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Abstract

Recently developed networked services have been demanding architectures that accommodate an
increasingly diverse range of applications requirements (e.g. mobility, multicast, QoS), as well as
system requirements (e.g. exploiting specialized processing hardware). This is particularly crucial
for architectures of network systems where the lack of extensibility and interoperability has been
a constant struggle, hindering the provision of novel services. It is also clear that to achieve such
flexibility these systems must support extensibility and re-configurability of the base functionality
subsequent to the initial deployment. Based on our experience with middleware platforms, we argue
that re-configurability of network services is best implemented by means of reflection.

In this position paper we present component-based approach to developing flexible networked systems,
especially targeted at the Intel IXP1200 programmable networking environment and discuss how our
approach can offer a more deployable, flexible and extensible networking infrastructure. We show
the viability of our component model to re-configure services on the Intel IXP1200 platform. An
application scenario is presented to validate our approach to enable re-configuration of services across
different layers of an IXP1200-based router platform.

1 Introduction

An increasing number of recent applications (e.g. real-time, multimedia) and their underlying system
infrastructures (e.g. workstations, PDAs, embedded systems, ad-hoc networks) have been requiring a
flexible architecture to accommodate all the requirements necessary to run these applications as well as
to inter-operate in a heterogeneous environment composed of different types of applications and hard-
ware platforms. It is increasingly clear that to achieve this, we need an extensible and re-configurable
architecture that is capable of loading and integrating new functionality at run-time. As an example
of re-configurability, we could load and unload services on a network router and intelligently adapt its
forwarding behaviour to various types of traffic and environments such as mobile or ad-hoc.

Unfortunately, although much research on providing an open architecture for networking systems
have been carried out, we still lack a generic approach to develop and deploy new network services.
Existing paradigms address configuration and re-configuration of services running on a particular level
of a programmable networking system (e.g. open signalling for control functions, and active networks for
in-band packet processing). But there is as yet no really comprehensive approach.

At the same time, component technology [21] has been widely cited as a suitable model for devel-
oping adaptive software due to its incrementally deployable nature [10]. For example, with component
technology described in [10] one can add, replace and remove the constituent components residing in the
same address space. Therefore, the use of component technology provides a means for deployment-time
configurability and run-time re-configurability. However, although component-based architecture have
been successfully used in many adaptive applications, early research into active networks has not truly
adopted a component model [18]. Moreover, the majority of existing work (e.g. Vera [15] and Genesis [5])
omit support for dynamic re-configuration. RANN (Reflective Active Network Node) [22] introduces the
use of reflection to support flexible configuration in active networks, but it only defines an architecture



where active nodes use reflection to better structure services. Essentially, RANN defines an architecture
for configuration rather than re-configuration. Moreover, we argue that this work is partial; it only ad-
dresses the configurability within the execution environment, and not at lower or higher system levels.
Furthermore, RANN is language specific (Java).

As a consequence, this paper presents the design and implementation of a component-based architec-
ture for programmable networking software, which provides an integrated means of developing, deploying
and managing such systems. The proposed architecture consists of a generic component model applied on
all levels of the programmable network design space, which ranges from fine-grained, low-level, in-band
packet processing functions to high-level signalling and coordination functions. The projected benefits
of this approach are detailed in section 4. Configuration and re-configuration across this architecture
is achieved by dynamically loading and unloading service components. Reflection is used to reify con-
figurations of components and to support various types of meta-data to facilitate configuration and
re-configuration.

The remainder of the paper is structured as follows. Section 2 looks in detail at existing component-
based frameworks for generic applications and component-based technology to provide programmability in
networks which leads to the motivations of our work. Subsequently, section 3 examines existing technology
necessary for this architecture. It introduces our component model OpenCOM, the concept of component
frameworks and finally covers the IXP1200 platform. Section 4 then reports on our globally applied
component-based architecture to enable dynamic creation, deployment and management of services in
programmable networking environments. Qur approach and an overview of the design space of the
programmable networking environment is detailed in the same section. The design and implementation
of our model carried out to date is presented in section 5. Finally, section 6 draws general conclusions
from this paper and the proposed architecture.

2 Analysis of Existing Work

We distinguish here component-based platforms for general purpose applications from component models
tailored towards a specific application domain (such as active and programmable networks).

2.1 Generic Component-based Platforms

Although there exists a wide range of research systems (e.g. XPCOM, K-Component [11]) that implement
component platforms for generic applications, we argue that all of these are suboptimal for programmable
networks due to their lack of special support for the hardware platforms used in this context. These
limitations are frequently related to the platform upon which the component is built for (e.g. the Java
virtual machine). Another limitation regards the system layer at which the component model is targeted.
For example, none of the existing component models consider the integration of low-level and high-
level components running on different layers of the router hardware (e.g. in-band packet forwarding,
or signaling). There exists work addressing low-level components providing an architecture to build
component-based OSs (e.g. Think [12], Knit [17]). Nevertheless, typically these systems do not provide
a uniform and globally applied framework to load and bind both assembly language-based components
and high-level components.

2.2 Component-based Platforms for Programmable Networks

Aside from the component model for generic applications, there has been considerable research on
component-based platforms for programmable routers (e.g. Click [16], NP-Click [20], VERA [15], NetBind
[5], LARA++ [19]). Nevertheless few works support configuration and reconfiguration (i.e., adaptation,
extension, evolution and removal) sufficiently. Most of them support the first configuration but do not
support the subsequent re-configuration at runtime. Moreover, systems that implement re-configuration
do not adequately support the management of system integrity over re-configuration operations (e.g.
ensuring that firewall updates are applied consistently and universally). Furthermore, these works do not
provide an integrated approach to configure and re-configure services across all layers of the programmable
networking system (see section 4). For example, VERA limits re-configurability to in-band functions and



the hardware abstractions layer, whereas NetBind considers only in-band functions. LARA++, on the
other hand, allows re-configurability on all layers, but lacks an uniform model to do so (i.e. different
component models are used on the different layers).

3 Background

3.1 Component Frameworks

The concept of component frameworks (CFs) is applied to deal with component constraints and the
dimensioning of the applicability of participating components. CFs are also applied to provide the
structure allowing the use of components for a specific domain of application. A number of runtime
CFs have been implemented as part of our past research (e.g. pluggable protocols, pluggable thread
schedulers, and pluggable media filtering) [10]. CF were originally defined by [21] as collections of rules
and interfaces that govern the interaction of a set of components “plugged into” them. In this sense, a CF
embodies rules and interfaces that would make sense for a specific domain of application. For example, a
CF for pluggable protocols consists of a variety of interfaces and rules to integrate plug-in protocols and
ensure that they are stacked in an appropriate order. As another example, CFs can determine constraints
to govern the interaction of a set of components: a CF can mandate that a packet scheduler component
must always read its input from a packet classifier. Such constraints are useful to ensure meaningful re-
configuration and therefore the system must provide support for expressing these constraints. Essentially,
CF's provide the necessary support and conditions for components and also regulates the interaction rules
between component instances for a specific domain of application. A component framework can come
alone or interact and cooperate with other CFs (as long as it conforms to the rules governed on the host
CF). Therefore, it is natural to design CFs themselves as components.

3.2 OpenCOM

Lancaster’s OpenCOM (7] is a lightweight, efficient, flexible, and language-independent component model
that was originally developed as part of previous research on configurable middleware [10]. OpenCOM is
fine-grained in that its scope is intra-capsule (for capsule, see below) and it imposes a minimal overhead on
cross-component invocation without compromising the overall performance. It is currently implemented
on top of a subset of Mozilla’s XPCOM platform.

OpenCOM relies on four fundamental concepts:

Capsule: a capsule (see figure 1) comprehends multiple physical address spaces within a single logical
container: for example, a capsule could encapsulate both a Linux process in the IXP1200’s control
processor and one or more microengines. Encapsulating multi-address-spaces offers a powerful
means of abstracting over heterogeneous but tightly-coupled hardware (e.g. PC, StrongARM and
the microengines of the IXP1200 router platform - see section 3.3 and figure 3 for the IXP1200
architecture).

Interface: expresses a unit of service provision;

Receptacle: define a service requirement and is used to make the dependency of one component on
another explicit;

Binding: is an association between a receptacle and an interface. In the original version of OpenCOM,
bindings were restricted to receptacles and interfaces residing in the same address space. Currently,
OpenCOM is being extended to support binding between receptacles/interfaces of different address
spaces as well. Semantically, a connection represents a communication path between one receptacle
and one interface. Bindings in the original OpenCOM were exclusively implemented in terms of
vtables [3] (a vtable is essentially a table containing pointers to virtual functions). Currently,
however, we are extending OpenCOM to support bindings implemented in a variety of ways.

On top of OpenCOM, we have designed a CF called the “Router CF” that is targeted specifically
at packet-forwarding functions in routers. See figure 2. In this illustration the meta-interfaces support
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Figure 1: Multi-address-space capsules

inspection of the types of interfaces and receptacles declared by the target component. The meta-
interfaces use the underlying XPCOM system to query the component’s type library file and return the
IID’s (interface identifiers) of the interfaces it implements. Information obtained from this inspection
can then be used to enable and guide subsequent re-configuration (e.g. to replace one component with
another). Reflection is used as the means to obtain such information, which enables the re-configuration
in our framework. Moreover, the obtained information is useful in enabling CFs to check the type of
interfaces offered, enforcing the compliance of binding rules at runtime. The controller component (see
figure 2) relies on the mentioned meta-interfaces in order to manage and configure the internal constituents
of the respective CF. It is important to emphasize that the CF can be composed hierarchically of other
CFs of the same type, in order to build a composite of CFs.

OpenCOM MetarInterfaces

- G

OpenCOM CF

interfaces
sa|oe1de8l

Figure 2: Generic CF for programmable routers

3.3 The Intel IXP1200 Router

The IXP1200 router [8, 13] is an Intel-proprietary architecture based on IXP1200 network processor
(NPs). Its architecture combines a StrongARM processor with six independent 32-bit RISC processors
called microengines, which have hardware multithread support. The StrongARM is the core processor
and is primarily concerned with control and management plane operations, whereas microengines handle
packet-forwarding. Our component model is being adapted for this platform. In terms of memory, the
IXP1200 platform provides the Scratch or Scratchpad and also the static and dynamic RAM. Figure 3
illustrates the implementation environment of our prototype.
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Figure 3: Simulation environment of our prototype

4 OQOwur Approach

4.1 Characterizing Programmable Networking Environments

The design space of programmable networking [9] can be split into four layers or “strata”. We use the
term “stratum” rather than “layer” to avoid confusion with layered protocol architectures. The four
strata (see figure 4) are described as follows:

4:coordination

3: application services

2: in-band functions

1: hardwar e abstraction

Figure 4: Design Stratas of Programmable Networking

Hardware Abstraction: The hardware abstraction stratum corresponds to the minimal operating sys-
tem functionality needed to run applications on the higher levels. This functionality encompasses
threads, memory, I/0, library loading and other services needed to support higher-level network
programmability. Interfaces in this stratum are often implemented as wrappers around underlying
native facilities in order to support heterogeneous platforms which allows transparent use of these
services on a number of different router architectures, such as PC-based router or Intel IXP1200s
which provides multiple processors (StrongARM and microengines) and distributed/hierarchical
memory arrays.

In-Band Functions: This stratum consists of packet processing functions such as packet filters, check-
sum validators, classifiers, diffserv schedulers, and traffic shapers. Given that these functions are
low-level, in-band and fine-grained (and therefore highly performance critical) they must be imple-
mented extremely efficiently (i.e. machine instructions should be counted with care.

Application Services: The application services stratum encompasses coarser grained functions: for
example, active networking execution environments [1]. Functions in this stratum are less perfor-
mance critical and act on pre-selected packet flows in application specific ways (e.g. per-flow media
filters).



Coordination: This stratum supports out-of-band signalling protocols which carry out distributed co-
ordination, including configuration and re-configuration of the lower strata. This, for example,
includes signalling protocols such as RSVP, or architectures that enable resource allocation in dy-
namic private virtual networks as employed by architectures like Genesis [4], Draco [14], or Darwin

[6].

The main aim of our work is to provide a globally-applied component model, which can enable
(re)configuration of services in all strata of the programmable networking design space. This yields a
number of important benefits. The component model:

o is simple and uniform - it allows the creation of services in all strata and provides a uniform run-time
support for deployment, inspection and (re)configuration;

o enables bespoke software configurations - by the composition of CFs in each stratum, desired func-
tionality can be achieved while minimising memory footprint; trade-offs vary for different systems
types (e.g. embedded, wireless devices; large-scale core routers);

e facilitates ad-hoc interaction—e.g. application or transport layer components can directly access
(subject to access policies) “layer-violating” information from the link layer, which nowadays is
considered as indispensable [2].

We aim to apply this approach in both PC-based router as well as specialised programmable routers
(e.g. Intel IXP1200). This heterogeneity is fundamental to validate our claim of a generic model. We
also strive to implement this model without compromising the overall performance.

4.2 Aims and Objectives

Our project aims to build a framework to enable re-configuration of services running on all levels (strata)
of any programmable router. It attempts to mask underlying hardware heterogeneity, so that a PC-
based router and an IXP1200-based router which has multiple processors (i.e. microengines and Stron-
9ARM) and distributed/hierarchical memory array, will look as similar as possible to other strata. Re-
configurability in this architecture will be carried out by means of reflection technology which is imple-
mented in OpenCOM.

Initially, we are building a version of the Router CF described above for the IXP1200. Essentially, this
CF offers an abstracted view of the IXP (i.e. an API) to both developers and deployers of programmable
networking functionality. The CF embodies rules and constraints that component developers must follow
in developing plug-in components.

5 Progress to Date

In line with the above-mentioned aims and objectives, our component model for programmable network-
ing platforms enables loading and binding of components residing in all strata of the design space of
the programmable networking environment. The core architecture contains essentially these two func-
tionalities: loading and binding. The former loads a class (i.e. code) and also creates an instance of
one component in the specified capsule_id and the latter accomplishes the binding between individual
components (between interfaces and receptacles).

5.1 Generic Framework

Following the above-mentioned approaches and aims, we extended the core API of OpenCOM with the
following methods:

e load(capsule_id, component guid);
e unload(capsule_id, component_guid);

e bind(interface guid, receptacle guid);



e unbind(interface guid, receptacle guid);

In these methods, capsule_id specifies either the capsule where the component will be loaded or the
capsule where the component resides (e.g. in the PC, StrongARM or a Microengine). Component_guid,
interface_guid and receptacle_guid are component, interface and receptacle identifiers respectively. In
our prototype, GUID is the “globally unique identifier” and it is used to locate a specific component,
receptacle, and interface to be loaded or bound. For high-level components, we employ the ClassID
(implemented in XPCOM) as our identifiers for components; and InterfaceID as interface and receptacle
identifiers. For Microcode-based components, we have been using the name and the path where each
component is located to identify the component and its interface and receptacle.

An example environment is depicted in figure 3. Note that this example employs three address spaces:
PC, StrongARM and Microengines.

5.2 Re-Configuration: Loading and Binding using Reflective Techniques

The loading mechanism determines the physical placement of components to-be-deployed by taking into
account factors such as resource usage as well as QoS and security constraints. Similarly, the binding
mechanism wires the component into the appropriate place in the software router configuration. The
implementation of the above functionality includes a number of wrapper functions that map each load
and bind method to the corresponding mechanism to re-configure components in the requested address
space.

Components running in this environment can typically be of any granularity, i.e., components can be
coarse-grained (e.g. developed for the StrongARM or PC platform) or fine-grained, which in our case
are typically coded in the Intel IXP1200 machine language (i.e. microcode). This enables us to write
high-level services that rely on functionalities provided by low-level components.

In this sense, the binding mechanism can as well connect components of any type. Bindings between
microengine and StrongARM components is (typically) carried out by using a shared-memory mechanism
(exploiting the IXP1200s SDRAM and SRAM common memory). We have also been using the Scratch
memory (for Scratch memory, see figure 3) to transfer integer values between these components (see figure
5 for details) as this provides the lowest transfer time (compared to SRAM and SDRAM). Finally, binding
between two microengine components is achieved by changing the execution path from one component
to another, i.e., by changing the branch instruction, pointing the execution path to the next component
(see figure 6). This is implemented in the same way as in NetBind [5]. However, we claim that our
implementation is more fine-grained as we do not rely on “pipelines” (a pipeline in NetBind is a set of
assembly-based components that are initially connected and executed subsequently). Our component
model loads, connects and executes units of single components instead of a set of them. As illustrated in
figure 6, each component in Microcode can be composed of four threads that run in parallel.

The controller component contains information about the component configuration. It has the reflec-
tive capabilities to inspect and re-configure the constituents of the CF. The inspection and re-configuration
mechanisms are achieved by the OpenCOM meta-interfaces implemented on each CF (see figure 2). In-
formation on each CF is provided to the controller implemented on a CF hierarchically superior to the
inspected CF. As pointed out before, a CF may be composed of other CF's in order to build a composite
of CFs.

5.3 An Application Scenario

In order to validate our component model, we are now experimenting with a configuration of the Router
CF which uses our globally applied component model across several layers of the IXP1200 programmable
router environment. This scenario demonstrates how (re-)configuration and reflection can be used to
extend the network service on a router at run-time. In particular, the example emphasizes the advantage
of having a single component model, which allows configuration and (re-)configuration of the service
components across several layers of the programmable network design space and across different processing
hardware (i.e., network processors, PCs, etc.). It also shows how (re-)configuration can be carried out in
dimensions that do not have to have been foreseen when the system was designed.

The Router CF configuration illustrated in Figure 7 is a typical configuration for an IP router. It
consists of several low-level, in-band components on the “fast-path” of the router, namely a classifier and
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Figure 6: Binding between assembly (microcode)-based components

a forwarder, as well as a queuing and scheduling component, an application service-level component for
the processing of IP options on the “slow-path”, and a high-level Router CF in the control plane of the
router (coordination stratum).

In the case of our IPX1200 based router architecture, we develop the above mentioned functionalities
on different strata (in-band, application service and coordination layer) of our multi-strata programmable
router architecture, but as component of the same component framework. In order to leverage the process-
ing capabilities and performance of the different hardware layers, we target the different functionalities on
the processing hardware best suited for them: thus, we implement the “fast-path” components in machine
code for the microengines of the IPX1200 network processors. And for the IP options component on the
routers “slow-path”, we target on the Linux OS running on the StrongARM processor. And finally, the
Routing component, which encompasses several different routing protocol components, we implement on
the PC platform.

In order to illustrate the extensibility and flexibility of our approach, we include an IPv6 to IPv4
protocol translation component, which is added to the initial Router CF application at run-time. Such
dynamic extensibility can be required to adapt a network environment to provide IPv6 support without
restarting the network device.

Like the Router CF itself, the IPv6 to IPv4 translator is spread across different strata and thus areas
of the IPX1200 router architecture. While the actual protocol translation takes place in the application
services layer, the management component is established at the control plane (coordination stratum) of
the router platform. The Translator is integrated with the existing functionality on the router through
composition of an overall service CF. The controller component of the overall service CF integrates the
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Translator by loading the composite and establishing the bindings with the Router CF interfaces.

As mentioned before, reflective techniques are used to accomplish this functionality (i.e. configuration
and (re-)configuration of component-based services). Also, it is important to emphasize again that it is
the uniform component model that enables components of different strata to interface with each other.

In terms of performance, we point out that the overhead seen by packets transversing the router is no
more than would be incurred by Intel’s standard software development environment (e.g. using Microace
- Intel’s component model for IXP1200 platform [13]) as the same bindings (i.e. linkages between software
modules) are used in both case. Moreover, the Intel environment (Microace) is static [5], whereas the
OpenCOM approach is soft and flexible.

6 Conclusions

In this paper we have proposed a component model that can potentially be applied at all all strata of
the design space of programmable network platforms to create services by loading and binding involved
components. We believe that the combination of components along with reflection and CFs offers a
promising mechanism to configure and re-configure services in networking environments. A key strength
of this model is the uniform framework to load and bind both high-level and low-level components. There-
fore, loaded and bound components may reside in all strata of the programmable networking environment.
As a consequence, we argue that our model facilitates fundamental re-configuration on programmable
routers and hence greatly increases flexibility.

Furthermore, it is important to emphasize that our framework facilitates the extensibility and pro-
grammability of network processor based systems. These architectures are usually extremely complex
and difficult to program and, as a consequence, re-configuration is hardly considered on these “primitive”
environments. However, the provision of a generic framework for these architectures gives the program-
mer a friendly interface (abstraction) to create and consequently re-configure services based on low-level
components. We do this by creating an “illusion” for the component developer that low-level components
can be loaded and bound in the same way as high-level components.
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