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1. Introduction 
In the past few years significant progress has been 
made in the design and implementation of reflective 
middleware platforms—i.e., platforms that, through 
reflection, can be flexibly configured, and run-time 
adapted/ reconfigured, especially in terms of non-
functional properties like timeliness, resourcing, 
transactional behaviour, and security. Recently, we 
have initiated a project that investigates applying our 
previous reflective middleware work to the demanding 
and novel—for reflective middleware—area of 
programmable networking environments. In general, 
these environments offer the capability to inject code 
into network nodes so that their forwarding behaviour 
can be tailored on behalf of individual organisations, 
applications, or users. The fact that programmable 
networking software operates in a complex, multi-
language and OS, environment and has strong 
requirements for dynamic deployment, 24x7 
operation, managed software evolution, high 
performance, QoS/ resource management, adaptivity 
and security, makes it an ideal testing ground for the 
reflective middleware approach [Schmid,02].  

In this position paper we outline salient characteristics 
of programmable networking environments and 
discuss how our particular reflective middleware 
approach, which employs a component-based 
architecture as one of its central tenets, offers the 
potential for more deployable, more flexible, and more 
evolvable programmable networking infrastructures. 
The remainder of the paper is structured as follows. 
First, §2 briefly surveys our previous work on 
reflective middleware, and §3 briefly characterises 
programmable networking environments. Next, §4 
outlines our approach, and §5 discusses our progress 
to date. Finally, §6 analyses related work (in 
programmable networking, in component-based 
systems, and in reflective middleware), and §7 
presents our conclusions and indicates areas of 
planned future work. 

2. OpenOrb and OpenCOM 
Our reflective middleware platform, called OpenORB 
(see, e.g., [Clarke,01], [Coulson,02]), is actually more 
of a framework than an ORB per se. That is, it can be 

used to define/ configure a range of types of 
middleware instances (e.g. standard CORBA, real-
time CORBA, a pub-sub middleware platform, an 
embedded ORB etc.). These instances are defined by 
selecting from a set of lower-level component 
frameworks, and combining these appropriately. 
According to Szyperski [Szyperski,98] component 
frameworks (hereafter, CFs) are “collections of rules 
and interfaces that govern the interaction of a set of 
components ‘plugged into’ them”. We have 
implemented runtime CFs for a wide range of 
middleware-oriented functionality domains including 
pluggable protocols, thread management (offering 
pluggable schedulers), buffer management, media 
filtering, and extensible binding types [Coulson,02]. 
Essentially, these CFs provide structure for domain-
specific configurations of components, and 
encapsulate domain-specific rules and (meta-
)interfaces through which the application (or other, 
higher-level, CFs) can reflectively control and manage 
system configuration, deployment, reconfiguration, 
and longer-term evolution. 

CFs accept plug-in components and, furthermore, are 
themselves built in terms of components; the whole 
structure is uniformly component-based. Components 
themselves are defined in terms of an inherently-
reflective, fine-grained, language-independent, 
component model called OpenCOM [Clarke,01]. This 
supports any language whose compiler can generate 
stubs/ skeletons that interface to binary-level 
Microsoft COM-based vtables [Brown,99]. OpenCOM 
explicitly supports dependencies of components (in 
terms of ‘receptacles’, otherwise known as ‘required’ 
interfaces), and has built-in support for architectural/ 
structural reflection (the so-called architecture meta-
model), and for language-independent introspection 
(this builds, in the Windows implementation, on 
Windows type libraries) and interception (the latter is 
very efficient as it is implemented at the vtable level). 
In addition, OpenCOM is closely associated with a 
privileged, per-address space CF called the resources 
meta-model [Blair,99], which enables fine-grained 
control over the resourcing of dynamically-delineable 
units of work called ‘tasks’ (tasks are typically 
orthogonal to the address space’s internal architecture 



 

in terms of components). In the resources meta-model, 
‘resources’ subsume not only traditional system-level 
resources like threads, memory and network 
bandwidth, but also abstract, application-defined, 
units of allocation. 

3. Characterising Programmable 
Networking Environments 
We think of the design space of programmable 
networking in terms of the broad-brush stratification 
depicted in figure 1 (we use the term ‘stratum’ rather 
than ‘layer’ to avoid confusion with layered protocol 
architectures). In the figure, the hardware abstraction 
stratum (stratum 1) contains the minimal operating 
system (OS) functionality (e.g. threads, memory 
allocation, and access to network hardware) that must 
be available on any participating node (e.g. router) to 
support higher-level network programmability. 
Services in this stratum typically try to mask 
underlying hardware complexity and heterogeneity. 
Furthermore, the nature of the stratum 1 services 
largely determines the QoS capabilities (e.g. 
predictability, throughput and latency) of prog. 
networking software in the higher strata. 

 
Figure 1: Software stratification of prog. networking  

Second, the in-band functions stratum comprises 
packet processing functions (e.g. packet filters, 
checksum validators, classifiers, diffserv schedulers, 
shapers, etc.) that touch all packets. As these functions 
are inherently low-level, in-band, and fine-grained, 
this is a highly performance-critical area in which 
machine instructions must be counted with care.  

Third, the application services stratum comprises 
coarser-grained ‘programs’—in the active networking 
execution-environment sense [ANTS,02]—that are 
less performance critical and act on pre-selected 
packet flows in application-specific ways (e.g. per-
flow media filters). Here, security is typically more of 
a concern than raw performance. 

Finally, the coordination stratum comprises out-of-
band signaling protocols that perform distributed 
coordination and (re)configuration of the lower strata. 

Examples are RSVP, or protocols that coordinate 
resource allocation on a set of routers participating in 
a dynamic private virtual network, as employed by 
systems like Genesis [Campbell,99]. 

4. Our Approach 
Our recently-initiated NETKIT project, supported by 
the UK EPSRC and Intel Corp., is aiming to provide a 
generic framework for programmable networking 
software. Because it is based on OpenCOM, the 
NETKIT approach is inherently component-based, 
fine-grained, programming language-independent, 
and platform-independent and provides explicit 
support for implementation, deployment, 
reconfiguration, and system evolution. 

Crucially, we are applying OpenCOM-based CFs in 
all strata of the programmable networking 
environment—from low-level OS-like system support, 
to in-band packet handling, to active networking 
execution environments to signaling and coordination. 
This should yield a ‘vertically integrated’ 
programmable networking environment, which, we 
argue, will offer the following benefits: 

� uniformity and simplicity—a uniform 
development environment (similar tools, 
architectural models, etc.) and uniform run-time 
support for deployment, inspection, 
(re)configuration, and evolution; 

� can analyse software on a node as a single 
composite—e.g. for consistency or integrity; 

� enables bespoke software configurations—by 
selecting appropriate CFs in each stratum, desired 
functionality can be achieved while minimising 
memory footprint; trade-offs will vary for 
different system types (e.g. embedded, wireless 
devices; large-scale core routers); 

� facilitates ad-hoc interaction—e.g. application or 
transport layer components can (subject to access 
control) straightforwardly obtain ‘layer-violating’ 
information from the link layer (this is 
increasingly recognised as indispensable in 
mobile environments). 

Furthermore, we are deploying NETKIT not only in 
standard PC-router environments, but also in a 
specialised programmable router hardware 
environment—viz. the Intel IXP1200 [Intel,02]—and 
in embedded, wireless and mobile devices (we assume 
an ‘ad-hoc’ programmable networking environment). 
This heterogeneity is crucial in validating the claimed 
generality of our approach. In all cases, the challenge 
is to maximise the commonality without 
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compromising either (re)configurability or 
performance. 

5. Progress to date 
Our initial focus has been on designing an initial, but 
non-trivial, programmable networking-oriented CF. 
More specifically, we have designed a stratum 2 
‘Router CF’ which accepts, as plug-ins, OpenCOM 
components that perform arbitrary user-defined 
packet-forwarding functions (we also provide 
‘standard’ components that interface to network cards 
and wrap efficient kernel-user space communication 
mechanisms). All components (see figure 2) are 
required by the CF to conform to the following rules, 
which are checked by the CF at run-time: 
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Figure 2: A component acceptable to the Router CF 

� compliant components must support appropriate 
numbers and combinations of specific packet-
passing interfaces/ receptacles (called 
IPacketPush and IPacketPull: these respectively 
enable push- and pull-oriented inter-component 
communication); it is possible to dynamically 
add/ remove instances of these interfaces as long 
as the CF’s rules remain satisfied; 

� compliant components may (optionally) support 
an IClassifier interface which exports an 
operation register_filter() that is used to install 
packet-filters; if IClassifier is supported, the 
component must honour the semantics of installed 
filter specifications in terms of the particular 
named outgoing IPacketPush or IPacketPull 
interface(s) on which each incoming packet 
should be emitted; 

� compliant components may be composite, in 
which case all their internal constituents must 
(recursively) conform to the CF’s rules; 
additionally, composite components should 
contain a so-called controller component that 
manages and configures the other internal 
constituents (see figure 3). 

The CF also supports, on a per-component basis, the 
dynamic addition/ removal of arbitrary constraints. 
These are implemented as interceptors on 

OpenCOM’s ‘bind’ primitive, and are mainly used to 
constrain the internal topology of composite 
components (see figure 3 for an example composite). 
Such addition/ removal of constraints is policed by an 
ACL managed by the composite’s controller.  
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Figure 3: A composite component accepted by the 

Router CF 

Additionally, to prevent untrusted constituent 
components from maliciously tampering with the 
code/ data of other constituents in the same address 
space, or from accidentally taking down the whole 
router by crashing, untrusted constituents can be 
instantiated, and remotely managed by the parent 
composite, in a separate address-space from the parent 
[Schmid,02] (inter-component bindings in this case are 
transparently realised in terms of OS-level IPC 
mechanisms rather than intra-address space vtables).  

Finally, the CF exploits OpenCOM’s resource CF so 
that composites (subject to access constraints) can 
control the resourcing of designated tasks and map 
these flexibly to their constituents. Components can 
also take advantage of our existing buffer management 
CF. The design of the CF is now fairly mature and we 
are starting to implement it for a PC-based router. We 
hope to be able to validate its performance and 
flexibility in the near future. 

When the PC-based implementation is complete, we 
plan to re-implement the CF on the above-mentioned 
Intel IXP1200 programmable router [Intel,02]. This 
features an exotic hardware architecture comprising 
multiple processors—both a StrongARM control 
processor and Intel-proprietary ‘micro-engine’ 
processors—together with distributed/ hierarchical 
memory arrays. Implementing the CF on this platform 
will open up challenges in two main areas. First, the 
issue of component placement comes to the fore: in 
the PC design, we already, as described above, choose 
to place components in different address spaces 
according to security/ safety considerations; in the IXP 



 

environment we need to additionally place 
components (whether on the control processor or a 
micro-engine) according to performance and load-
balancing considerations. We think that the CF itself 
should contain the ‘intelligence’ to transparently 
manage this placement, but with the possibility to 
control/ override this via a ‘placement’ meta-model. 
Second, as there is no OS running natively on the 
IXP1200, we need to support the OpenCOM runtime 
with appropriate OS (stratum 1) functionality. This 
implies the design of appropriate OS-related CFs (e.g. 
concurrency, basic memory allocation). We are basing 
our work in this area on pioneering research on OS 
componentisation [Clarke,98], [Fassino,02]. 

Finally, we are progressing work to adapt OpenCOM 
to better support the programmable networking 
environment. First, we have ported OpenCOM to 
Linux (as the latter has better support for networking 
than MS Windows). This has involved freeing 
OpenCOM from its MS dependencies (OpenCOM was 
initially developed on Windows and builds on the core 
of COM). We have also investigated optimising 
OpenCOM in terms of performance (e.g., temporarily 
bypassing vtables, using partial evaluation techniques 
[Jones,96], to reduce the overhead of a cross-
component call to that of a C function call) and 
memory footprint (e.g. our Windows CE 
implementation now has a footprint of only 18Kbytes). 
We are also working on supporting OpenCOM 
components written in Java. 

6. Related Work 
A number of ‘component frameworks’ for routers 
have been described in the literature. The Click 
modular router [Kohler,99] employs a fine grained 
C++-based component model with flexible support for 
the configuration (but not reconfiguration) of packet 
scheduling, route lookup and queue drop modules etc. 
The NetBind component binding system 
[Campbell,02] is similar in concept to Click but is 
lower-level and targeted at network processors. Both 
of these are stratum 2 only systems. Washington 
University’s pluggable router framework 
[Decasper,98] is a framework for pluggable per-flow 
(i.e. stratum 3) modules in the NetBSD environment. 
The IEEE P1520 router component model [IEEE,02] 
is working towards a standardised, language-
independent, component model for modular routers. 
Slightly more generally, the Knit system [Reid,00] has 
been used for both in-band packet handling and OS-
like functions on conventional PC architectures (not 
on specialised programmable routers). Similarly, the 
VERA extensible router architecture [Karlin,01] 

supports in-band packet handling and OS functions on 
programmable router hardware. However, both VERA 
and Knit offer a far less general and flexible 
component model than OpenCOM. Also, none of the 
above component models are language and platform 
independent, have no runtime support for 
reconfiguration management, and are not designed for 
application at all system levels. 

Aside from specifically router-oriented work, there has 
been considerable research on software 
componentisation in general, and on component-based 
middleware. Like OpenCOM, XPCOM [Mozilla,01] is 
a lightweight cross-platform component model that is 
compatible with MS’s COM. However, XPCOM does 
not provide any special support (e.g. reflection, CFs) 
for dynamic reconfiguration. MMLite [Helander,98] is 
an operating system built using COM components. It 
offers limited support for dynamic reconfiguration 
through a ‘mutation’ mechanism which enables the 
replacement of a component implementation at run-
time. However it has no specific support (e.g. in terms 
of reflection and CFs) to control and manage this 
process. Also, neither of these models has so far been 
targeted at the programmable networking 
environment. THINK [Fassino,02] is another 
component model that is targeted at the construction 
of system software. It is close to OpenCOM in its 
goals but does not support anything analogous to 
OpenCOM’s CF-based structuring or support for 
dynamic reconfiguration.  

In the middleware context, researchers have 
investigated lightweight reconfigurable component 
architectures—like us, they aim to build systems (e.g. 
middleware itself) in terms of components as opposed 
to merely supporting components on top of monolithic 
middleware. Prime examples are the University of 
Illinois’ dynamicTAO [Kon,00] and LegORB 
[Roman,00]. These are flexible ORBs that employ a 
dependency management architecture that relies on a 
set of ‘configurators’ that maintain dependencies 
among components and provide hooks at which 
components can be attached or detached dynamically. 
OpenCOM supports a similar capability but as an 
integrated part of the component model.  

7. Conclusions and Future Work 
We believe that a fine-grained, reflective, language-
independent component model, as discussed here, 
offers significant potential as the basis of an 
‘integrated’ approach to the structuring of 
programmable networking software.  

The most obvious potential benefit of the approach is 
that its ubiquitously-applied component model 



 

promises a uniform environment for the development, 
deployment, (re)configuration, and evolution of 
programmable networking software at all levels and at 
any appropriate granularity and using any appropriate 
programming language. For example, functions as 
diverse as in-band packet handling and signaling can 
be developed, deployed etc. in a common manner and 
can assume common support such as dynamic remote 
instantiation, and standard meta-models. In addition, 
the approach is, in principle, sufficiently general to be 
applied to any programmable networking paradigms 
(e.g. active bettworks or open signaling), and to a 
range of hardware/ OS architectures. Also, because 
components are language independent and can be 
applied at a wide range of granularities, they offer a 
solid basis for incremental deployment of existing 
programmable networking software into a common 
environment. 

Finally, in addition to the IXP1200-related future 
work mentioned in §5 above, we are currently 
working with Columbia University to re-engineering 
Columbia’s Genesis system [Campbell,99]. This 
system supports dynamic private virtual networks, 
each potentially with its own semantics (addressing, 
routing, QoS, etc.). Apart from the opportunity to 
investigate the componentisation of an existing 
programmable networking system (with a view to 
enhancing its deployability and (re)configurability), 
this is also particularly interesting to us as an 
exemplar of a richly functioned stratum 4 system.  
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