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Continuous-Time Adaptive Critics
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Abstract—A continuous-time formulation of an adaptive critic
design (ACD) is investigated. Connections to the discrete case are
made, where backpropagation through time (BPTT) and real-time
recurrent learning (RTRL) are prevalent. Practical benefits are that
this framework fits in well with plant descriptions given by differen-
tial equations and that any standard integration routine with adap-
tive step-size does an adaptive sampling for free. A second-order
actor adaptation using Newton’s method is established for fast actor
convergence for a general plant and critic. Also, a fast critic update
for concurrent actor–critic training is introduced to immediately
apply necessary adjustments of critic parameters induced by actor
updates to keep the Bellman optimality correct to first-order ap-
proximation after actor changes. Thus, critic and actor updates may
be performed at the same time until some substantial error build up
in the Bellman optimality or temporal difference equation, when a
traditional critic training needs to be performed and then another
interval of concurrent actor–critic training may resume.

Index Terms—Actor–critic adaptation, adaptive critic design
(ACD), approximate dynamic programming, backpropagation
through time (BPTT), continuous adaptive critic designs, real-time
recurrent learning (RTRL), reinforcement learning, second-order
actor adaptation.

I. INTRODUCTION

THERE are many terminologies used for adaptive critic
designs (ACDs) depending on how the problem is viewed,

but basically ACDs represent a framework for dynamic pro-
gramming approximation and they are used in decision making
with the objective of minimal long-term cost. ACDs approxi-
mate dynamic programming by parameterizing the long-term
cost, [heuristic dynamic programming (HDP)], or its
derivative [ -critic, dual heuristic programming (DHP)], or
a combination thereof [global dual heuristic programming
(GDHP)]. Other versions are also used, especially reinforce-
ment learning, which was inspired from a biological view point.
There are only a few publications dealing with continuous-time
adaptive critics [1]–[5]. This paper is an expansion of [5] and
contains all the necessary equations to implement the proposed
method, which is an extension of the discrete ACD approach to
continuous-time systems of the form

system equations (1)

control equations (2)
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with the objective of a minimal long-term cost function, given
by (3) and to find a suitable controller (2). denotes the system’s
state vector

(3)

There is no space here to introduce backpropagation through
time (BPTT) and real-time recurrent learning (RTRL) in depth;
their details can be found in [6]–[8] and [9]. BPTT calculates
total derivatives of a quantity that is a function of previously
evaluated functions with respect to some previous argument, as
seen in (4)–(6). RTRL calculates total derivatives
forward in time based on a transition matrix . In the context
of ACDs, function approximators are used like neural networks
for plant identification, actor and critic modules, or they are all
part of a large network. Then, the state refers to all the
nodes in a network and its dimensionality can be quite large.

Parameters are denoted generically as and to distinguish
between actor and critic parameters, subscripts and are used.
The actor, or controller, is given by (2), whereas the critic tries
to estimate the quantity (3) by , where the super-
script indicates the policy given controller (2) and deter-
mines the set of possible controls.

A. ACD Review

The broad range of nomenclature, approximate dynamic
programming, reinforcement learning, temporal difference
learning, adaptive critics designs, and a group of names by
Werbos, HDP, DHP, GDHP, and its action depend (AD) forms
share many commonalities and differences are often a matter
of taste. Werbos distinguishes designs based on properties
of the critic: scalar valued long-term cost falls into HDP,
whereas DHP uses the derivative of the long-term cost with
respect to the state which is often more powerful because as
a vector quantity it tells how the long-term cost will change
depending on a state change. However, as not every vector-field
is integrable, DHP may yield a solution that is not consistent
with HDP. The proper combination yields GDHP which is a
second-order method because its derivative estimate is inte-
grable and consistent with the long-term cost estimator. More
on these designs including convergence analysis is given in
[3]. The best overall reference on the topic is currently [10]
which is an exhaustive resource, particularly [10, Ch. 3 and
15] relate to this paper (see, also, [11]). Ferrari [10, Ch. 3]
also gives a convergence proof for a standard ACD based on
[12], which may be seen as first ACD. This proof is based on
exact functional representation of the long-term cost and only
recently have people found convergence proofs for ACDs with
parameterized estimators. For nice mathematical convergence
proofs of ACDs in the context of approximate policy iteration,
see [13] where it is shown that the approximate cost-to-go
function will be obtained within certain error tolerances from
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the optimal one. Most notably is [14] where convergence for
linear cost functions has been proven when sampled according
to the steady-state probability distributions. Recently, this result
was extended by Xu et al. [15] to nonlinear cost functions by
using a nonlinear kernel-mapping from an input space to a
high-dimensional but linear space, as done with support vector
machines. There is a vast literature on temporal difference
methods in conjunction with Markov chains where
[16], [17] and state-action-reward-state-action (SARSA) algo-
rithm, the sequence undergone in the evaluation process, are
some basic and powerful tools. For a good overview, see [18].

II. CONTINUOUS VERSION OF “ORDERED” TOTAL DERIVATIVES

A simple method for the calculation of total derivatives for
ordered systems, defined by (4), was achieved by discretizing
the continuous plant and utility or short-term cost and treating
them as ordered systems, where total derivatives can be easily
calculated by the formulas (5) or (6). This implements the
chain rule and was first introduced by Werbos in the context
of adapting parameters of a long-term cost function [19]. The
notation means the total derivative

(4)

(5)

(6)

The chain rule can be applied analogously for continuous sys-
tems where represents the state of the system and is under
the influence of infinitesimal changes during the infinitesimal
time step . Given the setup of an adaptive critic design where

, the goal is to adapt the weights such
that is an optimal trajectory, in the sense that it has a min-
imal long-term cost. Clearly, can be seen as a function of
only and , so . A deviation in leads
to a deviation in the trajectory , say . Therefore, (7) holds,

, and the order of the differentiations
can be exchanged (see Fig. 1) as defined by

(7)

(8)

(9)

(10)

This relation proves to be very useful as it is just a differen-
tial equation, which can easily be integrated for the otherwise

Fig. 1. Connection between neighboring trajectories due to a slight change in
the weights. Multiplying all the vectors by �t makes it clear that the order of
derivatives with respect to time and weights can be exchanged [see (7)].

hard to calculate total derivative . Using a new vari-
able , the differential equation can be rewritten as defined by
(11)–(13), ready to be solved by a standard integration routine

(11)

(12)

with initial condition

(13)

If this is expressed in an integral form, the similarity with the
discrete ordered system is easily seen. In the discrete system a
summation is performed over the later dependencies of a quan-
tity whose target sensitivity is calculated, whereas here an in-
tegration has to be performed, where the same total and partial
derivatives appear, but only at infinitesimal time steps as defined
by

(14)

(15)

(16)

(17)

Again, this is the integral formulation of the differential (12)
with initial condition (13) and .

Therefore, the summation in (6) is exchanged by integration
and the partial derivative has to be included into the integral.
This is not surprising, because in the discrete case total deriva-
tives of intermediate quantities are calculated recursively by the
same formula (6). Instead of being a discrete ordered system,
it is a distributed (over time) and ordered (structural dependen-
cies) system in the continuous case, where infinitesimal changes
are expressed in terms of total time derivatives of the target
quantity and split into total and partial derivatives, for
indirect and direct influence on the target quantity, just as in the
discrete case.
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This trick of solving for a total derivative ( ) by
integration is the key to continuous-time adaptive critics.

A. Continuous-Time Adaptive Critics

For continuous-time adaptive critics the plant and the cost-
density function are continuous and the one-step (or short-term)
cost is an integral of a cost-density function over a time interval

, given by

(18)

Given a long-term cost estimator (19), called a critic,
with some parameters which depend on the policy

(19)
As seen before, in adaptive critic designs an estimator is sought
that is optimal with respect to its control output , and, respec-
tively, to its parameters . Using Bellman’s principle of opti-
mality (21), (22) must hold and two objectives can be achieved
simultaneously [12]

(20)

(21)

(22)

First, the critic weights can be adapted using the traditional
adaptive critic updates, using an error (23) measuring the tem-
poral difference of the critic estimates1

(23)

Applying an adaptation law to the critic parameters to force
the temporal error towards zero ensures optimality for the given
policy with fixed parameters . For example

(24)

Second, the policy can be improved by forcing (25) and (26) to
be zero. Note: reads as and has to be

(25)

1As with traditional discrete ACDs, a discount factor  may be introduced
to discount future contributions. For continuous-time systems, an appropriate
discounting term would be  with T being a unit time interval in which
p percent interest is given on future costs, where  = 1=1 + p. For simplicity,
we omit the inclusion here, or later just use  for short.

(26)

The superscript indicates that this equation is only
valid for converged critics, given the current policy. Solving
(15) with initial condition (13) yields the result for the total
derivative , which can be used to
update the actor weights in the usual steepest gradient
manner. This is the continuous counterpart of the traditional
adaptive critic designs. A comparison with a discrete one-step
critic shows that in the continuous case indirect contributions
to the total derivative are always taken into account whereas in
the discrete case the total derivatives taken over one step only,
miss out on the indirect contributions, as the following example
shows. Naturally, a multistep discrete version of the temporal
difference starts approximating the continuous case and this
disadvantage starts disappearing.

An example is a discrete one-step development of the
state with some control

, such that the total derivative of
with respect to the weights is given by (27) which is equal
to (28) because

(27)

(28)

If this procedure of calculating the total derivative is used
repetitively at every time step to update weights proportional
to the gradient, the indirect influence through and all its
later dependencies such as are always going to be
missed. This can amount to a serious problem as substantial
parts such as or ,
which are in general nonzero, are ignored as well. This proce-
dure of adapting is basically BPTT , where indicates
the look-ahead horizon. The influence of the indirect path
through is lost for and the gradient in
this case is the instantaneous gradient used in BPTT .
This is the reason why BPTT is so much more powerful
because with increased look-ahead the gradient becomes
more of a true total gradient.

The same applies to the continuous formulation adopted here
which does not loose the indirect influence as infinitesimal in-
fluences are considered explicitly in the differential or integral
formulation, given by (11)–(17), with the additional benefit of
having variable step-size control from the integration routine.
Adaptive step-size control is nothing else but an adaptive
sampling scheme adjusting the step-size to different signal
frequencies in the state–space variable , so that basically
the Nyquist criterion is always satisfied at any point in time.
Automatic step-size adaptation has also an analogous second
effect, as it implies a suitable number of look-ahead steps (not
necessarily equidistant sampled) such that the true gradient is
adequately calculated (for a stiff system, will be much larger
and the step-size must be sufficiently small for the discrete
counterpart BPTT to work).
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The BPTT algorithm is considered to be more efficient
because, in its recursive formulation, gradients are calculated
with respect to a scalar target, while, in RTRL, the quantity

is a gradient of a vector, resulting in a matrix
quantity. The same applies for the continuous calculation as
well, where the matrix quantity has to be integrated. This
is a drawback compared to BPTT where only a gradient
vector needs to be kept. The continuous formulation thus
has more resemblance with RTRL. For the continuous-time
formulation here this drawback may not be as severe if the state
dimension is not too large and is certainly smaller than that of
a simultaneous recurrent neural (SRN) trained with the RTRL
algorithm to model the adaptive critic design, because the SRN
would use a much larger state vector , where the subscript

symbolizes the network state, rather than the system state .
Part of the motivation to use the continuous formulation is the
module-like framework of plant, critic, and actor of an ACD
framework, where the plant is conveniently given by the system
differential (1).

B. Second-Order Adaptation for Actor Training

In this section, a second-order adaptation method for the actor
parameters is developed. As seen before, the short-term cost
from time to , starting in state is given by (31)

(29)

(30)

(31)

Assuming a stationary environment, the long-term cost in state
and following the policy given by satisfies

Bellman’s optimality condition

(32)

for short (33)

where is the minimal cost in state fol-
lowing the policy . Thus, a better notation would
be to indicate that is actually a pure function
of the state for a given policy. However, to simplify the nota-
tion, neither the superscript nor the argument are
used if not necessary. In ACDs, the long-term cost function

is approximated by . This means that if for
a certain policy Bellman’s principle of optimality is
satisfied, is determined by the cost density and the policy
parameters . An optimal policy is a policy that minimizes

and, therefore, a necessary condition is

(34)

for short (35)

(36)

1) Newton’s Method: In traditional ACDs, (34) is used to
train the actor parameters via a simple gradient-descent method.
Newton’s method could be used to speed up the traditional ap-
proach, although with the additional cost of computing the Jaco-
bian of the function with respect to . In the context
here, Newton’s method for zero search is given by (37)–(42)

(37)

find by iterating according to

(38)

identifying

(39)

(40)

(41)

yields

(42)

To calculate the Jacobian, (36) is differentiated again with re-
spect to , yielding (44)–(46), where and
might be approximated by a backpropagated -approximator or
a -critic and by a backpropagated -critic, respectively

(43)

(44)

(45)

(46)

It has to be mentioned that is a third-order tensor, but
with “the inner-product multiplication over the components of

” the term gets the correct dimensions.
Matrix notation starts to fail here and one is better advised to
resort to tensor notation with upper and lower indices, which is
done in the Appendix for more complicated expressions.

An important note has to be made about derivatives of critics
and derivative ( ) critics. They represent not instantaneous
derivatives but rather averaged derivatives. Therefore, an aver-
aged version of (46) is used as given by (47), where the
denotes the expectation operator, calculated as the expectation
over a set of sampled start states according to their prob-
ability distribution from the domain of interest

(47)
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All the necessary terms in (47) are fully expanded in (92)–(134)
in the Appendix.

Remark: The Hessian in (41) and (47) is assumed to be
of full rank and therefore invertible. If it were not the case
and , a submatrix
of of rank could be achieved by a singular
value decomposition or Cholesky decomposition and then only

parameter components of updated and the remaining
components be left unchanged. This case would correspond
to an overparametrization of the controller with respect to the
system and long-term cost. The degenerate case of the Hessian
being is assumed not to occur, as in this case higher order
terms would be necessary to determine optimality conditions.
For nonlinear controller, system and long-term cost estimator

will hardly be the case in practice and should it
occur that some columns of the Hessian are linearly dependent,
a few more initial points for the expectation calculation
may be sufficient to remedy the problem as well.

Of course the Hessian will not be calculated in practice and
the updates (38) and (42) will be solved more efficiently by
Gaussian elimination, solving the affine system (48) for

(48)

To achieve an initial stabilizing control, the first actor training
may be done based on minimizing costs accumulated during a
midterm interval and with an initial critic output of zero,
e.g., in a traditional neural network like an MLP with
linear or affine outputs where weights and bias are encoded by

or a quadratic critic as in the example shown later. In the
next cycle, the actor weights are fixed and the critic weights

are adapted, by forming the standard Bellman error ac-
cording to (49) and (50)

(49)

(50)

After the convergence of the critic has been achieved, the error
is close to zero, and the critic is consistent

with the policy . A fast training method for the controller
has been achieved with Newton’s method. However, after one
actor training cycle, the actor parameters change to

. To keep Bellman’s optimality condition consistent, the
critic weights have to be adapted as well. Therefore, for con-
verged critics and according to certain policies
with parameters and , respectively, the following
conditions must hold:

(51)

(52)

where means following the policy given by
, starting in state . This is

used in the following section to find the critic update due
to an actor update . Define a consistent actor–critic pair
as a pair of a converged critic and an actor

, such that Bellman’s optimality principle (32), (51),
and (52) holds for all given the fixed actor representing
policy , i.e., Bellman’s optimality equation
is satisfied with no error. Note that this does not imply that the
policy is optimal and another actor with parameters may
yield another lower (or higher) cost function . The
fact that these are different cost functions is expressed with the
notation of a superscripted policy.

III. ALMOST CONCURRENT ACTOR AND CRITIC ADAPTATION

Given a consistent actor–critic pair, actor training would in-
duce an “error,” or better, a change due to the new policy. This
change is given by (53) or its second-order approxima-
tion (55). Similarly, starting from a consistent actor–critic pair,
with a fixed actor and changing critic weights would introduce
an “error” , defined by (57) with a first-order approxima-
tion (59)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

To achieve consistency again after a training cycle involving
actor and critic training, the change due to the actor
has to be matched by an appropriate critic change , i.e.,

. This has to hold for any starting point and
thus as before the expectation operator , approximated by
(61),2 has to be used. For a given actor change and an ap-
proximated expectation operator over a set of a sufficiently

2Note that f(:) is a generic function of any dimension (here vector and matrix
for the “difference Jacobian” and the Hessian, respectively) and not the right-
hand side of the system differential (1). The points x are sampled according to
their a priori distribution p (:).
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large number of starting points , given by
(61), it follows that (60) has to hold

(60)

(61)

To solve for , there are two possibilities at first sight but only
the second approach is working. Nevertheless, both approaches
are discussed as it is not obvious why the first approach will not
work. First, one might gather more points to build up a matrix

given by (64) and then calculate the pseudoinverse. However,
due to correlation of the columns in , the matrix is ill-
conditioned and close to singular.

Remark: It can be seen that the columns are correlated. Be-
cause the long-term cost is dependent on the actor
parameters , where are trained by an averaging process
over many states , its derivatives along a single trajectory

are dependent. This is because the trajectory
is completely determined by the policy defined by . Thus,
differences in the derivatives on one trajectory starting at are
very similar to differences in the derivatives on another trajec-
tory starting at another point because they follow the same
controller law, given by . Therefore, the subtraction of
derivatives along a trajectory makes the columns more indepen-
dent from individual starting points (and, thus, counteracts
the idea of using many different, randomly selected points
to achieve independence) and, therefore, correlates the columns
of . Also, the subtraction leads to cancellation and close to
zero values for short-term evaluation (remember:

). The approach is written down for
the sake of completeness but in practice the second approach,
discussed later, is much more promising.

For the first approach, at least as many starting points as
parameters are needed: . Furthermore,
might be computed with a safeguarded Newton algorithm,
where the safeguard could be a simple backstepping, taking
only a fraction ( is estimated by the algorithm)
of the original computed Newton update to ensure a decrease
in the objective function of Newton’s method.
Together, this yields the following training cycle:

(62)

(63)

(64)

(65)

(66)

(67)

where and are given by
(47) and (36), respectively.

The second approach expresses the difference
in long-term cost into a first-order Taylor series

and selects , as follows:

(68)

(69)

(70)

Using as the new cost-to-go for the new policy
leads to a critic update according to

(71)

(72)

where is given by (54). With this choice, is
equal to given by (59),
as demanded by a first-order approximation. To account for
higher accuracy in Bellman’s optimality condition, standard
HDP training could improve consistency between actor and
critic to an arbitrary degree. However, the first-order approxi-
mation introduced here might be sufficient to safely improve
the current policy again, at least for a few actor–critic training
cycles. Standard HDP critic training is marginally sped up
( ) in the linear quadratic regulator (LQR) experiment in
Section IV-B when (72) was applied before the standard critic
update. A further speed up may result when HDP critic training
is reduced by invoking it only every th actor–critic training
cycle. Especially in more difficult situations with neural net-
work controllers and critics this may be helpful, because then
parameter changes may need to be more gradually done due to
local minima. Then, it is expected that many more actor–critic
cycles are needed.

A. Some Remarks and Discussion

In the simple LQR example, this method of skipping stan-
dard critic training does not improve convergence times because
critic parameters converge very fast to the neighborhood of the
exact values and minor critic changes around the exact values
cause substantial changes in actor parameters.

In a general setup with nonlinear critic, plant and controller,
critic changes based on the proposed first-order concurrent
actor–critic scheme may be enough to drive the actor to a new
local minima and then cause the critic again to change enough
to move the actor parameters further. It has been noted [3],
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[20] that in ordinary stochastic HDP critic training the total
gradient

of the averaged squared Bellman error (
) may in fact converge to the wrong parameters, whereas

the partial gradient achieves
the correct values.3 The means the expectation over the
noise as well as the expectation with regard to initial state
distribution.

This convergence to the wrong parameters is because the total
gradient goes the steepest decent towards the local
minima, whereas the partial gradient allows for more explo-
ration of the state–space. Adapting the actor by a greedy adap-
tation based on the two kinds (partial or total gradient) of critic
adaptation thus leads to different controllers during training as
well. However, this is an issue beyond this paper; here only a
second-order actor adaptation is developed and some form of
critic training is assumed, whether it be by partial gradients,
total gradients, or some other form. An alternative for the total
gradient to yield correct critic parameters would be to use the
two-sample rule [21], [13], [3], [20] to avoid correlation of the
error with the gradient two trajectories based on the
noisy system equations ( ) with different noise
realizations , such that . Then, adaptation
of the critic parameters would be proportional to ,
with ,
for 1, 2 and is the state following the noisy dy-
namics of two simulation runs with two different noise realiza-
tions. Apart from doubling the simulation efforts, the additional
noise realization of the two-sample rule may also slow down
convergence.

These ideas have only been used in the context of discrete
ACDs but may be used in continuous-time systems as outlined
here as well. Because of the subtraction of the two partial gradi-
ents, Baird has suggested to further discount the term ,
moving adaptation towards the one-gradient rule [21], [20].

For continuous-time ACDs introduced here, it was focused
on actor training rather than on critic training. Nevertheless, the
same total gradient calculations can be used for critic training as
well: (24) and (50) would have to be used with the two-sample
rule in case of a nondeterministic system. In the continuous-time
case, a nicer approach than the additional discounting with total
gradients would be to modify the short-term horizon until
the difference is substantial enough. As a matter of fact, the
two-gradient rule was actually used here in (72) for the con-
current actor–critic training. It was observed that concurrent
actor–critic adaptation based only on the one-gradient rule, i.e.,
setting the first term in (72) to zero did not work as well in the
LQR example.

The selection of an appropriate short-term to midterm time
may be seen as a form of shaping. Selection might even de-

pend on the state–space and thus allow to concentrate training

3In [20], the methods of using partial and total gradient are called one-gradient
and two-gradient rules, respectively, because when using the total gradient, the
term (@J =@w ) is added.

on more important areas. As mentioned before, to get an initial
stabilizing policy, a midterm optimization might be performed
at first with a zero long-term cost. This kind of shaping is cer-
tainly easier than having different look-ahead intervals as in
the discrete case with BPTT as the necessary look-ahead is
a function of the time difference and the underlying dy-
namics, whereas in the continuous-time case adaptive step-size
control takes care of the latter.

In the sense of more exploration over exploitation, the pro-
posed concurrent actor–critic training may even be of an ad-
vantage because the approximate consistency of actor and critic
means that the Bellman equation only holds approximately and
thus may help to explore different solutions or even escape local
minima in more complex situations, similar to the use of the par-
tial gradient but with the more robust convergence properties
of the total gradient. However, this would have to be properly
investigated.

Prokhorov [20] emphasizes that “Strictly speaking, critics
lose validity as the weights of the action network are changed.
A more rigorous approach would be to resume the critic training
as soon as one action weight update is made.” The procedure
here with concurrent actor–critic training, suggests precisely
this. However, as the error is only a linear approximation in
terms of weight changes, after a while, some error might build
up and a standard critic update can be performed to achieve an
“error-free” Bellman equation. Nevertheless, this is probably as
close as possible to having a concurrent actor and critic training
without using higher order terms to model the influence of
on necessary critic changes .

B. Some Convergence Results

A few notes on the convergence of adaptive critics via actor
and critic cycles for continuous domains should be made. In
the offline mode, where multiple starting points and an aver-
aging takes place, proofs are available, see, e.g., [20] and [22],
which rely on stochastic iterative algorithms in general [23] and
in the context of neurodynamic programming proofs [13, Ch. 6],
state that for given error tolerances and in the policy evalu-
ation and (greedy) policy improvement steps, respectively, the
resulting cost-to-go function will be close to the optimal one,
within a zone , where is
the discount rate of future long-term costs
with proper scaling of an equivalent and unit time as per
Footnote 1.

In this offline case, the algorithm presented here will converge
to an optimal policy as well, assuming critic and actor approx-
imations are within the same tolerances and . The argumen-
tation is simply that the algorithm presented here is a version
of an approximate policy iteration algorithm, provided an ap-
propriate critic training in the nondeterministic case as outlined
previously.

The conflicting objectives of exploration versus exploitation
may be solved by augmenting the training process such that
an auxiliary process controlling critic and actor training by
switching between exploratory updates and greedy policy
updates such that all states and actions are executed but that
the fraction between exploratory and greedy updates gradually
declines during training. Cybenko has proven convergence of
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this procedure in the context of approximate -learning and
Markov processes [24].

For the online case, when only one start point is taken to
update critic and actor, proofs are much harder because of the
problem of incremental optimization of nonconvex functions,
where greedy approaches may fail. Additionally, local minima
in the cost function over the actor’s parameter space may be
even more of a problem as in the offline mode, where different
initializations, backtracking, or stochastic optimization methods
like simulated annealing might be used. Nevertheless, Tsitisklis
and Van Roy [14] have proven convergence for linear cost func-
tions when appropriate sampling according to the steady-state
probability distributions was used. Recently, this result was ex-
tended by Xu et al. [15] to nonlinear cost functions by using a
nonlinear kernel mapping from an input space to a high-dimen-
sional but linear space.

C. Some General Remarks

A final remark on “continuous backpropagation” and its dis-
crete counterpart BPTT is that normally all the algorithms
will be implemented on a discrete clocked computer, which
seems to be a plus for the discrete BPTT . However, any in-
tegration routine does basically a discretization but with vari-
able time steps. This is an advantage over fixed step-size dis-
crete ACDs because no time is wasted by cycling through areas
with small steps when nothing happens. The truncation depth

in BPTT is the same as the time used to indicate the
short-term to midterm costs. Another difference is that calcu-
lating total derivatives in BPTT is performed backwards,
whereas with the “continuous backpropagation” a forward in-
tegration is performed.

In the previous section, a complete formulation to train the
controller or actor based on second-order derivatives in conjunc-
tion with Newton’s method has been introduced. In the present
section, almost concurrent adaptation for critic weights based
on actor changes is shown. However, to use this approach it
is necessary to have second-order derivatives for the controller
network as well as for the critic network
[see, for example, (46)]. For the critic approximation network

this means has to be calculated,4 and
this is exactly what has to be done in GDHP, which is the most
advanced adaptive critic design. The simplest way to calculate
the second-order derivatives was suggested by Werbos [25] and
implemented by Prokhorov for a one-layered multilayer percep-
tron [20]. Basically, for the given network , a dual net-
work is constructed by applying the backpropagation
algorithm on the network . Together, with the original

network this can be seen as a combined “forward” net-
work which still has the same parameters as the original net-
work. Applying backpropagation on this combined network out-
puts and calculates precisely the de-
sired second-order derivatives . This is perhaps
the most efficient implementation for calculating second-order
derivatives; at least the authors of this paper are not aware of
any better solution.

4For fixed parameters w , partial and total derivatives are the same:
@ Ĵ(x;w )=@x � d Ĵ(x;w )=dx and used interchangeably here.

Another implementation of a second-order training method,
called the extended Kalman filter (EKF), has been made and
successfully experimented with (see, for example, [20] and
[26]). The advantage of the EKF algorithm over Newton’s
method is that it is based on pattern-by-pattern updates, unlike
the Newton method presented here. However, the method here,
particularly (47) and (42), where the expectation operator and
update equation are to be approximated by a batch update (this
is not necessarily the case for further updates) as a running
average, could be used, and, therefore, a more of pattern-by-pat-
tern update version could easily be achieved. Also, the inverse
Hessian could be updated using the matrix inversion lemma
(Woodbury’s equation) and so achieving a pattern-by-pattern
update (see, for example, [27]). It is even better to avoid the
inversion altogether and use a linear equation solver, as only
one point has to be determined, as suggested previously
by (48).

Another more disturbing part for both EKF and Newton’s
method is that both algorithms are of complexity , where

is the number of parameters, whereas Werbos’ method for
GDHP outlined previously is only of .

In this paper, the discount factor has been left out but it is
straight forward to introduce it in the equations corresponding
to Bellman’s optimality equation. This is done by modifying
terms involving the cost-to-go function
with a multiplicative factor . Under some benign assump-
tions the cost integral for the LQR system is finite, therefore
no -factor has to be introduced anyway, or simply
would only have to be set to 1.

While all the formulas have been developed for a generic non-
linear system (1) and controller (2), they are tested only on an
LQR system because for this case the optimal parameters can be
achieved by solving the corresponding algebraic Riccati equa-
tion. In general, nonaffine, nonlinear systems may only be con-
trollable under certain conditions. An interesting approach has
been done by Ge et al. [28], [29] where, with suitable design pa-
rameters, semiglobal uniform ultimate boundedness of all sig-
nals was achieved with an adaptive neural network controller for
a general class of nonlinear single-input–single-output (SISO)
systems.

IV. EXPERIMENT: LINEAR SYSTEM WITH QUADRATIC

COST-TO-GO FUNCTION (LQR)

The LQR system equations and cost density are defined by

(73)

(74)

The control should be of a state-feedback form
with some parameters and the cost-to-go function or perfor-
mance index is given by

(75)
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A. Optimal LQR-Control

To solve the previous system with minimal performance
index, an algebraic Riccati equation (ARE) has to be solved.
Details can be found in [30, Ch. 14]. However, for numerical
purposes, Matlab’s lqr-function can be used to calculate the
optimal feedback gain. To make use of Matlab’s lqr-function
the performance index has to be changed to (76), where a
simple comparison with the original performance index yields

, , , and .
Additional requirements are that the pair be stabi-
lizable, , and and that neither

nor has an unobservable
mode on the imaginary axis

(76)

The optimal control law has the form
with feedback matrix which can be expressed as

(77)

where is the solution to the ARE

(78)

B. Numerical Example

1) : Using the following system values
(79)–(81), the optimal feedback is given by (83)

(79)

(80)

(81)

solution to ARE (78) (82)

optimal feedback by (77)

(83)

(84)

In [4], there are also other feedback methods for LQR systems
investigated for comparison with the adaptive critic methods to
determine long-term costs and controls. One of them is derived
from the calculus of variations (CoV), which is theoretically
equivalent to dynamic programming in the sense that it mini-
mizes the same cost function to find an optimal controller.5 If

5Dynamic programming may also have other advantages, for example when
having uncertain or disturbed states, or has a simpler formulation of the method
[see the comments in the case of rank(K) < dim(x)].

the matrix is full rank, all the (stable) methods investigated
achieve the same optimal result for the feedback matrix .

2) : Lowering the dimension of the con-
trol , and therefore the rank of the control matrix and the
feedback matrix to impose constraints on the possible map-
pings fails all adaptive methods investigated in [4]
except the adaptive critic design and of course the solution cal-
culated via (77) and (78). The adaptation based on the calculus
of variations violates the independence conditions of the funda-
mental lemma of CoV. In the case of a reduced rank feedback
matrix, an adaptation law based on CoV with an augmented cost
functional and the introduction of Lagrange multipliers would
have to be developed. This seems far more complicated than the
approach via ACDs. The optimal reduced rank feedback is given
by (89), based on the system matrices (85)–(87)

(85)

(86)

(87)

solution to ARE (78)

(88)

optimal feedback by (77)

(89)

(90)

Using traditional adaptive critics will find the correct optimal
values for in both cases independent of the rank of .
However, when used with the training methods introduced in
Section II, only a few actor–critic training cycles are needed
and speed up the traditional adaptive critic training consider-
ably by at least 10%–30% (see Section IV-D for comparison
with first-order update for the controller). To achieve higher
accuracies the Bellman “error” was fixed at and critic
training could take a substantial amount of time. An adap-
tive error threshold would certainly improve overall training
time, as well as adaptive learning rates would, like stochastic
meta descent [31]. This method could easily improve critic
training by another 15%, but was not used in the plots for better
comparisons.

C. Results for Continuous ACDs With Newton’s Method

In this section, the Newton training is tested on the same LQR
example as has been used previously.

1) : Fig. 2 shows the actor or feedback
parameters . The solid lines represent only periods of actor
training with input and output values to the Newton routine.
To improve stability, Newton’s method was extended to only
allow changes which satisfy ; other-
wise, . It may occasionally happen
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Fig. 2. Trajectory of the actor parametersK for the system given in Section IV-B1. The solid lines represent the time actor training via Newton’s method. During
the time indicated by the dashed lines, actor parameters are frozen and critic weights are adapted. After four actor–critic cycles the parameters are learned within
an error better than 10 .

Fig. 3. Trajectory of critic parametersW . The solid lines represent the time critic training is performed. After the first actor–critic cycle the actor–critic consis-
tency is achieved and the proposed linear critic updates due to actor changes can be applied. This is shown by the black lines which represent a jump towards the
optimal values, especially for the nonzero w ;w at the second actor–critic cycle.
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Fig. 4. Trajectory of the actor parametersK for the system given in Section IV-B2. The solid lines represent the time actor training via Newton’s method. During
the time indicated by the dashed lines, actor parameters are frozen and critic weights are adapted. After four actor–critic cycles the parameters are learned within
an error better than 10 .

Fig. 5. Trajectory of critic parametersW (note: w = w ). The solid lines represent the time critic training is performed. After the first actor–critic cycle, the
actor–critic consistency is achieved and the proposed linear critic updates due to actor changes can be applied. This is shown by the black lines which represent a
jump towards the optimal values, given by (72), especially for the nonzero w and w at the second actor–critic cycle.
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Fig. 6. Trajectory of the parametersK for traditional actor update. Parameter accuracy is better than 10 .

Fig. 7. Trajectory of critic parametersW for traditional actor update.

that Newton’s method diverges from a random set of parame-
ters, e.g., if their values are too large and with that feedback ma-
trix even the short-term integral gets very large values and nu-

merical problems occur, or, the proposed clipping might cause
oscillations. In these relatively rare cases, the fastest way to
solve the problem is through another initialization. Fig. 3 shows
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Fig. 8. Trajectory of the parametersK for traditional actor update. Parameter accuracy is less than 10 before stopping.

Fig. 9. Trajectory of critic parametersW for traditional actor update.

adaptation for the critic parameters . Remarkably, the lin-
earized critic update proposed in Section III works well, espe-
cially when actor changes are of significant magnitudes and a

4% improvement could be achieved. However, it has to be men-
tioned that a gradient descent update will also converge fast
in the beginning because errors are large. In this simple LQR
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(94)

(95)

(96)

(97)

model, it is better to have the critic converging at every step,
rather then swapping prematurely to update the controller be-
cause overall convergence is achieved in only a few iterations
and highly accurate controller parameter demands very low er-
rors in the Bellman “error” equation.

2) : Similar observations are made as
in the case with a fully ranked feedback matrix and after only
four actor–critic cycles the optimal values are achieved within
an error of . Figs. 4 and 5 show actor and critic weight
adaptation, respectively.

D. Results for Continuous ACDs With Traditional Controller
Update

Traditional actor update is achieved by forcing (25) and (26)
to zero and updating actor weights according to

(91)

with some step-size and indicating an iteration index.
It is evident that compared with the second-order method it is
more difficult to obtain accurate solutions when the gradient has
to be zero, whereas the proposed Newton method can still do up-
dates from the second order terms and obtain accurate controller
weights. Critic training is the same as with Newton’s method,
apart from the concurrent actor–critic correction in Newton’s
method.

1) : The performance depends very
much on the desired controller accuracy (see Figs. 6 and 7). For
controller parameter accuracy beyond , parameters need
more attention. and a maximum of 100 actor updates
are allowed before switching to the critic training.

2) : In this more difficult case, con-
troller parameter accuracy to was achieved with reason-
able training time (see Figs. 8 and 9). Step-size as
well as a maximum of 100 actor updates are allowed before
switching.

V. CONCLUSION

A second-order adaptation for controller parameters for a
continuous-time ACD has been developed in this paper. There
are some valid reasons for using continuous-time ACDs. Plants
are often described by differential equations such as (1) and
those equations can be used directly, without discretization.
This is done implicitly by the integration routine, which offers
a second advantage, because an automatic step-size integrator

does an adaptive sampling for free. An encapsulated approach
of plant, controller and critic has been used which is a modular
approach in contrast to a heterogenous approach sometimes
used with a recurrent network trained by the RTRL algorithm,
which often results in a much bigger network state than the
actual system state of the proposed method, which otherwise
may be seen as a somewhat continuous-time version thereof.
This is important from a practical point of view as the compu-
tational complexity of the RTRL algorithm in space and time
raises with and , respectively, where is the
dimension of the state [6].

Another advantage of continuous-time ACD is the intro-
duction of a correction algorithm for concurrent actor–critic
training. This allows critic correction just after an actor training
cycle to keep the Bellman optimality condition correct to
first-order approximation of the introduced policy change by
the actor update. This works well, at least for low-dimensional
systems as in the demonstrated LQR example. For more com-
plicated systems, it might be of advantage to approximate
global cost functions by local quadratic ones as was done
very successfully by Ferrari in [32]. However, the equations
provided in theAppendix allow for the development of any
systems and any cost functions, not only quadratic ones, so
long as they are sufficiently differentiable.

APPENDIX

(92)

(93)

or for one element see equations (94)–(97), shown at the top of
the page, with the abbreviations

(98)

(99)

(100)

(101)

(102)
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(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

and the relations for their total time derivatives

(103)

(104)

(105)

(106)

(107)

with

(108)

(109)

it is

(110)

All these differential equations can be solved easily in principle,
knowing that the initial condition is alwayszero. The trickypart is
the complexity of the formulas achieved by using the product and
chain rules and expressing derivatives of in terms of derivatives
of and . Depending on the complexity of the system at hand,
it might be simpler to find and use
discrete differences to approximate partial derivatives.

The first-order partial derivatives of with respect to the
states or weights are

(111)

(112)

(113)

(114)

and the second-order partial derivatives of with respect to the
states and/or weights are shown in (115)–(122) at the top of the
page. The only remaining quantities to calculate are the partial
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(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

derivativesof withrespect to theweightsor states.First-
order partials are

(123)

(124)

(125)

(126)

and second-order partials are shown in (127)–(134) at the top of
the page.
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