the case that the data points in the region are sparse or there is no point in the 

defined region, the aggregation method will use MANN-IDWM instead. Another 



consideration is the size of the small region (or radius). This optimal size can be 

found by direct search using training data. However, for the rainfall data, the 

distribution of rainfall among a year is varying, so the radius should not be fixed in 

the input space. 

Taking the distribution of data in Figure 3 into account, one can see that the 

distribution of data is concentrated near origin and spread out in all dimension. Thus, 

the proposed method partition input space into three regions. Region 1 begins from 

the origin to center of the first cluster. Region 2 is between center of first and second 

cluster. Region 3 is the area outside center of cluster 2. In each region, the training 

data have been used to investigate the appropriate radius by direct searching. 

5 Experimental Results 

To evaluate the accuracy of the developed models, the rainfall data from 1999 to 2001 

are assumed to be missing data records and they needed to be estimated. The 

proposed models have been compared with the Inverse Distance Weighting Method 

(IDWM), the Correlation Coefficient Weighting Method (CCWM) and Artificial 

Neural Network (ANN). Table 1 shows the results of evaluation.  

In IDWM, the optimized power parameter k could be defined by considering MAE 

of data in the calibration period when increasing power parameter. It was found that 

the optimized power parameters are 0.8, 4.5, 2.8 and 0 for case 1 to case 4 

respectively. In CCWM, the correlation coefficient of rainfall data between each 

control stations and target station in calibration period are used in this method. The 

network architecture of the ANN is the same as the architecture used in the MANN 

method. 

 

 

Fig. 3. An example of the distribution of rainfall data in the input space (TS356010). 
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Table 1. Mean Absolute Error (MAE) of validation data 

Models ST356010 ST381010 ST388002 ST407005 

IDWM 245.02 267.32 500.46 399.10 

CCWM 261.05 285.38 484.92 399.02 

ANN 244.59 258.13 487.95 481.11 

MANN - IDWM 232.04 230.83 456.25 387.52 

MANN - OWSR 212.91 228.40 448.36 389.87 

 

 

In case 1 (ST356010), CCWM gave the highest estimation error. IDWM and ANN 

showed no different in the accuracy. MANN-IDWM provided an improvement from 

ANN and other conventional method up to 5 percents. In turn, MANN-OWSR 

provided significantly improvement from MANN-IDWM to almost 8 percents. This 

case study pointed out that the proposed methods, especially MANN-OWSR can 

improve the performance of ANN and other conventional models. 

In case 2 (ST381010), CCWM provided the lowest accuracy. IDWM provided 

better estimation than CCWM, and ANN provided better estimation than IDWM. 

MANN-OWSR showed a slight improvement over MANN-IDWM. However, both 

models showed better result than CCWM, IDWM and ANN of up to 13 percents 

approximately. 

In case 3 (ST388002), IDWM provided the lowest accuracy whereas CCWM and 

ANN provided almost similar performance. MANN-IDWM improved the estimation 

of the ANN by 6.50 percents and MANN-OWSR improved the estimation of ANN by 

8 percents. In this case study, MANN-OWSR again showed better estimation results 

than MANN-IDWM 

In case 4 (ST407005), IDWM and CCWM provided almost similar estimation 

results whereas ANN showed very high estimation error in this case study. However, 

both MANN-IDWM and MANN-OWSR still provided lower estimation error than 

IDWM and CCWM. This case study pointed out that MANN-IDWM and MANN-

OWSR could still perform good estimation results even though ANN provided high 

estimation error. 

Since the large estimation error occurred to ANN in case 4, then, more 

investigation is needed. It was found that there are some rainfall records in the 

calibration period which the relationship of control stations and target station could be 

considered as irregular events; For example, there is an overshoot rainfall record at 

target station whereas rainfall data at control stations are normal. If such record 

occurred frequently in the training data, ANN could not provide reasonable estimation 

and thus yield large MAE. However, only ANN is affected by this noise data because 

ANN used this record as input-output pair in adapting process whereas the IDWM 

and CCWM do not use the output. In case of MANN, these irregular data are 

separated into two datasets. Although one ANN is affected by this data, another ANN 

is not. Therefore, when the final decision value is evaluated from both ANN, the 

irregular effect is reduced.  



6 Conclusion 

This study proposed the use of modular artificial neural networks to estimate the 

missing monthly precipitation records. The proposed models use fuzzy c-mean 

clustering technique to partition the data into dry and wet period according to the 

nature of the data. Back-propagation neural networks have been used to capture the 

relationship of rainfall in each period. In the aggregation module, this study used an 

inverse distance weighting method and an optimized weight of subspace 

reconstruction method to form the final decision value.  Four case studies in the 

northeast region of Thailand have been used to test the proposed models. The 

simultaneous rainfall records from three nearest control stations were used to estimate 

the missing rainfall record at the target station. The experimental results reported so 

far have showed that the use of modular artificial neural network can improve the 

performance of single artificial neural network and other conventional method to 

estimate the missing rainfall data. Furthermore, modular artificial neural networks are 

more tolerant to irregular data than single artificial neural networks. 
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