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Abstract

Predictive habitat models can provide critical information that is necessary in many conservation applications. Using
Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin
(Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai’i exhibit predictable daily
movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are
growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the
environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to
properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent
surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting
habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that
proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important
predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study
indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities.
This study provides an example of a presence-only habitat model used to inform the management of a species for which
patterns of habitat availability are poorly understood.
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Introduction

The study of species- environment relationships can provide

important insight into the processes underlying a species’ habitat

use and distribution. Accurately describing species’ distributions is

critical to developing effective conservation efforts [1,2,3,4]. In

particular, species distribution models (SDMs) can provide

quantitative predictions of geographic distributions and are

increasingly being used to address a wide range of ecological

questions [4,5,6,7]. SDMs are useful to conservation as they can

be used to predict locations where species are likely to occur in

areas that have not been surveyed or have been poorly surveyed.

This allows: 1. future surveys to be focused in areas where species

are likely to occur; 2. species data to be evaluated relative to

habitat alterations; and 3. high-priority sites for conservation to be

identified [8].

Traditional SDMs have relied on presence/absence data from

standardized surveys [9,10,11]. When survey effort data are

available, pseudo-absences generated from surveyed areas can be

used along with occurrence data in presence-absence models such

as generalized linear models (GLMs), generalized additive models

(GAMs), or Classification and Regression Trees (CARTs) [4].

However, the use of pseudo-absences presents limitations; while

species presences can be confirmed, species absences can be

difficult to document with certainty, particularly for mobile

species, and increased sampling effort must be performed in order

to ensure the reliability of absence data [12]. The efficiency of

different survey methods can vary, and can also lead to sampling
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error due to non-detection [13]. False absences included within

presence-absence predictive models can decrease the reliability of

these models [13]. Significantly, available data for many species of

conservation concern have been collected opportunistically and/or

from a variety of platforms, and datasets derived from systematic

surveys are often limited or incomplete.

Presence-only records from sources such as museum collections,

herbariums, or online databases are becoming increasingly

available and provide valuable resources for modeling efforts

[1,14]. Developments in modeling techniques have allowed these

data to be used to predict species’ distributions despite a lack of

confirmed absences in areas that were surveyed in which no

species observations were made. Maximum Entropy modeling, or

Maxent, is a presence-only modeling technique that has recently

been applied to ecological studies [15,16], and has been found to

perform well in comparison to established modeling techniques

[6,8]. Maxent offers several advantages over conventional

modeling techniques evaluating the habitat use of a particular

species. As a presence-only technique, Maxent allows species

distributions to be modeled when no data on species absences are

available. Presence-only techniques such as Maxent are particu-

larly useful for studies of species with large ranges and low

sightings, as for many cetacean species, for regions where

systematic surveys are sparse and/or limited in coverage, and

for datasets for which absence or effort data are not available

[14,17]. Since available sightings data often come from a variety of

sources and survey platforms, as in the present study, Maxent can

be used to provide robust models using opportunistic data from

multiple platforms [17]. In addition, Maxent provides a flexible

modeling approach in which both categorical and continuous

variables can be applied, and provides a continuous output of

predicted species distributions, allowing habitat suitability to be

visualized and contrasted at a fine scale across a study area. Lastly,

this method allows the relationship between predictor variables

and model gain to be assessed graphically and quantitatively.

Determining which habitat variables are the most important and

illustrating how they affect species distributions in a mapping

environment is particularly useful for managers charged with

ensuring their sustainability.

Available data describing spinner dolphin (Stenella longirostris)

habitat in the main Hawaiian Islands provide a good example of

the utility of Maxent. Identifying and quantifying spinner dolphin

habitat within bays in the main Hawaiian Islands is critical to

determining how the effects of tourism and other human activities

might impact wild spinner dolphin populations in the future.

While standardized cetacean surveys have been conducted in some

bays of the main Hawaiian Islands, particularly on the island of

Hawai’i (e.g., Wailea Bay, Kealakekua Bay), many bays have

received little survey coverage, or have only been surveyed

opportunistically during tagging or focal follow studies for which

data have not been published. A comprehensive survey of all bays

in the main Hawaiian Islands would be logistically demanding and

expensive, and predictive models are a cost effective alternative for

directing surveys in order to identify unknown habitat and to

quantify available habitat. Locations of predicted habitat can then

be related to areas of increased human activity and can be used to

indicate regions where conservation measures should be focused.

Spinner dolphins are relatively small dolphins (ca. ,250 cm,

[18]) named for their aerial behavior and are found in subtropical

and tropical oceans around the world. There is wide variation in

the morphology and color patterns of spinner dolphins throughout

their range, and four subspecies of spinner dolphins are currently

recognized: S.l. longirostris (Gray’s spinner), S.l. orientalis (Eastern

spinner), S.l. centroamericana (Central American spinner) and S.l.

roseiventris (Dwarf spinner) [19,20]. The Gray’s spinner dolphin is

the most widely distributed sub-species, and occurs throughout the

Hawaiian Archipelago. Recent genetic analyses have demonstrat-

ed that spinner dolphins in Hawai’i are significantly distinct from

spinner dolphins found in other parts of the world, and genetic

distinctions exist between subpopulations within the Hawaiian

Archipelago [21,22].

Spinner dolphins in Hawai’i show predictable daily movement

patterns, tracking vertical and horizontal migrations of prey

organisms in the mesopelagic boundary layer during nighttime

hours (primarily myctophid fishes, small crustaceans and squid)

[23,24] and then moving into protected inshore areas to rest

during daylight hours. This diel behavioral pattern appears

common to spinner dolphins throughout tropical Pacific Islands

(e.g., American Sāmoa, Moorea) [25,26], occurs in other oceans

[27] and has been most extensively studied in the Hawaiian

Archipelago [28,29,30,31]. Within the main Hawaiian Islands, the

habitat use of spinner dolphin resting bays has been best

documented on the west coast of the island of Hawai’i, and

similar patterns of habitat use have been documented along O’ahu

and in the Northwestern Hawaiian Islands [29,30,31]. Spinner

dolphins typically enter protected bays of the main Hawaiian

Islands just after dawn, and slowly descend into a resting state over

a period of up to two hours. The resting state is defined by slow

movements, a cessation of aerial behavior, synchronous dives by

tight groups of dolphins that are touching or almost touching, and

visual, rather than acoustic, vigilance [29]. Norris and Dohl (1980)

suggested that the formation of these tight, synchronized groups of

resting dolphins might enhance their ability to detect and react to

predators while the animals are not actively echolocating [28].

Groups of resting dolphins typically move slowly within bays for

four to five hours, after which dolphins undergo a period of ‘‘zig-

zag swimming’’ and increase surface activity before moving into

deeper waters near sunset to begin night-time foraging. This

behavior is thought to be a form of social facilitation ensuring

alertness and group synchrony for foraging bouts.

The behavioral patterns of spinner dolphins in Hawai’i and

their dependence on shallow coastal habitat during the day may

make this species particularly vulnerable to impacts of human

activities. The growth of lucrative dolphin-based tourism in the

main Hawaiian Islands [32] and the increase in human/dolphin

interactions in recent years [33] has only reinforced the original

concerns of Norris et al. (1994) regarding the overlap of these

activities with the resting habitat of spinner dolphins. Increases in

human/dolphin interactions have resulted in negative impacts on

dolphin populations in other parts of the world [34], highlighting

the potential effects of disturbance due to tourism on the habitat

use of cetaceans. Disturbing resting spinner dolphins may greatly

affect their distribution and behavior [31] and may have caused

population-level effects on these animals that remain undetected in

the absence of long-term studies.

Although the daily patterns of spinner dolphin movements have

been documented in detail [28,29], the factors influencing how

spinner dolphins choose resting habitats remain unclear. Spinner

dolphins appear to use only certain bays as resting habitat, and are

thought to select shallow, calm, flat, protected, sandy bays that

provide easy access to deep water foraging areas [29]. Within these

bays, spinners are thought to prefer areas with depths of less than

50 m. Bay area is also believed to be an important factor affecting

spinner dolphin resting habitat, as bays with larger areas of

suitable habitat may have a larger ‘‘carrying capacity’’ for resting

spinner dolphins [29]. However, these original hypotheses have

never been tested quantitatively and many bays within the main

Hawaiian Islands have not been comprehensively surveyed for the
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presence of resting spinner dolphins. As a result, the distribution of

spinner dolphin resting habitat and the relative importance of

different resting bays are not well understood.

The goal of this study was to use available data to quantitatively

test the previously hypothesized environmental factors that

contribute to spinner dolphin resting habitats and predict the

locations of resting habitat in the main Hawaiian Islands. The

output of this habitat model will be useful in informing

management regarding the current overlap of human activities

and potential spinner dolphin resting habitat. In addition, the

results of this study can be used to evaluate the potential for future

conflict between spinner dolphin resting habitat and human

activities with the continued increase of tourism and other human

activities in the Hawaiian Islands.

Materials and Methods

Study Area and Time Frame
The analysis of spinner dolphin resting habitat was restricted to

bays of the main Hawaiian Islands following previous observations

of spinner dolphin resting behavior in these areas [28,29]. Eight

islands comprise the main Hawaiian Islands, which range in size

from approximately 130 to more than 10300 km2 and span a

distance of approximately 650 km (Figure 1). Data used in this

analysis were collected between 2000 and 2010. Sightings

recorded within the same day were defined using a modification

of the ‘‘chain rule’’ [35], whereby a dolphin within 100 meters of

any other member of a group of dolphins was considered to be a

member of that group.

Data
Bays in the main Hawaiian Islands were digitized manually in

ArcGIS version 10.0 by selecting indentations in the coastline

greater than 2000 m in length (Figure 1). When less than

approximately 75% of a bay contained environmental data

(described below), the bay was excluded from the analysis. A total

of 99 bays were included in the analysis; 46 bays were excluded

due to insufficient environmental data. Environmental variables

were selected to reflect factors previously hypothesized to be

important to resting spinner dolphins [28,29] and based on the

availability of continuous data throughout the main Hawaiian

Islands.

Presence-absence data for spinner dolphin surveys were not

available. Locations of spinner dolphin sightings were obtained

from the Pacific Islands Photo-Identification Network (PIPIN)

catalogue and a variety of other data archives, and included

sightings from aerial, boat-based and land-based surveys (Table 1).

Although further sightings data are known to exist [29], the exact

sighting locations (x, y coordinates) of dolphins from these studies

were not available. Sightings that were located within the digitized

bays and had the following behavioral states were assumed to

represent resting spinner dolphins and were included in the

analysis: rest, mill, slow travel, or not surface active. Sightings that

did not include a behavioral description or that represented active

dolphins (e.g., travelling, leaping/spinning, bow riding) were

excluded from the analysis. Although some animals within a

group of resting spinner dolphins have been observed to bow ride,

if the behavioral state of the group of animals was characterized as

‘‘bow riding’’, the sighting was excluded from the analysis. This

restricted our analysis to 225 of the 497 spinner dolphin sightings

available in the database. Although spinner dolphin sightings in

the database included sightings throughout the main Hawaiian

Islands, most sightings used in the model (174 of 225) were

collected from bays on the island of Hawai’i, which is considerably

larger than the other islands (Figure 1) and where available resting

habitat is thought to be particularly prevalent [28,29].

We used three variables to assess the benthic relief within bays,

both to provide a proxy for bottom type [36] and to investigate

hypotheses of dolphin preference for bottom habitat more broadly.

We used continuous surfaces of topographic slope to evaluate

bathymetric gradients within bays, along with rugosity, a measure

of the roughness of the bottom [37], and aspect variety, a measure

of the heterogeneity in the downslope directions, to assess benthic

relief. Rasters of bathymetric slope and downslope direction were

generated from 50 m bathymetric grids obtained from the Hawai’i

Mapping Research Group (School of Ocean and Earth Science

Technology, University of Hawai’i at Mānoa; http://www.soest.

hawaii.edu) using the Spatial Analyst extension in ArcGIS 10.0.

Aspect variety assessed variety in downslope directions within a

565 cell neighborhood. Rugosity was defined as the ratio of the

surface area to the planimetric area [37], ><calculated using the

ArcGIS extension, Surface Areas and Ratios from Elevation Grid

v. 1.2 (). The spatial scale of these measures of benthic relief was

similar to that used by Dunn and Halpin (2009) to model bottom

habitat using indices generated from depth coverages [36].

Both fine-scale variables, calculated at the location of spinner

dolphin sightings, and bay-level variables, such as bay area, were

included in the analysis. Multiple spinner dolphin sightings were

located within a single bay and thus bay variables were categorized

into even classes to avoid spurious species-variable relationships

due to identical values for multiple sightings. For example, the

proportion of bay area under 50 m was divided into the following

five categories: 0 to 0.19; 0.20 to 0.39; 0.40 to 0.59; 0.60 to 0.79;

and 0.80 to 1. The following variables were calculated at the

location of each spinner dolphin sighting: depth; distance to 100 m

and 1000 m depth contours; distance to land; rugosity; slope; and

aspect variety. Bay variables for each sighting included bay area;

the ratio of coastline to area of a bay; the total bay area at depths

of less than 50 m; and the proportion of area with depths of less

than 50 m. The distance to the 1000 m contour was used to

represent distance to deep-water foraging habitat. In some

locations spinner dolphins have been observed to forage in waters

with a depth of ,100 m near midnight when their prey reach the

peak of their vertical migration [23]. However, spinner dolphins

appear to follow their prey into deeper waters during nighttime

hours before and after midnight [23], and the 100 m contour was

Figure 1. Location of the study site in the Hawaiian Archipel-
ago.
doi:10.1371/journal.pone.0043167.g001
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selected to represent the inshore region of spinner dolphin foraging

habitat. The ratio of coastline to area of each bay was used as a

proxy for protection; bays with high coastline to area ratios were

more concave and thus were presumed to be more sheltered from

offshore wind and waves. Relationships between environmental

variables were evaluated using Pearson’s correlation coefficients to

identify correlated variables that could not be analyzed within the

same model. All map layers were projected using a Mercator

projection prior to analysis. Figure 2 shows an example of each

map layer that was generated for the analysis.

Maximum Entropy modeling
Maximum Entropy modeling was performed to provide

probabilistic predictions of spinner dolphin resting habitat. The

Maximum Entropy technique has its roots in information theory

[38] and has been used as a statistical modeling method in several

Table 1. Number of spinner dolphin sightings by survey platform. See text regarding the selection of sightings used in the model.

Spinner dolphin sightings Aerial Boat-based Shore-based Total sightings

Total sightings in database 14 452 31 497

Sightings used in model 3 193 29 225

doi:10.1371/journal.pone.0043167.t001

Figure 2. Examples of environmental variables used to model spinner dolphin resting habitat within bays of the main Hawaiian
Islands.
doi:10.1371/journal.pone.0043167.g002
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fields, particularly in natural language processing [39]. Recently,

Maximum Entropy modeling has been applied to predictive

modeling of species distributions [6,15,16,40], including small

cetaceans [41]. We used the Maxent program (version 3.3.1 – see

http://www.cs.princeton.edu/,schapire/maxent) as described in

detail in Phillips et al. (2006, 2009) [16,41]. Briefly, Maxent

employs a maximum likelihood method that models species’

distributions by generating a probability distribution over the

pixels in a grid of the study area. Maxent estimates a probability

distribution that maximizes entropy (i.e., that is the closest to

uniform) subject to a set of constraints derived from measurements

of assumed suitable habitat values at species occurrence locations.

Specifically, the expected value of each environmental variable of

the Maxent distribution must match its empirical mean (the mean

over the sample points). The probability distribution is estimated

over the pixels of the study area, and the pixels representing

species presences make up the sample points. During a model run,

the ‘‘gain’’ represents the probability distribution of the model and

is a measure of the likelihood of the samples. The gain starts at 0

and increases with every model iteration until the difference

between model iterations is below the convergence threshold. The

gain can be thought of as a measure of how much better the

distribution fits the sample points in comparison to the uniform

distribution, and is similar to the ‘‘deviance’’ used in statistics.

Maxent uses regularization techniques to smooth resulting models

to ensure that models are not overfit [6,14,16], and we used a

constant regularization parameter set to the default value of 1

(higher regularization values would produce smoother models,

which we did not require) [7,14].

Phillips et al. (2009) note that occurrence data is often spatially

biased towards particular areas, such as those that are easily

accessible, while background data used to build presence-only

models are typically based upon randomly drawn data [41]. This

difference in the spatial bias between occurrence data and

background data can cause resulting models to be inaccurate.

This problem can be overcome by using background data with a

similar bias as the occurrence data (the use of target-group

background data). Phillips et al. (2009) found that this approach

improved model performance considerably [41]. We used target-

group background data to build our model of spinner dolphin

resting habitat. We examined the location of all of the available

presence-only data (both resting and non-resting spinner dolphins,

as well as sightings within and outside of the bays) and identified

bays that were therefore considered to have been surveyed (all

bays that either contained sightings, regardless of the behavioral

state of the dolphins, or bays that were within 1000 m of a

sighting). We used background data from within only these bays to

build the model, and then applied the model to all bays within the

main Hawaiian Islands.

We used cross-validation to assess model fit. To cross-validate

the model, spinner dolphin sightings were randomly split into

groups of equal size and multiple models were created (10

replications in total), leaving out each group in turn. This allowed

variance estimates to be produced from the different Maxent

model runs and evaluated relative to the average results across all

models [14,42,43,44]. Cross-validation is advantageous for small

datasets as it uses all of the data, rather than splitting the data into

test and training groups, and has been found to be a preferable

method of model assessment [45].

Maxent provides both threshold-dependent and threshold-

independent measures of model outputs. Threshold-independent

assessments are evaluated using the Area Under the Curve (AUC)

metric of the Receiving Operator Characteristic (ROC) curve

[46]. In an ROC curve, all sensitivity values (true positives) are

plotted on the y-axis against specificity (false positive) values on the

x-axis. The AUC value provides a threshold-independent metric of

overall accuracy, and ranges between 0.5 and 1.0. Values of 0.5

indicate that scores of specificity and sensitivity do not differ, while

scores of 1.0 indicate that the distributions of the scores do not

overlap [46]. We evaluated AUC values of the ROC curve of the

model as in Hosmer and Lemeshow (1989): ,0.5 indicated no

discrimination; 0.5 to 0.7 represented poor discrimination; 0.7 to

0.8 indicated an acceptable discrimination; 0.8 to 0.9 indicated an

excellent discrimination; and .0.9 represented outstanding

discrimination [47]. We also evaluated whether the model

predicted spinner dolphin sightings significantly better than a

random prediction with the same fractional predicted area using

one-tailed binomial tests (threshold-dependent assessments). Max-

ent output is typically provided as a probability of species

occurrence, and a threshold value must be provided in order to

generate presence-absence results. The equal training sensitivity

and specificity logistic threshold, which has been found to perform

better than other commonly used thresholds [48], was applied and

compared with the results from fixed thresholds of 1, 5, and 10.

The performance of the model at these thresholds was then

assessed using the extrinsic omission rate and the proportional

predicted area. The extrinsic omission rate is the fraction of

spinner dolphin sightings that occur on pixels that are not

predicted to be suitable for the species, while the proportional

predicted area is the fraction of pixels that are predicted to be

suitable habitat [16]. Lastly, we examined variable importance

within Maxent models using a jackknife analysis. Models were

computed repeatedly leaving out one variable at a time, and then

creating a model using each variable in isolation. This allows the

contribution of each variable to the model to be computed

individually, and also allows the model performance to be assessed

when each variable is not included in the analysis.

Species distributions were modeled using Maxent version 3.3.1.

When habitat variables were highly correlated (significant

Pearson’s correlations greater than 0.50), only one of the

correlated variables was included in the final Maxent model

based on the potential biological relevance of the variables [49].

Pearson’s correlation coefficients for model variables are shown in

Table 2. The final model included the following variables: aspect

variety, bay area, coastline to area ratio, depth, distance to the

100 m contour, proportion of bay area with depths ,50 m, and

rugosity.

Results

For the threshold dependent tests, p-values of binomial tests for

all thresholds evaluated were &0.01, indicating that the model

predicted test localities significantly better than random (Table 3).

When binary output is desired (e.g., habitat vs. non-habitat), the

threshold value used becomes critical, and further research is

required to establish rules for choosing optimal thresholds to

distinguish suitable habitat from unsuitable habitat [7,16].

Threshold independent tests of the model also indicated that the

model performed well in predicting spinner dolphin resting

habitat. The mean AUC value for the cross-validated model was

0.87, which was considered to offer ‘‘excellent discrimination’’

given our interpretation of AUC values (see Methods section;

Figure 3).

Results of a jackknife test of variable importance in the final

model run are shown in Figure 4. Of the variables, distance to the

100 m depth contour, depth, the proportion of bay area with

depths of less than 50 m and rugosity were found to be the

strongest predictor variables. Total bay area with depths of less

Spinner Dolphin Habitat Modeling
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than 50 m, coastline to area ratio and aspect variety were

relatively weak predictors.

Maxent model responses to the different environmental

variables are shown in Figure 5. Distance to the 100 m depth

contour showed a negative response, with the highest values of

model gain occurring at distances of less than approximately

1.5 km. Depth also showed a negative response, with the highest

model gain occurring between depths of approximately 15 to

50 m. Bays with a low proportion of area covered by depths of less

than 50 m showed the highest values of model gain. The lowest

values of rugosity showed the highest values of model gain. Both

low and high categories of bay area under 50 m showed a positive

response. Low or medium values of coastline to area ratio and

higher values of aspect variety were associated with increased

model gain.

The mean spatial model of the predicted resting habitat for

spinner dolphins is shown for selected bays on each island in

Figures 6 and 7. Although we emphasize that results from models

using thresholds for binary output should be interpreted with

caution, we also provide an example of how our model results can

be evaluated in terms of habitat vs. non-habitat to simplify the

model for demonstration purposes. We used the most conservative

threshold value produced from the model (i.e., that giving the

lowest predicted area), which was the threshold producing equal

values of sensitivity and specificity (Table 3), to identify spinner

dolphin resting habitat. Bays that were found to contain a

considerable amount of predicted habitat using this method (here

defined as more than 25% of the total bay area) are shown in

Figure 8. Using this method, 21 of the 99 bays evaluated were

identified as potential spinner dolphin resting habitat. Potential

resting bays were particularly prevalent on the western coast of the

island of Hawai’i and on the southern and southwestern coasts of

O’ahu. Boxplots of the most important model variables (depth,

distance to 100 m contour, proportion of area ,50 m, and

rugosity) were produced at the bay scale (i.e., averages over bays)

to compare values of these variables between bays identified as

habitat and non-habitat using the equal sensitivity-specificity

threshold (Figure 9). These boxplots examining spinner dolphin

habitat at this larger spatial scale illustrated that bays considered to

be spinner dolphin habitat showed deeper depths, lower distances

to the 100 m contour, slightly higher values of rugosity, and lower

proportions of area under 50 m in comparison to bays not

classified as spinner dolphin habitat.

An examination of the model output with the spinner dolphin

sightings used to build the model showed a good fit with the

location of the sightings (Figure 10). The model did not appear to

be overfit to the sightings (i.e., the prediction was not closely fit to

the presence records with a very localized prediction), and

predicted a high probability of spinner dolphin resting habitat in

several areas where sightings were not available.

Table 2. Pearson’s correlation coefficients for model variables. Coefficients shown in bold represent significant correlations greater
than 0.5.

Depth Area
Bay area
,50 m

Prop. area
,50 m

Dist. 100 m
cont.

Dist. 1000 m
cont Dist. land Slope Rug. Asp. Var.

Coast:
area

Depth – 0.24 0.01 0.46 0.35 0.24 20.45 20.68 20.47 0.17 0.24

Bay area – 0.78 20.24 20.12 0.14 0.68 20.08 20.06 20.04 20.31

Bay area ,50 m 0.07 20.09 0.07 0.61 20.20 20.12 0.05 20.50

Prop. area
,50 m

– 0.38 0.04 20.22 20.49 20.36 0.14 0.35

Dist. 100 m
cont.

– 0.59 20.22 20.36 20.23 0.00 20.12

Dist. 1000 m
cont.

– 0.01 20.31 20.19 0.04 0.14

Dist. land – 0.04 0.02 20.10 0.64

Slope – 0.62 20.17 20.03

Rug. – 20.11 20.10

Asp. Var. – 20.04

Coast: area –

doi:10.1371/journal.pone.0043167.t002

Figure 3. Receiver Operating Characteristic (ROC) curve and
the Area Under the Curve (AUC) values for training and test
data.
doi:10.1371/journal.pone.0043167.g003
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Discussion

Environmental predictors of spinner dolphin resting
habitat

The Maxent model performed well in predicting spinner

dolphin resting habitat. Our results further confirm that Maxi-

mum Entropy modeling is a useful technique for predicting species

distributions in situations where only presence data are available

and where management of the species in question would benefit

from a quantitative habitat analysis. Our model results indicated

that proximity to deep water foraging areas, depth, the proportion

of bays with shallow depths, and rugosity were important

predictors of spinner dolphin habitat. Proximity to nighttime

foraging areas has been proposed as an important factor affecting

the use of bays by resting spinner dolphins [29]. The results of the

present study confirm this hypothesis quantitatively; the jackknife

test of variable importance indicated that the strongest predictors

of spinner dolphin resting habitat were distance to the 100 m

depth contour and depth, with spinner dolphin resting habitat

generally occurring in shallow depths that were close to the 100 m

depth contour. The importance of the distance to 100 m contour

variable indicated that proximity to deep water was an important

factor in predicting spinner dolphin habitat. Spinner dolphins in

Hawai’i are primarily nighttime foragers and feed on the

mesopelagic boundary community [23,24]. The mesopelagic

boundary community in this region has been found to consist of

a distinct island-associated community of mesopelagic fish, shrimp

and squid that occur along a narrow band at the boundary

between the mesopelagic environment and the island slopes [50].

Recent studies have shown that in addition to a diel vertical

migration in prey items (rising at night and returning to deep

waters during daylight hours), a diel horizontal migration in the

mesopelagic boundary layer also occurs in the main Hawaiian

Islands. The mesopelagic boundary community migrates from

deep, offshore waters into shallower, inshore waters at night and

spinner dolphins appear to follow the diel horizontal migration of

their prey [23]. The maximum foraging depth of a spinner dolphin

is thought to be approximately 200–250 m [51] so the boundary

Table 3. Fractional predicted area and p-values of binomial tests from the Maxent model of spinner dolphin resting habitat for the
equal sensitivity-specificity threshold and for fixed thresholds of 1, 5 and 10.

Description Fractional predicted area P-value

Fixed cumulative value 1 0.578 2.3961029

Fixed cumulative value 5 0.382 6.79610212

Fixed cumulative value 10 0.292 2.27610214

Equal training sensitivity and specificity 0.189 7.34610216

doi:10.1371/journal.pone.0043167.t003

Figure 4. Results of Maxent model showing jackknife tests of variable importance for training samples.
doi:10.1371/journal.pone.0043167.g004
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community, located at depths of approximately 400–700 m during

daylight hours [50], cannot be exploited by spinner dolphins

during the day. Thus, using coastal resting areas proximate to

deep waters would allow spinner dolphins to access to mesopelagic

prey at an earlier stage in the diel migration of prey species into

shallow waters. This would decrease energetic costs associated

with traveling to deep waters where prey first become accessible to

spinner dolphins, and would provide spinner dolphins with access

to prey for a larger proportion of the night. Thus, access to

nighttime foraging areas provides an ecological context to explain

why animals might choose particular bays.

Previous studies [28,29] hypothesized that spinner dolphins

select flat bays with shallow depths and prefer shallow areas within

these bays. Our model results examining bathymetry and rugosity

support these original hypotheses, and move towards a mechanis-

tic definition of spinner dolphin resting habitat during the time

that these data were collected. Shallow depths were associated

with resting habitat, though bays with a low proportion of area

with depths less than 50 m were correlated with spinner dolphin

resting habitat. Our model results suggest that spinner dolphins

may select shallow areas within bays that encompass deeper waters

(i.e., with a low proportion of area with shallow depths) so as to

avoid predators while still maintaining proximity to offshore

foraging areas. Rugosity was found to be a good predictor of

spinner dolphin habitat. Low values of rugosity, indicating a low

bottom roughness, were associated with spinner dolphin habitat.

Heithaus and Dill (2002) suggest that dolphin echolocation is less

efficient in shallow waters where sound is easily scattered off the

Figure 5. Response curves (+/21 standard deviation) showing how each of the environmental variables included in the model
affects the Maxent prediction.
doi:10.1371/journal.pone.0043167.g005
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bottom substrate and the surface of the water, contributing to a

decreased ability to detect predators and an increase in the

riskiness of such habitats for dolphins [52]. Similarly, we suggest

that spinner dolphin echolocation might be less efficient in regions

of high bottom roughness, causing dolphins to avoid more ‘‘risky’’

regions of high rugosity. Cluttered environments have been shown

to impose considerable ecological constraints for echolocating bats

[53], and high bottom roughness might create a cluttered acoustic

background, affecting dolphins’ ability to detect, classify, and

locate predators and causing spinner dolphins to seek out regions

of low bottom roughness. Furthermore, Heithaus and Dill (2002)

suggested that tiger sharks are better camouflaged when swimming

over seagrass habitats than when swimming over light sandy

bottoms. The lower rugosity values in spinner resting habitat

modeled in this study may reflect a similar relationship, where

spinner dolphins are choosing flat (and likely sandy, as discussed

below) resting areas within bays that increase their ability to

visually detect shark predators while reducing acoustic clutter.

Multivariate models of rugosity evaluated at a similar scale to

that used in the present study have been found to correlate well

with estimates of bottom type [36], with high values of rugosity

being associated with hard bottom substrates. Therefore our

results showing that low rugosity was a good predictor of dolphin

habitat support Norris and Dohl’s (1980) hypothesis that spinner

dolphins prefer bays with sandy bottoms [28]. Available high

resolution bottom type data (http://ccma.nos.noaa.gov/) would

have been useful in addressing hypotheses regarding spinner

dolphin preference of bottom types but was often restricted to only

the innermost regions of the bays. Due to this inconsistent

coverage, these data were not used in the analysis. The other

proxy for benthic complexity used in the present study, aspect

variety, was not found to be an important predictor of spinner

dolphin resting habitat. The effect of scale on proxies for benthic

complexity should be examined further in the main Hawaiian

Islands. These factors might be more appropriate to the current

application if assessed with finer-scale data. Light Detection And

Ranging (LIDAR) radar data provide high-density bathymetric

Figure 6. Model gain shown for selected bays on the island of Hawai’i.
doi:10.1371/journal.pone.0043167.g006
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data that have been used to provide estimates of rugosity across a

range of spatial scales [54] and can be useful in studies of animal-

habitat relationships [55]. LIDAR data would provide higher

resolution bathymetric data than that used in the present study but

are restricted to the innermost reaches of spinner dolphin resting

bays. Field measurements of bottom type and fine-scale bathym-

etry should be included in future studies in order to address

hypotheses regarding the importance of benthic topography and

bottom type on spinner dolphin resting habitat.

Boxplots comparing bays classified as spinner dolphin habitat

using the equal sensitivity-specificity threshold to bays classified as

non-habitat demonstrated marked differences in physical charac-

teristics between these bays. Bays classified as spinner dolphin

habitat were closer to the 100 m contour than non-habitat bays,

and showed a low proportion of area with depths of less than

50 m, which is consistent with the proposed importance of

distance to deepwater foraging areas as discussed above. Deeper

depths and slightly higher values of rugosity were observed in bays

containing spinner dolphin habitat, though model results indicated

that spinner dolphin habitat is associated with shallow depth and

low rugosity. Since boxplots were produced using data at the bay

d

Figure 7. Model gain shown for selected bays on the islands of Kaua’i, O’ahu, Moloka’i and Maui.
doi:10.1371/journal.pone.0043167.g007

Figure 8. Example of spinner dolphin resting bays predicted
from model output identified using the maximum sensitivity
plus specificity threshold (see text).
doi:10.1371/journal.pone.0043167.g008
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scale (i.e., averaged over entire bays), this suggests that spinner

dolphins are seeking regions with shallow depths and low rugosity

within bays that include areas of deeper depths and higher rugosity

than bays that do not contain spinner dolphin habitat. These bays

are likely preferred due to their proximity to deepwater areas.

Spatial predictions of spinner dolphin resting habitat
A visual examination of the model output matched well with

known locations of spinner dolphin resting habitat that were not

represented in the species occurrence data used for this model. For

example, exact locations of spinner dolphin sightings within known

resting bays such as Okoe Bay on the island of Hawai’i were not

used to build the model. However, our model predictions

indicated that these bays have a high probability of resting habitat

(e.g., Figure 6f), providing an additional qualitative test of the

model. Additional surveys providing exact locations of sightings

within these known resting bays would be useful in improving the

current model. The current analysis focused on bays of the main

Hawaiian Islands, though Lammers (2004) observed resting

spinner dolphins offshore of the bays used in this analysis along

the southern shore of O’ahu [31]. The model output from the

present study also indicated that offshore regions of bays along the

southern shore of O’ahu had a high probability of spinner dolphin

resting habitat. Lammers (2004) also observed resting spinner

dolphins within the bays along the western shore of O’ahu in

regions that showed a high probability of being spinner dolphin

resting habitat in the Maxent model [31].

Applications for management
Spatial maps of model output showed that spinner dolphin

resting was often predicted to occur in regions close to shore in

popular tourist areas. For example, suitable spinner dolphin

resting habitat was predicted immediately alongshore in several

bays along the west coast of the island of Hawai’i, a very popular

tourist destination where conflicts with human activities have

already been reported [33]. There are few published studies on the

effects of tourism on resting spinner dolphins, and most do not

address the potential for population-level effects. Limited obser-

vations suggest that socially active spinner dolphins might be

relatively tolerant of human presence [31], while resting spinner

dolphins may leave an area if forced to interact with humans

[29,56]. Studies of the effect of spinner dolphin presence on the

level of tourist activity on Hawai’i found that increased numbers of

kayakers and swimmers were observed when spinner dolphins

were present [57], highlighting the need to evaluate the impacts of

tourism on resting spinner dolphins. Understanding the current

habitat use of resting spinner dolphins is a necessary first step in

evaluating and comprehending the effects of human activities on

this species.

Figure 9. Boxplots of strongest predictor variables for spinner dolphin habitat in bays identified as habitat (shown in grey) and
non-habitat (shown in white) using the equal sensitivity-specificity threshold.
doi:10.1371/journal.pone.0043167.g009
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Repeated human disturbance might have impacts that are not

evident, including reduced benefits of rest periods. Daily resting

behavior may provide a period of relative silence, allowing for the

maintenance of sound-producing structures [29]. The central

nervous system is unable to remain attentive for long periods of

time, and thus a vigilance decrement, in which animals gradually

show a decreased ability to process information, is observed over

long time periods [58]. This can result in a decreased performance

in activities such as detecting predators and capturing prey. A

vigilance decrement may be of particular concern for spinner

dolphins, which are thought to be limited by foraging efficiency

rather than prey availability [59]. Wild animals must maintain

appropriate proportions of foraging and rest, and vigilance

decrement may be a significant factor influencing the time

budgets of wild animals [58]. In this context, the daily rest time

of spinner dolphins likely represents an important period of

vigilance recovery that is critical to their ability to function

effectively in their oceanic foraging habitat. Human-driven shifts

in habitat use to open water or less suitable habitats [14] might

also have consequences for avoiding predation and vigilance

decrement.

Maxent results are typically reported as probabilities rather than

binary output (habitat vs. non-habitat), which has important

implications for managers seeking to use SDMs to define or

delineate regions of interest. We stress that the thresholds used to

develop binary model output need to be evaluated carefully, but

also suggest that this approach presents a replicable method for

identifying important habitat that could be adapted depending on

the management context or the perceived level of risk to a given

species. In our example using the equal sensitivity-specificity

threshold, only a small number of bays (21 of 99) were identified as

providing suitable habitat for resting spinner dolphins, which

highlights two points for the effective management of human

activities in Hawai’i. Firstly, spatial modeling approaches such as

the results presented here can be used to focus future survey effort

in bays that have not been surveyed for spinner dolphins or for

which no data is currently available, such as in bays on Lāna’i,

Moloka’i, Maui or along the southeastern coast of the island of

Hawai’i. Focusing survey efforts in this way would be useful in

Figure 10. Examples of spinner dolphin sightings used to generate the model relative to model gain (probability of predicted
spinner dolphin resting habitat).
doi:10.1371/journal.pone.0043167.g010
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reducing costs of at-sea surveys and would provide a further test of

our model in order to improve our understanding of the habitat

required by resting spinner dolphins. Secondly, the finding that a

low proportion of bays provide resting habitat for spinner dolphins

suggests that detrimental effects of human activities on resting

spinner dolphin habitat could be minimized by restrictions or

preventative measures in a relatively small number of bays. The

results of this study indicate the importance of using presence-only

modeling techniques to evaluate the habitat use of species when

limited data are available, or when no absence or effort data are

available, particularly for species where model results can be used

to address management concerns. Maxent models are especially

informative in this respect as they perform well compared to other

presence-only modeling techniques [6,16], allow a variety of data

types to be incorporated, present graphical relationships between

predictions and environmental variables that can be easily

understood by resource managers, and provide continuous spatial

output of model predictions [16].

Conclusions
In summary, this study further demonstrates the utility of

Maximum Entropy modeling for mapping species distributions of

species for which patterns of habitat availability are poorly

understood. Results show a good fit with known areas of spinner

dolphin resting habitat, and provide important information

regarding the environmental factors affecting spinner dolphin

habitat use. Maps of spinner dolphin resting habitat produced

from this study can be used to focus further analyses of habitat use

and to select areas where effects of human activities on resting

spinner dolphins should be monitored in the future.
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