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Abstract

Bayesian inference is considered for the multivariate regression model with distribu-
tion of the random responses belonging to the multivariate scale mixtures of normal
distributions. The posterior distribution of the regression parameters and the predictive
distribution of future responses for the model are derived when the prior distribution of
the parameters is from the conjugate family and they are shown to be identical to those
obtained under normally distributed random responses. This gives inference robustness
with respect to departures from the reference case of independent sampling from the
normal distribution.
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1 Introduction

Linear regression models with normal and non-normal responses have been considered
by several authors. The model with normal responses has been considered by Geisser
(1965, 1993), Guttman and Hougaard (1985) and Khan (2004) among others, using a
Bayesian analysis with noninformative prior, and Fraser (1979) and Fraser and Haq (1969)
using a non-Bayesian approach. One of the early papers on non-normal responses is by
Zellner (1976) in which a univariate regression model with multivariate Student-t responses
is examined. Since then, there have been numerous papers on the multivariate regression
model with random responses assumed to have matrix elliptically contoured distributions,
the matrix-t distribution being a special case of this family of distributions. Some examples
of univariate and multivariate regression models with non-normal responses are Anderson
and Fang (1990), Fraser and Ng (1980), Haq and Khan (1990), Khan (2002) and Ng (2000,
2002). Using noninformative prior in a Bayesian analysis, Ng (2002) shows that the poste-
rior distribution of regression parameters and the predictive distribution of future responses
are robust with respect to departures of any member of the matrix elliptically contoured
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distribution from the normal distribution. In this paper, we consider the case in which prior
information is from the conjugate family of distributions and the random responses have
multivariate scale mixtures of normal distributions, which is a subclass of the elliptical
family. We show that the posterior and predictive distributions are also unaffected by a
change in the distribution from normal to this larger class of distributions. These results
extend those of Jammalamadaka et al. (1987) and Zellner (1976).

In Section 2, the posterior distribution of the regression parameters is derived and in
Section 3, the Bayesian predictive distribution is obtained. Some concluding comments are
made in Section 4.

2 Posterior Distribution of Regression Parameters

Y = BX + ψ(z)−1/2E, (2.1)

where the n columns of the m×n response matrix Y can be regarded as a sample of size n

from a m-dimensional population, X is the k×n design matrix of known values of rank k,
B is the m×k matrix of unknown regression parameters, n > m+k, and ψ(z) is a positive
function of a univariate random variable z, with distribution function W (z) independent of
E. The m× n error component E is assumed to have a matrix variate normal distribution,
N(0, Φ−1⊗ In), with mean 0 and covariance matrix Φ−1⊗ In where 0 is a matrix of zeros
and ⊗ is the Kronecker product of the two matrices Φ−1 and In; In is the n × n identity
matrix and Φ is the m×m precision matrix of each column of E. Model (2.1) implies that
conditionally on z, Y is N(BX,ψ−1(z)Φ−1⊗In) while the unconditional density function
can be written as

f(Y |B, Φ) ∝
∫

f(Y |B, Φ, z)dW (z), (2.2)

where

f(Y |B, Φ, z) ∝ |ψ(z)Φ |n/2etr
{
− 1

2
ψ(z)Φ (Y − BX)(Y − BX)T

}
. (2.3)

The density function above defines a family of scale mixtures of normal distributions
which includes the matrix-t, Cauchy and logistic distributions, see Ravishanker et al. (2002,
pp.182-183). When z has a gamma distribution, G(v/2, v/2), with density function

f(z|v) ∝ zv/2−1exp(−vz/2)

and ψ(z) = z, it can be easily shown that the unconditional distribution of Y is matrix-t
with density function given by, Kowalski et al. (1999),

f(Y |B,Φ) ∝ |Φ|n/2(1 + tr[Φ(Y − BX)(Y − BX)T /v])−(v+mn)/2.
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Let Γ = ψ(z)Φ with Jacobian of transformation, J(Γ → Φ) = ψ(z)m(m+1)/2 and
assume a normal-Wishart prior for (B, Γ) i.e.,

π(B|Γ) ∝ |Γ|k/2etr
{
− 1

2
Γ(B − B∗)A(B − B∗)T

}

π(Γ) ∝ |Γ|(v∗−m−1)/2etr
{
− 1

2
DΓ

}

with known hyperparameters v∗, B∗ (m × k matrix), A (k × k matrix) and D (m × m

matrix). Suppose

π(B, Φ|z) ∝ π(B|Γ)π(Γ)|J(Γ → Φ)

∝ ψ(z)m(v∗+k)/2|Φ|(v∗+k−m−1)/2etr
{
− 1

2
ψ(z)Φ[(B−B∗)A(B−B∗)T +D]

}
.

(2.4)

Extending the result of Jammalamadaka et al. (1987), the conjugate prior density for
the scale mixtures of normal distributions can be obtained as

π(B,Φ) ∝
∫

π(B, Φ|z)dW (z). (2.5)

If ψ(z) = z and z has the gamma distribution G(v/2, v/2), then evaluation of (2.5)
yields the conjugate prior for the family of matrix-t distributions since ψ(z) = z results in
Y having a matrix-t distribution. Evaluation of (2.5) gives the conjugate prior density for
(B,Φ) as

π(B, Φ)∝ |(v+trΦD)−1Φ|k/2(1+tr[(v+trΦD)−1Φ(B−B∗)A(B − B∗)T ])−[m(k+v∗)+v]/2

× |Φ|(v∗−m−1)/2(v + tr[ΦD])−(mv∗+v)/2.

Thus π(B,Φ) is of the form of a matrix-t density function of B, given Φ, multiplied by
a multivariate inverted Beta density (see Johnson et al. 1972, p. 236) of Φ. For m = 1,
the prior reduces to a product of a multivariate Student-t density and a F density as in
Jammalamadaka et al. (1987) and Zellner (1976).

Using the prior information above, we obtain the following result on the posterior dis-
tribution B.

Theorem 2.1. Using the conjugate prior on (B, Φ) given in (2.4), the posterior distribu-
tion of the regression parameters B for the multivariate regression model (2.1) with scale
mixtures of normal distributions for Y is matrix-t:

tmk(B1, (XXT + A)−1, R, n + v∗ −m + 1),

where

B1 = (Y XT + B∗A)(XXT + A)−1,
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R = Y Y T + B∗AB∗T − (Y XT + B∗A)(XXT + A)−1(Y XT + B∗A)
T

+ D.

(see Box and Tiao 1973, p. 441-442 for notation).

Proof. To obtain the above result, note that

f(B|Y ) ∝
∫ ∫

f(Y |B, Φ, z)π(B, Φ|z)dΦdW (z)

∝
∫

f(B|Y, z)dW (z),

where

f(B|Y, z) =
∫

f(Y |B,Φ, z)π(B, Φ|z)dΦ

∝
∫

ψ(z)m(n+v∗+k)/2|Φ|(n+v∗+k−m−1)/2

×etr
{
− 1

2
ψ(z)Φ(Y − BX)(Y − BX)T

}

×etr
{
− 1

2
ψ(z)Φ[(B − B∗)A(B − B∗)T + D]

}
dΦ. (2.6)

Combining the quadratic forms in (2.6), we have

(Y−BX)(Y−BX)T +(B−B∗)A(B−B∗)T +D = (B−B1)(XXT +A)(B−B1)T +R.

The integral (2.6) becomes

f(B|Y, z) ∝
∫

ψ(z)m(n+v∗+k)/2|Φ|(n+v∗+k−m−1)/2

× etr
{
− 1

2
ψ(z)[(B − B1)(XXT + A)(B − B1)T + R]Φ

}
dΦ.

Let U = ψ(z)[(B − B1)(XXT + A)(B − B1)T + R]Φ with Jacobian of transformation
|ψ(z)[(B − B1)(XXT + A)(B − B1)T + R]|−(m+1)/2. Hence

f(B|Y, z) ∝
∫

ψ(z)m(n+v∗+k)/2
∣∣∣[(B − B1)(XXT + A)(B − B1)T + R]−1

× ψ(z)−1U
∣∣∣
(n+v∗+k−m−1)/2

× etr
{
− 1

2
U

}
|ψ(z)[(B − B1)(XXT + A)(B − B1)T + R]|−(m+1)/2dU

∝ |(B − B1)(XXT + A)(B − B1)T + R|−(n+v∗+k)/2

×
∫
|U |(n+v∗+k−m−1)/2etr

{
− 1

2
U

}
dU

∝ |(B − B1)(XXT + A)(B − B1)T + R|−(n+v∗+k)/2,

which is independent of z.

The posterior distribution of B under matrix normal responses is identical to the matrix-
t distribution above (see Broemeling 1985, p.379).
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3 The Prediction Distribution

The Bayesian approach to the prediction problem can be described as follows. Suppose
Y in equation (2.1) is observable and Yf in

Yf = BXf + ψ(z)−1/2Ef (3.1)

is an unobserved m × nf matrix of future responses with a k × nf design matrix Xf of
known values also of rank k with n + nf > m + k.

The density function of (Y, Yf ) is given by

f(Y, Yf |B, Φ) ∝
∫

f(Y, Yf |B, Φ, z)dW (z),

where

f(Y, Yf |B, Φ, z) ∝ |ψ(z)Φ|(n+nf )/2etr
{
− 1

2
ψ(z)Φ[||Y −BX||2+||Yf−BXf ||2]

}
(3.2)

and ||M ||2 = MMT for any matrix M .
The Bayesian predictive density function of Yf is defined as

f(Yf |Y ) ∝
∫ ∫ ∫

f(Y, Yf |B, Φ, z)π(B,Φ|z)dBdΦdW (z), (3.3)

where π(B, Φ|z) is given in (2.4).
We have the following result based on a conjugate prior on (B, Φ).

Theorem 3.1. For the multivariate regression model (2.1) where Y has a scale mixtures
of normal distributions and the prior information on (B,Φ) is the conjugate prior given
in (2.4), the predictive distribution of Yf is the matrix-t distribution with n + v∗ −m + 1
degrees of freedom, i.e., tnf m[M, H−1, R1, n + v∗ −m + 1], where

L = XXT + XfXT
f + A

H = Inf
−Xf

T L−1Xf

M = (Y XT + B∗A)L−1XfH−1

R1 = Y Y T + B∗AB∗T + D + (Y XT + B∗A)L−1(Y XT + B∗A)T

−(Y XT + B∗A)L−1XfMT .

Inf
is the nf × nf identity matrix.

Proof. To obtain the above result, note that substituting (2.4) and (3.2) in (3.3) yields the
predictive density function of Yf as

f(Yf |Y ) ∝
∫

f(Yf |Y, z)dW (z)
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where

f(Yf |Y, z) ∝
∫ ∫

f(Y, Yf |B,Φ, z)π(B, Φ|z)dBdΦ

∝
∫ ∫

ψ(z)m(n+nf+v∗+k)/2|Φ|(n+nf+v∗+k−m−1)/2

×etr
{
− 1

2
ψ(z)Φ[||Y − BX||2 + ||Yf − BXf ||2]

}

×etr
{
− 1

2
ψ(z)Φ[(B − B∗)A(B − B∗)T + D]

}
dBdΦ. (3.4)

By combining the quadratic forms, the matrix expression in (3.4) can be written as (see
Broemeling, 1985)

||Yf − BXf ||2 + ||Y − BX||2 + (B − B∗)A(B − B∗)T + D

= (Yf −M)H(Yf −M)T + (B − B2)L(B − B2)T + R1

where B2 = (YfXT
f + B1(XXT + A))L−1 with B1 defined in Section 2. The integral

(3.4) becomes

f(Yf |Y, z) ∝
∫ ∫

ψ(z)m(n+nf+v∗)/2|Φ|(n+nf+v∗−m−1)/2

× etr
{
− 1

2
ψ(z)Φ[(Yf −M)H(Yf −M)T + R1]

}
dΦ

× ψ(z)mk/2|Φ|k/2etr
{
− 1

2
ψ(z)Φ(B − B2)L(B − B2)T

}
dB.

Integrating out B, we have

f(Yf |Y, z) ∝
∫

ψ(z)m(n+nf+v∗)/2|Φ|(n+nf +v∗−m−1)/2

× etr
{
− 1

2
ψ(z)[(Yf −M)H(Yf −M)T + R1]Φ

}
dΦ.

The transformation U = ψ(z)[(Yf −M)H(Yf −M)T + R1]Φ with Jacobian of transfor-
mation |ψ(z)[(Yf −M)H(Yf −M)T + R1]|−(m+1)/2 yields

f(Yf |Y,Z) ∝ |(Yf −M)H(Yf −M)T + R1|−(n+nf+v∗)/2

×
∫
|U |(n+nf+v∗−m−1)/2etr

{
− 1

2
U

}
dU

∝ |(Yf −M)H(Yf −M)T + R1|−(n+nf+v∗)/2,

which is independent of z.

The predictive distribution of Yf is the same as that for matrix normal responses (see
Broemeling, 1985) and extends the result in Jammalamadaka et al. (1987).
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4 Concluding Remarks

When random responses in a multivariate regression model are assumed to have a mul-
tivariate scale mixtures of normal distributions, the Bayesian analysis using a prior in the
conjugate family yields posterior distribution of the regression parameters and predictive
distribution of future responses that are identical to those obtained under independently dis-
tributed normal responses. Hence inference on regression parameters and future responses
is unaffected by departures from the normality assumption in the direction of scale mixtures
of normal distributions. The marginal distribution of the regression parameters and predic-
tive distribution are therefore invariant to a wider class of distributions of the responses in
a Bayesian analysis using informative prior.
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