

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at <u>http://dx.doi.org/10.1016/j.exppara.2012.07.003</u>

 Yang, R., Fenwick, S., Potter, A., Elliot, A., Power, M., Beveridge,
 I. and Ryan, U. (2012) *Molecular characterization of Eimeria* species in macropods. Experimental Parasitology, 132 (2). pp. 216-221.

http://researchrepository.murdoch.edu.au/10809/

Copyright: © 2012 Elsevier Inc.

It is posted here for your personal use. No further distribution is permitted.

Accepted Manuscript

Molecular characterisation of Eimeria species in Macropods

Rongchang Yang, Stan Fenwick, Abbey Potter, Aileen Elliot, Michelle Power, Ian Beveridge, Una Ryan

PII:	S0014-4894(12)00218-4
DOI:	http://dx.doi.org/10.1016/j.exppara.2012.07.003
Reference:	YEXPR 6478
To appear in:	Experimental Parasitology
Received Date:	26 March 2012
Revised Date:	2 July 2012
Accepted Date:	4 July 2012

Please cite this article as: Yang, R., Fenwick, S., Potter, A., Elliot, A., Power, M., Beveridge, I., Ryan, U., Molecular characterisation of *Eimeria* species in Macropods, *Experimental Parasitology* (2012), doi: http://dx.doi.org/10.1016/j.exppara.2012.07.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Molecular characterisation of <i>Eimeria</i> species in Macropods.
2	
3	Rongchang Yang ^a , Stan Fenwick ^a , Abbey Potter ^a , Aileen Elliot ^a , Michelle Power ^b ,
4	Ian Beveridge ^c and Una Ryan ^{a,*}
5	
6	^a Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch,
7	Western Australia, 6150.
8	^b Department of Biological Sciences, Macquarie University, North Ryde, Sydney NSW
9	2109, Australia.
10	
11	
12	*Corresponding author. Mailing address: Division of Health Sciences, School of
13	Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western
14	Australia, Australia 6150. Phone: 61 89360 2482. Fax: 61 89310 414. E-mail:
15	<u>Una.Ryan@murdoch.edu.au</u>
16	
V	

17 ABSTRACT

18 A total of 597 faecal samples were collected from western grey kangaroos 19 (Macropus fuliginosus), Euros (M. robustus), red kangaroos (M. rufus) in Western 20 Australia and Eastern Grey Kangaroos (M. giganteus) from Victoria and screened for 21 the presence of *Eimeria* by PCR at the 18S ribosomal RNA (rRNA) locus. The overall 22 prevalence was 24.3% (145/597). At the 18S rRNA locus, sequences were obtained 23 for 25 of the 145 positives. Phylogenetic analysis indicated that all the macropod-24 derived *Eimeria* species grouped in a separate marsupial clade that included *Eimeria* 25 trichosuri from brushtail possums. At least 6 different clades were identified within 26 the marsupial isolates and many of the genotypes identified are likely to be valid 27 species, however morphological and biological data need to be collected to match 28 sequences to previously characterized *Eimeria* species or identify if they are new 29 species.

30

- 31 *Keywords: Eimeria*; genetic characterization; phylogeny; western grey kangaroos;
- 32 Eastern grey kangaroos; red kangaroos; euros.

34 1. Introduction

35 Eimeria spp. are enteric coccidian parasites that infect a wide range of 36 vertebrate hosts (McDonald and Shirley, 2009). There are several pathogenic eimerian 37 species that cause severe clinical disease and economic loss in poultry and production 38 animals (Aarthi et al., 2010; Fitzgerald, 1980; Taubert et al., 2010). Traditionally, 39 identification of *Eimeria* species has been based largely on oocyst morphology but 40 also host specificity, pathology and geographic distribution (Duszynski and Wilber, 41 1997; Tenter et al., 2002). However, some species of *Eimeria* are morphologically 42 identical and occur in several hosts and it is now recognized that molecular data is 43 essential to accurately delimit species and infer phylogenetic relationships among 44 *Eimeria* (Tenter et al., 2002).

45 More than forty-two Eimeria species have been described from a range of 46 marsupial hosts in Australasia and the Americas including kangaroos and wallabies, 47 wombats, possums, bandicoots and opossums (Mykytowycz, 1964; Joseph, 1974; 48 Barker et al., 1988a; Barker et al., 1988b; Barker et al., 1988c; Barker et al., 1989; 49 Bennett et al., 2006; Heckscher et al., 1999; O'Callaghan et al., 1998; O'Callaghan 50 and O'Donoghue, 2001; Teixeira et al., 2007). However, to date only Eimeria 51 trichosuri, a species found in brushtail-possums of the genus Trichosurus has been 52 genetically characterized (Power et al., 2009). That analysis placed E. trichosuri 53 clones in a clade that diverged before the major clade comprising species from 54 placental mammals, which was consistent with host phylogeny where marsupials 55 represent an ancient evolutionary line that predates the eutherian lineage (Power et al., 56 2009). In the present study, we characterized *Eimeria* DNA from western grey 57 kangaroos (Macropus fuliginosus), Euros (M. robustus), red kangaroos (M. rufus) in 58 Western Australia (WA) and Eastern Grey Kangaroos (M. giganteus) from Victoria

SCRIPT

- 59 (Vic) at the 18S rRNA locus and examined their phylogenetic relationship to other
- 60 eimerian species.

61

- 62 2. Materials and methods
- 63
- 64 2.1 Sample collection
- 65

A total of 564 faecal samples were collected from wild western grey 66 67 kangaroos (WKG's) (M. fuliginosus) from five kangaroo harvesting centres in WA 68 between December 2007 and January 2009 (Table 1). Faecal samples were also 69 collected from wild Euros or Common Wallaroo (M. robustus) (n = 12) from Karratha 70 and Roeburne in WA, red kangaroos (RK) (M. rufus) (n=10) from Roeburne and 71 Fortescue in WA, Eastern Grey Kangaroos (EGK's) (M. giganteus) (n = 10) and 1 72 western grey kangaroo from Brimpaen and Cape Bridgewater in Victoria (Table 1). 73 Unfortunately at the time of collection, the majority of samples were not stored in 74 potassium dichromate but were stored frozen. Attempts were made to sporulate all 75 PCR positives by incubating samples in 2% (w/v) potassium dichromate at room 76 temperature.

77

78 2.2 DNA isolation

Genomic DNA was extracted from 200mg of each faecal sample using a QIAamp
DNA Mini Stool Kit (Qiagen, Hilden, Germany) or from 250mg of each faecal sample

- 81 using a Power Soil DNA Kit (MolBio, Carlsbad, California). A negative control (no 82 faecal sample) was used in each extraction group.
- 83
- 84 2.3 PCR amplification and sequencing

84	2.3 PCR amplification and sequencing
85	Samples were initially screened at the 18S rRNA locus for <i>Eimeria</i> using
86	primers and conditions described by Power et al., (2009). However, as this resulted in
87	non-specific amplifications, a genus specific hemi-nested PCR was re-designed using
88	the forward primer EIF1 5'- GCT TGT CTC AAA GAT TAA GCC described by
89	Power et al., (2009) and the reverse primer EIR3 5' - ATG CAT ACT CAA AAG
90	ATT ACC (this study). Diluted amplicons (1:10) of the first PCR were used as
91	template for a second amplification with the forward primer EIF3 5'- CTA TGG CTA
92	ATA CAT GCG CAA TC (this study) and the reverse primer EIR3 to produce a
93	1,399-1,407 bp product. Primers were designed with the assistance of GeneTool Lite
94	software (www.biotools.com). Primer specificity was confirmed by BLAST searches
95	in GenBank and amplification testing on human, bacterial (Salmonella,
96	Campylobacter and Yersinia) and Cryptosporidium, Giardia and Eimeria DNA.
97	PCR reactions were performed in a 25 μ l volume that contained approximately
98	15 ng DNA, 1 x PCR buffer (FisherBiotech, Perth, WA), 0.2 mM deoxynucleoside
99	triphosphates, 2.5 mM MgCl ₂ , 5% (wt/vol) dimethyl sulfoxide, 0.2 μ Mol each primer
100	and 1 unit of Tth+ DNA polymerase (FisherBiotech, Perth, WA).
101	Cycling conditions consisted of 94°C for 3 min and then 35/45 cycles of 94°C
102	for 30 s, 60°C for 30 s, and 72°C for 90 sec. The final extension was 72°C for 7 min.
103	The cycle number was 35 for the first round PCR and 45 for the second one.
104	PCR contamination controls were used including negative controls and
105	separation of preparation and amplification areas. A spike analysis (addition of 0.5 μ L

of positive control DNA into each sample) was conducted on randomly selected
negative samples from each group of DNA extractions to determine if negative results
were due to PCR inhibition.

109 The amplified DNA fragments from the secondary PCR product were 110 separated by gel electrophoresis and purified using the freeze-squeeze method (Ng et 111 al., 2006). Purified PCR products were sequenced using an ABI PrismTM Dye 112 Terminator Cycle Sequencing kit (Applied Biosystems, Foster City, California) 113 according to the manufacturer's instructions with the exception that the annealing 114 temperature was raised to 58 °C. The results of the sequencing reactions were 115 lite 2.0 analysed and edited using Chromas version 116 (http://www.technelysium.com.au), compared to existing Eimeria 18S rDNA 117 sequences on GenBank using BLAST searches and aligned with reference genotypes 118 from GenBank using Clustal W (http://www.clustalw.genome.jp).

119

120 2.4 Phylogenetic analysis

121 Phylogenetic trees were constructed for *Eimeria* at the 18S locus with additional 122 isolates from GenBank. Distance estimation was conducted using TREECON (Van de 123 Peer and De Wachter, 1994), based on evolutionary distances calculated with the 124 Tamura-Nei model and grouped using Neighbour-Joining. Parsimony analyses were 125 conducted using MEGA version 3.1 (MEGA3.1: Molecular Evolutionary Genetics 126 Analysis software, Arizona State University, Tempe, Arizona, USA). Bootstrap 127 analyses were conducted using 1,000 replicates to assess the reliability of inferred tree 128 topologies. Maximum Likelihood (ML) analyses were conducted using the program 129 PhyML (Dereeper et al., 2008) and the reliability of the inferred trees was assessed by 130 the approximate likelihood ratio test (aLRT) (Anisimova and Gascuel, 2006).

131 2.5 Statistical Analysis

- 132 Prevalences were expressed as percentage of positive samples, with 95% 133 confidence intervals calculated assuming a binomial distribution, using the software 134 Quantitative Parasitology 3.0 (Rozsa et al., 2000). Statistical analysis was performed 135 using SPSS 17.0 (Statistical Package for the Social Sciences) for Macintosh OS X 136 (SPSS inc. Chicago, USA) to determine if there was any association between the 137 prevalence of *Eimeria* and factors such as host gender, location, seasonality/rainfall R 138 and temperature. 139
- 140 3. Results
- 141 3.1 Prevalence of Eimeria in marsupials

142 Eimeria was detected in 145 of 597 samples screened, an overall prevalence of 143 24.3% (20.8-27.7% CI) (Table 1). The prevalence in the different sampling locations 144 ranged from 8.3 to 100% (only 1 sample) (Table 1). The majority of isolates were 145 obtained from adult kangaroos, subjectively aged based on the animal's size and 146 apparent sexual maturity (583/597). Adults were considered to be those animals 3 147 years of age and older. Only 5 samples were collected from pouch young and 9 from 148 sub-adults. No positives were detected in pouch young and only 1/9 sub-adults from 149 Capel were positive for *Eimeria*. The remaining 144 positives were detected in adults. 150 There were 256 females and 341 males. There was no significant difference in 151 the prevalence of *Eimeria* between males and females (p=0.313). In the WGK 152 samples from WA, the prevalence in different seasons ranged from 17.2% to 36.6% 153 and this difference was significant (p<0.001). The highest rate was from isolates

154 collected during the 07/08 and 08/09 summer period (36.6%), followed by the 08

autumn sampling period (26%). The lowest rate was detected during the 08 winter

sampling period (17.2%) and the second lowest rate was from the 08 spring period

157 (19.2%).

158

159 3.2 Morphological analysis of oocysts

160 Unfortunately, only one oocyst from a red kangaroo (isolate RK 38N) near 161 Fortescue roadhouse in WA was successfully sporulated. The oocyst was ellipsoidal 162 and slightly pointed at one end and measured 35.1 x 20.4 µm and contained 4 163 ellipsoidal sporocysts measuring 12.2-8.8 µm (Fig. 1). There was no clear-cut Stieda 164 body and morphologically the oocyst appeared to match most closely with E. 165 wilcanniensis previously described in red kangaroos, EGK's, WGK's and Euros 166 (Mykytowycz, 1964; Barker et al., 1989). Eimeria wilcanniensis is separated from 167 oocysts with overlapping size ranges on the basis of the absence of a Stieda body, 168 oocyst shape and sporocyst size (Barker et al., 1989).

169

170

171 3.2 Phylogenetic analysis of Eimeria species and genotypes in marsupials

172

At the 18S rRNA locus, sequences were obtained for 25 of the 145 positives (Table 2). Phylogenetic analyses of the partial nucleotide sequences (~1,290 bp) from marsupials including four sequences from *E. trichosuri* (Power et al., 2009) and a range of *Eimeria* species from birds, bats, production animals and rodents at the 18S locus using Distance, Parsimony and ML analyses produced similar results (Fig. 2 ML tree shown). The overall tree topology was similar to previously produced

phylogenetic trees for *Eimeria* (Power et al., 2009). Species from single host groups formed monophyletic branches except for the two species from bats, which were placed within the rodent clade. The nodes for monophyletic clades representing single host groups were supported by high bootstrap values. All the marsupial-derived *Eimeria* sequences generated as part of the present study, grouped in a clade with *E. trichosuri*.

Seven broad clades were observed within the marsupial group. Clade 1 consisted of isolates WKG 2767, WGK 2886, WKG 2175, from WGK's which were 100% identical and grouped with WGK 2179, EGK CB1, EGK CB4, EGK 37L, RK 37X. The genetic similarities within this clade ranged from 100-99.5%. Clade 2 consisted of isolates WGK 2346 and WGK 2536, which only shared 98.9% genetic similarity. Clade 3 consisted of *E. trichosuri*, isolates WKG 2533, RK 38P, WGK 2534, EGK CB2 and WGK 37N.

192 None of the Eimeria sequences derived from kangaroos were 100% identical to 193 E. trichosuri. Isolate WGK 2533 from WA shared the highest similarity with E. 194 trichosuri (99.8%). Clade 4 consisted of isolates WGK 2771, WGK 2296, WGK 195 2775, WGK 2549, WGK 2336, WGK 2298 from WGK's from WA and isolate EGK 196 CB3 from Vic and shared 99.8-99.3% genetic similarity. Clade 5 consisted of isolates 197 WGK 2884 and RK 38N (the *E. wilcanniensis*-like isolate), which shared 99.6% 198 similarity. Clade 6 consisted of a single isolate (RK 38K), which was genetically 199 distinct and was most closely related to isolate WGK 2884 from clade 5 and WGK 200 2767 from Clade 1 (99.6% similarity). Sequences generated in the present study have 201 been submitted to GenBank under accession numbers JF419336 to JF419360.

202

203 4. Discussion

204

224

205 In the present study, the overall prevalence of Eimeria in macropods was 206 24.3%. Previous studies have reported a prevalence of 6 to 14% in populations of red 207 kangaroos and from 26 to 70% in EGK's (Mykytowycz, 1964). No clinical cases of 208 coccidiosis were reported (Mykytowycz, 1964). Other studies have reported a 209 prevalence of 2 - 100% in kangaroos and wallabies (Barker et al., 1989). In the 210 present study, the prevalence of *Eimeria* in EGK's was 50% and 30% in red 211 kangaroos. Clinical information on the kangaroos was not available. 212 Attempts were made to sporulate oocysts to identify species morphologically, 213 however, due to the age of the faecal samples at the time of analysis (up to 12 214 months), we were only successful in sporulating one oocyst from a red kangaroo 215 (isolate 38N) from WA which morphologically appeared closest to E. wilcanniensis 216 previously described in red kangaroos (Mykytowycz, 1964). Eimeria wilcanniensis 217 Mykytowycz, 1964 was subsequently redescribed from red kangaroos, and the host 218 range was extended to EGK's, WGK's and Euros (Barker et al., 1989). As oocysts 219 were unavailable from previous studies, it was not possible to obtain genetic 220 sequences from these holotypes and match genetic sequences obtained with species 221 identifications. However, preliminary evidence suggests that isolate RK 38N from a 222 red kangaroo may be E. wilcanniensis and this therefore may be the first genetic 223 sequence available for this species which expands our knowledge of the molecular

225 was available, we cannot be certain what species was present and more sporulated

226 oocysts would need to be examined before a definitive diagnosis could be made.

phylogeny of *Eimeria*. However, it should be noted that as only one sporulated oocyst

A total of 25 new *Eimeria* sequences from macropods representing potentially 6 or more species of *Eimeria* were generated in this study. Sequence data has only been previously available for *E. trichosuri* (Power et al., 2009). Phylogenetic analysis of *E. trichosuri* suggested that *Eimeria* found in marsupials diverged prior to *Eimeria* from eutherians. This is consistent with mammalian evolution and the geographic isolation and radiation of marsupials (Power et al., 2009). The present study also supports this hypothesis.

234 There are a number of major limitations in undertaking DNA analyses on 235 species of *Eimeria*, one of which is the lack of availability of holotypes due to the 236 difficulties in preserving oocyst material (Duszynski and Wilber, 1997). Another 237 difficulty is the fact that multiple *Eimeria* species have been reported from the one 238 marsupial host (Mykytowycz, 1964; Heckscher et al., 1999; O'Callaghan et al., 1998; 239 Barker et al., 1989). In the present study, clean genetic sequences could only be 240 obtained from 25 of the 145 positives indicating potentially mixed infections as 241 evidenced by clean sections of chromatograms followed by multiple overlapping 242 peaks. Accurate correlation of genetic sequences and morphology would therefore 243 require micromanipulation to sort individual sporulated oocysts for genetic typing. As 244 a result of these difficulties, a previous study chose *E. trichosuri* for genetic analysis 245 (Power et al., 2009) as *E. trichosuri* is the only species recorded in brushtail possums. 246 In addition, E. trichosuri has uniform oocyst characteristics in isolates from different 247 individuals and from different localities (O'Callaghan and O'Donoghue, 2001).

The morphological similarity of oocysts, the broad host specificity of some *Eimeria* species and the diversity of *Eimeria* within one host compound species delimitation (Tenter et al., 2002). Molecular data is therefore essential to accurately delimit species. Though the importance of *Eimeria* morphology should not be

252 discounted, these difficulties are not unique to *Eimeria* and several species of 253 protozoan parasites have been described based on molecular data because of the 254 limitations of the respective morphological characteristics. For example, for the 255 genera Theileria and Babesia, a genetic distance 0.7% and 3.4% respectively at the 256 18S rRNA locus is sufficient to be classified as a distinct species (Schnittger et al. 257 2003). Similarly, for *Cryptosporidium*, if the genetic distance at two unlinked loci is 258 equal to or greater than currently accepted species, then this is strongly supportive of 259 species status (Xiao et al., 2004).

260 In the present study, the genetic similarities within the marsupial clade ranged 261 from 98.7-100% and between the marsupial isolates and other Eimeria species ranged 262 from 98.2-96.4% similarity. The E. wilcanniensis-like isolate from a red kangaroo 263 (RK 38N) shared 99.6% similarity with isolate WGK 2884 and 99.5% genetic 264 similarity with E. trichosuri. The genetic differences between different marsupial 265 genotypes (Table 3), are similar to the genetic differences between accepted species 266 of Eimeria. For example, the genetic similarity between E. tenella and E. necatrix and 267 between E. bovis and E. crandallis is 99.7 and 99.6% respectively. By these criteria, 268 many of the marsupial-derived *Eimeria* genotypes are likely to be separate species, 269 however morphological and biological data need to be collected for these genotypes 270 before they can be properly validated.

In the present study, novel *Eimeria* sequences from a range of macropod hosts were obtained and a molecular phylogeny of marsupial-derived *Eimeria* constructed. The present data supports the hypothesis that *Eimeria* found in marsupials diverged prior to *Eimeria* from placental mammals (Power et al., 2009). Future studies need to concentrate on obtaining morphologically characterized *Eimeria* species derived from macropods and generating sequence data that is directly related to described species.

- 277 This in turn will enable the sequences generated in the present study to be placed into
- 278 context of Eimeria taxonomy. Analyzing the isolates at multiple loci will also provide
- 279 Accepting a more in-depth analysis of the evolution of marsupial-derived *Eimeria*.

282

283 References

- 284 Aarthi, S., Dhinakar Raj, G., Raman, M., Gomathinayagam, S., Kumanan, K., 2010.
- Molecular prevalence and preponderance of *Eimeria* spp. among chickens in
 Tamil Nadu, India. Parasitology Research 107, 1013-7.
- 287 Anisimova, M., Gascuel, O., 2006. Approximate likelihood-ratio test for branches: A
- fast, accurate, and powerful alternative. Systematic Biology 55, 539-552.
- 289 1988a. I.K., O'Callaghan, M.G., Beveridge, Eimeria Barker, I., spp. 290 (Apicomplexa:Eimeriidae) parasitic in wallabies and kangaroos of the genera 291 Setonix, Thylogale, Wallabia, Lagorchestes **Dendrolagus** and 292 (Marsupialia: Macropodidae). International Journal for Parasitology 18, 955-62. M.G., Beveridge, 293 Barker, I.K., O'Callaghan, I., 1988b. Eimeria spp. 294 (Apicomplexa:Eimeriidae) parasitic in the rat-kangaroos Hypsiprymnodon 295 moschatus, Potorous tridactylus, Aepyprymnus rufescens and Bettongia 296 gaimardi (Marsupialia:Potoroidae). International Journal for Parasitology 18, 297 947-53.
- Barker, I.K., O'Callaghan, M.G., Beveridge, I., Close, R.L., 1988c. Host-parasite
 associations of *Eimeria* spp. (Apicomplexa:Eimeriidae) in rock wallabies,
 Petrogale spp. (Marsupialia:Macropodidae). International Journal for
 Parasitology 18, 353-63.
- Barker, I.K., O'Callaghan, M.G., Beveridge, I., 1989. Host-parasite associations of *Eimeria* spp. (Apicomplexa:Eimeriidae) in kangaroos and wallabies of the
 genus Macropus (Marsupialia:Macropodidae). International Journal for
 Parasitology 19, 241-63.

306	Bennett, M.D., Woolford, L., O'Hara, A.J., Nicholls, P.K., Warren, K., Hobbs, R.P.,
307	2006. A new Eimeria species parasitic in western barred bandicoots, Perameles
308	bougainville (Marsupialia: Peramelidae), in western Australia. Journal of
309	Parasitology 92, 1292-4.
310	Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.
311	F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M. and Gascuel, O., 2008.
312	Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids
313	Research 36, W465-469.
314	Duszynski, D.W., Wilber, P.G., 1997. A guideline for the preparation of species
315	descriptions in the Eimeriidae. Journal of Parasitology 83, 333–336.
316	Fitzgerald, P.R., 1980. The economic impact of coccidiosis in domestic animals,
317	Advances in Veterinary Science and Comparative Medicine 24, 121–143.
318	Heckscher, S.K., Wickesberg, B.A, Duszynski, D.W., Gardner, S.L., 1999. Three new
319	species of Eimeria from Bolivian marsupials. International Journal for
320	Parasitology 29, 275-84.
321	Joseph, T., 1974. Eimeria indianensis sp. n. and an Isospora sp. from the opossum
322	Didelphis virginiana (Kerr). Journal of Protozoology 21, 12-5.
323	Mykytowycz, R., 1964. Coccidia in wild populations of the red kangaroo, Megaleia
324	rufa (Desmarest), and the grey kangaroo, Macropus canguru (Müller).
325	Parasitology 54, 105-115.
326	McDonald, V., Shirley, M.W., 2009. Past and future: vaccination against Eimeria.
327	Parasitology 136, 1477-89.
328	Ng, J., Pavlasek, I., Ryan, U., 2006. Identification of novel Cryptosporidium
329	genotypes from avian hosts. Applied and Environmental Microbiology 72,

330 7548-7553.

- 331 O'Callaghan, M.G., Barker, I.K., Beveridge, I., Hornsby, P., 1998. Eimeria species in
- the Pearson Island Rock Wallaby, Petrogale lateralis pearsoni. International
- Journal for Parasitology 28, 1889-92.
- 334 O'Callaghan, M.G., O'Donoghue, P.J., 2001. A new species of Eimeria
- 335 (Apicomplexa: Eimeriidae) from the brushtail possum, Trichosuris vulpecula
- 336 (Diprotodontia: Phalangeridae). Transactions of the Royal Society of South
- 337 Australia 125, 129–132.
- 338 Power, M.L., Richter, C., Emery, S., Hufschmid, J., Gillings, M.R., 2009. Eimeria
- *trichosuri:* phylogenetic position of a marsupial coccidium, based on 18S rDNA
 sequences. Experimental Parasitology 122, 165-8.
- 341 Rozsa, L., Reiczigel, J., Majoros, G., 2000. Quantifying parasites in samples of hosts.
- 342Journal of Parasitology 86, 228-232.
- 343 Schnittger, L., Yin, H., Gubbels, M.J., Beyer, D., Niemann, S., Jongejan, F., Ahmed,
- J.S., 2003. Phylogeny of sheep and goat *Theileria* and *Babesia* parasites.
 Parasitology Research 91, 398-406.
- 346 Taubert, A., Wimmers, K., Ponsuksili, S., Jimenez, C.A., Zahner, H., Hermosilla, C.,
- 347 2010. Microarray-based transcriptional profiling of *Eimeria bovis*-infected
 348 bovine endothelial host cells. Veterinary Research 41, 70.
- Teixeira, M., Rauta, P.D., Albuquerque, G.R., Lopes, C.W., 2007. *Eimeria auritanensis* n. sp. and *E. gambai* Carini, 1938 (Apicomplexa: Eimeriidae) from
 the opossum Didelphis aurita Wied-Newied, 1826 (Marsupialia: Didelphidae)
 from southeastern Brazil. Rev. Bras. Parasitology Vet. 16,83-6.
- 353 Tenter, A.M., Barta, J.R., Beveridge, I., Duszynski, D.W., Mehlhorn, H., Morrison,
- D.A., Thompson, R.C, Conrad, P.A., 2002. The conceptual basis for a new
- 355 classification of the coccidia. International Journal for Parasitology 32, 595-616.

- 356 Van de Peer, Y., R. De Wachter., 1994. TREECON for Windows: a software package
- 357 for the construction and drawing of evolutionary trees for the Microsoft
- 358 Windows environment. Computer Applications in Bioscience 10, 569–570.
- 359 Xiao, L., Fayer, R., Ryan, U. Upton, S.J., 2004. Cryptosporidium taxonomy: recent
- ey Revie advances and implications for public health. Clinical Microbiology Reviews 17, 360

2	C	n
3	o	L

363 Fig. 1. Sporulated oocyst from a red kangaroo resembling *E. wilcanniensis*.

364 Fig. 2. Evolutionary relationships of *Eimeria* marsupial-derived isolates inferred by

- ML analysis of 18S rRNA sequences. Percentage support (>50%) from 1000 365
- 366 pseudoreplicates from ML, neighbor-joining and parsimony analyses is indicated at

- 370 Table 1. The prevalence of Eimeria in western grey kangaroos (WGK's), Euros and
- 371 Eastern grey Kangaroos (EGK's) in the different sampling locations. 95% confidence
- 372 intervals are listed in parenthesis.

Locations	No. of samples	Female	Male	PCR positives	% prevalence
WGK's from WA	•			1	
Capel	129	45	84	25	19.4 (12.6-26.2
Badgingarra	110	45	65	29	26.4 (18.1-24.6
Preston Beach	47	29	18	7	14.9 (4.7-25.1)
Eneabba	74	43	31	24	32.4 (21.8-43.1
Manjimup	204	78	126	50	24.5 (18.6-30.2
Euro's from WA Karratha and					
Roeburne	12	4	8	1	8.3 (0-24)
Red kangaroos from <u>WA</u> Roeburne and			5		
Fortescue	10	4	6	3	30 (1.6-48.4)
EGK's from Vic Brimpaen and Cape	10	0	2	5	50 (10 81)
WCK's from Vie	10	0	2	5	50 (19-01)
<u>Rrimpaen</u>	1	0	1	1	100(100-100)
Total	597	256	341	145	243(208-27)
R					

Table 2. Marsupial species positive for *Eimeria* for which an 18S sequence was

obtained.

Sample	Host name	Common name	Locality	Sex
ID			_	
EGK	Macropus giganteus	Eastern Grey	Cape Bridgewater, Vic	F
CB1		Kangaroo		
EGK	Macropus giganteus	Eastern Grey	Cape Bridgewater, Vic	F
CB2		Kangaroo		
EGK	Macropus giganteus	Eastern Grey	Cape Bridgewater, Vic	М
CB3		Kangaroo		
EGK	Macropus giganteus	Eastern Grey	Cape Bridgewater, Vic	F
CB4		Kangaroo		
EGK	Macropus giganteus	Eastern Grey	Brimpaen, Vic	F
37L		Kangaroo		
WGK	Macropus fuliginosus	Western Grey	Brimpaen, Vic	М
37N	1 5 6	Kangaroo		
Euro	Macropus robustus	Euro or Common	6 km N of Fortescue	М
38K	*	Wallaroo	Roadhouse, WA	
RK	Macropus rufus	Red Kangaroo	65 km N of Fortescue	М
38N	1 5	8	Roadhouse, WA	
RK	Macropus rufus	Red Kangaroo	50 km N of Fortescue	F
38P	I I I I I I I I I I I I I I I I I I I	8	Roadhouse, WA	
RK	Macropus rufus	Red Kangaroo	21 km N of Roeburne, WA	М
37X			,	
WGK	Macropus fuliginosus	Western Grev	Maniimup, WA	М
2175		Kangaroo		
WGK	Macropus fuliginosus	Western Grev	Maniimup, WA	М
2179		Kangaroo	F,	
WGK	Macropus fuliginosus	Western Grev	Preston Beach, WA	F
2296		Kangaroo		
WGK	Macropus fuliginosus	Western Grev	Preston Beach, WA	F
2298	I I J I J I J	Kangaroo		
WGK	Macropus fuliginosus	Western Grev	Maniimup, WA	М
2336		Kangaroo	F,	
WGK	Macropus fuliginosus	Western Grev	Manjimup, WA	М
2346		Kangaroo	F,	
WGK	Macropus fuliginosus	Western Grev	Badgingarra WA	М
2533	inder op us junginosus	Kangaroo	Dudginguru, Wri	
WGK	Macropus fuliginosus	Western Grev	Badgingarra WA	М
2536	- macropus jungmosus	Kangaroo	Budginguiru, WH	111
WGK	Macropus fuliginosus	Western Grev	Manjimun WA	М
2549	macropus junginosus	Kangaroo	Wanjinap, WY	111
WGK	Macropus fuliginosus	Western Grev	Capel WA	М
2767	macropus junginosus	Kangaroo	Caper, WA	111
WGK	Macropus fuliginosus	Western Grev	Eneabba WA	М
2771	mucropus jungmosus	Kangaroo	Elicabba, WA	141
WCK	Macronus fuliginosus	Western Gray	Encabba WA	М
99UK 2775	macropus junginosus	Kangaraa	Elicabua, WA	1V1
WCV	Maaronus fuliainaana	Wastern Creat	Encebbe WA	M
2861	macropus juliginosus	Kangaraa	Encauda, WA	1V1
2004 WCV	Maaronus fuliainaana	Wastern Creat	Encebbe W/A	М
1004	macropus juliginosus	Western Grey	Elicaboa, WA	11/1
2886		Kangaroo	1	

377

Tables

ACCEPTED MANUSCRIPT

Table 3: Percentage sequence similarity at the 18S rRNA locus between Eimeria sequences found in marsupials in this study and E. trichosuri

calculated using Tamura-Nei.

	EGK CB1	EGK CB2	EGK CB3	EGK CB4	EGK 37L	WGK 37N	Euro 38K	RK 38N	RK 38P	RK 37X	WGK 2175	WGK 2179	WGK 2298	WGK 2336	WGK 2346	WGK 2533	WGK 2536	WGK 2549	WGK 2767	WGK 2771	WGK 2775	WGK 2884	E. trichosuri
EGK CB1	100																						
EGK CB2	99.3	100																					
EGK CB3	99.1	99.5	100																				
EGK CB4	99.4	99.2	99.0	100																			
EGK 37I	99.7	99.6	99.4	99.7	100																		
WGK 37N	99.4	99.9	99.4	99.3	99.6	100																	
Euro 38K	99.3	99.5	99.5	99.2	99.6	99.4	100																
RK 38N	99.1	99.6	99.5	99.0	99.4	99.4	99.5	100															
RK 38P	98.8	99.6	99.1	98.8	99.1	99.5	99.1	99.1	100														
RK 37X	99.6	99.4	99.2	99.8	99.8	99.5	99.4	99.2	99.0	100													
WGK 2175	99.6	99.7	99.4	99.5	99.8	99.6	99.6	99.4	99.3	99.6	100												
WGK 2170	99.3	99.5	99.1	99.2	99.6	99.4	99.1	99.1	99.0	99.4	99.7	100											
WGK 2208	99.0	99.4	99.8	99.0	99.3	99.3	99.4	99.4	99.0	99.1	99.3	99.0	100										
WGK 2336	99.0	99.3	99.8	99.0	99.2	99.2	99.3	99.3	99.0	99.0	99.2	99.0	99.9	100									
2330 WGK 2346	99.3	99.7	99.3	99.4	99.6	99.4	99.3	99.3	99.0	99.4	99.5	99.3	99.2	99.1	100								
WGK 2522	99.2	99.7	99.3	99.1	99.5	99.6	99.5	99.3	99.6	99.3	99.7	99.4	99.2	99.1	99.3	100							
2555 WGK 2526	98.4	98.8	99.0	98.5	99.6	98.7	98.8	98.9	98.4	99.0	98.7	98.4	99.0	98.9	98.9	98.3	100						
2550 WGK 2540	98.4	98.8	99.3	98.3	98.7	98.7	98.8	98.8	98.4	98.5	98.7	98.4	99.2	99.1	98.8	98.6	98.3	100					
WGK 2767	99.6	99.7	99.4	99.5	99.8	99.6	99.6	99.4	99.3	99.6	100	99.7	99.3	99.2	99.6	99.6	98.7	98.7	100				
WGK 2771	99.2	99.4	99.9	99.0	99.3	99.3	99.4	99.4	99.0	99.1	99.3	99.0	99.8	99.7	99.3	99.2	98.9	98.1	99.3	100			
WGK 2775	99.1	99.4	100	99.0	99.4	99.4	99.5	99.5	99.1	99.2	99.4	99.1	99.9	99.8	99.3	99.3	99.0	99.3	99.4	99.9	100		
WGK 2884	99.3	99.6	99.0	99.2	99.6	99.6	99.6	99.6	99.3	99.4	99.6	99.1	99.6	99.5	99.5	99.5	99.1	98.8	99.6	99.6	99.6	100	
E. trichosuri	99.2	99.2	99.5	99.1	99.5	99.8	99.5	99.5	99.6	99.3	99.6	99.4	99.4	99.3	99.4	99.8	98.8	98.8	99.6	99.6	99.4	99.6	100
					C	Ċ																	

Research Highlights

381 382	• First study to genetically characterize <i>Eimeria</i> sequences from a range of macropod hosts
383 384 385 386	• A total of 25 new <i>Eimeria</i> sequences from macropods representing potentially 6 or more species of <i>Eimeria</i> were generated
387 388	• A molecular phylogeny of marsupial-derived <i>Eimeria</i> constructed
389 390	• Supports the hypothesis that <i>Eimeria</i> found in marsupials diverged prior to <i>Eimeria</i> from placental mammals
391	

0.02