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SUMMARY

In a study to estimate the frequency of Cryptosporidium infections in Switzerland, stool samples

from patients found to be positive for Cryptosporidium spp. by modified Ziehl–Neelson staining

and fluorescence microscopy were used for genotyping experiments. With 9 of 12 samples, DNA

extraction and subsequent genotyping was successful. All Cryptosporidium-isolates belonged to

the bovine genotype. In one stool sample, two strains of Cryptosporidium were demonstrated,

suggesting a mixed infection. In comparison with reference strains from calves, one of the isolates

showed a full sequence identity and the other a similarity of 97.5%. The fact that only bovine

genotypes were detected suggests, that cryptosporidiosis must primarily be considered as a

zoonotic disease in Switzerland. This is in contrast to other countries, where the human genotype

of C. parvum was shown to dominate the epidemiological situation. The results of our study are

supported by the previous finding, that two of the analysed strains originated from patients who

used to consume raw milk or raw cream, a known risk factor for cryptosporidiosis.

INTRODUCTION

Cryptosporidium is a protozoan parasite which infects

mainly the apical region of epithelial cells lining the

gastrointestinal tract or associated organs such as the

biliary tract of vertebrates and sometimes the respir-

atory tract [1]. Prior to the 1980’s, infections with

species of the genus Cryptosporidium were considered

to be rare in animals. In humans, Cryptosporidium

was thought to be an opportunistic pathogen in im-

munocompromised individuals. Nowadays however,

it is apparent that the species Cryptosporidium parvum

is responsible for zoonotic and anthroponotic infec-

tions in both urban and rural settings worldwide. The

parasite causes self-limiting diarrhoea in immuno-

competent humans, and severe, persistent or chronic

life-threatening diarrhoea in immunocompromised

patients, particularly in those suffering from the

acquired immunodeficiency syndrome, AIDS [1–3].

Cryptosporidial infections are now considered as one

of the most common non-viral and non-bacterial

causes of diarrhoea in humans and livestock [4].

Symptoms are relatively non-specific, namely nausea,

acute onset of profuse and watery diarrhoea, lack of

appetite, vomiting, weight loss, abdominal pain and

flu-like symptoms [1, 5]. Infections are transmitted

faecal-orally (ingestion or inhalation), either directly
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from person-to-person, from animal-to-person, or

indirectly through contaminated vectors like water or

food [5, 6].

Various Cryptosporidium species have now been

recorded in over 170 different host animals originat-

ing from over 50 countries [5]. Taxonomically, the 11

following species are known: C. parvum, C. wrairi,

C. meleagridis, C. saurophilum, C. felis, C. canis,

C. baileyi, C. muris, C. andersoni, C. serpentis, C. na-

sorum [3, 7, 8]. Cryptosporidium parvum has been

considered to be the only species that infects im-

munocompetent humans [5, 9]. However, this classi-

fication, based mainly on morphology, biology and

genetic information, is still changing and more data

are needed before the taxonomic status of the current

specieswithin the genusCryptosporidium can be clearly

defined. Genetic data has shown that C. parvum is not

a uniform species. Eight different genotypes within

C. parvum have been described: human, cattle, pig,

mouse, kangaroo, dog, ferret and monkey genotype

[10]. To date, with the exception of the cattle geno-

type, each of these types occur only in their respective

hosts, suggesting host specificity [10]. There are two

different genotypes of C. parvum infecting immuno-

competent humans and cattle ; a human and a bovine

genotype respectively, with the later genotype being

zoonotic [3, 11–14]. As the human genotype appears

to be host specific, this could result in a higher infec-

tivity of the human genotype compared to the cattle

genotype in humans [3, 15–17].

In Switzerland, detection of Cryptosporidium par-

vum is not routinely done in laboratories of clinical

microbiology and there is no obligation to communi-

cate isolations of this pathogen to health authorities.

For these reasons, frequency of cryptosporidiosis

and sources of infection were only poorly known.

In the past 15 years, only three epidemiological

studies in the context of cryptosporidiosis were per-

formed. Initial research work estimated the fre-

quency of Cryptosporidium spp. in faecal samples of

immunocompetent children with gastroenteritis [18].

In the case of toddlers, other authors have shown

person-to-person contacts as the most important way

of transmission [19, 20]. Finally, a most recent study

revealed data about the frequency of Cryptosporidium

spp. in Switzerland. Faeces from 6435 ambulatory

and hospitalized diarrhoeal patients were screened for

Cryptosporidium spp. over the period of one year

in two laboratories. In total, 13 patients with crypto-

sporidiosis were detected which results a frequency

of 0.2%. A crude estimate of the total number of

cryptosporidiosis cases which would have to be ex-

pected yearly in Switzerland if routine diagnostics for

this organism were done in the same frequency as for

salmonella and campylobacter and if laboratory iso-

lates were reported to the Federal Health Authorities

revealed a total value of 340 yearly cases in Switzer-

land, which results a morbidity of 4.85 per 100 000

persons of the Swiss population [21]. Twelve isolates

positive for Cryptosporidium spp. from this survey

were genotyped in the present study which allowed a

more precise insight into the epidemiological charac-

teristics of cryptosporidiosis in Switzerland.

MATERIALS AND METHODS

Stool samples positive for Cryptosporidium spp.

Genotyping included Cryptosporidium spp. isolates

from 12 stool samples collected in a former study [21].

Additionally, three faecal samples positive forCrypto-

sporidium spp. from Swiss calves were kindly supplied

by the Cantonal Laboratory Basel-Landschaft and

included into the typing experiments.

Genotyping

Human and calf stool samples containing oocysts of

Cryptosporidium spp. were stored at 4 xC in 2.5%

potassium dichromate solution until they were used.

The oocysts were purified by a sucrose and Percoll

gradient method [22]. DNA was isolated from the

purified oocysts as previously described [23]. A mod-

ified two-step nested-PCR protocol, previously de-

scribed [24], was used to amplify the HSP70 gene [25].

PCR products were purified using Qiagen spin col-

umns (QIAquick Gel Extraction Kit, Germany), and

sequenced by a Swiss company (Microsynth GmbH).

Analysis of sequence data

The sequences were aligned with the ClustalW se-

quence alignment program [26] and phylogenetic

analysis of HSP70 sequence data was conducted using

the Phylogeny Inference Package PHYLIP 3.5c [27].

Distance-based analyses were conducted using the for-

mula for Kimura’s Two-Parameter Model (for esti-

mating the number of nucleotide substitutions per site

between sequences). Phylogenetic trees were con-

structed using the Unweighted Pair-Group Method

(UPGMA) algorithms available in PHYLIP 3.5c.

Phylograms were drawn using the TreeView 1.6.1 pro-

gram [28]. Supplemental HSP70 sequences were
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obtained from GenBank: a bovine C. parvum iso-

late (AF221528), C. canis (AF221529), a mouse geno-

type (AF221530), a marsupial genotype (AF221531),

a human genotype (AF221535), C. meleagridis

(AF221537), C. felis (AF221538), C. baileyi

(AF221539), C. serpentis (AF221541) and C. muris

(AF221542).

RESULTS AND DISCUSSION

Genotyping experiments were successful with 9 of

total 12 (75%) Cryptosporidium spp. isolates from

human stool samples. All HSP70 sequences belonged

to the bovine genotype of C. parvum, as shown in

Figure 1. Three human isolates could not be amplified

although several attempts to genotype have been

undertaken. Surprisingly, in one sample (H12), re-

peated PCR-reactions revealed two different geno-

types: the bovine C. parvum genotype (H12.1) and

another (H12.2). Sequence identities of sample H12.2

with the reference genotypes were as follows: with

the bovine genotype of C. parvum : 97.5%; with the

human genotype of C. parvum : 95.3% and with the

mouse genotype: 96.4%. All three isolates from

calves demonstrated clearly the bovine genotype of

C. parvum. The inability to genotype the remaining

three Cryptosporidium spp. isolates from human stool

samples was probably due to the fact that only very

small amounts of faecal materials was available.

Furthermore, the extraction technique used resulted

in low DNA yields. All sequences were submitted

to NCBI GenBank (accession numbers AY151404–

AY151416).

Humans are susceptible both to the human and to

the bovine genotype of C. parvum, and mixed infec-

tions have been shown to occur [29–31]. In Australia,

the majority of sporadic cases (85%) were caused by

the human genotype, suggesting that infection with

anthroponotic parasites played a more important role

than infection with zoonotic parasites in these indi-

viduals [3, 32, 33]. In contrast, the C. parvum bovine

genotype was responsible for more sporadic human

cases in the UK (57%) than the C. parvum human

genotype [3, 17]. Interestingly, 14 investigated out-

breaks in North America were dominated by the

human genotype of C. parvum (human genotype:

71%, cattle genotype: 29%) [3].

Genotyping in the present study exclusively re-

vealed the bovine genotype of C. parvum. Three of the

nine persons with genotyped Cryptosporidium spp.

isolates had travelled abroad prior to onset of symp-

toms and the remaining six persons were infected in

their home country. Out of those, two persons had

consumed raw milk and raw cream, foods known to

be risk factors for cryptosporidiosis [21].

C. canis
C. felis
Marsupial genotype
C. meleagridis
C. parvum human
Mouse genotype
H12.2
C. parvum bovine
H11
C3
C2
C1
H2
H1
H10
H13
H7
H8
H12.1
H5
C. baileyi
C. muris
C. serpentis

0·1

Fig. 1. Phylogram of Kimura’s distance generated from HSP70 sequence information (using UPGMA) with the Crypto-

sporidium spp. isolates from human (‘H’) and from calf stool samples (‘C’) and with different references of Cryptosporidium
spp.
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As the prevalence of C. parvum in Swiss calves

within the first 3 months of life is very high (16.8%)

[34], we came to the conclusion that the bovine geno-

type ofC. parvummust be the most important cause of

sporadic cryptosporidiosis in Switzerland with cattle

as the probable primary reservoir. This conclusion is

also supported by the above mentioned consumption

of raw milk and raw cream by two patients.

The reported predominance of the bovine genotype

is interesting in relation to the previous findings that

showed person-to-person transmission as a major risk

factor in the same area of Switzerland [19, 20]. The

findings can be reconciled as firstly, that both human

and bovine genotypes may be transmitted from per-

son-to-person [35]. Secondly, one third of the patients

where the genotyped strains originated from had

contact with symptomatic persons prior to onset of

symptoms [21].

For the prevention of cryptosporidiosis, personal

hygiene is of central importance. However, the high

prevalence of Cryptosporidium spp. in cattle and the

predominance of the bovine genotype in cases of

human cryptosporidiosis also requires particular

measures of food hygiene which are the appropriate

heating of raw milk and products thereof prior to

consumption. This measure, preventing infections

with various pathogens transmittable by raw milk, is

officially recommended by the Swiss Federal Health

Authorities [36].
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