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Abstract

Physiological monitoring is the practice of using sensors to read, store, pro-

cess and interpret physiological data from organic beings, including biofeed-

back signals associated with heart, brain, muscle and other organ activity.

Physiological data retrieved from the body can be used for disease diagnose

and other activities, such as monitoring physical and mental stress levels of

participants in physical training exercises.

In addition to monitoring individuals, physiological data can be ag-

gregated to monitor groups. However, this kind of group-monitoring can

present difficulties in mobile environments, particularly concerning how to

process and transform the raw physiological data in real-time. Current tech-

niques involve the use of either fixed processing resources (such as worksta-

tions or servers) or the use of Cloud computing, which requires a stable,

uninterrupted mobile broadband communications network - neither of which

are common in remote mobile environments.

This dissertation proposes to improve existing methods of physiological

monitoring. This technique aims to monitor, analyse and report physiologi-

cal data in real-time by leveraging mobile devices as distributed processors.

The viability of this approach is evaluated by testing the implementation of

a system based on these principles in a number of real-world physiological

processing examples.

5



Chapter 1

Introduction

1.1 Overview

Physiological monitoring is the practice of using sensors to read, store, pro-

cess and interpret physiological data from organic beings, including biofeed-

back signals associated with heart, brain, muscle and other organ activity.

Physiological monitoring can provide a plethora of useful health, fitness and

other related data in real-time. Useful measures such as pulse, respiration

rate and blood oxygen levels have been successfully used to diagnose and

aid in the treatment of conditions such as sleep apnoea (Oliver & Flores-

Mangas, 2006), as well as assisting in the monitoring of cardiac systems

(Mendoza & Tran, 2002).

Initially, monitoring systems were largely confined to clinics and hospi-

tals due to size and low mobility, but advancements in mobile monitoring

systems (Lin et al., 2004; Lin et al., 2006; Dai & Zhang, 2006) have pro-

vided greater flexibility in usage environments. By utilising readily-available

sensor devices with low power requirements, long-term monitoring can en-

hance the quality of care for active patients, as well as providing numerous

6



CHAPTER 1. INTRODUCTION 7

advances to research associating physiological markers with mental states,

such as the measurement and analysis of stress levels (Jovanov et al., 2003a).

As well as monitoring individuals, it is possible to use distributed phys-

iological sensors to monitor groups. By analysing and aggregating physio-

logical data from the group, conclusions can be drawn regarding the state of

the entire group. Group monitoring has a range of possible usage scenarios,

such as monitoring the life-signs of miners in underground tunnels in or-

der to hasten awareness of emergency situations (Zephyr Technology, 2010),

or monitoring a population for symptoms of influenza to locate outbreaks

(Malone et al., 2009). Applications for this technique can also be found in

monitoring psychophysiological status of participants in training exercises

(Jovanov et al., 2003b), and determination of traffic flow within city areas

(Casari et al., 2009) for civic planning purposes.

Complex physiological monitoring of groups in real-time can already be

performed using fixed-location processing resources such as servers or cloud

platforms. However, a number of environments exist in which data trans-

mission to these resources is not viable. Poor or non-existent broadband

communications coverage in remote areas effectively nullifies any possibility

of using remote processing to perform requisite data transformations. In

addition, traditional processing resources (such as workstations or servers)

are not portable and require uninterrupted power supplies, which are gen-

erally not available in remote or highly mobile environments. In order to

provide an suitable source of processing resources for these environments,

existing mobile devices (such as smartphone, tablets or laptops) can be used

to process desired data transformations.

Unfortunately, while the processing ability of mobile CPUs has increased

dramatically over recent years, power drain and battery capacity remain
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bottlenecks. In order to extend the useful monitoring lifetime of these mo-

bile devices, any data analysis required can be processed in a collaborative

fashion to balance resource drain across contributing devices - preventing

any single device from taking too much of the work and depleting itself.

Mobile devices have the additional advantage of not requiring an uninter-

rupted power source, allowing them to be used as processors while running

off battery power - and be charged using a portable generator or solar cells.

This dissertation proposes a system that aims to support the packag-

ing and distribution of real-time physiological processing across a diverse

selection of devices. The remainder of this chapter is structured as follows.

Section 1.2 provides an introduction to physiological analysis, its potential

uses and difficulties. Section 1.3 introduces the concept of distribution of

transformation processing, along with benefits and example usage. Sec-

tion 1.4 presents the overall aims of the dissertation and work presented

here. Finally, Section 1.5 describes the structure of the dissertation.

1.2 Physiological Analysis

Relatively simple sensors, such as pedometers or heart rate monitors, are

available to monitor various high-level physiological data points for use by

consumers, often integrating with exercise trackers or social networks. Be-

cause the data is generally collected in its final desired form, little transfor-

mation is required. For many users, simple data collection and transmission

provides a satisfactory view of the desired result. A runner casually logging

heart rate and position data for curiosity or exercise optimisation is unlikely

to require extremely accurate or complex data, for example.

An example is illustrated in Figure 1.1, which represents a typical use

case for a casual consumer using basic physiological monitoring devices. A
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Bluetooth-enabled heart rate monitor is worn during exercise, which trans-

mits pulse rate (HR) data to the user’s smartphone or logs it for later collec-

tion. This data is then transformed using a simple mathematical algorithm

into R-R interval. Both resulting variables can then be uploaded to activity

trackers or social media sites, allowing users to compare exercise habits or

encourage other activity (FitnessKeeper, 2012).

Figure 1.1: Simple transformation from Heart Rate to R-R Interval

Other applications, particularly involving cardiac-related monitoring (Men-

doza & Tran, 2002) or psychophysiological analysis (Jovanov et al., 2003a),

require more complex data transformations. A physiological transformation

is the process of taking raw physiological measurements and applying al-

gorithms that can extract other useful information, which is in turn used

for activities such as disease diagnosis (Oliver & Flores-Mangas, 2006) and

measuring physical and mental stress levels (Hoyt et al., 2002).

Transforming signal data such as electrocardiography or photoplethys-

mography into useful metrics can involve advanced signal processing algo-

rithms (Healey & Picard, 1998), which can require significant computing

time to complete. Additionally, even for routine transformations it can be

a multi-step process. To ensure result accuracy, data is often filtered and

normalised prior to signal processing, which further adds to computation

time.
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Figure 1.2: Simple transformation chain using an ECG signal

It is often possible to derive more than one result from a single data input.

Figure 1.2 illustrates the transformations that take place in deriving heart

rate (HR) and heart-rate variability (HRV) from electrocardiograph (ECG)

data, in a simplified fashion. This processing technique determines the time

between beats of the heart (R-R interval) from the ECG signal, which can

then be transformed further into HR and HRV data - useful metrics for

health professionals to analyse, particularly in diagnosis of cardiac disease

(Singer et al., 1988) and diabetic neuropathy (Pagani, 2000).

Figure 1.3: Complex transformation chain for extracting several data points
from a PPG

Figure 1.3 illustrates the derivation of several useful points of data from

a photoplethysmograph (PPG), using a pulse oximeter attached to a sub-

ject. Obtaining the heart rate (HR) is a simple time-domain peak detection

operation (Sangeeta & Laxmi, 2011) and blood oxygen saturation (SpO2)
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is a simple calibration function applied to the pulse oximeter’s output con-

nections. By comparison, determining respiratory rate from a PPG is a

computationally expensive process (Fleming & Tarassenko, 2007), requir-

ing multiple wavelet transforms (Addison & Watson, 2003). These types

of signal processing algorithms take significant processing time to complete

(depending on size of dataset), making it impractical to provide real-time

results without dedicated computational resources.

While a simple transformation (such as Figure 1.1) could be handled by

even a small embedded processor, continuous or concurrent complex trans-

formations require significant processing power to complete. Depending on

scenario and environment, it is not always realistic to carry static processing

resources, particularly if part of a highly-mobile group.

1.3 Distributed Physiological Analysis

Traditional physiological processing frameworks tend to be extremely lim-

ited in mobility, due to the use of static resources and fixed power supplies.

In order to improve the range of situations physiological monitoring can be

implemented in, one possible solution would be to shift to a more mobile

processing paradigm. This would allow for the deployment of distributed

physiological monitoring systems in a range of new environments, such as

remote military training exercises, mining safety rigs and even small-scale

experimental studies relying on real-time transformations of data for psy-

chophysiological analysis.

Mobile physiological processing could be realised by allowing nearby mo-

bile processing devices (such as smartphones, tablets or laptops) to operate

in a collaborative fashion and process any physiological transformation re-

quests by users. This technique should also scale well; if more computation
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power is required to maintain transformational output, more devices can

simply be added to the cluster.

Figure 1.4: Device topology in a mobile simple usage scenario

Figure 1.4 illustrates the basic layout of a solution like described. In

this diagram, the laptop could act as a coordinator or supervisor of other

devices, while the smartphones take care of connections to monitoring de-

vices and collaboratively process any physiological transformation requests

sent to the laptop. Applications presenting the transformed physiological

data in a human-readable format could be executed on the laptop itself, or

on a tablet also connected to the network. The smartphones can manage

multiple physiological sensors each, along with any requisite transformation

processing. In the event that more computational resources are required,

additional mobile devices can easily be added as processing units.

Utilising a solution similar to that described in Figure 1.4 would al-

low for a mobile team to continuously utilise the physiological monitoring

framework for any transformations desired. This provides the potential for

psychophysiological analysis of users in remote, physically and emotionally
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stressful situations - supplying trainers or controllers with useful analytical

data in real-time that they otherwise would not possess.

1.4 Aims

The primary aim of this dissertation is to provide improvements in the ap-

plication of physiological monitoring and analysis. This is achieved through

the discussion and fulfillment of several primary goals;

• Improving physiological monitoring and analysis by enabling more ac-

cessible processing in non-traditional environments

• Increasing the usefulness of physiological monitoring for health moni-

toring, by reducing reliance on stable wide-area communications net-

works

• Presenting new opportunities for the use of group physiological mon-

itoring, by abating the difficulty and time expenditure in setting up

complex series of sensors across individuals and groups

• Providing an open, generic platform that facilitates distributed physi-

ological monitoring and processing in a scalable fashion using sensors

attached to mobile devices

• Allowing for complex, flexible chains of physiological data transforma-

tions to be performed in a dynamic and easily-configurable fashion by

providing a standardised web interface

In order to evaluate the effectiveness of using mobile devices for pro-

cessing physiological transformations, a generic platform is designed and

implemented that enables data from any number of physiological sensors to

be used as input for dynamic data transformations. Rather than using dis-

crete processing resources, portable processing devices (such as smartphones
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and tablets) are evaluated as an effective replacement in environments that

do not support stationary processing hardware.

A system to support the utilisation of mobile devices as processing re-

sources must consider a number of important issues, including:

• Scalability, to support any requisite numbers of input sensors and pro-

cessing devices

• Ease of configuration, supporting input streams from any type of sen-

sor device through standard communication mechanisms

• Portability, allowing the system to function in highly mobile environ-

ments

These aims represent a subset of system requirements, detailed further

in Chapter 4. In addition to evaluating the design and implementation of

the system based around these aims, the dissertation will also discuss the

suitability of using the system in a number of real-world scenarios.

1.5 Structure

The remainder of this paper is structured as follows. Chapter 2 provides

a background of physiological monitoring and distributed processing. It

also discusses previous studies completed related to distributed physiolog-

ical monitoring and inherent issues, and introduces concepts important to

distributed physiological processing. The state-of-the-art in physiological

monitoring equipment is examined, and methods of signal processing per-

formed on the data generated by these sensors are detailed.

Chapter 3 analyses two scenarios in which distributed physiological pro-

cessing on mobile devices would provide a significant improvement over exist-
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ing monitoring techniques and platforms. Common issues between scenarios

are discussed and potential requirements are derived.

Chapter 4 aims to improve distributed physiological monitoring by estab-

lishing an open, generic platform design to ease monitoring and processing in

mobile environments. The platform is designed to manage user sensors and

data streams with as little configuration as possible, while providing a scal-

able method of transforming the resulting physiological data. It provides

a RESTful (Fielding, 2007) web interface utilising standard technologies

(XML (Bray et al., 1997)) that presents physiological data transformation

and analysis functionality to users. Processing is handled transparently in

a distributed fashion, allowing groups of mobile devices to collaboratively

process requests transformations with no requirement for static computing

resources (such as workstations or Cloud computing resources), but can

utilise either if desired.

Chapter 5 presents the implementation of the distributed physiological

monitoring and processing system. Important issues relating to the imple-

mentation are highlighted, including data compression, system configuration

and resource allocation. Specific implementation details for each role-based

application are also illustrated.

Chapter 6 determines the effectiveness of using a distributed physiolog-

ical processing framework on mobile devices by evaluating the platform in

real-world scenarios. The system’s suitability to initial aims and defined

requirements is discussed, and the system is tested for performance with a

subset of mobile devices, workstations and Cloud computing resources using

sample physiological data and chained transformations.

Finally, Chapter 7 concludes with a discussion of the system’s contribu-

tion to physiological monitoring, as well as directions for future work.



Chapter 2

Background

2.1 Overview

This chapter presents a review and analysis of current techniques and tech-

nology related to physiological monitoring and distributed physiological pro-

cessing. An overview of physiological analysis, the latest in physiological

sensors and the concept of biofeedback are also presented, as these three

subjects are highly relevant to physiological monitoring.

Distributed physiological processing is a relatively untouched subject.

Distributed physiological monitoring has been used in limited scenarios (Jo-

vanov et al., 2003b). General distributed processing has been in use for a

substantial period of time, including for signal processing (Lee & Oppen-

heim, 1998; Krupa et al., 2007) and data aggregation in wireless sensor

networks (Yao & Gehrke, 2003), but not yet as part of a physiological mon-

itoring and processing framework. Related studies, potential benefits and

disadvantages with distributed physiological processing are discussed in the

following sections.

The remainder of this chapter is structured as follows. Section 2.2 in-

16
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troduces the concept of biofeedback, the measurement of electrical signals

that run through our bodies to determine physiological state. Section 2.3

provides an overview of signal processing techniques, which can be used to

derive physiological data from biofeedback signals. Section 2.4 describes the

state of the art in physiological sensors, include improvements in portability

and communications access. Section 2.5 presents common uses for physiolog-

ical monitoring, as well as issues that affect its usage.. Section 2.6 presents

a review of physiological monitoring techniques used in a group context.

Section 2.7 reviews distributed processing techniques in both utilisation of

Cloud computing resources and resource allocation across networks of het-

erogeneous devices. Section 2.8 briefly discusses the drawbacks of traditional

physiological processing, and the benefits of distributing the work. Ethical

and privacy guidelines related to physiological monitoring are presented in

Section 2.9. Finally, Section 2.10 presents a summary of issues discussed in

this chapter.

2.2 Biofeedback

In addition to simple physiological measures such as pulse and blood pres-

sure, the human body can be monitored for electrical signals produced by

specific parts of the body. In a healthy human heart, the sinoatrial node

produces a bioelectric pulse designed to contract heart muscles and pro-

duce the standard human heart rate of 72 beats per minute (Malmivuo &

Plonsey, 1995). Electrical activity like this can be measured using surface

electrodes, with position of electrode determining the object being moni-

tored. This technique of monitoring the heart through collection of surface

electrical activity is called electrocardiography (Katz & Pick, 1956), and is

one of a number of electrical signals used in biofeedback and physiological
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monitoring.

There are many electrical signals that can be collected from the human

body for purposes of disease diagnosis and health analysis. Electrocardio-

graphs (ECGs) (Katz & Pick, 1956) are commonly used to assess and di-

agnose cardiac problems, but can also be analysed to produce other data

such as pulse and respiratory rate (Moody et al., 1985). Electroencephalo-

graphs (EEGs) are used to measure brain activity and can be used for a

wide variety of brain-related monitoring, such as diagnosis of epilepsy and

management of anaesthesia in coma patients (Niedermeyer & Silva, 2005).

Photoplethysmographs (Allen, 2007) are a signal produced most commonly

by pulse oximeters (Tremper & Barker, 1989), which measure blood oxygen

saturation and are used for cardiac-related analysis and respiration detec-

tion (Fleming & Tarassenko, 2007). There are numerous other biofeedback

signals that can be monitored (Buchthal, 1957; Geddes et al., 1962) from

the skin and muscles that other data can be derived from, such as general

mood (McCleary, 1950).

As illustrated in Figure 2.1, an electrocardiogram signal is made of sev-

eral components; a P wave, a QRS complex, a T wave and a U wave (not

shown). Each PQRST wave represents a single beat of the heart. The R-R

interval is the time period between R peaks in successive QRS complexes,

and represents the time between heartbeats, which can then be converted

to heart rate (HR) in beats per minute. Each of the biofeedback signals

listed previously must be processed and transformed in a similar manner

to produce useful metrics, such as R-R interval. These transformations are

classified as signal processing techniques, and vary in complexity.
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Figure 2.1: A breakdown of components in an Electrocardiograph

2.3 Signal Processing, Storage and Compression

Signal processing is used heavily in physiological analysis to convert recorded

electrical signals from the body into useful physiological data. Data is first

filtered to remove unwanted signal interference and transformed using either

generic signal processing algorithms (such as Discrete Fourier Transforms or

Wavelet Transforms) or specialised algorithms tailored to a particular signal

type. However, there are important issues to consider prior to processing -

especially desired signal resolution and storage.

Raw electrocardiogram data can generate significant amounts of output,

depending on the resolution of the signal, the number of channels monitored

and the sampling rate. Sample rates can vary significantly, as some desired

usages require substantially higher signal quality. General usage tends to

result in around 450kb - 30mb of data per hour (Horspool & Windels, 1994)
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for sampling frequencies of 125 (single-channel) and 500Hz (12-channel) re-

spectively. High-resolution ECGs can sample at even higher frequencies,

often operating around the 2-5kHz mark (Jane et al., 1990). While cur-

rent data storage and transmission mediums can generally handle such an

amount of data, increasing size of data transmissions results in higher power

expenditure. This is not an issue for monitoring equipment with fixed power

supplies, but should be considered when operating with mobile equipment

and limited power storage. Additionally, applications requiring extremely

high signal resolution may be inappropriate for use with mobile processing,

due to physical memory and bandwidth limitations.

In order to encourage smaller data packages, ECG and other signal data

can be compressed prior to transmission or storage. To provide the great-

est benefit, the signal should ideally be compressed prior to transmission,

requiring some level of processing ability on monitoring hardware. While

compression can be built into the monitoring hardware, a software-based

approach has the possibility of receiving upgrades in the event of new com-

pression techniques - albeit at the cost of requiring a generic processor.

Many compression algorithms have been designed specifically for phys-

iological signals. These often work in conjunction with traditional digital

data compression algorithms such as gzip (Deutsch, 1996), though the for-

mer are often tailored specifically to certain signals and provide a greater

compression ratio than traditional compression algorithms (Arnavut, 2001).

The primary goal of signal compression algorithms is to reduce data size by

as much as possible without losing significant resolution, and a large number

of algorithms have been developed for this purpose (Jalaleddine et al., 1990;

Nave & Cohen, 1993; Horspool & Windels, 1994; Antoniol & Tonella, 1997;

Chen & Itoh, 1998; Blanco-Velasco et al., 2004; Miaou & Chao, 2005).
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Physiological signal data can be generated by monitors in a range of

different formats, sizes and qualities. Efficiency of data compression and the

usefulness of data is often dependent on the monitoring hardware, which is

an important consideration when developing a monitoring system.

2.4 Physiological Sensors

Physiological monitoring systems have evolved considerably since their con-

ception. Substantial increases in hardware processing capability and storage

has driven the development of a new generation of health monitoring devices.

Size, portability, maintenance requirements and difficulty of use were some

of the factors that previously limited equipment to hospitals and clinics.

Almost all of these factors have been significantly improved upon, allowing

a greater portion of rehabilitation and long-term health monitoring to be

completed in home environments.

Electrocardiographs are particularly useful for the diagnosis and long-

term monitoring of various cardiac-related health conditions (Mendoza &

Tran, 2002). While still being used heavily in hospitals and clinics (Dai &

Zhang, 2006), a number of systems have been adapted for home use (Bai

et al., 1999; Ruggiero et al., 1999), allowing long-term monitoring to be

performed upon patients while they maintain normal activity (Korhonen

et al., 2003). These improvements significantly improve the quality of life

for patients (Ruggiero et al., 1999) and open up the possibility for new

applications of monitoring in more portable environments.

Improvements in wide-area and local communications have also con-

tributed to the accessibility of portable physiological monitoring equipment.

Sensors that require data to undergo extensive transformation and process-

ing to produce useful output are able to transmit collected data wirelessly
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(using Bluetooth or WiFi) to more capable servers (Yu & Cheng, 2005).

These servers can then analyse collected data and present results to doc-

tors, specialists and the user themselves. Sensors can also be attached di-

rectly to users’ mobile phones (Lee et al., 2006), enabling transmission of

physiological data over mobile networks.

By integrating short-range communications with basic mobile process-

ing hardware (such as mobile phones) and physiological sensors, monitoring

harnesses can be developed. These harnesses constantly monitor a user’s

physiological data, acting as what is commonly known as a Body Area Net-

work (Schmidt et al., 2002). BANs (or systems with similar architectures)

are used extensively for physiological monitoring, with many systems (Jo-

vanov et al., 2003b; Lin et al., 2006; Lee et al., 2006; Milenkovic et al., 2006;

Oliver & Flores-Mangas, 2006; Lee et al., 2009; Dhamdhere et al., 2010) de-

veloped to monitor the user’s body and either process or transmit collected

data for presentation to users and health professionals.

The development of these types of devices have the potential to change

health monitoring and rehabilitation into the future. By making monitoring

equipment more accessible and portable, patients who traditionally would

have to make regular hospital visits for check-ups can be monitored remotely.

This has the potential to both greatly improve responsiveness to emergencies

and substantially increase quality of life for patients by allowing them to

reside in their homes.

2.5 Physiological Monitoring in Practice

The collection of physiological data is used extensively for disease diagno-

sis and health monitoring. In the past, most of these uses were limited to

specialised equipment in hospitals and health care clinics due to expense
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or lack of portability. Advancements in certain types of monitoring equip-

ment (such as electrocardiogram monitors (Bai et al., 1999)) have allowed

for them to be used in different environments (e.g. mobile), and for pur-

poses beyond simple diagnosis and health monitoring procedures. Persistent

communications with these devices is made trivial, as most can utilise either

a mobile phone network (Oliver & Flores-Mangas, 2006) or home wireless

internet connection (Mendoza & Tran, 2002) that allows the devices to be

monitored remotely. Software updates can also be automatically deployed to

suit future purposes without requiring physical interaction by a technician.

As noted, physiological monitoring can be used for a number of purposes

and is not limited to health care. Athletes can be monitored in real-time for

performance and referee-assist services (Dhamdhere et al., 2010) by attach-

ing sensors monitoring heart rate and spatial position. Monitoring levels

of fatigue in drivers by using a neural network to analyse eye shape and

position (Rong-ben et al., 2003) can also assist in improving road safety.

Monitoring equipment is progressing to a point where it is more portable

than ever before (Chang et al., 2008), which allows its use in a wider range of

scenarios while being minimally invasive to the wearer. This is even the case

for purposes previously deemed intrusive, such as monitoring blood glucose

levels; now able to be tested through contact lenses (Parviz, 2009) rather

than a traditional lancet and strip mechanism.

There remains a number of problems with physiological monitoring on

mobile devices, particularly focused on power supply and consumption (Lin

et al., 2004). Performing transformations upon collected data in real-time is

a significant strain on resources, so any improvement in efficiency through

intelligent distributed processing is both desirable and achievable (Rong-ben

et al., 2003). Power consumption is also affected considerably by wireless
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transmission specifications, so devices with lower power consumption also

tend to have low transmission ranges (Jovanov et al., 2003b). In order to

save additional resources, it is possible to dynamically select the mode of

communications (Pering et al., 2006) between standard WiFi and Bluetooth,

with the latter consuming less power for transmission.

2.6 Distributed Physiological Monitoring

Previous studies involving physiological monitoring of groups have generally

been for very practical purposes. One such use has been distributed moni-

toring systems for automated care of patients within wards (Lin et al., 2006),

with a focus on customisation and reduced costs. Other studies have utilised

physiological monitors operating as a Body Area Network (Jovanov et al.,

2003b) to record stress in real-time over the duration of military assessment

and training.

Useful techniques have been designed to allow for the synchronisation

of real-time data sources (Jovanov et al., 2003a), as well as several tech-

niques providing means of routing (Dhamdhere et al., 2010; Chen, 2006)

and management of wireless sensor networks (Ren et al., 2005; Pandian

et al., 2008; Lee et al., 2009) that can be utilised. By combining these net-

work organisation techniques with our own methods for other components

of our theoretical networking stack, a complete solution can be developed.

The majority of problems associated with using distributed sensor net-

works in typical environments are inherent within all wireless sensor net-

works, and physiological monitoring networks are no exception. While solu-

tions have been proposed for issues such as sensor coverage (Cardei & Wu,

2006; Meguerdichian et al., 2001) and network routing (Akkaya & Younis,

2005), power consumption is an issue of particular importance in physiolog-
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ical monitoring (Milenkovic et al., 2006).

2.7 Distributed Processing

When performing extensive data transformations in a mobile environment,

access to processing resources is often scarce. To avoid the unwieldy scenario

of transporting powerful workstations to process collected data, a cluster of

heterogeneous mobile devices can instead be used to collaboratively process

work. In the event that further resources are needed, on-demand Cloud or

on-site resources can be utilised, at a price. However, task allocation across

such a varied group of devices brings its own challenges.

Optimal resource allocation for distributed computing is a difficult task,

with many algorithms developed to provide satisfactory solutions for various

cases (Topcuoglu et al., 2002). These algorithms are classified into a number

of groups (such as list-scheduling (Adam et al., 1974), clustering (Yang

& Gerasoulis, 1994), duplication-based (Ahmad & Kwok, 1994) or guided

random search methods) but are generally developed to distribute tasks

across a cluster of homogeneous processors. There are other algorithms

developed to operate over heterogeneous clusters (Topcuoglu et al., 2002;

Sih & Lee, 1993; El-Rewini & Lewis, 1990; Iverson et al., 1995), several of

which would be suitable for implementation into a distributed physiological

processing system.

A number of cloud services are available and have previously been used

to process data transformations, such as Amazon EC2 (Lee et al., 2010) and

S3 (Palankar et al., 2008). There has also been research into the benefits

of scheduling excess tasks to the cloud over local resources (de Assuncao

et al., 2009), which demonstrated a good ratio of performance to price in

high-intensity scenarios.
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2.8 Distributed Physiological Processing

Physiological monitoring and transformations can be a useful method of de-

riving data from subjects for a range of purposes, including measuring stress

and activity levels amongst others. However, there remains further opportu-

nities in group physiological monitoring - particularly in determining crowd

behaviour from physiological markers. In order to effectively transform the

collected data in real-time and aggregate it, significant processing power is

required - processing that is not necessarily always available or accessible,

due to broadband communications breakdowns or other reasons.

In order to alleviate the strain on external resources for this method

of analysis, the devices collecting and transmitting the physiological data

should be able to handle some or all of the processing occurring. While mo-

bile devices have previously been used for similar purposes (Chu & Humphrey,

2004), it is noted that such devices are often resource-limited: particularly

considering low battery capacities. For the system to cope with devices with

different levels of ability or power resources processing should be distributed

across all devices such that their weighted load provides a more efficient use

of group resources (Pinheiro et al., 2001). This would allow the system

to monitor groups for longer and with greater responsiveness than other-

wise possible, which is an important consideration in situations involving

health-critical monitoring subjects such as cardiac rehabilitation patients.

2.9 Ethics and Privacy

Due to the sensitive nature of data being collected in the process of physi-

ological monitoring (often highly personal health-related data), it is impor-

tant to consider associated privacy laws. A number of health-related privacy
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acts and laws exist to prevent the exposure (either intentional or acciden-

tal) of personal health data associated with clinical patients and research

subjects. In Australia, these mostly comprise of the Privacy Act 1988 and

amendments (AG, 2012), which details laws designed to protect the personal

information of individuals.

There are also a number of guidelines (OFPC, 2001) focused on the

use of individuals’ personal health information without consent. The list of

situations in which unauthorised use of health information is appropriate

is short - usually only if the research has a significant positive impact on

society. The Royal Australia College of General Practitioners offer a set of

generalised computer security guidelines (Practitioners, 2011) that outline a

number of risk categories and offer specific suggestions to improve security.

Beyond the Privacy Act, there are no official guidelines in Australia

related to the use of physiological monitoring - although the vast majority

of research-oriented scenarios would require consent and ethics approval.

Securing physiological monitoring systems often varies depending on the

scenario. A system monitoring physiological and physical location data of

soldiers in active combat will require significantly more complex security

than a user tracking their daily jog, for example. However, due attention

should always be paid to security when monitoring physiological data from

subjects, as such data is often highly personal and could adversely affect an

individual’s life.

While specific networking security techniques are outside the scope of

this dissertation, it is recommended that researchers participating in physi-

ological monitoring experiments always do their utmost to enforce security

protocols ensuring personal data is kept secure.
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2.10 Summary

This chapter introduced the concept of applying distributed processing tech-

niques to physiological monitoring networks in mobile environments. Sec-

tion 2.5 introduces current techniques for mobile monitoring devices, as well

as potential applications and issues. These techniques are expanded upon

in Section 2.6, which argues the value of physiological monitoring in a group

context. However, a more scalable processing framework would be beneficial

and allow for more detailed physiological analysis to occur in mobile environ-

ments. This requires the application of distributed processing techniques,

and relevant issues are reviewed in Section 2.7. Finally, Section 2.8 argued

for the potential benefits of distributed physiological processing, to be built

into a monitoring framework that could be used in mobile environments.



Chapter 3

Case Studies in Distributed

Physiological Monitoring

3.1 Overview

To ease definition of parameters that currently impede distributed physiolog-

ical monitoring, two scenarios have been designed that would normally cause

problems if group physiological monitoring were attempted. These scenarios

can cover a range of different potential applications, from safety monitoring

to general monitoring for the purposes of enhancing services. Defining the

problems involved with physiological monitoring in these scenarios clarifies

the benefit of potential solutions and would help provide suitable real-world

testing environments for a complete solution.

The following chapter is structured as follows. Both Sections 3.2 and 3.3

present potential usage scenarios for the system described in this disserta-

tion, focusing on different environments with similar challenges. Section 3.2

uses the example of a military training exercise in remote territory and

analysis of participants. Section 3.3 instead discusses a scenario involving

29
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sensor rigs carried by miners in underground caverns. Section 3.4 highlights

common issues between scenarios and discusses potential solutions. Lastly,

Section 3.5 provides a summary of this chapter.

3.2 Training Analysis

Real-time physiological monitoring can provide a wealth of useful informa-

tion about the physical and mental health of those under observation. Exist-

ing techniques and systems can satisfy the needs of participants in traditional

monitoring environments, but often lack the necessary mobility to be used

in other situations or rely heavily on sustained access to mobile broadband

communications networks that may not be available.

One system has been designed to cater for similar uses in mobile envi-

ronments (Jovanov et al., 2003b), which helpfully describes an appropriate

usage scenario. As part of the Warfighter Physiological Status Monitor-

ing project (Hoyt et al., 2002), physiological sensors were embedded into

soldiers’ uniforms to monitor health and mental state in order to prevent

unnecessary casualties due to conditions such as heat stress and altitude

sickness, as well as improve the likelihood of survival of wounded soldiers.

By tracking physiological data of groups of soldiers, remote assistance

can be provided to assess casualties, as well as provide early notification

of potential medical emergencies. In addition, it can be used for evalua-

tion purposes - by establishing baseline heart-rate variability markers for

participants, stress levels during training in mobile environments can be as-

sessed (Hoyt et al., 2002). This provides the potential for early discovery of

stress-related problems in soldiers, which can have significant effects, both

while participating in battle (Solomon et al., 1986) and upon returning home

(Lapierre et al., 2007).
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Similar principles can be applied to training exercises, allowing super-

visors to monitor the mental stress and well-being of soldiers undertaking

training in remote locations. Such locations can often be out of effective

broadband communications range, making the requisite processing of phys-

iological data difficult. While basic sensor data (such as heart rate) can

already be monitored in mobile environments as part of basic sensor func-

tionality, making available complex transformation processing could provide

supervisors with new ways to accurately measure trainee performance in

real-time.

3.3 Miner Safety

Distributed physiological processing can also be extremely useful for safety

monitoring in areas with intermittent or weak connections to headquarters

- particularly in labyrinthine mining tunnels and similar areas. Physio-

logical monitoring has already been used in mining scenarios, particularly

in rescue scenarios (Zephyr Technology, 2010), although the existing solu-

tions require a large amount of on-site infrastructure. While monitoring

devices and processing equipment would likely represent a significant cost

to a resources corporation, the potential for improved safety (and therefore

decreased fines/penalties) may justify the cost.

Miners equipped with monitoring devices and small processing units that

could be built into existing safety equipment. Changes in heart-rate vari-

ability (Hjortskov et al., 2004) and other indicators within a localised area

could indicate workers under serious mental stress, or a problem not visible

to other sensors. If no connection to headquarters is available, units would

collaboratively processes the workload and alert localised alarm units to in-

dicate a problem - even without connection to or interaction with superiors.
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A monitoring system could also include other types of sensors looking for

issues with air quality or poisonous gasses, able to be entirely processed by

the mobile units. By collating data from these units, it would be possible to

locate areas with poor habitability and alert workers to avoid certain areas.

While mine workers are likely to be able to carry larger battery reserves

for processing than individuals in other scenarios, efficient distribution of

work processing would allow for more accurate monitoring, as more available

processing could cater for lower intervals between sensor readings.

Adaptation of the system for this scenario follows similar principles to

the other scenarios, as population density is reduced and connectivity be-

comes sparse. Equipment supporting higher processing ability and more

power resources is able to be integrated into safety harnesses and mining

equipment.

Due to the importance of maintaining connections in safety-conscious

situations such as mining, it is recommended that wireless relays are situated

throughout the mines to ensure controllers have connectivity at all times.

Unfortunately, bandwidth is not necessarily plentiful with such solutions,

so transformations should still be distributed amongst equipment available

on mining and safety rigs and only resulting data should be transmitted to

controllers.

3.4 Common Issues

A number of issues common to both scenarios become apparent upon consid-

eration of environmental factors. Physiological monitoring and processing

can be impeded significantly by issues such as poor wide-area communica-

tions, as is often the case in confined spaces such as mine shafts. Monitoring

in mobile situations is also a difficult proposition, since traditional process-
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ing resources are generally not portable and require stable power supplies,

which are rarely available when moving. However, there are potential solu-

tions to both of these issues, involving moving to a distributed processing

system across mobile devices.

Available communications are an important part of most systems re-

quiring significant amounts of processing resources, as it allows the system

to offload excess tasks to more capable processing facilities, such as Cloud

computing. Environments which are naturally unsuitable to mobile broad-

band communications networks such as heavy forest, mountainous or hilly

terrain and areas suffering from heavy snowfall are difficult to operate these

kinds of systems in, as communications are often disrupted or completely

unavailable. Without the ability to offload some or all of the processing to

these external resources via those mobile networks, the system may have to

severely reduce functionality in order to remain even slightly useful - gen-

erally an undesirable scenario. This is particularly problematic situation

with physiological monitoring, as the real-time presentation of transformed

physiological data may have life-threatening consequences. To improve the

ability to perform physiological monitoring in these situations, fundamental

changes to the manner in which physiological processing is performed should

be considered.

Power supplies in mobile environments, such as a group of soldiers mov-

ing at speed through areas, are often limited to portable batteries due to size

and weight constraints. Traditional processing resources (such as worksta-

tions and servers) are often completely stationary and require a fixed power

supply, which excludes their use in mobile environments.

There are several potential solutions to the issues described in this sec-

tion. Moving away from the traditional fixed processing model towards a
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more dynamic and mobile architecture would provide significant advantages

over existing solutions. Recent advances have introduced mobile devices (ie.

smartphones) that have processing capability approaching fixed resources

(Land & Vallejo, 2009). While individual mobile devices are still unlikely

to be able to process all desired transformations in real-time, a cluster of

devices working collaboratively to perform requisite data transformations

have the potential to be a solution to this issue.

These devices have the additional benefit of providing their own mobile

power source (typically through Lithium-Ion batteries) with the option of

charging through either a portable generator or solar cells. Additional bat-

teries could also be added to equipment packs without seriously impacting

total load weight, as most batteries suitable to mobile phones weigh con-

siderably less than uninterruptible power supplies (which serve the same

purpose, but for desktop machines).

With the commonplace availability of smartphones capable of being a

part of a solution to the issues described in this section, such a system

would be relatively easy to implement. No specialised equipment would be

required to implement such a system, even in environments not traditionally

suited to physiological monitoring. The benefits provided by using mobile

devices in a collaborative fashion have the potential to significantly improve

the accessibility of physiological monitoring, which is a stated aim of this

dissertation.

3.5 Summary

This chapter has detailed two scenarios that could benefit from improve-

ments to physiological monitoring techniques. Issues generally revolve around

a lack of mobility amongst processing resources and power supplies used in
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traditional processing techniques, as well as a reliance on stable, available

mobile broadband communications networks.

Section 3.2 presents a scenario based around monitoring the heart-rate

variability of trainees participating in a training exercise, to determine men-

tal stress levels. The exercises could take place in regions that have poor mo-

bile broadband communications networks, including heavy forest or snowy

areas. Trainees are constantly mobile, presenting difficulties when using

traditional, fixed processing resources (such as workstations) that require

constant power supplies.

Section 3.3 describes a scenario involving a sensor rig carried by miners

in shafts, which are often confined spaces with poor or interrupted com-

munications. These sensor rigs could be used to determine miner mental

stress and work environment conditions, to provide early alerts in the event

of danger. While this situation is less mobile than the previous scenario,

poor communications still represent a serious complication when dealing

with traditional physiological processing mechanisms.

Section 3.4 presents a number of issues common to both scenarios. These

issues should be considered when developing more suitable techniques for

these environments, and include communications reliability, power supply,

available processing power and difficulty of implementation.

The common issues highlighted in this chapter between scenarios pro-

vides insight into some of the areas of physiological monitoring and process-

ing that could be improved. Shifting to a more mobile paradigm would abate

or entirely solve some of the issues. Mobile devices operate on portable power

supplies, removing the requirement for traditional processing resources to be

connected to fixed power supplies, and introducing the option of recharg-

ing mobile batteries through use of a portable generator or solar cells. The
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devices are also less heavily reliant on the presence of reliable mobile broad-

band communications networks, as they should be able to process all requi-

site physiological transformations in a collaborative fashion, without having

to offload processing to fixed or Cloud computing resources. The devices

are also completely portable and can be used while mobile, allowing the use

of physiological monitoring and processing in a wider range of situations.

Finally, mobile devices are almost ubiquitous, making implementation ac-

cessible due to a lack of special hardware requirements.



Chapter 4

Design

4.1 Overview

The aim of this dissertation is to provide improvements to physiological

monitoring and processing techniques. In order to evaluate the viability of

these improvements in real situations, a platform upon which distributed

physiological monitoring and processing platform may be supported is de-

signed.

To provide a platform for distributed physiological monitoring and trans-

formation processing, careful consideration is required while designing an

architecture to suit potential usage environments, such as those described

in Chapter 3. A set of system requirements is described that attempts to

apply the aims discussed in Section 1.4 to any resulting implementation of

a physiological monitoring system. In order to ensure compatibility with

existing devices and interoperability with existing physiological monitoring

systems, standard interfaces are designed through which data access and

transformation requests may be made. Finally, specific roles within the sys-

tem are defined, with responsibilities allocated in such a way to provide a
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scalable architecture that is easily configurable in mobile environments.

The remainder of this chapter is structured as follows. Section 4.2 defines

a set of requirements that the system should fulfill to ensure suitability with

the intended environments. Section 4.3 presents an overview to the system’s

architecture and basic topology. Section 4.4 describes a predefined set of

roles that devices operating in the system can assume, with varying intended

purposes. Section 4.5 details the system interface, including possible actions

that can be taken by end-users, and provides XML examples of interaction

for specific tasks. Finally, Section 4.6 presents a summary of the chapter.

4.2 Requirements

In order to satisfy the aims introduced in Section 1.4 and improve physiologi-

cal monitoring in mobile environments, such as those proposed in Chapter 3,

any viable solution must meet a number of key requirements, which are as

follows.

R1 The system should facilitate the configuration, collection, transforma-

tion and presentation of physiological data across any number of input

sensors and processing devices

R2 The system should require minimal configuration and allow for the use

of any type of sensor

R3 The system should be fully mobile, and not require non-portable pro-

cessing hardware or equipment that requires an uninterrupted power

supply.

R4 The system should be able to interface with existing monitoring prod-

ucts for use as data streams.
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R5 The system should be compatible with a wide range of common oper-

ating systems, including mobile platforms.

R6 The system should handle any number of physiological sensors per mon-

itoring device..

R7 The system should scale easily, simply by adding more processing nodes.

R8 The system should prevent unauthorised access to highly personal phys-

iological data through standard authentication methods.

A system implemented with these requirements carefully considered should

provide a suitable platform for physiological monitoring and processing in

any scenario, but particularly for those outlined in Chapter 3.

4.3 Architecture

The proposed system has been designed as a standard networking stack as

seen in Table 4.1, inheriting a number of existing standards and protocols

for dealing with tasks such as routing, addressing and physical media access.

Existing techniques suffice for our purposes, with the exception of a modi-

fied network layer, optionally implementing CoolSpots (Pering et al., 2006).

CoolSpots implements dynamic radio switching depending on distance and

required bandwidth - a measure taken to save a substantial amount of en-

ergy, by using Bluetooth instead of WiFi where possible..

Application Distributed Physiological Processing protocol

Transport TCP

Network IPv4, CoolSpots (Pering et al., 2006)

Link Dynamic 802.11b/g/n, Bluetooth

Table 4.1: Proposed Implementation

The proposed system is a generic architecture for real-time physiological



CHAPTER 4. DESIGN 40

transformations that is designed to manage the packaging and distribution

of processing to other devices. Any available device can be utilised for pro-

cessing, including similar nearby monitoring devices, wireless base stations

and Cloud Computing resources. Figure 4.1 represents the proposed us-

age architecture of the system, including optional components (such as the

super-nodes and available Cloud Computing resources).

In order to effectively manage groups of sensor nodes, a hybrid peer-

to-peer network architecture is used to group monitoring devices for data

collection and processing, as represented in Figure 4.1. Positioned in the cen-

ter of all monitored networks, a supervisor is manually selected, based on a

number of metrics such as remaining power resources, processing ability and

strength of connection to both other nodes and upstream. The supervisor

maintains connections to managers, receives data from monitoring devices

and provides an interface for clients to interact with. If stationary, high-

powered devices are available (such as wireless base-stations), these static

supervisors can more effectively replace the role of a manager in the system.

Individual processors perform tasks as directed by the manager, which

would often be their own processing. If power or processing resources on

other processors are depleted, the manager would re-allocate work to other

nodes with abundant resources, and processing can continue unimpeded. If

all processors have depleted resources, processing is restricted to collection

and transmission - the manager would then send all results upstream to

Cloud computing resources for processing. The benefits and disadvantages

of processing at each of these layers is modelled in Figure 4.2. Importantly, it

is noted that latency and difficulty of device access increases dramatically as

processing is shifted further away from individual nodes, as fast and reliable

network connections can be difficult to procure in some usage scenarios.
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Figure 4.1: Proposed Architecture for Distributed Real-Time Physiological
Processing
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Figure 4.2: Benefits and Disadvantages of Processing Layers

To allow the manager to balance load evenly across the network, nodes

are also required to report their current state to the supervisor. This includes

details such as current load, remaining power resources, current processing

details and others. Because the stream registration system already exists

for data collection and transmission purposes between client and server, the

existing stream methods can be repurposed to report device state alongside

any sensor data.

The manager balances load and resources by monitoring the state of

clients, allowing it to distribute work to low-load devices with plentiful re-

sources. The supervisor also keeps aggregate state details, such as an average

power resource level of the group. In turn, the supervisor provides the man-

ager with supplementary data, allowing it to decide if the network is unable

to cope with current workload for a sustained period of time. In this event,

the manager would trigger offloading of workload to Cloud Computing re-

sources (if accessible).

The supervisor interface should be built upon RESTful (Fielding, 2007)

principles, allowing system function to be directly mapped to HTTP method

requests to particular resources. This mapping is described in detail in
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Section 4.5.1.

4.4 Roles

As mentioned in the previous section, the proposed system categorises re-

sources into four roles; processors, monitors, managers and supervisors. Any

resource can be used in any of these roles, though suggestions for optimal

selection are noted below, where each role is described in detail.

Supervisor

The supervisor is the overarching controller of the entire system. Its

primary role is as an interface to the system for all external entities,

including monitors, managers and clients. The supervisor hosts the

RESTful interface to the system, as well as collating all data received

from monitoring nodes, passing transformation requests to the man-

ager (along with required data streams) and tracks node state for load

balancing purposes. As the supervisor has to deal with a substantial

amount of incoming requests, it is recommended that a device with

good processing ability and network throughput is utilised in this role.

Manager

The manager only directly interacts with the supervisor and process-

ing nodes, and acts as a load balancer for all processing resources. It

retrieves node state from the supervisor and uses either utility func-

tions or a decision tree to determine where transformation tasks should

be sent for processing. For smaller networks, the manager can share

resources with the supervisor. However, due to the considerable work-

load assigned to the manager, a dedicated device is recommended for
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use in larger monitoring networks.

Monitor

A monitoring device has a single purpose; to receive raw sensor data

and package it in a form suitable for transmission to the supervisor.

The configuration of the monitor should be flexible enough to enable

it to interact with any sensor that could be attached to the device.

In most networks, these will be low-powered devices. If the device

is required to poll multiple sensors for data with high responsiveness,

the multi-threaded nature of this task will require substantially more

powerful hardware.

Processor

Processing resources are the workhorse of the network. The manager

distributes transformations to the processors to be completed in as

little time as possible, but the nature of the networks allows signifi-

cant scaling. In portable environments, even low-end smartphones can

act as capable processors. If heavy transformational work is required,

dedicated processing servers or even Cloud computing resources can

be utilised in this role.

Each role must be fulfilled in some manner for the network to function

properly, but in many instances a single device will fill many roles. As an

example, most processors will also be monitors in order to report their state

to the supervisor. In smaller networks, the supervisor and manager may

share resources. However, when monitoring large sensor networks each role

can be filled by appropriate resources to ensure optimal network reliability
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and responsive transformation processing.

4.5 System Interface

Using a RESTful interface provides an accessible and compatible connec-

tion interface to physiological data and transformations, supporting a broad

range of applications and existing sensor products. Presenting a standard-

ised interface to users assists in the integration of existing systems, as well

as the development of analysis suites. To ensure the interface is as acces-

sible as possible, XML-based communications can be utilised over HTTP

connections. Pre-defined XML schemas for communicating with the system

are described as examples below.

4.5.1 Resources

In keeping with RESTful interface principles, interaction with the system

is entirely made up of HTTP requests, taking advantage of a number of

standards-defined request methods. The system is composed of three data-

based resources; users, streams and transforms. Depending on the HTTP

method and variable access used (with specifics given in Section 4.5), various

functionality can be accessed. The function accessed by method and resource

is summarised below.

User

GET - Query: Retrieves user data, related streams

PUT - XML: Register a user

POST - None

OPTIONS - Query: Return a list of all registered users
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Stream

GET - Query: Retrieves stream-specific data

PUT - XML: Register a data stream

POST - XML: Submit data for a stream

OPTIONS - Query: Return a list of all registered streams

Transform

GET - Query: Execute a single transformation, streams as input only

PUT - XML: Register a transformation function, requires function be

added to manager libraries

POST - XML: Execute a chained transformation

OPTIONS - Query: Return a list of all available transformation functions

A number of these resources simply return a XML stream containing

the desired data, while those requiring complex XML requests to alter the

system are described in the following sections.

4.5.2 User Registration

To ease data access, any registered data stream must be directly assigned

to a registered user. This provides two advantages; users can easily identify

which sensor streams directly relate to them, and can provide authentication

for data access if required. A new user may register with the system by

sending an XML message as described in Listing 4.5.2 via HTTP PUT to

the user resource
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<UserRegistration>

<UserName>Fred Bob</UserName>

</UserRegistration>

Listing 4.5.1: XML User Registration Request

Upon request, the system generates a UUID (Universally Unique Iden-

tifier) that serves as the user’s authentication token, to be supplied with

all future requests. The system returns an XML message to the request-

ing client containing the authentication token, along with a unique user

identification number, to be used in stream registration and transformation

execution. The XML response is as detailed in Listing 4.5.2

<UserRegistration>

<UserID>1</UserID>

<AuthToken>09f9dade-78c7-11e1-bc15-080027003c78</AuthToken>

</UserRegistration>

Listing 4.5.2: XML User Registration Response

4.5.3 Stream Registration

After completing the registration sequence, users may register streams to

be processed by the system. A data stream may contain any data that

conforms to the format definition, which is supplied with the registration.

A successful stream registration should contain the following parameters:

• UserID - users registration ID

• AuthToken - user’s authentication token

• Name - name of the stream

• Description - description of the stream

• Format - expected data format definition
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In order to correctly store and process the stream, a data format defini-

tion should indicate the structure of the data being supplied. If a physical

device is obtaining data to be transmitted over the stream, the following

sensor details should be provided:

• Name - the name or model of the sensor

• Description - a description of the sensor

• Location - physical location of the sensor

• SampleRate - how often the sensor should be polled for data (per

minute)

While name and description are metadata for the sensor, location can

specify either a relative physical location (e.g. chest, wrist, etc.) or a static

GPS location. If a dynamic GPS location is required, a stream should be

registered containing the GPS itself as a sensor.

Using this format, users are able to specify any number of streams for

registration with the system. The streams can either send data from phys-

ical sensors or other data, such as system load or other device statistics.

An example of registration for two sensors, a heart-rate monitor and skin

conductance monitor, is illustrated in Listing 4.5.3.
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<StreamRegistration>

<UserID>1</UserID>

<AuthToken>09f9dade-78c7-11e1-bc15-080027003c78</AuthToken>

<Stream>

<Name>Heart Rate</Name>

<Description>Heart Rate of Athlete</Description>

<Format>IBI</Format>

<Sensor>

<Model>BM-CS5</Model>

<Description>ECG chest-strap</Description>

<Location>Chest</Location>

</Sensor>

</Stream>

<Stream>

<Name>Skin Conductance</Name>

<Description>Skin Conductance of Athlete</Description>

<Format>microSiemens</Format>

<Sensor>

<Model>Affectiva</Model>

<Description>Wearable GSR</Description>

<Location>Palmar</Location>

<SampleRate>8</SampleRate>

</Sensor>

</Stream>

</StreamRegistration>

Listing 4.5.3: XML Stream Registration Request

The XML message is sent via HTTP PUT to the stream resource of the

system, which will register the stream to the user and subsequently accept

data submissions. For each registered stream, the system responds with a

corresponding stream ID as in Listing 4.5.3, which can be included in data

submission messages.

<StreamRegistration>

<Stream>

<StreamID>7</StreamID>

</Stream>

<Stream>

<StreamID>8</StreamID>

</Stream>

</StreamRegistration>

Listing 4.5.4: XML Stream Registration Request
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4.5.4 Data Collection

After a stream has been registered with the system, a device can submit

data using the following parameters:

• UserID - the user’s ID

• AuthToken - the user’s authentication token

• StreamID - a stream ID representing the data

After specifying the above configuration parameters, any number of sam-

ples can be submitted to the system belonging to that stream by providing

the following parameters for each sample:

• TimeStamp - time the sample was taken

• Tick - if samples were taken more than once per second, represents

millisecond precision for the timestamp, else 0

• Value - the actual data reading

Data can be submitted to the system by creating an XML message as

shown in Listing 4.5.4 and sending it via HTTP PUT to the data resource

of the system.
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<Submission>

<UserID>1</UserID>

<AuthToken>09f9dade-78c7-11e1-bc15-080027003c78</AuthToken>

<Stream>

<StreamID>7</StreamID>

<Sample>

<TimeStamp>2012-03-28T20:31:32</TimeStamp>

<Tick>0</Tick>

<Value>88</Value>

</Sample>

<Sample>

<TimeStamp>2012-03-28T20:31:35</TimeStamp>

<Tick>0</Tick>

<Value>83</Value>

</Sample>

</Stream>

<Stream>

<StreamID>8</StreamID>

<Sample>

<TimeStamp>2012-03-28T20:31:33</TimeStamp>

<Tick>125</Tick>

<Value>13</Value>

</Sample>

</Stream>

</Submission>

Listing 4.5.5: XML Data Submission

Upon receiving and processing the data submission, the system should

return an appropriate HTTP response code (such as 200 OK), but will not

provide an XML response.

4.5.5 Simple Transformation

To provide quick and easy access to basic transformation operations using

data directly from registered streams, the transform resource accepts a basic

HTTP GET request (as seen in Listing 4.5.5 with appropriate parameters,

listed as follows:

• TransformID - the ID of the requested transformation

• UserID - the user’s ID



CHAPTER 4. DESIGN 52

• AuthToken - the user’s authentication token

• Inputs - comma-separated list of registered stream IDs to be used

• StartTime - time-based selection of data from streams, in YYYY-MM-

DDTHH:mm:ss format

• StopTime - as above

http://127.0.0.1:8008/transform?transformid=1&userid=1
&authtoken=59184600-7680-11e1-a4aa-0026831461f3&inputs=1

&starttime=2012-03-25T13:42:22 &stoptime=2012-03-25T13:42:37

Listing 4.5.6: Simple HTTP Transform Request

Upon processing the transformation, the system returns the results as

an XML document for the user to use as desired. If any problems are

encountered, the system returns an HTTP 500 error.

4.5.6 Complex Transformation Chains

If a user requires more complex transformations such as the one illustrated

in Figure 1.3, the server’s transform resource accepts an XML document sent

via HTTP POST that can contain chained transformations. Listing 4.5.6

describes a two-stage transformation that processes one set of data based

on an existing stream, then passes the results along with another stream to

a second transformation.
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<?xml version="1.0"?>

<Transformation>

<Transform>

<Name>ECG2IBI</Name>

<Input>

<StreamID>1</StreamID>

<Format>ECG</Format>

</Input>

<Output>

<Name>someIBI</Name>

<Report>True</Report>

</Output>

</Transform>

<Transform>

<Name>MergeData</Name>

<Input>

<StreamID>2</StreamID>

<Format>PPG</Format>

</Input>

<Input>

<Name>exampleIBI</Name>

<Format>IBI</Format>

</Input>

<Output>

<Name>SPC</Name>

<Report>True</Report>

</Output>

</Transform>

</Transformation>

Listing 4.5.7: Complex XML Transform Request

The majority of options shown in Listing 4.5.6 have been used in previous

XML layouts and are identical. Additions to be noted are as follows:

Transform

• Name - the name of the transformation function to call, differing

to Section 4.5.5 which asks for the ID

Input

• StreamID - if this input is from a registered stream, the stream’s

ID
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• Name - if this input is from a previously defined transformation,

the name of the previous transform’s output stream

Output

• Name - the name of the output stream, for use in following trans-

forms

• Report - boolean whether to include this stream’s output data in

the final results

Upon submission of a correctly-created XML document conforming to

the above structure, the supervisor will schedule work to be completed across

any available processing resources. Transformations may not necessarily be

completed on a single processor (as each part may be executed separately),

so complexity of transformation may determine how long the data will take

to return. Upon any failure, the system will return an HTTP 500 error and

any details of the problem (if available).

4.6 Summary

This chapter presented a number of system design considerations and spe-

cific data formats. System requirements have been formally listed in Sec-

tion 4.2, describing the overall aims of the system and its contribution to

physiological monitoring. The basic system architecture has been described

in Section 4.3, and the system roles were expanded upon in Section 4.4. The

system’s application programming interface was described with required in-

put parameters and expected output formats in Section 4.5.
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The design and interfaces in this chapter lay important foundations for

all implementations to build on. Implementations of the system are expected

to follow this interface, and custom devices designed to interact with the sys-

tem should also use the listed specifications. The functionality of subsystem

components are classified by role, which provides a structure to consider

when developing an appropriate network architecture for the system to run

upon.

The following chapter describes an implementation of the design outlined

in this chapter, building upon the principles and requirements described

and creating a concrete system for the purposes of evaluating the proposed

improvements to physiological monitoring.



Chapter 5

Implementation

5.1 Overview

The primary aim of this dissertation is to provide improvements to phys-

iological monitoring by developing techniques to monitor, transform and

present physiological data in mobile environments. Chapter 4 argued that

an implementation suited to these environments should implement a num-

ber of requirements related to these aims, listed in Section 4.2. To evaluate

the design with regards to these requirements, this chapter presents an im-

plementation that can be used for evaluation purposes. There are a number

of tasks involved with the implementation of the system proposed in this

paper, covering a range of areas from network architecture to task distribu-

tion and resource allocation. Each item represents a key component of the

system that has been developed as part of a functional implementation.

Section 5.2 provides specific implementation details of the system, in-

cluding compatible software platforms and interface details. Section 5.3

presents detailed implementation information for each role-based applica-

tion. Section 5.4 describes the basic process through which work is allo-

56
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cated to processing resources, and highlights potential issues with resource

allocation. Section 5.5 illustrates the manner in which processing tasks are

distributed amongst processing resources.

Section 5.6 defines the process through which physiological data com-

pression can be implemented, if desired. Common issues with signal trans-

mission size are discussed, with available solutions included in this section.

Section 5.7 depicts the flexibility of configuration available with the system

by defining configuration file formats for the various role applications. Typ-

ical decisions made by users during deployment are discussed, and options

that are user-extensible are highlighted. Finally, Section 5.8 summarises the

chapter.

5.2 Implementation Details

To ensure ease of use and cross-platform compatibility, the framework is

developed as a series of applications, divided by role. The resulting software

should execute on any cloud platform (such as Amazon EC2 (Amazon Web

Services, 2006) or Google App Engine (Google, 2008b)), PC-compatible

system or Android (Google, 2008a) smart-phone, allowing a broad range of

devices to be deployed to support the operation of the system.

Connections to the physiological monitoring and processing system will

be made to servers through a RESTful (Fielding, 2007) web API, allowing

connections by any software that implements the correct interface. Moni-

toring devices also register users, streams and transmit data using this API,

which then serves data and transformation requests by external clients.

To provide an extensible platform with which to monitor and process

physiological data, each role within the system is easily configurable. The

applications that fit into the roles specified in design are as follows.
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5.3 Role Applications

5.3.1 Supervisor

The supervisor is implemented as a standalone Python (Python Software

Foundation, 1990) script, with the majority of its functionality revolving

around the RESTful interface it presents to clients. It takes advantage

of the XML message syntax specified in Chapter 4 to serve user requests

and stores monitoring data using a database engine. For configurability

and accuracy’s sake, the Mako (Bayer, 2012) templating engine is used to

generate XML messages.

Data received from monitoring agents (as well as the supervisor’s own

internal metadata) can be stored using any storage engine supported by

SQLAlchemy (Bayer, 2008). SQLAlchemy provides a layer of abstraction

above the database, and allows users to easily change the storage engine

to suit. While the default SQLite (Hipp & KENNEDY, 2007) file-based

database engine can provide for lightweight scenarios and small tests, it

can run into concurrency issues with higher volumes of transactions. In

this instance, it is beneficial to switch to a more concurrent engine, such as

PostgreSQL (PostgreSQL, 1996) or MySQL (Oracle Corporation, 2012).

To provide a high-performance interface to clients, CherryPy (CherryPy,

2001) is used to serve user requests. This has the advantage of providing a

thread-pooled server, allowing more than one user request to be processed

concurrently - an important consideration, with the potential amount of

data being received.

The supervisor script has been tested and executes successfully on desk-

top PCs (using Python 2.6 and 2.7), all Cloud computing resources (us-

ing both Unix-like operating systems and Microsoft Windows) and several
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mobile devices running the Android mobile operating system (using SL4A

(SL4A, 2010) with Python 2.6). It is recommended that Android devices

use the SQLite engine, while any supervisor using a PC (such as a laptop)

can use any other supported database management system.

5.3.2 Manager

Similarly to the supervisor, the manager script is written using Python,

CherryPy and the Mako templating engine. The majority of the manager’s

functionality resides around communications with the supervisor and distri-

bution of transformation processing to available processor nodes.

To distribute the transformation processing, ParallelPython (Vanovschi,

2005) has been utilised with modifications. Load balancing and task distri-

bution has been modified for the purposes of evaluation, and to distinguish

the difference in availability of local vs Cloud Computing resources.

The manager is not a particularly resource-heavy application; as such, it

is possible to execute it on a device already being used in another role. This is

only recommended for use in small-scale scenarios, and placing the manager

on the same device as the supervisor may result in impeded performance.

Like the supervisor, the manager script has been tested and executes

successfully on desktop PCs using Python 2.6 and 2.7, all Cloud Computing

resources using both Unix-like operating systems and Microsoft Windows

and several Android devices using SL4A with Python 2.6.

5.3.3 Monitor

The monitoring agent is written in Python, with the primary aim of config-

urability and extensibility. The default agent uses a simple configuration file

to initialise connections to servers, such as the supervisor, and to configure



CHAPTER 5. IMPLEMENTATION 60

outgoing data streams.

As the configuration file is a Python script itself, the monitor should be

able to port data from any monitoring device into a format appropriate for

transmission to the supervisor, including Bluetooth and serial connections,

assuming appropriate connectivity is available.

The monitor script itself is fully multi-threaded, providing the ability

to collect and transmit data from many sources at once. This allows the

monitor to transmit device state information along with physiological data,

providing the supervisor with useful data on battery and load levels. Data

collation and transmission rate is configurable, and monitor collection rate

is configurable on a per-device basis.

Monitoring devices themselves can be used as low-power transmitters,

or paired with the processing script to become mobile transformation pro-

cessors - particularly useful in mobile scenarios.

The monitor script has been tested and executes successfully on desktop

PCs using Python 2.6 and 2.7, all Cloud computing resources using both

Unix-like operating systems and Microsoft Windows and several Android

devices using SL4A with Python 2.6. Individual external monitoring device

configuration does need to be manually written, and any device-specific

monitoring, such as battery and processor load, may need to be modified to

suit the platform.

5.3.4 Processor

The processor is a relatively simple script used as part of the ParallelPython

(Vanovschi, 2005) distributed processing library, written in Python. As

such, it runs on similar platforms to all other scripts. This is beneficial,

as it means that any device we choose to use for testing can be used as a
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processing agent, and initialising Cloud Computing resources for processing

is as simple as executing a single script.

5.4 Resource Allocation

Determining the quantity of work to allocate to a single node can be a

difficult task, as nodes are often reliant on more than a single resource. There

is a variety of models able to manage resource allocation, from auction-

based approaches (Gomoluch & Schroeder, 2003) to process scheduling in

high-performance computing (Lee et al., 2009). Techniques used within

these models can be adapted to provide resource allocation in the proposed

system, which similarly consists of a group of heterogeneous devices with

varying resources levels.

In order to balance workload across a group, individual nodes can re-

port their current state to the supervisor in an identical format to normal

physiological data. The node registers a stream containing a particular state

variable to the supervisor, which in turn passes the data to the manager,

which makes decisions about work allocation. By default, the system allo-

cates work to processors immediately after they become available, in order

to maintain a high level of responsiveness.

5.5 Transformation Distribution

Distribution of transformations is relatively simple, with requests being sent

in simple XML. Likewise, data to be processed by transformations can

be sent using XML or taken from existing supervisor storage. All post-

transformation data is available externally by sending specific requests in

XML format to the supervisor’s RESTful (Fielding, 2007) API.
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In a normal usage scenario, a monitor should register with the user-

specified supervisor. After receiving authentication tokens, the monitor

should then register data-streams with the supervisor containing physio-

logical data, as well as device state. Any desired transformations should be

specified at this point to the supervisor, which will delegate the manager to

distribute work as appropriate amongst processors or other resources. All

transformed data is then sent upstream to the supervisor, though requests

for raw data may still be made via the XML interface. Finally, any ag-

gregated information required externally by the end-user may be requested

from the controller.

5.6 Data Compression

Certain physiological monitors can produce large volumes of data in short

time periods, particularly high-resolution electrocardiograph, photoplethys-

mograph and electroencephalograph monitors. The signal data produced by

these monitors with extremely high sample rates can occupy disk space run-

ning into the gigabytes, which is generally inappropriate for mobile devices

that typically average between 8-64gb of disk space. While many wearable

sensors provide data in digital form, this can still be an unrealistic amount

of data to store on mobile devices and transmit wirelessly.

Due to the configurable nature of the system, compression (as detailed

in Section 2.3) can occur as part of the normal interfacing process between

the sensor and Monitor. By default, no compression is performed - for the

majority of cases, the standard digital data stream suffices and can easily

be transmitted over wireless. However, the option for compression or other

techniques remains for cases that do require extra effort to operate on mobile

devices. Addition of compression to the Monitor requires minimal addition
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of code to the configuration file, and can be automatically completed prior

to transmission to the Supervisor.

5.7 Configuration

Configuration is an important aspect of the system. To be suitable for as

many environments and usages as possible, the system should be fully config-

urable and provide the possibility for extension in an accessible fashion. To

support this, the system uses Python scripts as configuration files, providing

a relatively simple syntax for configuration and the option of extensibility

via Python code placed directly inside these configuration files.

Each application role has different configuration parameters, as each is

comprised of different functionality. The configuration file syntax is listed

below, along with areas that support extension and common areas of in-

terest within the configuration. The configuration files have considerable

in-line documentation describing the role of included options, which has

been stripped out of these listings.

db_engine = "sqlite"

db_user = "gapp"

db_pass = "qwerty"

db_host = "localhost:5432"

db_name = "gapp"

db_file = "supervisor.sqlite"

thread_pool = 50

server_port = 8008

manager = "localhost:8009"

template_directory = "templates/supervisor/"

Listing 5.7.1: Supervisor Configuration File

The Supervisor configuration file, as presented in Listing 5.7, contains
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considerably more configuration than the other roles. This is primarily due

to its intended functionality, as it has considerably more responsibility than

the other roles. This is reflected in the need to configure the location of other

servers and methods of data storage. The available configuration options are

listed below.

db engine The storage engine to be used by the Supervisor, any database

management system supported by SQLAlchemy (Bayer, 2008) ie. sqlite,

mysql, mssql, etc.

db user / db pass The username and password used to connect to the

database server, assuming it supports authentication

db host The network address of the database server - can be localhost (ie.

the current device), a local network address or an internet address

db name The name of the database stored in the database management

system to use for data storage and retrieval

db file The direct filepath of the database file - used primarily for SQLite,

which stores data directly into a file

thread pool The maximum number of threads allowed in the thread pool

for the web server. This is used by CherryPy to handle connections to

Monitors, the Manager and any clients accessing data. Setting this too

low can result in request choking (where incoming requests outnumber

completed requests, causing pauses in execution), but setting it too

high can result in other slowdowns

server port The port used to access the web interface. This value is used

by Monitors and clients requesting transformations - for a port of 8008,

the server’s accessible URL would be http://address:8008/

manager Address of the Manager. The supervisor uses this address to pass
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requests for transformations to be completed, and sends any required

data along with these requests. The port should also be included here.

template directory The path to the directory containing XML templates,

used to create requests and responses from stored data

Each of these configuration options are required, though some may be left

blank - particularly some of the database options, if an engine not supporting

those features is being used.

server_port = 8009

worker_port = 4567

thread_pool = 10

workers = ()

template_directory = "templates/manager/"

Listing 5.7.2: Manager Configuration File

The Manager configuration file, as presented in Listing 5.7, contains

configuration related to managing the Processor worker pool. The available

configuration options are listed below.

server port The port used by the Manager to communicate with the Su-

pervisor. This should match the port listed in the Supervisor’s man-

ager configuration option.

worker port The port used to connect to Processors. If all Processors are

using this port and are on the same local network as the Manager,

Processor nodes will automatically be added to the processing pool

thread pool The maximum number of threads allowed in the thread pool

for the web server. This is used by CherryPy to handle connections

to the Supervisor, and receives requests for transformations through

these threads.
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workers A list containing any external Processor nodes. This is useful for

including remote processing units, such as Cloud computing resources.

Internet hostname addresses can be listed here, along with the port

used by the Processor, ie. ami001.aws.amazon.com:4567

template directory The path to the directory containing XML templates,

used to create requests and responses from stored data

These options provide the flexibility to utilise additional external pro-

cessing if desired, even in the event Processors are not able to be auto-

detected and added to the worker pool.

user_name = "Test1"

auth_token = "59184600-7680-11e1-a4aa-0026831461f3"

supervisor = "localhost:8008"

upload_interval = 3 #seconds

template_directories = ["templates/monitor/"]

def bm_ecg():

import random

return random.uniform(-1.,1.)

streams = [

{

"name": "ECG",

"description": "Chest Electro-cardiogram",

"format": "ECG",

"sensor":

{

"model": "BM-CS5",

"description": "Single ECG channel chest-strap",

"location": "Chest",

"samplerate": 240,

},

"command": bm_ecg

},

]

Listing 5.7.3: Monitor Configuration File

Listing 5.7 illustrates the use of the Monitor configuration file to register
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a user (and associated authentication token), along with a stream consisting

of a single sensor. The command used to poll the sensor would normally be

a utility function connecting to the sensor and retrieving data, but has been

altered to generate random data for this example. As shown, additional

functions can be added to perform filtering or compression on the data prior

to transmission, as demonstrated by the bm ecg() function. Any number

of additional functions or packages can be used to achieve the desired re-

sult. All other configuration options are listed below, with many stream

configuration options taken from Section 4.5.

user name / auth token The authentication tokens used to access the

system, obtained prior to stream registration (through a web inter-

face).

supervisor The network address of the Supervisor. This address is used

to perform initial authentication and stream registration as well as

submitting collected data to be stored.

upload interval The amount of time (in seconds) between data transmis-

sions from Monitor to Supervisor. For sensors with high sample rates

and low-bandwidth environments, this should be set quite short to en-

sure transmissions don’t get delayed. For less frequent samples, can be

a significantly longer period of time to lessen request processing strain

on the Supervisor.

template directory The path to the directory containing XML templates,

used to create requests and responses from stored data.

bm ecg() An example of a utility function that can be created and desig-

nated to the command’ attribute of the stream registration array to

perform pre-processing of data (or generation of randomised data for

test purposes).
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streams The stream registration array. Follows the same format as the

stream registration XML shown in Listing 4.5.3 in Section 4.5.

The monitor configuration file has the most potential for expansion, as

it incorporates both general configuration (as with the other roles) but also

interfacing with different types and models of sensors.

New transformations (to be requested through XML requests) can be

defined in a quick and easy manner, simply by editing the transforms.py

source file. The work Manager loads the functions within this file and dis-

tributes them to all available Processor nodes, for use on data when requests

are submitted.

import math

def dft(x):

N = len(x)

X = [0] * N

inv = 1

for k in xrange(N):

for n in xrange(N):

X[k] += x[n] * math.e**(inv * 2j * math.pi * k * n / N)

return X

def IBI2HR(inputs, outputs):

outputs["HR"]["samples"] = 60000 / inputs["IBI"]["samples"]

return outputs

functions = (IBI2HR,)

Listing 5.7.4: Sample transforms.py File

Listing 5.7 presents a simple transformation function for converting R-

R interval to heart rate. The inputs array contains information about the

streams being used in the transformation, as well as a full list of relevant

data samples to be used in the function. Converted data is stored in outputs,

which is passed back to the Supervisor and on to the client. Finally, transfor-

mation functions are exposed for use by transformation requests by adding
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them to the functions list.

Other packages can be used within this file simply by importing them

as usual, and normal utility functions (such as the dft() example shown in

Listing 5.7) can be used as intermediate steps within transformation func-

tions.

5.8 Summary

This chapter presented an implementation of the platform designed in Chap-

ter 4, for use in evaluating the requirements listed in Section 4.2. Key im-

plementation details and decisions were presented in Section 5.2, and the

development of each Role-based application was described in Section 5.3.

Techniques for performing resource allocation were presented in Sec-

tion 5.4, and methods used for distributing physiological transformations

were highlighted in Section 5.5. Issues concerning physiological data com-

pression and storage were discussed in Section 5.6. System configuration

options were presented in detail in Section 5.7, as the majority of the flexi-

bility of the system is provided through configuration interfaces.

This chapter provided insight into an example implementation based

on requirements and interfaces described in Section 4.2. Each section ar-

gued for specific implementation options with due consideration given to the

initial aims of this dissertation, emphasising flexibility and mobility. The

implementation can be entirely run on common mobile devices, allowing the

system to be used in a wide range of environments, including those without

reliable connections to ubiquitous communications networks or fixed power

supplies.

The implementation described in this chapter provides a platform upon

which to evaluate the feasibility of the original aims of this dissertation.
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The following chapter presents an evaluation of both the viability of the

original aims, as well as determining the adherence of this platform to the

requirements defined in Section 4.2.



Chapter 6

Evaluation

6.1 Overview

This chapter presents an evaluation of the distributed physiological mon-

itoring and processing system designed in Chapter 4 and implemented in

Chapter 5. Its aims are to show that the practice of distributing physio-

logical transformation processing across multiple mobile devices is a feasible

alternative to traditional processing models.

In order to evaluate contributions made by this dissertation to physi-

ological monitoring, several considerations must be made when analysing

the proposed system. The system has the potential to fulfill predetermined

requirements (previously listed in Section 4.2) so as to provide benefit to

intended usage environments as well as providing a generic platform upon

which any physiological monitoring and processing may be performed.

The remainder of this chapter is structured as follows. Section 6.2

presents an evaluation of the proposed system in a quantitative fashion, as-

sessing usability, responsiveness and scalability in a number of experiments.

Section 6.3 discusses system functionality and design in relation to the ini-

71



CHAPTER 6. EVALUATION 72

tial aims of this dissertation, as well as the system requirements outlined

in Section 4.2. Finally, Section 6.4 concludes with a summary of evaluation

results and implementation details.

6.2 Experimental Evaluation

6.2.1 Overview

This section uses the requirements defined in Section 4.2 as a basis for quan-

titatively evaluating the system implementation discussed in Chapter 5. The

suitability of the system in particular situations is evaluated, primarily using

performance (or system responsiveness) as a comparative metric. Latency

is also evaluated as an additional factor that can inhibit performance, based

on the architectural and physical location of processing resources.

Performance of the system is heavily related to the processing power of

the devices upon which it is implemented. Section 6.2.2 presents the list of

devices used to evaluate the system, including mobile devices, workstations

and Cloud computing resources.

Section 6.2.3 evaluates implementation performance across a series of dif-

ferent architectures, including multiple mobile devices, a mix of mobile/local

and mobile/Cloud. Implementation responsiveness is a good indicator of the

system’s ability to perform transformations in a timely fashion, providing

insight into performance during real-world scenarios.

Section 6.2.4 evaluates several database management systems for use

with the system. Scalability is an important component of the original

aims, and concurrency plays a large role in system performance. Database

engines have varying levels of concurrent responsiveness, so evaluation of

engines in certain scenarios can divulge bottlenecks in operation that would
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not otherwise be apparent.

Section 6.2.5 evaluates the effect of latency on the system. As processing

resources can be located in physically distant areas from the system deploy-

ment, time spent on transmissions to and from processing resources can add

significant time to processing. Evaluating latency can highlight situations

in which mobile resources are even more desirable than Cloud computing

resources, due to additional communication time.

Finally, Section 6.2.6 summarises findings from this section.

6.2.2 Experiment Setup

For the purposes of evaluating the presented approaches to distributing phys-

iological transformations across a cluster of mobile devices, workstations and

Cloud computing resources, the following equipment is used.

Peer-level (Mobile)

• HTC One X (Smartphone)

– Processor: Quad-core 1.5ghz Tegra 3

– Battery Capacity: 1800 mAh

– Operating System: Android 4.0.3

– Notable Software: SL4A (SL4A, 2010), Python 2.6.2 (Python

Software Foundation, 1990)

• HTC Desire (Smartphone)

– Processor: Single-core 1ghz Snapdragon

– Battery Capacity: 1400 mAh

– Operating System: Android 4.0.5

– Notable Software: SL4A, Python 2.6.2
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• Acer Iconia A500 (Tablet)

– Processor: Dual-core 1ghz Tegra 2

– Battery Capacity: 3260 mAh

– Operating System: Android 4.0.5

– Notable Software: SL4A, Python 2.6.2

Local Resources

• Workstation

– Processor: Quad-core 3.3ghz Intel i5-2500K

– Operating System: Microsoft Windows 8

– Notable Software: Python 2.7.3

Cloud Computing resources

• Amazon EC2

– Instance: High-CPU Medium

– Operating System: Amazon Linux AMI

– Notable Software: Python 2.7.3

To evaluate the effectiveness of the system in a typical usage scenario,

an appropriate amount of test data was generated to support the execu-

tion of three data transformations in a chain, as illustrated in Listing 6.2.2.

This transformation chain consists of three steps. It performs a Discrete

Fourier Transform upon a randomly-generated sample of data typical of

Electrocardiogram output, then takes resulting data and performs some ba-

sic arithmetic upon the output of approximate complexity to transforming

R-R interval to heart rate. It then combines results from the previous two

transformations to evaluate the processing and transmission of sizable data
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sets. Finally, the results of the first and third transform are returned to the

Supervisor (and from there, to the Client).

<?xml version="1.0"?>

<Transformation>

<Transform>

<Name>ECG2IBI</Name>

<Input>

<StreamID>1</StreamID>

<Format>ECG</Format>

</Input>

<Output>

<Name>someIBI</Name>

<Report>True</Report>

</Output>

</Transform>

<Transform>

<Name>IBI2HR</Name>

<Input>

<Name>someIBI</Name>

<Format>IBI</Format>

</Input>

<Output>

<Name>exampleHR</Name>

</Output>

</Transform>

<Transform>

<Name>MergeData</Name>

<Input>

<StreamID>2</StreamID>

<Format>PPG</Format>

</Input>

<Input>

<Name>exampleHR</Name>

<Format>HR</Format>

</Input>

<Output>

<Name>SPC</Name>

<Report>True</Report>

</Output>

</Transform>

</Transformation>

Listing 6.2.1: Experimental Three-stage Transformation XML Request

Listing 6.2.2 depicts the XML message sent to the Supervisor in each

evaluation section. In order to process this series of transformations, the

participating Supervisor must retrieve data from local data stores (in this
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instance, SQLite) and transmit details of the transformation along with

data to the Manager, which distributes tasks among participating devices.

Factors that can affect the outcome include: latency to processing resources,

available processing and connection bandwidth can all play a significant part

in processing speed.

6.2.3 Responsiveness

For the system to be considered useful in a wide range of potential usage

environments, it must respond to user requests as quickly as possible, a

term referred to as responsiveness. System responsiveness can be a key

consideration when attempting to retrieve data related to health, as lack

of responsiveness can have disastrous effects. Additionally, responsiveness

provides a useful metric to compare transformation processing capability of

a single device (as traditionally used) as opposed to a cluster of devices,

such as this dissertation proposes.

This test compares the performance of the physiological monitoring and

processing system on a single device (HTC Desire) compared to multiple

(Desire, One X), as well as utilising locally-available resources (Worksta-

tion), which would not typically be available in mobile environments. The

transformations used in the evaluation are as described in Section 6.2.2.

Figure 6.1 illustrates the advantage of utilising additional mobile re-

sources for processing. For this graph, requests were ordered by response

time, providing an easy comparison of scalability across the different types

of processing resources. In the graph, request time depicts the total time

to complete a single request. Request time represents the total time to

completion for each transformation request, which has a number of steps:

1. Transmission of the transformation request from Client to Supervisor
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Figure 6.1: Responsiveness, ordered by response time

2. Retrieval of sample data associated with the request by the Supervisor

3. Generation and communication of the XML message containing trans-

formation details and sample data to the Manager

4. Task allocation and packaged data distributed from the Manager to

available Processors

5. Completion of the work by the Processors, and transmission of trans-

formed data back to the Manager

6. Repeat allocation and distribution of any further chained transforma-

tions by the Manager

7. Returning the completed transformation(s) to the Supervisor

8. Responding to the Client with transformed data

As this chain of events effectively represents the time for the system to

respond to a Client request, it is an appropriate measure of system perfor-

mance.

As expected, the system in single-device mode (as would traditionally be

used in a mobile environment) performs poorly, showing a relatively steep
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decrease in system responsiveness visible in Figure 6.1 as more requests are

handled. The rapid increase in request time is indicative of the device being

unable to cope with the workload being allocated to it.

Using a second mobile device as an additional Processor proved more suc-

cessful than anticipated - even outperforming the local resources available.

This reduced the inevitable reduction in system responsiveness to a mini-

mum, decreasing at a much lower rate compared to both the single-device

and local resources setups. The two-device setup almost halved request time

in comparison to the single-device, providing impressive levels of scalability.

Figure 6.2: Responsiveness, ordered by request time

Using three devices for processing still resulted in performance gains over

two devices, though to a lesser degree. Figure 6.2 shows the response time of

requests ordered by the time of request, showing us the performance of the

system over the period of execution. The third device generally improves

performance, but the low intensity level of transformations ensures that the

overhead of managing three devices starts to detract from the gains of having

more available processing power. In the event that transformations were of

higher intensity, the benefit of having additional processing devices is likely
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to be more clear.

The evaluation conducted shows that mobile devices operating collabo-

ratively are able to process physiological transformations in a significantly

more responsive fashion than an individual device. An acceptable level of

scalability is also shown for this experiment, with multiple devices adding to

the processing pool and ensuring a higher level of responsiveness to trans-

formation requests.

6.2.4 Database Engines

While simple file databases (such as SQLite) suit small-scale deployments,

large numbers of simultaneous database transactions can cause slowdowns

due to a lack of concurrency and the overhead incurred from constant disk

reads. To evaluate the best engine to use for scenarios such as those de-

scribed in Chapter 3, the performance of the system in a controlled environ-

ment using each engine can be compared.

In this experiment, all roles were occupied by the Workstation described

in Section 6.2.2. While this is not a mobile device, it shares an identical

processing architecture to the majority of notebooks. The database engines

evaluated were SQLite3, MySQL 5.5.24 and PostgreSQL 9.1, each the most

recently released version of the engine. All other variables were constant

across the experiment - dataset, transformation chain, levels of concurrency

and processing resources available to the Manager were all unchanged.

Figure 6.3 depicts the responsiveness of requests using each database

engine. As shown, 65% of requests take approximately the same amount

of time to complete, showing little difference in performance. However, the

system performance varies heavily when under the strain of many concur-

rent requests. The SQLite run shows reasonably consistent performance



CHAPTER 6. EVALUATION 80

Figure 6.3: Database engine evaluation, ordered by response time

across the experiment. The Postgres and MySQL runs suffer from severe

performance hits to about 5% of requests - presumably because the device

is unable to deal with so many simultaneous tasks.

While the SQLite engine performs constant disk reads/writes (usually a

significant factor in performance hits), the engine has no presence beyond

a file input/output interface, requiring no extra processing or memory to

use. There is additional overhead involved with managing the Postgres

and MySQL servers that can consume processing time and require constant

thread-swapping by the device’s processor to ensure all tasks are completed.

While this is generally not an issue during normal database engine use,

the experiment is placing a high level of simultaneous requests upon the

processor.

In addition to the overhead involved in managing the MySQL/Postgres

engine, the Supervisor script uses a thread pool of size 50 (ie. 50 concurrent

requests) to process incoming requests. The Manager also has a similarly-

sized thread pool in place, as well as the Processing scripts requiring one

process per device processor core. This results in some 120-130 concurrent
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tasks demanding completion at any given time, which can result in signif-

icant slowdowns, and is the primary reason for splitting processing across

many devices.

Figure 6.4: Database engine evaluation, ordered by time of request

These thread-swapping ”chokes” are clearly visible in Figure 6.4, par-

ticularly in the initial stages of the experiment. Some of the more extreme

chokes are not shown, due to the line representing an average response time

of requests sent in that second. Taking these chokes under consideration,

SQLite still averages lower response time (and hence higher responsiveness)

than the other two engines in this scenario, which places a higher strain on

concurrent processing over disk reads/writes.

In order to evaluate more write-heavy operations on each engine, a sec-

ond set of experiments were conducted that, in addition to the transforma-

tion duties of the last experiment, introduced ten Monitoring nodes. These

scripts were also executed on the Workstation, and randomly generated 30

seconds (at 40Hz) worth of sample sensor data per Monitor, which was

transmitted to the Supervisor for storage. This gave the database engine an

amount of writing to do, as well as the significant amount of reading already
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being undertaken.

Figure 6.5: Database engine evaluation with monitors, ordered by response
time

Figure 6.5 clearly shows the difference in load between the two exper-

iments. When requiring the engines to perform writes as well as reads,

several extra tasks are added to the workload of the device - the database

engine must update relational indexes (where applicable) and request caches.

Against expectations, SQLite performs significantly better than both other

engines for the majority of this test, managing to process requests in a more

responsive manner than MySQL or Postgres.

These are both small-scale tests, and the additional overhead of Post-

gres/MySQL is likely to be neutralised in test involving significantly higher

levels of concurrency. However, for the purposes of many small-scale physio-

logical monitoring experiments in mobile environments, SQLite was able to

store monitoring data and respond to transformation requests in a respon-

sive manner and can viably be used in these situations. It should also be

noted that there is currently no Android-compatible version of PostgreSQL

or MySQL available, limiting compatible hardware to generic notebook com-
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puters.

6.2.5 Latency

Latency can have a large impact on the usefulness of data processed by

the system. If real-time feedback is required (particularly in the event of

health monitoring), the associated decrease in responsiveness due to phys-

ical distance to processing resources can be problematic. To evaluate the

responsiveness of the system over multiple layers of resources, as described

in Section 4.3, transformations are requested from a mobile device. This

mobile device, acting as both Supervisor and Manager, utilises itself as a

Processor as well as available resources at individual layers.

For the purposes of this experiment, Peer Processing is a Processor exe-

cuted on the HTC One X, connected by 802.11n (Xiao, 2005) wireless. Cloud

Processing is an Amazon AMI Cloud instance, as described in Section 6.2.2.

Local Resources represents the Workstation, connected via Ethernet to a

wireless access point. Latency from the Supervising mobile device to the

Peer was relatively small ( 10ms), highly variable to the Workstation ( 30-

90ms), and typical of international transit to the Amazon Cloud computing

resources ( 200-260ms).

Figure 6.6 illustrates the total request time by each processing layer.

Once again, the easily-accessible Peer layer provides the most responsive

processing, with Local and Cloud computing resources taking significantly

longer to respond to Client transformation requests.

It should be noted that latency tends only to be a significant detriment

when performing multiple low-intensity transformations. If the processing

time gains on Cloud computing or local resources outweigh the latency

penalty, either option becomes viable for use - assuming connectivity to



CHAPTER 6. EVALUATION 84

Figure 6.6: System Responsiveness with Different Resource Levels

Figure 6.7: System Responsiveness with Different Resource Levels - Long
Transforms
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either of these resources is available, which is often not the case in mobile

environments. Figure 6.7 demonstrates the difference made if transforma-

tions are of higher intensity, with the benefits of low-latency connections

displaced by the time taken to process each transformation.

Figure 6.8: System Responsiveness with Different Resource Levels - Long
Transforms, including Solo Processing

However, all available processing options are still preferable to solo-

processing with a mobile device, as shown in Figure 6.8. Local resources

become the most attractive option in this experiment when using high-

intensity transformations, though likely due to the local resources having

4 processing cores while the Cloud computing instance only has access to a

single core.

This evaluation suggests that mobile devices collaboratively processing

physiological transformations can, in most circumstances, provide an ade-

quate level of system responsiveness. It outperforms local and Cloud com-

puting resources in situations where latency to these resources is high, con-

nectivity is unstable or transformations are reasonably low-intensity. The

more powerful resources are recommended for use in situations where con-
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nectivity is stable or transformations are high-intensity, and using these re-

sources has the additional benefit of reducing power consumption by the

monitoring devices. However, particularly low-intensity transformations

may consume less power to process on mobile devices than to transmit over

communications with high power consumption, such as 3G/4G (commonly

used mobile data networks).

6.2.6 Summary

This section has presented a quantitative evaluation of system performance

in a series of real-world example scenarios, using generated sample data and

realistic physiological transformation requests. These experiments evaluate

the performance of the system with regards to the system requirements listed

in Section 4.2.

Section 6.2.2 presented the environmental parameters used in the ex-

periments, including all hardware and software used. It also provided the

sample physiological transformation chain used in the following experiments,

defining a static set of experimental variables to ensure comparisons would

be valid.

Section 6.2.3 evaluated the performance of the system, by requesting

multiple concurrent transformations requests and recording the total time

each transformation took to complete. This experiment was to evaluate

the scalability of the system, and proved that the system is significantly

more responsive when using multiple processing devices over a single mobile

device. This provides a significant improvement over current techniques in

mobile environments, which are limited to either using a single device or

transmitting data for processing to external resources, which are not always

available and relies on a stable communications network.



CHAPTER 6. EVALUATION 87

Section 6.2.4 evaluated several different database engines for use with the

system, noting the total time it took for the system to respond to a transfor-

mation request. It showed that in hardware-restricted environments (such as

mobile environments), database engines considered to have higher levels of

concurrency (such as Postgres and MySQL) performed poorly in comparison

to SQLite, due to additional processing overhead associated with running

the database management system. This was the case even when supplying

the database engines with continuous data writes. This implies that for

most mobile environments, SQLite is an acceptable solution. In large-scale

deployments (thousands of monitoring devices), MySQL and Postgres are

likely still going to be preferable, due to the ability to scale those engines

over multiple devices, which SQLite cannot do.

Section 6.2.5 examined the effect of latency on transformation process-

ing, using three levels of processing resources (Peer, Local and Cloud, see

Section 4.3) and recording the time taken to process transformations. The

evaluation showed that for low-intensity transformations, Peer processing

was by far the preferred processing option, significantly outperforming both

Local and Cloud computing resources. However, when transformations re-

quired significantly more processing, Local and Cloud computing became

more attractive options due to their inherently higher processing capability.

This discounts the addition of more processing resources to the Peer level,

however, which would likely bring performance of the Peer processing cluster

to levels approaching that of Local and Cloud resources.

Overall, the system performed admirably in all tests and satisfied the

requirements specified in Section 4.2. The techniques implemented by the

system show the potential to provide significant improvements to current

physiological monitoring and processing practices in mobile environments.
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This will allow advanced physiological transformations to be used in envi-

ronments that previously hindered its use, as there is less reliance on mobile

communications networks, fixed resources (and power supplies) and easier

implementation due to the ubiquity of mobile devices that the system can

run on.

6.3 Requirements Evaluation

6.3.1 Overview

This section presents an evaluation of the Distributed Physiological Moni-

toring and Processing System based on the requirements discussed in Sec-

tion 4.2. The requirements focus on the overall aims described in Section 1.4,

in order to provide a system that operates effectively in mobile environments.

Each requirement is discussed in relation to how the system meets it.

6.3.2 Usability

In order to be useful in for physiological monitoring in any environment, the

system must implement a basic set of functionality involving the collection,

transformation and presentation of physiological data (R1).

The system provides a configurable interface for connecting to physiolog-

ical monitors of any type, so long as an appropriate communications medium

between sensor and device exists. An example of configuration to connect a

sensor to the monitor is presented in Section 5.7. While this interface must

be manually configured for each model of sensor, the majority of monitoring

work is completed by core functionality of the monitor.

Due to the role-based architecture designed for the system and described

in Section 4.4, any number of monitoring and processing devices can be used
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with the system. Along with the ability to configure any number of sensor

streams per monitoring device, this provides users with the opportunity to

use as many sensors as the accompanying processing devices can handle.

The RESTful interface provided by the system allows users to request

extremely dynamic physiological transformations to be performed upon col-

lected physiological data. Unlike hardware-based solutions, which are lim-

ited to the static transformation chain they were designed for, the XML-

based request format described in Section 4.5 allows for any combination of

physiological transforms desired by users. This also provides the opportu-

nity for cutting-edge analytical algorithms to be implemented into existing

implementations with a minimum of fuss.

Transformed (or raw) physiological data is returned to requesting users

in a standard format, allowing existing or custom software solutions to eas-

ily access and present the data in any appropriate format. This provides

the users with flexibility in their choice of presentation software, as well as

enabling access by other software platforms, such as web-based systems de-

signed to track user physiological data. Access to this data is authenticated,

preventing unauthorised access.

6.3.3 Configurability

As the system is designed to operate in a range of different environments,

the capability to configure system operation must be present and as sim-

ple as possible (R2). To this end, the system is configured with default

settings suitable for the majority of situations, with many configuration op-

tions only changing in special circumstances. The system configuration files

are Python scripts, allowing operators to modify or insert additional code

if required. This is particularly noticeable in the Monitor configuration file,
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which requires additional configuration to interface particular sensor types

in use.

# stripped of documentation comments

supervisor = "localhost:8008"

upload_interval = 3 #seconds

from hxm import hxm_poll

streams = [

{

"name": "HR",

"description": "Simple Heart-rate Monitor",

"format": "HR",

"sensor":

{

"model": "Zephyr HxM",

"description": "Heart-rate monitor chest-strap",

"location": "Chest",

"samplerate": 60,

},

"command": hxm_poll

},

]

Listing 6.3.1: Typical Monitor Configuration File, Zephyr HxM Sensor

Listing 6.3.3 depicts a typical Monitor configuration file with a single

sensor (a Zephyr HxM Heart Rate Monitor) attached. The sensor and

stream registration follows the same parameter listing as in Section 4.5, using

Python syntax instead of XML. The command element of the stream config-

uration array should point to the sensor polling function. In this instance,

the polling capability is provided by a third-party library that interfaces with

the HxM sensor. For other sensors with more complex pre-transmission re-

quirements (such as ECG compression), this element can point to a utility

function that retrieves data and performs any requisite action on it. Data

is then automatically packaged for transmission and sent at set intervals.

The operator can modify this interval, representing the time between trans-

mission of collected data to the Supervisor. Lengthening the transmission
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window can ease strain on the Supervisor if bandwidth is plentiful, while

decreasing the interval can improve responsiveness if sensors are collecting

a significant number of samples.

# stripped of documentation comments

server_port = 8009

worker_port = 4567

workers = ("inst-sample.ec2.amazon.com",)

Listing 6.3.2: Minimal Manager Configuration File

Listing 6.3.3 presents a sample Manager configuration file, which is rel-

atively simple. Port configurations are available for non-standard imple-

mentations (for example, if the system is run on servers that already use

the default ports). There is also a configuration option to manually de-

fine Processor servers. While the system will automatically detect and use

Processors that exist within the same network subnet, additional Processors

(such as the Cloud server instance in this example) can be added as required.

For the majority of mobile systems, this option can be left blank.

# stripped of documentation comments

db_engine = "sqlite"

db_file = "supervisor.sqlite"

manager = "localhost:8009"

Listing 6.3.3: Minimal Supervisor Configuration File

Listing 6.3.3 depicts a sample Supervisor configuration file, which pri-

marily configures data storage engines and the network address of the work

Manager. The majority of mobile devices can use the default settings with

little issue, as SQLite is capable of storing and retrieving a moderate amount

of concurrent requests. If there are multiple sensors per Monitor and many

Monitors, a fully concurrent database engine (such as MySQL or Post-
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greSQL) is recommended - neither of which currently run on smartphones,

so a notebook is also recommended as Supervisor.

As seen in the sample configuration listings, the system can operate in

most situations with default settings. In situations where configurability

is required, the option is available - network addresses and ports can be

modified at will. Additional external resources can be included as Processors

with a minimum of effort (merely the addition of the address to the Manager

configuration file, if the device cannot be autodetected). In order to initiate

the system, the following commands should be run (on devices allocated to

the below roles):

Monitor(s): python monitor.py

Manager: python manager.py

Supervisor: python supervisor.py

Processor(s): python ppserver.py − a − p < port > −d

Upon execution of these commands (assuming correct configuration), the

system should be fully operational. Applications are then able to access the

RESTful API (as described in Section 4.5) provided by the Supervisor by

accessing the appropriate address and port.

As demonstrated, the system is simple to configure and operation can

be reduced to a simple button-press that executes the appropriate script.

A simple Android application could further reduce execution to a listbox

containing role types, which could then automate script execution when

selected. By providing such a simple set-up routine for the system, the

learning curve of using distributed processing and monitoring systems is

lessened greatly.
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6.3.4 Mobility

One of the primary advantages of the system described in this dissertation

over existing solutions is its suitability to mobile environments. To satisfy

this goal, the system should work equally well in mobile environments with

no fixed power resources and no discrete processing resources, as well as

traditional environments with plentiful processing and ample transmission

bandwidth (R3).

The system satisfies this requirement primarily through implementation

of other requirements, such as cross-platform compatibility and scalability.

By providing the implementation as a set of distinct role-based applications

that run on the majority of common hardware platforms, the flexibility

needed to deploy such a system in unorthodox environments is present. The

system can be deployed across as many devices as needed, with additional

processing or monitoring nodes able to be added to the existing cluster with

a simple button-press or minor configuration alteration.

In addition, processing devices are not limited to requiring static power

supplies. By utilising existing, popular mobile devices, the system inherits

appropriate standards for power supplies. This ensures availability of sup-

porting hardware intended to enhance the useful lifetime of such devices,

such as extended batteries or solar chargers. Devices can also be quickly

charged using portable generators or fixed power supplies (if available).

The system also shares processing load across all available Processor

nodes, ensuring an even resource lifetime across devices. This avoids the

undesirable situation of having a single device handle too much allocated

work and deplete itself prematurely, potentially leaving a traditional system

useless.
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6.3.5 Compatibility

The system supports compatibility with the majority of monitoring devices,

using existing communications standards and a flexible configuration sys-

tem for interaction with specific devices (R4). Some processing can also

be completed by the monitoring agent, allowing for high-bandwidth sig-

nal data (such as electrocardiogram or electroencephalogram signals) to be

compressed prior to submission to the Supervisor.

Due to the heterogeneity of monitoring devices (and their associated

data output formats), a system capable of utilising sensors for varying pur-

poses must either use existing standards or provide a flexible sensor con-

nection mechanism. Due to the highly commercial and individual nature of

physiological sensors, no real data format standard exists; while Bluetooth

or Infrared is often used as a communication medium, the resulting data

stream is often in a format recognisable only to software developed by the

hardware manufacturer. The protocols are often reverse-engineered for use

on other monitoring platforms (Caune, 2011), providing the possibility of

using a flexible data retrieval mechanism configured for particular devices.

Because the system’s configuration files are pure Python source files,

any requisite decoding or compression can be included into the Monitoring

agent as part of its normal functionality. This implies that the only limit

placed on compatibility is down to hardware compatibility, which can vary

amongst devices - most Android smartphones come with standard wireless,

Bluetooth and mini-USB (while newer phones also provide Near-field Com-

munications). In the event that the device does not support any of these

communications standards, a USB-accessible dongle is likely to exist.
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6.3.6 Cross-platform

A key consideration in developing a system for use in a wide range of en-

vironments is cross-platform support for some (or all) parts of the system

(R5). This provides greater choice when selecting hardware for use in such

scenarios, allowing for more focus on other considerations (such as physical

toughness or battery life) over concerns like supported operating system.

To this end, the system is written purely in Python, requiring no cross-

compilation at all. Any device capable of operating the Python runtime

with multithreading should support the system - including the vast majority

of Unix-based systems, Microsoft Windows-based systems and Mac OSX

systems. There are also implementations of Python available for embedded

platforms (Various, 2012) that are optimised for minimal-size and memory

usage, though it is unlikely that the system will run on most of these devices

due to lack of multi-threading library support and memory limitations.

Certain optional supporting components of the system are as yet un-

able to be executed on alternative platforms. Proper relational database

management systems (such as MySQL and PostgreSQL) do not run on the

Android smartphone platform, forcing users to instead utilise SQLite - a

less concurrent data storage mechanism. However, using a laptop computer

as a Supervisor allows full use of these DBMS and may be a more sensible

option for large-scale monitoring while retaining mobility.

6.3.7 Extensible

Due to the nature of distributed physiological monitoring, it is desirable

for the system to support a large number of monitoring devices per partici-

pant (R6). In more complex monitoring examples, several sensors could be

attached to an individual; electrocardiographs, photoplethysmographs, po-
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sitioning systems and others are all useful sensors that may be attached to a

single Monitor. In order to provide useful data, the system must be able to

manage data communication and aggregation with all sensors concurrently,

as well as packaging the data for submission to the Supervisor.

The system achieves this goal through use of multithreaded architecture

design. Each sensor is given a single dedicated thread on the Monitor pro-

cessor, allowing the sensors to be polled at individual rates in conjunction

with their listed sample rates. This allows for varying levels of resolution

for each sensor - while geographical position may only need to be registered

once every few minutes, electrocardiogram data often has sample rates of

significantly higher frequency (0.5-2kHz).

It is noted that the concurrency of the Monitor is limited to the number

of processing cores available and the frequency of requests. A device that is

constantly collating signal data in addition to handling several other sensors

may require a reduction in signal resolution in order for other data to be

collected in a timely fashion. Ultimately, if the device is unable to cope with

the required sample rate of certain sensors, devices containing a processor

with a higher core count may be required.

6.3.8 Scalable

One of the most important design considerations for a distributed processing

system is scalability (R7). By shifting the burden of processing off a single

device and distributing it over multiple devices, the intention is for the

system to become more responsive. This does not usually occur with perfect

results, since some overhead is required in the packaging and distribution of

the tasks to other devices. While the performance metrics of the system are

evaluated in Section 6.2, functional scalability implies solution of another
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issue: ease of scalability.

The system allows users to easily scale the system through the addition

of new devices to the processing pool. This occurs through implementation

of one or more devices as Processors. For the majority of situations, this is as

simple as executing the Monitor Python script on the device - an action that

can be reduced to a simple button-press within a smartphone application,

or executing a batch file on a laptop or workstation. Even the addition of

Cloud computing resources was designed to be simple - merely requiring the

execution of the Processor script on the Cloud instance(s), and appending

the instance’s network address to the Manager configuration file.

By designing the system to be scaled as simply as possible, addition

of devices becomes . In the event of requiring more processing resources,

commonplace devices such as laptops or smartphones can have the script

and a Python interpreter copied onto them. This reduces time-to-use of

devices to a few minutes - less if a Python interpreter is already present on

the system. This fact, combined with easy configuration and addition of

devices, makes the system easily scalable.

6.3.9 Secure

Any system involved in the collection and transformation of personal physio-

logical data should provide data security at every possible step of the process

(R8). Due to the highly sensitive nature of such data, especially in combat

situations where intercepted position data could result in casualties, data

should be encrypted for transmission.

The system is able to accomplish this relatively easily. Due to the sys-

tem’s use of HTTP-based servers to handle communications from Monitor

to Supervisor and Supervisor to Client, all transmissions can be easily en-
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crypted with a combination of HTTPS and SSL. Smartphones already con-

tain support for both standards using OpenSSL, as they are used heavily in

traditional web applications (particularly sensitive communications, such as

remote banking access).

Because the data stream between Manager and Processor is handled

by the Parallel Python module, modifications would have to be made to

support encryption of serialised Python arrays. Due to the modular nature

of Parallel Python, this is a relatively easy task - the only modification

required is encryption on both the read and write functions of the network

transfer class.

The proposed modifications to the Parallel Python classes are only neces-

sary if an attacker manages to breach normal wireless security mechanisms

that are generally in place. Including mobile security protocols such as

WPA2 on the wireless network would limit visibility of data transmissions

(both encrypted and unencrypted) to users that have appropriate authenti-

cation. Having multiple levels of encryption to protect data of this sensitivity

is still recommended, however - which this system supports.

6.3.10 Summary

This section has presented an evaluation of the system based on the re-

quirements in Section 4.2. It has argued that the system fully supports

each defined requirement, with care taken to ensure strict adherence to the

primary aims of the dissertation.

6.4 Summary

This chapter has presented an evaluation of the distributed physiological

monitoring and processing system described in Chapters 4 and 5. It con-
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sisted of two main parts: a detailed evaluation of an implementation of the

system on an assortment of hardware (including mobile devices, worksta-

tions and Cloud computing resources), and an evaluation of how the system

satisfies the requirements described in Section 4.2.

The implementation of the system on a variety of hardware platforms

provided an opportunity to evaluate the system’s real-world potential in

solving issues commonly associated with physiological monitoring in certain

environment, described in Chapter 3. This evaluation focused on the scala-

bility of the system, and its viability when compared to using Local or Cloud

computing resources as processors instead of mobile devices.

Section 6.2 evaluated the system’s viability in real-world situations, in-

cluding the benefits it provides over traditional physiological processing tech-

niques. It showed the system had good levels of scalability and the physical

proximity of the processing devices to the system provided significant advan-

tages over external resources, due to latency overhead. It also determined

the best database engines for use with the system in mobile environments.

Section 6.3 argued that the system successfully met all the required cri-

teria for a generic physiological monitoring and processing framework on

mobile devices, as listed in Section 4.2. Each requirement was supported

through core functionality of the system, as well as the extensible interfaces

provided to connect to different sensor devices.



Chapter 7

Conclusion

7.1 Overview

This chapter presents the conclusions of the dissertation. Section 7.2 con-

tains an overview of the argument of the dissertation. Section 7.3 discusses

the major contributions presented in this dissertation. Finally, Section 7.4

presents some concluding remarks.

7.2 Overview of Dissertation

This dissertation has designed and evaluated a distributed physiological

monitoring and transformation system for use in mobile environments. Chap-

ter 1 introduced the practice of physiological monitoring, as well as the con-

cept of using physiological transformations to derive useful information from

collected data. The chapter describes issues with traditional physiological

monitoring techniques when applying them to mobile environments, and

argues that a model less reliant on communications networks and fixed pro-

cessing resources could be implemented in a wider range of environments.

In conclusion, it was argued that improves can be made to physiological
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monitoring by supporting these aims.

Chapter 2 presented a discussion of concepts important to physiological

monitoring, including general physiological background such as biofeedback,

the current state of monitoring devices, signal processing and how it relates

to physiological transformations and ethical considerations regarding moni-

toring of health data. Problems in existing monitoring techniques were also

identified, as well as a background on one possible solution to some of the

issues highlighted; distributed processing.

Chapter 3 described two case studies in which traditional physiological

monitoring techniques are not well-suited, and provide appropriate environ-

ments to consider when identifying specific issues with physiological moni-

toring. The chapter also identifies common issues between the case studies,

helping to narrow down problems with existing physiological monitoring

techniques. It concluded by arguing for a shift to a more mobile paradigm,

encouraging flexibility and lower reliance on external resources.

Chapter 4 presented a distributed physiological monitoring and transfor-

mation system designed to alleviate or eliminate some of the issues described

in previous chapters. A formal list of system requirements is presented, with

the goal of satisfying the aims introduced in Chapter 1. Application archi-

tecture and roles were described, and the application programming interface

was designed and documented.

Chapter 5 presented an implementation of the system described in Chap-

ter 4. Specific implementation details are discussed, including the method of

implementation for each role application. Implementation-specific decisions

such as resource allocation mechanisms were also presented, along with the

possibilities of data compression. Configuration mechanisms for the system

were also described in detail, as they directly determine interactivity with
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the wide range of physiological sensors available.

Chapter 6 presented an evaluation of the distributed physiological moni-

toring and transformation system. The first section of the chapter evaluated

the system through the execution of a number of experiments designed to

test the scalability and effect of latency upon the platform implementation

described in Chapter 5. The evaluation determined that the system is scal-

able and that collaborative mobile processing is a viable option in mobile

environments. The remainder of the chapter evaluates the implementation

considering the requirements listed in Section 4.2, and concluded that the

system satisfies all requirements.

7.3 Major Contributions

The Design of a Mobile Distributed Physiological Monitoring and

Processing Platform

A major contribution of this dissertation is the design of a distributed phys-

iological transformation processing platform that expands possible usage

environments to include those without stable communications networks or

fixed power supplies. This was achieved through the use of collaborative

processing on common mobile devices, and provides improvements to exist-

ing physiological processing techniques by increasing mobility. The platform

architecture and interface was described in Chapter 4, and the specific im-

plementation was discussed in Chapter 5.

Evaluation of the Viability of Mobile Physiological Processing

This dissertation has presented a comprehensive and detailed evaluation of

the platform, described in Chapter 6. This evaluation was used to demon-

strate the viability of using mobile devices to perform tasks traditionally
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completed by fixed processing resources, allowing physiological monitoring

in environments without access to communications networks and fixed power

supplies. The evaluation focused on whether the techniques used could scale

to effectively process physiological transformations under real-world condi-

tions.

7.4 Concluding Remarks

Physiological monitoring provides significant benefits in the areas of dis-

ease diagnosis, rehabilitation evaluation and assessing subjects for stress,

amongst other uses. Existing physiological monitoring techniques generally

monitor and store physiological data for later submission to centralised pro-

cessing servers that can perform physiological analysis and transformations

upon the collected data.

To enable real-time monitoring of physiological measures, devices rely

either on the presence of fixed processing resources or a reliable commu-

nications network that it can use to relay data to processing servers for

transformation. Several environments exist in which physiological monitor-

ing would be beneficial for health or evaluation reasons, but are unsuitable

for existing monitoring techniques. These environments tend to be mobile

environments, where fixed power supplies (and therefore fixed processing

resources) are unavailable, or where communications networks have little

penetration, such as highly remote or heavily forested areas.

In order to reduce reliance on these two environmental variables and

improve physiological monitoring by expanding the range of potential us-

age environments, a shift to a more mobile paradigm is recommended. By

encouraging the use of existing mobile devices as a collaborative processing

framework to perform physiological data transformations, both problems are
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alleviated. Smartphones contain their own portable power supplies, that can

be recharged periodically using a generator or photovoltaic cells. The de-

vices are also extremely portable, having been specifically designed for use

while mobile.

This dissertation presented an evaluation of the viability of using mobile

devices to collaboratively process physiological transformations, which de-

termined that such a technique is scalable and viable for use in real-world

situations. In several environments, distributed mobile processing actually

offers greater benefits than using traditional methods or Cloud Comput-

ing, as latency to local mobile devices is significantly lower than external

resources. This improves system responsiveness, which can be a key consid-

eration if the system is being used to monitor health signals. It is hoped

that the improvements brought to physiological monitoring are incorporated

into future implementations and allow the benefits of reliable monitoring to

be brought to a wider audience, including remote communities.
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