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Abstract 
The work for this thesis was undertaken in Broke Inlet, a seasonally-open 

estuary on the south coast of Western Australia and the only estuary in that region 

which is regarded as “near-pristine” (Commonwealth of Australia, 2002). The only 

previous seasonal studies of the environmental and biotic characteristics of this estuary 

involved broad-based descriptions of the trends in salinity, temperature and 

ichthyofaunal characteristics at a limited number of sites. Furthermore, no attempt has 

been made to identify statistically the range of habitats present in the nearshore and 

offshore waters of this system, and the extents to which the characteristics of the fish 

and benthic invertebrate faunas are related to habitat type. These types of data provide 

not only reliable inventories of the habitat and faunal characteristics of Broke Inlet, but 

also a potential basis for predicting the likely impact of anthropogenic and climatic 

changes in Broke Inlet in the future. 

The main aims of this thesis were as follows. (1) To use the method of Valesini 

et al. (2010), which employs enduring environmental characteristics, to identify 

quantitatively the range of habitats present throughout the nearshore and offshore waters 

of Broke Inlet. The enduring environmental characteristics represent three broad 

categories, i.e. the location of any site in terms of its proximity to marine and freshwater 

sources, the degree of exposure to wave activity and the type of substrate and/or 

submerged vegetation. (2) To test the hypothesis that the species richness, density, 

diversity and species compositions of the fish and benthic macroinvertebrate faunas 

differ among habitat types, seasons and, in the case of the fish fauna, also years. (3) To 

test the hypothesis that the pattern of relative differences among habitat types, as 

exhibited by their faunal compositions, is correlated with that defined by their 

(i) enduring environmental characteristics and (ii) non-enduring environmental 

characteristics (water physico-chemical variables and sediment characteristics). 

A high resolution satellite image and a digital elevation model of Broke Inlet 

were used to measure the enduring environmental characteristics at 104 and 36 widely-

distributed sites in nearshore and offshore waters, respectively. These data were used to 

construct separate Manhattan distance matrices for nearshore and offshore waters, 

which were then subjected to the CLUSTER and SIMPROF routines in PRIMER v6 to 

identify the various groups of sites that did not differ significantly in their 

environmental characteristics and which were thus considered to represent habitat types. 
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Twelve and four distinct habitat types were identified in nearshore and offshore waters, 

respectively. 

The ichthyofaunas at sites representing 11 nearshore (A-K) and three offshore 

(A-C) habitat types were sampled seasonally for two consecutive years using seine and 

gill nets, respectively. A total of 83,047 fish was collected from nearshore waters, 

representing 27 species from 19 families, with 99.6% of those fish belonging to six 

species which represent the Atherinidae (Atherinosoma elongata, Leptatherina wallacei 

and Leptatherina presbyteroides) or Gobiidae (Afurcagobius suppositus, Pseudogobius 

olorum and Favonigobius lateralis) and complete their life cycles within the estuary. 

Each of these species were found at each nearshore habitat type, except for P. olorum, 

which was not caught at habitat A.  

The species richness, density and diversity of the nearshore fish fauna differed 

significantly among habitats, seasons and years, with habitat being the most influential 

factor. Generally, mean species richness and density were greatest at habitat types 

located in the entrance channel (B, G and H) and/or on the southern shore of the basin 

(C and G), while the fish assemblages were most depauperate at habitats near freshwater 

sources (A and J).  

The nearshore ichthyofaunal composition of Broke Inlet differed significantly 

among habitats, seasons and years, with the first again being the most influential. 

However, the extents of the overall differences in composition during each sampling 

occasion were moderate. The lack of very pronounced ichthyofaunal differences among 

the various habitat types reflects the widespread distributions and high abundances of 

the above atherinid and gobiid species, and particularly of A. elongata and L. wallacei, 

which typified the fish fauna of each habitat type on almost all sampling occasions. The 

most distinctive of the faunas were those at habitat types in the entrance channel, where 

L. presbyteroides and F. lateralis, which are typically found in higher salinities, were in 

their greatest densities, and where several marine straggler species, such as the labrids 

Notolabrus parilus and Achoerodus gouldii, were occasionally caught. Seasonal and 

inter-annual changes in ichthyofaunal composition were small and often not consistent 

across habitats. 

The pattern of relative differences among nearshore habitats in terms of their 

ichthyofaunal composition was correlated at a moderate level with that defined by their 

enduring environmental characteristics in all but one of the eight seasons. Such findings 
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indicate that the ichthyofaunal composition likely to be found at any site in the 

nearshore waters of Broke Inlet at any time of year can be predicted, simply by 

assigning that site to its most appropriate habitat type on the basis of its enduring 

environmental characteristics. Differences in ichthyofaunal composition among habitat 

types were also correlated, but to a slightly greater extent, with those among the suite of 

non-enduring water physico-chemical variables, with salinity and the biomass of 

macrophytes being particularly relevant.  

Gill netting in the three offshore habitats yielded 1,050 fish representing 31 

species. Species richness, catch rates and diversity all varied significantly among 

habitats, with the values for each of these biotic characteristics always being greatest at 

habitat A in the entrance channel and lowest at habitat B near the Shannon River mouth. 

These biotic variables did not always vary, however, among seasons and/or years. In 

contrast to the situation in nearshore waters, the offshore ichthyofauna comprised 

mainly marine estuarine-opportunists and marine stragglers, which contributed 84% to 

the number of species and 80% to the total number of fishes. The contribution of 

individuals belonging to the marine straggler guild was only 5% and no estuarine 

resident species were caught. 

Ichthyofaunal composition in offshore waters differed significantly among 

habitats, seasons and years, with habitat being the most influential factor. Faunal 

composition only differed among habitats in spring and autumn, and even then the 

extent of those differences was low. During those seasons, habitat B contained the most 

distinct and depauperate fauna, which was typified mainly by Mugil cephalus and 

Aldrichetta forsteri. In contrast, the fish assemblages at habitats A and C were also 

typified by Arripis georgianus, Arripis truttaceus, Rhabdosargus sarba, Pagrus 

auratus, Pseudocaranx dentex and Engraulis australis.  

The pattern of relative differences among offshore sites in terms of their 

ichthyofaunal composition was significantly correlated with that defined by their 

enduring environmental characteristics only in autumn, but was moderately correlated 

with that exhibited by the suite of non-enduring water physico-chemical variables in 

each season except summer.  

Seasonal sampling of benthic macroinvertebrates at six of the nearshore habitat 

types (A, C, D, F, H and K) for a year yielded 7,485 individuals representing 28 species 

and seven phyla and, at the three offshore habitat types (A-C), 2,459 individuals 
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representing 26 species and eight phyla. Polychaetes (64 and 57%) and crustaceans 

(24 and 34%) were the most abundant taxa in nearshore and offshore waters, 

respectively. The mean density of invertebrates in the nearshore waters did not differ 

significantly among habitats, but did vary significantly among seasons, and was greatest 

in summer. The mean densities of invertebrates in offshore waters did not differ 

significantly, however, among habitats or seasons. 

The compositions of nearshore benthic macroinvertebrate assemblages differed 

significantly among habitats and, less conspicuously, seasons. Comparisons between the 

faunal compositions in each pair of habitats in spring and summer were almost 

invariably significantly different and to a moderate extent. However, such pairwise 

comparisons were rarely significant in autumn and winter. Habitats A and K contained 

the most distinct and depauperate invertebrate fauna, comprising mainly the polychaete 

Capitella capitata and amphipod Corophium minor, whereas the other habitats also 

contained large numbers of the polychaete Ceratonereis aequisetis. In offshore waters, 

the composition of the benthic macroinvertebrate assemblages differed to a low to 

moderate degree among habitats, with habitat B containing the most distinct fauna due 

to large densities of C. minor. The extent of seasonal differences in these faunal 

compositions was small. 

The pattern of relative differences among nearshore habitats in terms of their 

benthic macroinvertebrate composition was highly correlated with that defined by both 

their (i) enduring environmental characteristics and (ii) non-enduring water physico-

chemical and sediment characteristics in spring and/or summer. Although the faunal and 

enduring environmental data were not correlated at offshore sites, the fauna and non-

enduring environmental variables at those sites were correlated to a moderate extent.  

In summary, the composition of the nearshore fish fauna at any site in Broke 

Inlet at any time of year can now be predicted by allocating that site to a particular 

habitat type on the basis of its enduring environmental characteristics. The less 

consistent spatial correlations between the compositions of the offshore fish fauna and 

benthic macroinvertebrate faunas and the enduring environmental variables largely 

reflected the ubiquitous nature of the majority of the abundant species representing 

those faunas, i.e. they are typically at least moderately abundant in all habitats and thus 

have no strong preferences for a particular habitat type. 
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Chapter 1 

General introduction 

 

1.1: What is an estuary? 

The paradigm states that an estuary is where the river meets the sea (Lyell, 1833; 

Ketchum, 1951), however, the scientific definition of an estuary has attracted much 

debate (see Day, 1980; Perillo, 1995; Elliott & McLusky, 2002; Potter et al., 2010). 

Despite all definitions sharing a number of common attributes, i.e. (i) the dilution of 

seawater by water derived from land drainage, (ii) the presence of tides for some or all 

of the year, and (iii) the degree of enclosure (Tagliapietra et al., 2009), there was little 

agreement on a suitable scientific definition until the 1964 Estuaries symposium (Lauff, 

1967) when support was given for the following; “an estuary is a semi-enclosed body of 

water which has a free connection with the open sea and within which sea water is 

measurably diluted with fresh water derived from land drainage” (Pritchard, 1967). 

This definition, however, focused on salinity whereas the word “estuary” was derived 

from aestus meaning “of tide”. Therefore, numerous authors have denounced a semantic 

misuse of the term estuary when describing non-tidal environments (Perillo, 1995; 

Elliott & McLusky, 2002). In response, a new definition with greater emphasis on tidal 

influences gained acceptance; “an inlet of the sea reaching into a river valley as far as 

the upper limit of tidal rise, usually being divisible into three sections; a) a marine or 

lower estuary, in free connection with the open sea; b) a middle estuary, subject to 

strong salt and freshwater mixing; and c) an upper or fluvial estuary, characterised by 

fresh water but subject to daily tidal action” (Dionne, 1963).  

Both these definitions reflect the historical development of the term by 

researchers working on estuaries along temperate North Atlantic coasts where these 

systems are typically macrotidal with a free connection to the ocean, as opposed to 

many of those in southern Australia (e.g. Pollard, 1994b; Hodgkin & Hesp, 1998; Roy 

et al., 2001), South Africa, (e.g. Reddering & Rust, 1990; Whitfield, 1992; 1998), New 

Zealand (e.g. Hume et al., 2007) and also some systems in North America (e.g. Webb 

et al., 1991; FitzGerald et al., 2002; Kraus et al., 2008). In these regions, estuaries 
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become isolated from the marine environment through the formation of a sand bar 

across their mouth. Thus, Day (1980) modified Pritchard‟s original definition to include 

these estuaries with a periodic open connection to the sea by substituting “free 

connection with the open sea” with “either permanently or periodically open to the 

sea”. Although the definition by Day (1980) was developed primarily to incorporate 

South African estuaries, this modification was also particularly poignant for some 

estuaries in south-western Australia which vary both in their morphology and degree of 

isolation from the sea (Hodgkin & Hesp, 1998; Brearley, 2005). Furthermore, estuaries 

in this latter region are found along microtidal coasts which restrict the amount of water 

exchange with the ocean through their narrow mouths and have wide, shallow basins 

that facilitate high evaporation and thus can become hypersaline. With this in mind, an 

amendment to the Day (1980) definition was proposed by Potter et al. (2010), i.e. that 

an estuary is, “a partially enclosed coastal body of water that is either permanently or 

periodically open to the sea and which receives at least periodic discharge from a 

river(s), and thus, while its salinity is typically less than that of natural sea water and 

varies temporally and along its length, it can become hypersaline in regions when 

evaporative water loss is high and freshwater and tidal inputs are negligible”. It is also 

noteworthy that these workers excluded intermittently closed and open lakes and 

lagoons from their definition as these systems lack fluvial input (Potter et al., 2010). 

 

1.2: Characteristics of south-western Australian estuaries 

 The morphology of many estuaries in temperate Australia differ markedly from 

those in the temperate northern hemisphere, which generally maintain a free connection 

with the ocean and are strongly influenced by the tide, e.g. Severn Estuary (Bassindale, 

1943). Such estuaries in southern Australia can be classified into four geomorphic 

types, (i) riverine estuaries, which comprise narrow riverine channels throughout their 

length, e.g. Moore River Estuary, (ii) inter-barrier estuaries, i.e. elongate lagoons 

parallel to the coast situated behind barrier dunes or on-shore reefs, e.g. Leschenault 

Estuary, (iii) valley estuaries, i.e. drowned river valleys e.g.the Swan-Canning Estuary 

and, (iv) basin estuaries, which are flooded depressions in the coastal plain, e.g. Broke 
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Inlet (Hodgkin & Hesp, 1998; Potter & Hyndes, 1999). Non-riverine systems, i.e. inter-

barrier, valley and basin estuaries, all exhibit a similar morphology generally 

comprising three main regions; (i) the upper estuary which includes the lower reaches of 

the tributary river(s), whose lower reaches are saline and undergo pronounced seasonal 

changes in hydrology (Hodgkin & Hesp, 1998; Chuwen et al., 2009a), (ii) the middle 

estuary containing a large shallow basin(s), and (iii) the lower region which consists of 

an entrance channel which is usually short and narrow having marine-like 

characteristics. The microtidal oceanic tides of southern Australia, which are typically 

< 1 m, in combination with the narrow estuary mouths that attenuate 90% of the tide, 

result in limited tidal water movement within these estuaries (Hodgkin & Di Lollo, 

1958; Hodgkin & Hesp, 1998).  

When first flooded by the Holocene marine transgression ca 7,000 years ago 

estuaries in south-western Australia had a permanent connection with the ocean which 

they maintained until ca 3,500 years ago. In more recent times, however, littoral drift 

and tidal action accumulate sand at the mouths of these estuaries, which, when 

sufficient, result in the isolation of the estuary from the ocean. Some estuaries in south-

western Australia have maintained, either naturally or artificially, a permanent 

connection to the ocean since the Holocene marine transgression and are termed 

“permanently-open” (Lenanton & Hodgkin, 1985; Hodgkin & Hesp, 1998). Conversely, 

in “seasonally-open” systems, sand accumulates at the estuary mouths during the very 

dry summer and early autumn period which isolate the estuary from the ocean. This 

sand bar is breached (either naturally or artificially) when the volume of water behind 

the bar increases markedly as a result of heavy winter rainfall (Hodgkin & Hesp, 1998; 

Chuwen et al., 2009a). The bar at the mouth of some systems may remain either closed 

for years at a time and only breach following exceptional rainfall and are thus termed 

“normally-closed” or alternatively may never break, in which case these estuaries 

become salt lakes with no replenishment from the ocean and classified as “permanently-

closed” (Lenanton & Hodgkin, 1985; Hodgkin & Hesp, 1998).  

Approximately fifty estuaries occur along the 2,400 km coastline of south-

western Australia, from the Murchison River at the northern extent of this region on the 
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west coast through to Poison Creek at the eastern extent of the south coast of Western 

Australia (Potter & Hyndes, 1999; Brearley, 2005). The majority of estuaries along the 

lower west coast are either permanently-open (e.g. Swan-Canning and Peel-Harvey 

estuaries) or seasonally-open (e.g. Margaret River). Extending east from Cape Leeuwin 

ca 400 km to Albany the majority of estuaries are seasonally-open (e.g. Broke, Irwin 

and Wilson inlets) with several permanently-open estuaries, i.e. Blackwood River and 

Walpole-Nornalup estuaries and Oyster Harbour. East of Albany rainfall decreases 

markedly and as a result almost all estuaries are either normally-closed (e.g. Wellstead 

Estuary and Hamersley Inlet) or permanently-closed (e.g. Culham Inlet) (Potter & 

Hyndes, 1999; Brearley, 2005). 

 

1.3: Estuarine fish assemblages and their use of estuaries 

Numerous studies have highlighted the importance of estuaries for many fish 

species as they provide nursery and feeding areas (Beck et al., 2001; McLusky & 

Elliott, 2004), areas of refuge (Elliott et al., 1990) and migration routes (Able, 2005; 

Bottom et al., 2005; Guelinckx et al., 2006), and thus support large and productive fish 

communities (Schelske & Odum, 1961; Haedrich, 1983). Due to the environmental and 

economic importance of these systems, the compositions of estuarine fish assemblages 

have been well studied throughout the world (see Potter et al., 1990; Pihl et al., 2002; 

Nordlie, 2003 for reviews). These studies on the ichthyofauna of estuaries in western 

Europe, eastern North America, south-western Australia and South Africa highlight the 

diversity of both fish species (225, 237, 194 and 147, respectively) and families (79, 80, 

90 and 62, respectively) present within these systems. Commonalities in taxonomic 

composition among these regions are low with only nine families and two species 

represented in all four regions (Nordlie, 2003). Although it should be noted that 

commonalities between south-western Australia and South Africa are slightly greater 

with these regions sharing 45 of 112 families and 15 of 326 species (Potter et al., 1990).  

Further to taxonomic descriptions of estuarine fish faunas, some studies have 

also included details based on functional analysis of community structure, where each 

species is assigned to a guild based on its use of an estuary (see Elliott et al., 2007 for a 
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review). The ichthyofaunal species in south-western Australian estuaries can be 

assigned into one of seven life cycle guilds. (i) Marine stragglers, i.e. species that spawn 

at sea and enter estuaries in low numbers, e.g. Brownspotted Wrasse (Notolabrus 

parilus). (ii) Marine estuarine-opportunists, i.e. marine species that regularly enter 

estuaries particularly as juveniles but may also use nearshore marine waters, 

e.g. Yelloweye Mullet (Aldrichetta forsteri). (iii) Estuarine residents, i.e. species that 

complete their entire life cycle within estuaries, e.g. Wallace‟s Hardyhead (Leptatherina 

wallacei). (iv) Estuarine and marine species, i.e. species which are represented by 

estuarine and marine populations e.g. Southern Longfin Goby (Favonigobius lateralis). 

(v) Freshwater stragglers, i.e. species found in low numbers in estuaries and whose 

distribution is usually limited to the low salinity, upper reaches of estuaries, 

e.g. Western Pygmy Perch (Edelia vittata). (vi) Anadromous species, i.e. species that 

undergo their greatest growth at sea and which, prior to the attainment of maturity, 

migrate into rivers where spawning subsequently occurs, e.g. Pouched Lamprey 

(Geotria australis), and (vii) semi anadromous species, i.e. species whose spawning run 

from the sea extends only as far as the upper estuary, e.g. Western Australian Gizzard 

Shad (Nematalosa vlaminghi) (Potter & Hyndes, 1999). 

The various contributions of the different life cycle guilds to the overall species 

richness and abundance reflect the different ways fish use estuaries around the world. 

For example, the contribution of marine straggler taxa to the species richness of south-

western Australian and South African estuarine ichthyofaunas was ca 70% in both 

regions but only 5% in western Europe. Conversely, marine estuarine-opportunists 

comprised 45% of the taxa in the last region but only 12-13% in estuaries in south-

western Australia and South Africa (Potter et al., 1990; Elliott & Dewailly, 1995). In 

holarctic estuaries, such as the Severn Estuary, the contribution of marine estuarine-

opportunists to the species richness is also mirrored in their abundance with 

representatives of this guild contributing 92% of the individuals, while estuarine 

resident species contributed < 1% (Potter & Hyndes, 1999). In contrast, the nearshore 

waters of estuaries in south-western Australia contain a fauna numerically dominated by 

individuals of estuarine resident species. For example, a recent study of five estuaries 
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along the south coast of Western Australia, which differ in their extent of connectivity 

to the ocean, found that the nearshore fish fauna of each estuary was numerically 

dominated by estuarine residents and estuarine and marine species which represented 

between 93.3 and 99.9% of the fish caught, while those of marine estuarine-opportunists 

represented only 0.1 to 3.8% of the ichthyofauna (Hoeksema et al., 2009). The offshore 

waters of these same south-western Australian estuaries was found to be dominated by 

marine estuarine-opportunists which represented between 57.3 and 86.1% of the 

individuals, with the relative abundance of estuarine residents varying considerably 

among estuaries ranging between 0.4 and 25.4% (Chuwen et al., 2009b).  

 

1.4: Estuarine benthic macroinvertebrate assemblages 

Benthic macroinvertebrates, i.e. those invertebrates > 500 μm in size, are a vital 

component of estuarine ecosystems and perform a number of crucial ecosystem 

functions. For instance, their bioturbation activities, such as feeding, tube-building, 

burrowing, irrigation of burrows, excretion and locomotion substantially influence the 

exchange of materials between the sediment and the overlying water column (Rhoads, 

1974; Aller & Aller, 1986; Hansen & Kristensen, 1997). Thus, tube-building and 

burrowing enhance nutrient cycling by increasing the area of the oxic-anoxic interface 

and the transport of ions through the sediment (Kristensen et al., 1991; Pennifold & 

Davis, 2001; De Roach et al., 2002). Furthermore, turbidity levels are reduced through 

filter feeding and biodeposition and quantities of detrital matter are substantially 

reduced by grazing deposit feeders (Nielson et al., 1996). These faunas also represent a 

major component of food webs within estuarine ecosystems, not only because they 

consume detrital material and primary food sources (Riisgård, 1991), but they also 

provide a major food source to both fish (e.g. Humphries & Potter, 1993; Sá et al., 

2006; Chuwen et al., 2007) and avian predators (e.g. Moreira, 1997; Lourenço et al., 

2008).  

The distribution of particular benthic macroinvertebrate species and/or faunal 

compositions have been linked to abiotic changes in the environment, including 

sediment grain size and organic matter content, salinity, dissolved oxygen 
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concentrations, the presence of a bar at the mouth of the estuary, aquatic macrophytes, 

nutrient loadings, light penetration, freshwater flushing and a range of anthropogenic 

effects (e.g. Warwick, 1986; Edgar, 1991; Edgar & Cresswell, 1991; Ysebaert et al., 

1993; Snelgrove & Butman, 1994; Diaz & Rosenberg, 1995; Heck et al., 1995; 

McLachlan, 1996; Edgar et al., 1999; Edgar & Barrett, 2002; Hirst, 2004; Hastie & 

Smith, 2006). Furthermore, the strong associations between particular benthic species 

and an abiotic variable or suite of variables, has enabled the prediction of the 

distribution of many of those species (e.g. Ysebaert et al., 2002; Ellis et al., 2006). 

Within permanently-open holarctic estuaries, benthic macroinvertebrate species 

richness and diversity is generally greatest in the lower saline reaches and declines 

progressively in an upstream direction with decreasing salinity (McLusky, 1987; 

Ysebaert et al., 1993). The same trend occurs in some permanently-open estuaries in the 

southern hemisphere (e.g. Jones et al., 1986; Edgar et al., 1999), however, within 

seasonally-open estuaries, differences in salinity appear to have less of a structuring 

effect (e.g. Teske & Wooldridge, 2003; Dye & Barros, 2005b). 

Many authors have recorded greater benthic invertebrate densities in macrophyte 

beds as opposed to nearby unvegetated areas (e.g. Edgar et al., 1994; Heck et al., 1995; 

Connolly, 1997; Mattila et al., 1999). Such trends have generally been related to the 

increased structural complexity of the habitat which provides protection from predators 

(Heck & Thoman, 1981; Orth et al., 1984; Warfe & Barmuta, 2004) and increased food 

availability either from the macrophytes themselves in the form of detritus (Rossi & 

Underwood, 2002; Smit et al., 2006), epiphytic algal growth (Kitting et al., 1984; Orth 

& Van Montfrans, 1984) or by trapping allochthonous food sources (Hori, 2006).  

Sediment characteristics, such as grain size and organic matter content, can also 

influence the distribution and abundance of benthic macroinvertebrate species within 

estuaries. For example, suspension feeders, such as bivalves, are typically more 

abundant on the coarse, well oxygenated substrate of sand flats where high water 

velocities prevent detritus and fine sediments from settling and thus provide an adequate 

supply of suspended particulate food (Sanders, 1958; Wood, 1987). Conversely, areas 

with weaker currents allow fine sediments and organic matter to settle out of the water 
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column often resulting in deoxygenation of the sediment and the raising of the depth of 

the transition zone closer to the surface (Jørgensen, 1980; Barnes & Hughes, 1999). In 

these situations, the benthic fauna is typically dominated by opportunistic deposit 

feeders, such as capitellid and spionid polychaetes (Pearson & Rosenberg, 1978; Wilson 

et al., 1998). Few suspension feeders colonise these areas as fine sediment particles clog 

their filtering structures and the deposition of sediment can bury settling larvae (Rhoads 

& Young, 1970). 

Temporal changes have also been detected in benthic macroinvertebrate 

composition. For example, seasonal changes in faunal composition have been related to 

the timing of reproduction and/or recruitment of certain species and species tolerances 

to seasonal changes in water physico-chemistry (e.g. Rainer, 1981; Kalejta & Hockey, 

1991; Sardá et al., 1995; Platell & Potter, 1996; Kanandjembo et al., 2001). Long-term 

changes in the composition of benthic communities in estuaries and marine embayments 

have also been detected following attempts to remediate these environments from 

anthropogenic effects (e.g. Wilson et al., 1998; Wildsmith et al., 2009). Nevertheless, in 

seasonally-open estuaries the extents of spatial differences in benthic faunal 

composition have been generally shown to be more influential than temporal differences 

(e.g. Teske & Wooldridge, 2001; Edgar & Barrett, 2002; Gladstone et al., 2006).  

 

1.5: The conservation and management of aquatic environments 

Conservation efforts have traditionally been centred around a single or “focal 

species” and its associated habitat (Zacharias & Roff, 2001). This single species is 

perceived to be of value to a particular natural environment and thus attracts 

management and conservation attention. Such species can be categorised as either, (i) an 

indicator species, whose presence denotes the composition or condition of a habitat, 

(ii) a keystone species, whose impacts on the habitat are disproportionally large relative 

to its abundance, (iii) an umbrella species, whose presence will conserve other species 

or (iv) a flagship species, whose presence will enlist public support (Power et al., 1996; 

Simberloff, 1998; Zacharias & Roff, 2001). These concepts were popular in the 1980s 

as they provided a shortcut to maintaining and protecting a habitat through the 
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management and monitoring of a single species. However, despite some authors 

suggesting these single species concepts are still of relevance in the management of 

aquatic environments today (Wilson, 1994; Kearney et al., 1996; Piraino et al., 2002; 

Christianou & Ebenman, 2005) a number of criticisms exist. Such criticisms focus on, 

(i) a lack of a firm definition for each category of focal species and criteria for selecting 

representative species (Simberloff, 1998; Zacharias & Roff, 2001) and (ii) the 

effectiveness of using a single species as a surrogate for a habitat/ecosystem 

(Simberloff, 1998).  

Although these single species concepts still have some ecological relevance, in 

the last twenty years emphasis has shifted to conversing spaces, i.e. an “ecosystem 

approach” (Pearce, 1991; Crowder & Norse, 2008). This is based on the paradigm that 

if the ecosystem is protected then so will the biota which inhabit it (Edgar et al., 1999; 

Pauly et al., 2002; Lubchenco et al., 2003) and the implementation of this approach has 

led to an increase in the number of marine protected areas (Pérez-Ruzafa et al., 2008). 

However, the location of a marine protected area was often chosen either in a haphazard 

or ad hoc manner (McNeill, 1994; Pressey, 1994; Williams & Bax, 2001) or based on 

the aforementioned single species management concept (Roff & Evans, 2002), rather 

than to allow effective management of the resources within the park (Aguilar-Perera 

et al., 2006; Stamieszkin et al., 2009), or the need to protect local characteristics 

(Gubbay, 1988). More recently, there has been an impetus to develop scientifically 

credible methods of reserve selection (Stevens, 2002), which may be based on a suite of 

factors, such as high species richness, taxonomic diversity, presence of locally endemic 

or rare species, high productivity or the importance to particular species as spawning 

grounds, nursery areas, migratory pathways and/or feeding grounds (Fairweather & 

McNeill, 1993; Norse, 1993). These schemes which use habitats as surrogates for 

biodiversity (e.g. Vanderklift et al., 1998; Ward et al., 1999) require characterisation 

and classification of the marine environment at an appropriate scale which allows 

planners to design marine protected areas such that they incorporate representatives of 

every habitat type within a candidate area (Stevens & Connolly, 2005).  
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1.5.1: Approaches to classifying aquatic environments 

Habitats are defined as „„a particular environment which can be distinguished by 

its abiotic characteristics and associated biological assemblage, operating at 

particular, but dynamic spatial and temporal scales in a recognisable geographic area” 

(ICES, 2006). In order to classify areas of the aquatic environment a range of 

approaches have been developed which generally fall into two categories, i.e. habitat 

classification schemes and habitat mapping. Benthic habitat maps are defined in terms 

of seabed characteristics (topography, sediment texture, benthic cover) that can be 

readily detected and mapped (Diaz et al., 2004). This approach to geoscientific seabed 

characterisation is primarily concerned with the identification, spatial extent, and 

geometrical relationship of geological units (e.g. Todd et al., 1999; Kostylev et al., 

2001; Urbanski & Szymelfenig, 2003). However, these conventions may not be 

biologically meaningful as they often employ lithostratigraphic or chronostratigraphic 

criteria that may not be closely related to grain size and/or benthos (Orpin & Kostylev, 

2006). Furthermore, many studies do not include direct biological sampling to verify the 

extent of concordance between substrate characteristics and the biotic distribution (Diaz 

et al., 2004). Given the topographic emphasis of the benthic mapping concept, its 

application to the water column is not valid, as topographic distinctions cannot be 

applied to the water column (Connor et al., 2006), whereas the pelagic environment can 

be classified using hydrographic characteristics (e.g. temperature, salinity and light) in a 

way which is ecologically relevant (Roff & Taylor, 2000). Furthermore, although 

habitat maps (e.g. UK sea map; Connor et al., 2006) provide an important component of 

coastal marine habitat classification (e.g. Connor et al., 2004; EUNIS, 2010) they do not 

provide a framework, hierarchical or otherwise, to allow the delineation or prediction of 

habitat types that are of direct interest to environmental managers.  

Habitat classification schemes, however, comprise a set of decision rules for 

identifying and characterising the habitats of a given type of fauna within an area of 

interest (Robinson & Levings, 1995). These schemes have been used widely as a tool to 

aid the management and conservation of aquatic habitats and have the potential to 

provide information on (i) the environmental characteristics of the habitats classified, 
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(ii) quantitative data on the faunal assemblages present with the habitats, (iii) an ability 

to predict the faunal assemblage at a new site of interest and (iv) the likely 

consequences of any anthropogenic or environmental changes (Valesini et al., 2003; 

Stevens & Connolly, 2004; Fujii, 2007).  

 
 

1.5.2: Existing habitat classification schemes 

A multitude of habitat classification schemes for marine and estuarine waters 

have been developed in recent years (e.g. Roff & Taylor, 2000; Valesini et al., 2003; 

Connor et al., 2004; Madden et al., 2005; Hume et al., 2007; Snelder et al., 2007). 

While there are numerous ways of distinguishing among such schemes, one major 

difference depends on whether they have been based on (i) biotic characteristics, i.e. the 

distribution of a particular species (e.g. Paine, 1966; Estes & Palmisano, 1974) or faunal 

assemblage (e.g. Monaco et al., 1992; Araújo & Costa de Azevedo, 2001; Ellis et al., 

2006), (ii) abiotic characteristics (e.g. Dethier, 1992; Digby et al., 1998; Zacharias 

et al., 1998; Roff & Taylor, 2000; Valesini et al., 2003; Engle et al., 2007; Gregr & 

Bodtker, 2007) or (iii) a combination of both (e.g. Mumby & Harborne, 1999; Zacharias 

et al., 1999; Allee et al., 2000; Connor et al., 2004).  

Classification schemes based on the single species approach have been criticised 

as only a small proportion of marine habitats are dominated by a single species 

(e.g. kelp forests, bivalve beds and maerl beds), while even these habitats have been 

shown to support diverse faunas (Grall et al., 2006; Norderhaug et al., 2007; Çinar 

et al., 2008; Commito et al., 2008). Thus, there has been an increase in the use of 

ecosystem-based approaches to management (Crowder & Norse, 2008). It is important 

to note that, as the distribution of all species exhibits spatio-temporal variability, the use 

of even a large suite of taxa offers a less robust mechanism for structuring a 

classification than the physical habitat in which they occur (Connor et al., 2004). 

Moreover, the cost of adequately sampling biotic assemblages for this purpose is 

typically prohibitive and once completed the scheme is applicable only to the particular 

biotic group on which it was based and the geographical area for which it was devised.  
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Conversely, a variety of abiotic criteria have been used as variables in 

classification schemes to differentiate between habitats. These criteria generally fall into 

two categories, (i) enduring or (ii) non-enduring environmental criteria, i.e. variables 

that remain unchanged or which vary temporally, respectively. Numerous classification 

schemes have been developed which rely solely on the use of non-enduring 

environmental criteria and which employ variables that undergo pronounced temporal 

changes, such as salinity and water temperature (e.g. Schoch & Dethier, 1996; 

Brogueira & Cabeçadas, 2006). However, as with those schemes which rely on fauna, 

the measurement of non-enduring criteria over suitable spatial and temporal scales 

requires extensive in situ sampling and subsequent laboratory analysis, particularly in 

dynamic ecosystems such as estuaries, which typically undergo pronounced seasonal 

and inter-annual changes in environmental variables (e.g. Chuwen et al., 2009a). 

In contrast, schemes based on enduring environmental criteria are generally 

more cost-effective as the data required to generate the criteria tend to be readily 

available from mapped and/or digital sources, such as bathymetry, or generated through 

the use of Geographical Information Systems (GIS), e.g. estimating catchment size or 

fetch distances. As such, the use of enduring environmental criteria has been advocated 

in a number of classification schemes (e.g. Roff & Taylor, 2000; Banks & Skilleter, 

2002; Roff et al., 2003; Valesini et al., 2003; Hume et al., 2007; Snelder et al., 2007). 

These criteria are beneficial for use in habitat classification schemes as they can act as 

surrogates for a suite of non-enduring criteria that may be costly to measure in situ. 

These characteristics are able to be calculated and mapped from digital sources, 

e.g. aerial photography, satellite imagery or multibeam bathymetrical data using GIS 

and, unlike non-enduring characteristics which vary temporally once classified these 

habitat types will remain distinct irrespective of time.  

Habitat classification schemes also differ in their structural design. Thus, many 

comprise a hierarchical (nested) framework based on a set of decision rules (e.g. Interim 

Marine and Coastal Regionalisation for Australia Technical Group, 1998; Roff & 

Taylor, 2000; Connor et al., 2004; Madden et al., 2005), which can be devised using 

either a top down or bottom up approach. The former initially incorporates the 

environment of interest as a whole, which is subsequently divided up into sequentially 
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smaller categories based on an interconnected set of decision rules, while the latter starts 

at the finest level of the classification and sequentially groups units into successively 

broader categories (Connor et al., 2004). Whilst the majority of classification schemes 

are hierarchical, a number have been developed that typically operate at a single spatial 

scale and employ the use of multivariate statistical techniques, such as principle 

component analysis (PCA) or cluster analysis to group sites into habitat types based on 

a selected suite of variables (e.g. Zacharias et al., 1998; Edgar et al., 2000; Araújo & 

Costa de Azevedo, 2001; Valesini et al., 2003; 2010). 

The spatial scale encompassed by a habitat classification scheme varies greatly, 

with some schemes covering entire continents or countries (e.g. Zacharias et al., 1998; 

Roff & Taylor, 2000; Hume et al., 2007; Snelder et al., 2007), while others are devised 

for use at regional (i.e. 100-1,000 km
2
) (e.g. Edgar et al., 2000; Banks & Skilleter, 

2002; Valesini et al., 2003) or local scales (i.e. 1-100 km
2
) and have been developed to 

operate within specific systems e.g. an estuary (e.g. Brogueira & Cabeçadas, 2006; 

Valesini et al., 2010). Several hierarchical schemes encompass all of these scales with 

the broadest level of classification incorporating all marine and estuarine waters within 

a country, while the finest level represents “biotopes” at the scale of metres (e.g. Allee 

et al., 2000; Connor et al., 2004; Madden et al., 2005). 

Finally, classification schemes differ in the extent to which they employ 

quantitative criteria. Many schemes, which employ qualitative or at best, semi-

quantitative criteria (e.g. Zacharias et al., 1998; Roff & Taylor, 2000; Connor et al., 

2004) are able to identify and use known habitat parameters to assess where biological 

communities may occur (Connor et al., 1997). However, these classification schemes 

are unable to statistically test, using sound quantitative data, the relationship between 

habitat types and their associated fauna and predict biotic communities based on habitat 

characteristics. This predictive ability is of great interest to environmental managers as 

the model of community composition can be reliably applied to any unsampled area 

within the geographical area of the scheme (Zacharias et al., 1999; Valesini et al., 

2009). In contrast, qualitative schemes are limited to describing only those areas 

sampled during the classification.  
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1.6: Rationale and overall aims 

The ecological, commercial and recreational values of estuaries are well 

documented (e.g. Costanza et al., 1997; Potter & Hyndes, 1999; Commonwealth of 

Australia, 2002), as are the range of anthropogenic and climate change related pressures 

that threaten their “health” and ecological functioning (e.g. Dyer, 1995; Kennish, 2002; 

McLusky & Elliott, 2004; Thompson et al., 2007; Defeo et al., 2009). Furthermore, 

whilst there has been a tendency to apply knowledge of estuarine processes and 

ecology, derived from northern hemisphere systems, into management strategies 

(Saunders & Taffs, 2009), it is important to recognise that the structure, function and 

ecology of estuaries in southern Australia differ markedly from those in the well studied 

holarctic estuaries (Potter & Hyndes, 1999; Roy et al., 2001; Scanes et al., 2007). 

Consequently, there is a real need to understand estuarine ecosystem processes in 

Australian estuaries, and thus develop realistic and appropriate management strategies 

for these systems (Saunders & Taffs, 2009). Critical to this, is a rigorous quantitative 

classification of estuarine habitats and an assessment of the extent to which the 

distribution of key faunal assemblages are related to those habitats, and the ability to 

successfully predict the habitat type to which any new site of interest belongs to and the 

suite of fauna likely to be present at that location. The current study was thus aimed at: 

(1)  Using the method of Valesini et al. (2010), which employs enduring 

environmental characteristics, to identify quantitatively the range of 

habitats present in the nearshore and offshore waters of Broke Inlet. 

(2)      To test the hypothesis that the species richness, density, diversity and 

species compositions of the fish and benthic macroinvertebrate faunas 

differ among habitat types, seasons and, in the case of the fish fauna, also 

years.  

(3) To test the hypothesis that the pattern of relative differences among 

habitat types, as exhibited by their faunal compositions, is correlated with 

that defined by their (i) enduring environmental characteristics and (ii) 

non-enduring environmental characteristics (water physico-chemical 

variables and sediment characteristics). 
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Chapter 2 

Quantitative classification and prediction of habitat 

types in Broke Inlet 

 

2.1: Introduction 

The ecosystem health of estuaries in south-western Australia, like that of many 

others throughout the world, is under increasing pressure from the detrimental 

influences of anthropogenic activities in these systems and their catchments (Kennish, 

1992, 2002) and the influence of climate change (Dyer, 1995; Scavia et al., 2002). The 

former include eutrophication (Cross, 1974; Lukatelich et al., 1987; McComb & 

Lukatelich, 1995; McComb et al., 1998; Robson et al., 2008), anoxia and algal blooms 

(Robson & Hamilton, 2003; Swan River Trust, 2005), heavy metal contamination 

(Gerritse et al., 1998; Rate et al., 2000), sedimentation (Viney & Sivapalan, 2001), 

acid-sulphate leachate (Appleyard et al., 2004) and habitat fragmentation (Hillman 

et al., 1995). As a result, estuaries, and particularly those in temperate regions, are 

considered among the most degraded of all marine ecosystems (Jackson et al., 2001). 

Furthermore, reductions in rainfall associated with climate change have resulted in 

decreasing stream flow and groundwater supply (Rogers & Ruprecht, 1999; Berti et al., 

2004), and the predicted intensification of the hydrological cycle (Easterling et al., 

2000; Huntington, 2006) may lead to a further reduction in rainfall (Sheffield & Wood, 

2008). For example, average rainfall in the catchment of the Broke Inlet has decreased 

from 1,465 mm in 1956-1965 to 1,046 mm in 2006-2009 (Hodgkin & Clark, 1989a; 

Bureau of Meteorology, 2010). The above types of environmental changes have been 

shown by many workers throughout the world to have adverse impacts on estuarine 

fauna (see Attrill et al., 1996; Hoeksema et al., 2006; Martinho et al., 2007; Dolbeth 

et al., 2008; Pillay & Perissinotto, 2008, 2009), as well as for estuarine fisheries 

production (Gillson et al., 2009), and water quality (Attrill & Power, 2000). 

Despite the range of deleterious environmental influences affecting many 

estuaries throughout the world, there is insufficient understanding of such impacts on 

these ecosystems (Scavia et al., 2002; Roessig et al., 2004; Graham & Harrod, 2009). 
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Moreover, as estuaries typically (i) contain a diverse range of habitats, each with a 

unique set of environmental characteristics and inhabited by distinct biotic assemblages 

and (ii) experience considerable abiotic and biotic changes over various temporal scales 

(França et al., 2009a; Valesini et al., 2009), the influence of the above environmental 

impacts are likely to vary considerably over both space and time. Thus, in order to 

successfully manage resources and to better understand ecosystem function in estuarine 

environments, managers and ecologists initially require a sound understanding of the 

various habitats present within those systems over appropriate spatio-temporal scales. 

This is best achieved by firstly categorising those habitats on the basis of their collective 

environmental differences. This classification framework then provides a reliable 

foundation upon which to investigate the biota that occupy those habitats at various 

times (e.g. Stevens & Connolly, 2004; França et al., 2009a; Valesini et al., 2009).  

As outlined in Chapter 1, a large number of habitat classification schemes, 

covering a wide variety of approaches, have been produced for coastal and estuarine 

waters throughout the world. However, the most useful schemes are typically those that 

(i) are based on a fully quantitative set of decision rules, (ii) employ temporally-

enduring environmental criteria that are relevant to the distribution of biota and that can 

be accurately measured from readily-available mapped data, (iii) are developed at scales 

that are of most use to the majority of estuarine managers and ecologists, i.e. local to 

regional scales, (iv) are flexible in their ability to allow new data to be added and to be 

applied to other areas, (v) are easy to use, (vi) produce habitat types that can be 

demonstrated statistically to differ significantly in their environmental characteristics, 

and (vii) enable prediction of the habitat type to which any new site belongs (see 

Valesini et al., 2010). 

The importance of such schemes is demonstrated by their development at 

national levels to assist legislation aimed at improving the condition of estuarine and 

coastal waters (e.g. Vincent et al., 2002; Connor et al., 2004; Madden et al., 2005). This 

is particularly relevant to Australia, where 30% of estuaries and their catchments were 

recently identified in a national audit as being either modified or extensively modified 
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(Commonwealth of Australia, 2002). Moreover, in south-western Australia, only one 

estuary, Broke Inlet, was considered by that audit to be in a “near-pristine” state.  

The main aim of this component of the study is to apply the habitat classification 

scheme that has been recently developed by Valesini et al. (2010) for south-western 

Australian estuaries to the nearshore and offshore waters of Broke Inlet. Unlike many 

other habitat classification schemes for estuarine and/or coastal waters that are available 

in the scientific or grey literature, this scheme meets all of the criteria outlined above. 

The resulting categorisation of habitats in Broke Inlet will then provide the foundation 

for investigating the extent to which particular faunal assemblages differ among habitat 

types, and how the relationships between fauna and their habitats changes over time, 

i.e. seasonally and/or inter-annually (see Chapters 3, 4 and 5).  

 

2.2: Materials and methods 

2.2.1: Study area 

2.2.1.1: Climate 

The climate in south-western Australia is of a Mediterranean type (Gentilli, 

1971), characterised by hot, dry summers (average maximum temperature in Perth 

30°C) and cool, wet winters (average maximum 19°C; Bureau of Meteorology, 2010). 

The prevailing weather conditions are largely determined by seasonal movements of a 

belt of high pressure (anticyclonic) systems between 35°S and 45°S in summer and 

26°S and 34°S in winter. Rain in the latter season is brought by cold fronts between 

high pressure systems in their west to east passage (Hodgkin & Hesp, 1998; Brearley, 

2005). Mean annual rainfall in the region is greatest in the extreme south-west, 

i.e. around Broke Inlet, where it reaches ca 1,300 mm (Hodgkin & Hesp, 1998). 

Precipitation is highly seasonal, with 60-70% occurring between May and September, 

but deteriorating cyclonic storms may produce unseasonal downpours in summer 

(Hodgkin, 1998; Hodgkin & Hesp, 1998). Pan evaporation levels are around that of 

annual rainfall (1,362 mm), although surface evaporation may only be 85% of pan 

evaporation (Black & Rosher, 1980; Hodgkin, 1998; Hodgkin & Hesp, 1998).  
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The prevailing winds along the south coast in summer are south-westerly to 

south-easterly, with wind speeds exceeding 30 km h
-1

 for approximately 30% of the 

summer days, while southerlies prevail in winter (Sanderson et al., 2000). Offshore 

marine waters are dominated by a persistent swell wave regime, which approaches the 

coast from a south to south-westerly direction and has a wave height of between 2-3 m 

with a period of 10-14 seconds (Lemm et al., 1999). Unlike the lower west coast, which 

is protected by limestone reefs, there are few offshore islands or submerged features 

along the south coast to attenuate swell wave energy (Sanderson et al., 2000). 

Furthermore, as the continental shelf is only ca 25-30 km wide along the south coast of 

Western Australia this coast is exposed to the most extreme wave energy of the entire 

Australian coastline (Harris et al., 1991; Hemer, 2006). 

Ocean currents in the region are dominated by the Leeuwin current system, 

consisting of the Leeuwin current, Leeuwin undercurrent and Capes current (Woo & 

Pattiaratchi, 2008). The Leeuwin current is a narrow (ca 50 km) eastern boundary 

current that transports warm, low salinity tropical water southwards along the 

continental shelf of Western Australia to Cape Leeuwin then eastward towards the Great 

Australian Bight (Cresswell, 1991; Smith et al., 1991). The current is weakest during 

summer and strongest in winter when the opposing southerly winds are weaker. The 

Leeuwin undercurrent transports oxygen rich, nutrient depleted, high salinity water 

northward (Thompson, 1984), and the Capes current which also flows northward is 

strongest in summer (Pearce & Pattiaratchi, 1999). These currents strongly influence the 

marine environment of Western Australia and are responsible for the presence of some 

tropical marine organisms along the south-western coast of the continent (Maxwell & 

Cresswell, 1981; Pearce & Walker, 1991; Hutchins & Pearce, 1994; Pearce & Hutchins, 

2009; Lenanton et al., 2009). 

 

2.2.1.2: Geomorphology 

Broke Inlet is situated on the south coast of Western Australia (34.5°S, 116.3°E) 

within the Ravensthorpe Ramp, which forms part of the Albany-Frazer geological 

province, basement Precambrian igneous and metamorphic rocks slope down from the 
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Yilgarn block (300 m above sea level) to the Southern Ocean, where they outcrop as 

headlands and islands (Hodgkin & Hesp, 1998). The coastline around the estuary is 

comprised of calcareous and siliceous sands and aeolian dunes, some of which were 

formed in the Pleistocene and have lithified to form limestone cliffs up to 150 m high in 

places. The inland margin of these dunes drops sharply into extensive, seasonally-

inundated swampy plains, created by coastal dunes blocking surface water flow 

(CALM, 2005). 

The estuary itself is a seasonally-open basin system which is 15 km long, up to 

4 km wide and has a surface area of 48 km
2
,
 
making it one of the largest estuaries in 

south-western Australia (Hodgkin & Clark, 1989a). The large basin of the estuary, 

which is fed by the Shannon, Forth and Inlet rivers, comprises three subregions namely 

the Shannon, Middle and Clarke basins, which have an average and maximum depth of 

1.5 and 4.5 m below mean sea level, respectively (Fig. 2.1). These subregions are often 

separated by shallow and dynamic sand bars (ca 0.5 m deep). Connection to the sea is 

via a 3.5 km long and 250 m wide entrance channel with an average and maximum 

depth of 3 and 7 m below mean sea level, respectively. The northern shore of the 

entrance channel is characterised by steep cliffs comprised of Pleistocene dune rock, 

whereas the southern shore is wide and sandy and is bordered by vegetated dunes.  

Tidal exchange with the Southern Ocean is seasonal due to the formation of a 

large sand bar at the estuary mouth, typically between summer and early winter, as a 

result of the alongshore and onshore transport of marine sediments by ocean swell and 

local seas (Ranasinghe & Pattiaratchi, 1999b). This bar, which can be up to 500 m wide 

and 1.8 m high (Hodgkin & Clark, 1989a), is closed for the first half of the year and is 

breached either naturally or artificially in the winter or early spring, as a result of the 

marked increases in the volume of water in the estuary from seasonal rainfall (Chuwen 

et al., 2009a). The bar has opened every year between 1964 and 1989 with the exception 

of 1969 and 1986 during which there was reduced rainfall. The opening and duration of 

time the bar stays open for depends mainly on the timing and volume of river flow and 

thus it closes again between mid spring and mid summer, never remaining open for 

more than six months (Hodgkin & Clark, 1989a). 



 

 

 

 

2
0

 

 
 

Fig. 2.1: Location of Broke Inlet within Western Australia and the main regions of the estuary basin, tributaries and islands within the estuary. 
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2.2.1.3: Hydrology 

The catchment of Broke Inlet has three distinct drainage patterns, namely (i) a 

coastal belt, (ii) the dissected laterite plateau and (iii) a marine and alluvial swampy belt 

(CALM, 2005). The coastal belt is situated south-west of the estuary, where the soil is 

free draining. The dissected laterite plateau extends north-west of the estuary through 

dense Karri forest and reaches a height of 200 m above mean sea level where the 

Shannon River emanates from broad swampy head waters. The catchment of this river 

lies almost entirely within the Shannon National Park and comprises the majority 

(610 km
2
) of the 928 km

2 
catchment of Broke Inlet (Hodgkin & Clark, 1989a; Pen, 

1999). The Shannon River, which is 47 km long, provides an estimated 141,000 ML or 

86% of the mean annual flow into the estuary (Pen, 1999). Flow is highly seasonal, with 

80% occurring between June and October (Hodgkin & Clark, 1989a). The marine and 

alluvial swampy belt, which surrounds the estuary, consists of seasonally-inundated 

flats where surface drainage forms a network of highly seasonal creeks (e.g. Big Creek) 

and the Forth (10 km long) and Inlet rivers (14 km long). These two rivers, which drain 

into the Shannon and Clarke basins, respectively (Fig. 2.1), have a mean annual flow of 

6,900 and 15,700 ML, respectively (Pen, 1999). When the mouth of the estuary is open, 

the estuarine portion of the Shannon, Inlet and Forth rivers may extend 3 km, 2 km and 

200 m from their mouths, respectively (Hodgkin & Clark, 1989a).  

The salinity of the estuary exhibits pronounced intra and inter-annual variability, 

ranging from near fresh (< 5) to ca full-strength seawater (35-40) depending on the 

volume and timing of river flow and the time and duration of bar opening (Chuwen 

et al., 2009a). Mixing is rapid in the basin due to its large size and shallow depth and 

thus salinity is generally uniform throughout the water column, except during times of 

high riverine flow.  

Tides in south-western Australia are predominantly diurnal with a mean range of 

0.6 m (Department of Defence, 2003). When the mouth of Broke Inlet is open, tidal 

heights within the estuary are dampened to ca 10% of the oceanic tide (Hodgkin & 

Clark, 1989a). These microtidal conditions may be overridden by changes in water level 

caused by atmospheric pressure, gravitational circulations and alongshore wind stress 
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(e.g. Hamilton et al., 2001; O'Callaghan et al., 2007), which may increase water level 

changes by almost another metre (Hodgkin & Di Lollo, 1958). 

Wave conditions within the estuary vary markedly due mainly to (i) large spatial 

differences in fetch and the orientation of the shoreline and (ii) pronounced temporal 

differences in wind speed, frequency and direction. Thus, wave heights in the narrow 

entrance channel and tidal portions of the rivers are typically very small, while those in 

the wide basin can reach 1.5 m.  

 

2.2.1.4: Substrate and submerged aquatic vegetation 

Sand banks and marginal shoals, comprised of medium to coarse siliceous sands, 

represent ca 56% of the substrate within Broke Inlet (Commonwealth of Australia, 

2002). These extensive sand banks have formed from shoreline erosion, aeolian sand 

and the redistribution of river sediments. The substrate in the deeper areas of the 

estuary, however, consist of fine sand, mud and fine black gelatinous sediment 

(Hodgkin & Clark, 1989a). 

Submerged aquatic vegetation is generally sparse throughout the basin of the 

estuary, particularly in Clarke Basin and the eastern shore of Shannon Basin (Tweedley, 

unpublished data). Most submerged aquatic vegetation occurs within the entrance 

channel and on the marginal shoals along the south coast of the basin, typically 

comprising the seagrass Ruppia megacarpa and to a lesser extent, the stonewort 

Lamprothamnium papulosum, the rhodophyte Polysiphonia and the chlorophyte 

Cladophora (Hodgkin & Clark, 1989a). Drift marine algae and seagrasses also often 

wash into the estuary during periods when the bar is open, and provide an ephemeral 

habitat and source of nutrients (Brearley, 2005). 

 

2.2.1.5: Catchment and estuary use 

Whilst substantial areas of native vegetation have been cleared for agricultural 

purposes from the catchments of the majority of estuaries in south-western Australia, 

the catchment of Broke Inlet has retained almost all of its natural vegetation and is thus 

in “near-pristine” condition (Commonwealth of Australia, 2002). The catchment and 

surrounding area have been gazetted as a component of the D‟entrecasteaux and 

Shannon National Parks (CALM, 1987), however, the estuary itself is not protected 
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under the current management plan (CALM, 2005). Present uses of the catchment and 

estuary focus largely on recreation, (e.g. fishing, bushwalking, horse riding, off-road-

vehicle use and camping) but, a small number of commercial fishers (< 5) operate 

between May and October in Broke Inlet, with the majority of the catch comprising 

Yelloweye Mullet (Aldrichetta forsteri; 59%), Australian Salmon (Arripis truttaceus; 

16%), King George Whiting (Sillaginodes punctatus; 12%) and Sea Mullet (Mugil 

cephalus; 5%) (Lenanton, 1984). However, total commercial catch rates which average 

9,000 kg per annum have been declining since the late 1990‟s (Smith & Brown, 2008). 

 

2.2.2: Measurement of enduring environmental variables 

The waters of Broke Inlet were first classified as either nearshore or offshore, 

i.e. those with a depth below mean sea level of ≤ 1 or > 1 m, respectively. Numerous 

sites were then selected throughout both of these water depths, which were considered 

likely to reflect the full extent of environmental diversity throughout the system 

(i.e. 104 and 36 sites in the nearshore and offshore waters, respectively) (Fig. 2.2). No 

sites were selected in the tidal portions of the rivers due to the steep banks and 

numerous snags. Nearshore sites were defined by a point on the shoreline and all waters 

within a 100 m radius of that point, while offshore sites were defined as a point in the 

estuary and all waters within a 200 m radius of that point. 

A suite of 14 enduring environmental variables, each of which represented one 

of three broad environmental categories, were chosen to characterise each site 

(Table 2.1). The first group reflected the location of each site within the estuary and was 

intended as a surrogate for a broad suite of water physico-chemical parameters, such as 

salinity, water temperature, tidal/riverine flow, and nutrient content that typically vary 

spatially within estuaries relative to their distance from marine and freshwater sources 

(see subsections 3.3.1.1 and 3.3.2.1). The second group of variables reflected the degree 

of exposure to wave activity generated by local winds and the impact of local 

bathymetry on waves as they approach the shoreline, which influence, for example, 

physical force generated by waves, sediment composition and turbidity. The third group 

comprised the contributions of the various substrate and submerged vegetation types 

present within the estuary. 
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Table 2.1: The suite of enduring environmental criteria employed in the nearshore and offshore habitat classification schemes, including their code (in brackets), the 

broad category to which they were assigned, their unit of measurement and the data transformation and weighting applied to each prior to analysis. MEF = Modified 

Effective Fetch. WSM = Wave Shoaling Margin. SAV = Submerged Aquatic Vegetation. 

 
Enduring environmental variable Nearshore waters  Offshore waters 

 Units Transformation Weight  Units Transformation Weight 

Location        

     Longitude (X) Metres None 50.00  Metres None 50.00 

     Latitude (Y) Metres None 50.00  Metres None 50.00 

Exposure        

     Northerly MEF (N) Metres Forth root 14.28  Metres Forth root 11.11 

     Southerly MEF (S) Metres Forth root 14.28  Metres Forth root 11.11 

     Easterly MEF (E) Metres Forth root 14.28  Metres Forth root 11.11 

     Westerly MEF (W) Metres Forth root 14.28  Metres Forth root 11.11 

     Northerly MEF to the WSM (NW) Metres - -  Metres Forth root 11.11 

     Southerly MEF to the WSM (SW) Metres - -  Metres Forth root 11.11 

     Easterly MEF to the WSM (EW) Metres - -  Metres Forth root 11.11 

     Westerly MEF to the WSM (WW) Metres - -  Metres Forth root 11.11 

     Direct MEF (D) Metres Forth root 14.28  Metres - - 

     Direct MEF to the WSM (DW) Metres Forth root 14.28  Metres - - 

     Average slope of the substrate (Sl) Degrees Square root 14.28  Degrees Forth root 11.11 

Substrate/ SAV        

     % SAV (V)  Percentage Forth root 100.00..  Percentage Forth root 100.00. 
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Fig. 2.2: Map of Broke Inlet showing the location of the 104 nearshore and 36 offshore sites selected for habitat classification. The red line represents the 1m depth 

contour and thus the boundary between nearshore and offshore waters. 
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2.2.2.1: Data sources and pre-processing 

All enduring environmental variables were measured at each site from either a 

digitally georeferenced high resolution Quickbird satellite image of Broke Inlet 

(Dynamic Range Adjusted captured by Digital Globe in February 2007 under cloud free 

conditions) or from a Digital Elevation Model (DEM) of the system. ArcGIS 9.2 (ESRI, 

California, USA), together with the extension X Tools Pro 5 (Data East, Novosibirsk, 

Russia), was employed to measure the vector-based enduring environmental variables, 

while IDRISI v15.0 Andes (Clarke Labs, Massachusetts, USA) was used to measure the 

raster-based variables and Surfer 8 (Golden Software, Colorado, USA) was used to 

produce the DEMs. To ensure consistency among files, all were either created in or 

reprojected into the Universal Transverse Mercator Zone 50 South (UTM 50S) 

projection using the Geodetic Datum of Australia 1994 (GDA94). 

 

Satellite image pre-processing 

The satellite image of Broke Inlet, which was comprised of three separate 

images representing either the red, green or blue band of the colour spectrum, was 

initially subjected to pan sharpening (Zhang & Hong, 2005) to achieve a pixel 

resolution of 0.6 m. A 3x3 median filter was then applied to the image to reduce the 

influence of any “noisy pixels” (Eastman, 2006). 

 

Masking out unwanted areas 

The outline of the estuary, including that of any islands within the system, was 

firstly digitised and reclassed so that all pixels in land and aquatic areas were allocated 

the value 0 and 1, respectively. This reclassed image was then subjected to the 

OVERLAY module in combination with the satellite image, to produce a Boolean 

image of the estuary in which all terrestrial areas were masked out. This image was then 

overlaid with the DEM containing the 1 m depth contour to produce two new images of 

the nearshore (≤ 1 m) and offshore (> 1 m) waters, respectively. 

 

Noise removal and water column correction 

In order to remove any spectral “noise” that may have resulted from the 

misreading of light characteristics on the day the satellite image was taken, and thus 
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improve the accuracy of the substrate classification, each of the three image bands were 

separately subjected to an unstandardised Principal Component Analysis (PCA). The 

principal component (PC) that accounted for the least variation was considered to 

represent mainly noise and was thus excluded, while the eigenvector values from the 

remaining PCs were subjected to reverse transformation using the IMAGE 

CALCULATOR module to produce three new “noiseless” bands. Water column 

correction techniques were then applied to the data for each noiseless band (Lyzenga, 

1978, 1981), to account for the differences in the attenuation of light with water depth 

and clarity (Green et al., 2002).   

 

2.2.2.2: Collection of bathymetric data and construction of digital elevation model  

Bathymetric data, (i.e. depth, latitude and longitude) and the Estimated 

Positional Error (EPE) were collected at a large number of sounding points throughout 

Broke Inlet during May and June 2007. All measurements were taken using a Garmin 

GPSMAP 185 Sounder with a Differential Global Positioning System (GA 29 GPS 

Antenna, Garmin, Kansas, USA) and recorded electronically on a laptop using 

Windmill Logger 4.07 (Windmill Software Ltd, Manchester, UK). The boat travelled at 

a speed of 6 km h
-1

 and depth soundings were recorded every 10 m in the basin and 

every 2 m in the entrance channel along numerous transects. Any soundings recorded 

where the depth was too shallow to give accurate data (i.e. < 40 cm) were removed from 

subsequent analysis, as were those with an EPE > 5 m. All depth data were corrected to 

the Australian Height Datum. 

Interpolation was employed to estimate the depth of areas where no depth 

soundings were recorded (i.e. areas between transects). In order to choose the most 

appropriate interpolation methodology, nine techniques were trialled and the results 

subjected to the cross validation procedure in Surfer 8. The accuracy of the various 

techniques was tested using a series of descriptive and accuracy assessment statistics to 

compare the actual depth to the interpolated depth (see Desmet, 1997; Guan et al., 

1999) (Table 2.2). These statistics demonstrated that Triangular Irregular Networks 

(TIN) interpolated data was the most accurate (Table 2.2), and thus this interpolation 

method was subsequently used to produce a 3D DEM of the system (Fig. 2.3). 
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Table 2.2: Results and ranking of the descriptive and accuracy statistics used to assess the accuracy of each of the interpolation techniques trialled for producing a 

DEM of Broke Inlet. Max = maximum value. Min = minimum value. StDev = the standard deviation of the difference between actual and interpolated depth. 

ME = mean error. RSME = root mean square error. MAD = mean absolute difference. StDev MAD = standard deviation of the MAD. R
2
 = coefficient of 

determination. 

 Descriptive statistics Accuracy assessment statistics   

 Max Min Mean StDev ME RSME MAD StDev MAD R
2
 Total Ranking 

Actual depth 0.00
.
 -6.70

.
 -0.80

.
 1.00

.
        

Block Kriging 0.54
6 

-7.00
3 

-0.80
1 

0.98
3 

0.00
1 

0.15
2 

0.00
1 

0.15
1 

97.70
2 

20 4 

Inverse Distance to a Power 0.00
1 

-5.93
6 

-0.80
1 

0.93
6 

0.01
7 

1.24
7 

0.01
7 

0.23
4 

94.60
6 

45 6 

Local Polynomial 0.35
5 

-4.39
7 

-0.80
1 

0.85
7 

0.01
7 

1.24
7
 0.00

1 
0.39

7 
85.00

7 
49 7 

Moving Average -0.78
8 

-0.93
8 

-0.85
9 

0.04
9 

-0.05
9 

8.72
9 

-0.05
9 

1.00
9 

00.20
9 

79 9 

Natural Neighbour 0.00
1 

-6.50
1 

-0.80
1 

0.99
1 

0.00
1 

0.46
5 

0.00
1 

0.23
4 

94.90
4 

19 2 

Near Neighbour 0.00
1 

-6.50
1 

-0.80
1 

0.99
1
 0.00

1 
0.46

5 
0.00

1 
0.23

4 
94.90

4 
19 2 

Point Kriging 0.54
6
 -7.00

3 
-0.80

1 
0.98

3 
0.00

1 
0.15

2 
0.00

1 
0.15

1 
97.70

2 
20 4 

Radial Basis Functions 30.00
9 

-38.78
9 

-0.80
1 

1.22
8 

0.00
1 

0.13
1 

-0.04
8 

0.63
8 

66.30
8 

53 8 

Triangular Irregular Network 0.00
1 

-6.39
5 

-0.80
1 

0.98
3 

0.00
1 

0.45
4 

0.00
1 

0.15
1 

97.90
1 

18 1 

 

 

 

 

 

 

 



Chapter 2 

29 

Fig. 2.3: The digital elevation model of Broke Inlet produced from triangular irregular network 

interpolation. Depth shown in metres below mean sea level. 

2.2.2.3: Calculation of enduring environmental variables 

Location variables 

The longitude (X) and latitude (Y) co-ordinates of each site were calculated 

using the ADD X, Y and Z CO-ORDINATES module in X Tools Pro. 

 

Exposure variables 

Modified Effective Fetch (MEF) along northerly, southerly, easterly, and 

westerly bearings (Fig. 2.4a) and, in the case of nearshore sites, also that along a bearing 

perpendicular to shore, i.e. direct fetch (Fig. 2.4b) were calculated for each site 

throughout the estuary using the following formula:  

MEF = ∑(Xi*Cosγi) / ∑Cosγ 

where Xi is the length of fetch i and γi is the angle of deviation from that fetch (Coastal 

Engineering Research Centre, 1977).  

This method employs multiple fetch measurements that deviate, within a given 

arc, from either side of the bearing of interest. It provides a more robust reflection of 

wave exposure than fetch measured along a single bearing, as it reduces the influence
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Fig. 2.4: Examples of the modified effective fetch bearings used to calculate (a) the fetch in all 

cardinal directions [note that all fetch lines overlying land have been removed] (b) direct fetch 

and (c) direct fetch to the wave shoaling margin at site 89. The red line indicates the position of 

the wave shoaling margin. 
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that any fine scale coastal indentation or emergent feature, e.g. a rocky outcrop, may 

have on the latter method. For each of the above bearings, four fetch lines oriented at 

successive 9° increments on both sides of the true bearing were used to calculate MEF, 

with any lines that lay entirely over land recorded as zero. 

The distance of each nearshore site from the wave shoaling margin, which was 

considered to be adequately reflected by the 1 m depth contour, was determined by 

trimming the MEF lines for direct fetch at the point at which they intersected that depth 

contour (Fig. 2.4c). In those cases in which a fetch line did not extend over waters 

greater than 1 m in depth, it was terminated at the opposite shoreline. For offshore sites, 

this variable was replaced with a series of modified effective cardinal fetches that 

extend from each site to the 1 m depth contour, which collectively reflected the extent 

of the water depth surrounding each site (Table 2.1). The average slope of the substrate 

at each nearshore and offshore site was calculated by subjecting the DEM of the estuary 

to the SLOPE module in IDRISI. 

 

Substrate classification and quantification of substrate/SAV type 

Preliminary visual analysis of the pretreated satellite image, in conjunction with 

several extensive reconnaissance trips in the field identified two main substrate types, 

namely bare unconsolidated substrate and submerged aquatic vegetation. The latter 

group represented both seagrass and macroalgae, as they could not be reliably 

discriminated from each other on the image, due either to the fact that they often grew 

in mixed stands and/or their spectral signatures were not sufficiently distinct. Minimum-

distance-to-means classification (MINDIST; Eastman, 2006), a supervised classification 

methodology, was employed to classify the nearshore areas of the estuary into two 

benthic classes (Fig. 2.5). The accuracy of the resultant benthic classification was 

determined by nominating a subplot of 5 m radius around a pixel in each class at all 

sites on the classified map, visiting each of those subplots in the field, then calculating 

the number of times the benthic class derived from the classified map matched that 

observed in the field. The overall accuracy of the benthic map was 94%. The area (m
2
) 
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occupied by each benthic class at each site was then calculated and converted to a 

percentage using the EXTRACT module.  

The offshore areas of the entrance channel, which contained clear marine waters 

at the time the satellite image was captured, facilitated classification and ground-

truthing of the benthos in this region using the methods described above (accuracy 

85%). However, the benthos at the offshore sites throughout the basin could not be 

classified in this way as their overlying waters were too tannin stained. Thus, 200 

subplots across all offshore sites in the basin were surveyed in the field using a drop 

camera (Canon Power Shot 540, Canon, Tokyo, Japan), which revealed that the only 

substrate type present was bare unconsolidated sand/mud.  

 

 
 

 

Fig. 2.5: Classification of the benthos in the nearshore waters of the entrance channel and 

Middle Basin of Broke Inlet produced using MINDIST classification. Yellow and red areas 

represent vegetated and unvegetated areas, respectively.  

 

2.2.3: Classification and prediction of habitat types 

The following suite of statistical procedures were carried out to assign each of 

the nearshore and offshore sites in Broke Inlet to their appropriate habitat type on the 

basis of the measurements for their enduring environmental characteristics. All analyses 

were carried out using the PRIMER v6 multivariate statistics package (Clarke & 

Gorley, 2006). The procedures employed in this methodology are based on those 

developed by Valesini et al. (2010) for the nearshore waters of estuaries in south-

western Australia, and have been redescribed here to highlight the components that are 

unique to Broke Inlet.  
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2.2.3.1: Data pretreatment 

The values for each of the enduring environmental variables recorded at the 

various nearshore and offshore sites were initially examined using pairwise Draftsman 

plots to (i) visually assess the extent to which the distribution of values for each variable 

were skewed and thus the type of transformation required to ameliorate any such effect 

and (ii) determine whether any pair of variables were highly correlated. The 

transformations carried out on each variable are listed in Table 2.1. Furthermore, as the 

percentage contributions of bare unconsolidated substrate and submerged aquatic 

vegetation were found to be highly correlated for both the nearshore and offshore sites, 

the former variable was removed from subsequent analyses.  

As data for several of the enduring environmental variables were not directly 

comparable due to their different units of measurement, the data for each was 

normalised to place all variables on a common scale (Clarke & Gorley, 2006). 

Furthermore, in order to ensure that each of the three broad categories of enduring 

environmental variables contributed equally to the habitat classifications for both the 

nearshore and offshore waters, a weighting procedure was carried out in which each 

category was given an arbitrary weight of 100, which was then divided equally amongst 

its component variables. For example, both variables in the location category were 

assigned an equal weighting of 50. The weights assigned to each variable are provided 

for the nearshore and offshore waters in Table 2.1. The pretreated enduring 

environmental data for each site in the nearshore and offshore waters were then used to 

construct separate Manhattan distance matrices. Manhattan rather than Euclidean 

distance was employed as the distance coefficient as it operates with absolute and not 

squared differences and thus is less prone to distortion by outliers (Clarke et al., 2006).  

 

2.2.3.2: Classification of habitat types 

To identify those groups of sites that did not differ significantly in their suite of 

enduring environmental characteristics and thus represented distinct habitat types, each 

Manhattan distance matrix was subjected to hierarchical agglomerative clustering with 

group-average linking (CLUSTER) and an associated Similarity Profiles (SIMPROF) 

test (Clarke et al., 2008). A SIMPROF test was performed at each node of the 
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dendrogram to ascertain whether the particular group of samples being subdivided 

contains significant internal structure. This routine thus provides a sound basis for 

ascertaining the points in the clustering procedure at which further subdivision of the 

samples (sites) is unwarranted. The null hypothesis that there were no significant 

environmental differences among sites was rejected if the significance level (p) 

associated with the test statistic (π) was < 0.01. Habitat types represented by only one 

site were considered to be outliers and were thus removed from subsequent analyses. 

 

2.2.3.3: Prediction of habitat types 

Any new nearshore or offshore site in Broke Inlet (i.e. one not used in the 

habitat classification procedure) was able to be quantitatively assigned to its most 

appropriate habitat type on the basis of measurements for its enduring environmental 

variables, by employing a novel application of the Linkage Tree (LINKTREE) and 

SIMPROF routines (Clarke et al., 2008). This approach was used to produce a binary 

decision tree whose terminal nodes represented each of the habitat types identified by 

the classification procedure and at each branch of the tree identified the quantitative 

thresholds of the enduring environmental variables that best separated sites into their 

most appropriate habitat types.  

To produce linkage trees for the nearshore and offshore waters of Broke Inlet, a 

fixed “model” resemblance matrix was constructed by (i) averaging the pretreated data 

for each enduring environmental variable across the various sites representing any given 

habitat type, (ii) replicating those average values for each site representing that habitat 

type and (iii) employing these data to construct a Manhattan distance matrix. This 

distance matrix thus reflected the pattern of environmental differences among habitats 

identified by the classification procedure, but without any heterogeneity among sites 

from the same habitat type, i.e. pairs of sites belonging to the same habitat type had a 

distance of zero, while those belonging to different habitats had a distance that reflected 

their average dissimilarity. The complementary data matrix employed in the routine was 

that containing the untreated “true” measurements for the suite of enduring 

environmental variables recorded at each site. A SIMPROF test was also used in 

conjunction with LINKTREE to terminate construction of the tree at those nodes at 
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which there was no significant structure among the remaining samples. The null 

hypothesis criteria for rejecting it were the same as those described in subsection 

2.2.3.2. The use of the LINKTREE and SIMPROF routines in this manner resulted in 

separate linkage trees for the nearshore and offshore waters that provided a set of binary 

divisions of habitat types, each with the quantitative thresholds for the variable(s) which 

best explain those divisions.  

In order to assign any of the “new” nearshore or offshore sites in Broke Inlet to 

their appropriate habitat type, each of the enduring environmental variables were firstly 

measured at that site using the methods given in subsection 2.2.2.3. The resultant site 

measurements were then compared with the thresholds for the environmental variable(s) 

specified at each successive branching node of the linkage tree, and the directed path 

followed until a terminal node, i.e. habitat type, was reached. 

 

2.3: Results 

2.3.1: Nearshore waters 

2.3.1.1: Habitat classification 

The CLUSTER and SIMPROF routines performed on the data for the suite of 

enduring environmental variables recorded at each of the 104 nearshore sites identified 

12 significantly different habitat types (Fig. 2.6). This classification also contained two 

other habitats represented by a single site (i.e. sites 8 and 31), which were considered to 

be outliers and were thus removed from further analyses. The resultant habitat types 

were labelled according to the dissimilarity level at which they separated from the other 

habitat types, with habitat A being the most environmentally-distinct. The location of 

the sites assigned to each of the 12 habitat types are provided in Fig. 2.7 and 

representative site photos are shown in Fig. 2.8. 

The nearshore habitat types split into two broad groups at a relatively high 

dissimilarity level, the first group of which was characterised by habitats containing 

either very small amounts of submerged vegetation or a bare/unconsolidated substrate 

(i.e. A, B, E, I, J, K and L), while the second group contained those habitats with 

moderate amounts of submerged aquatic vegetation (i.e. C, D, F, G and H) (Fig. 2.9).
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Fig. 2.6: Dendrogram derived from subjecting the enduring environmental data from each 

nearshore site in Broke Inlet to CLUSTER and SIMPROF. Groups of sites marked by red lines 

do not contain significant environmental differences and thus represent habitat types.  denotes 

single sites considered to be outliers. 
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Fig. 2.7: Sites representing the 12 nearshore habitat types in Broke Inlet identified by the CLUSTER and SIMPROF procedures.   
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(a) Habitat type A; site 57 (b) Habitat type B; site 94 

  
 

(c) Habitat type C; site 76 
 

(d) Habitat type D; site 46 

  
 

(e) Habitat type E; site 18 

 

(f) Habitat type F; site 20 

  
 

(g) Habitat type G; site 90 
 

(h) Habitat type H; site 5 

  

Fig. 2.8: Photographs of characteristic sites representing each nearshore habitat type in Broke 

Inlet. 
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(i) Habitat type I; site 39 (j) Habitat type J; site 26 

  
 

(k) Habitat type K; site 32 
 

(l) Habitat type L; site 30 

  

Fig. 2.8 Continued: Photographs of characteristic sites representing each nearshore habitat type 

in Broke Inlet. 

 

The most distinct habitat in the first group, A, was the largest and encompassed 

all 25 sites in Clarke Basin. This habitat was characterised by moderate to large direct 

and westerly fetches but was relatively sheltered from other prevailing winds. It also 

contained the largest wave shoaling margin of any habitat in the estuary. Habitat B was 

situated closest to the estuary mouth and was well distinguished from all other habitats 

in this group in the fact that it had the smallest fetches overall and the most steeply 

sloping substrate. The remaining habitat types in the first broad group were all located 

within Shannon Basin (Fig. 2.7). The most distinctive of these, E, comprised sites 

situated along the south-western shore and thus exhibited moderate northerly and 

easterly fetches and negligible to non-existent southerly and westerly fetches and a 

relatively narrow wave shoaling margin (Fig. 2.8). Conversely, habitats I and K, located 

on the opposite shore, were mainly exposed to winds from the south or west and 

particularly in the case of the former habitat, had a far wider wave shoaling margin than 

E. The remaining habitats in this group, J and L, were located around the mouth of
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Fig. 2.9: Means and standard deviations of each nearshore enduring environmental variable at 

each nearshore habitat type (a-l), expressed as a percentage of the maximum value recorded at 

any site throughout the estuary. Note in the cases of the longitude (X) and latitude (Y) variables, 

prior to being expressed as a percentage the minimum values have been subtracted. Full variable 

names are given in Table 2.1. 

the Shannon River and were distinguished mainly by their exposure to winds from 

various directions.  

The most distinct habitat type in the second broad group, C, was represented by 

12 sites located on the southern shore of Middle Basin, and was easily distinguished 

from the remaining habitat types in this group by the fact that it had by far the largest 

northerly fetch and least benthic vegetation within the group. In contrast, habitat D, 

situated on the north-eastern shore, was entirely fetch limited in a northerly direction, 

and was also nearly completely sheltered from easterly winds. However, the opposite 

was true for winds from all remaining directions, with habitat D having the greatest 
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direct, westerly and southerly fetches of any habitats in this group. Sites within this 

habitat had the widest wave shoaling margin compared to those at other habitats in this 

group. The next most distinctive habitat, F, located on the south-western shore of the 

Shannon and Middle basins, was best distinguished by its level of exposure to various 

winds, while the remaining habitats in this group, G and H, were distinctive not only 

because of their location in the middle to upper reaches of the entrance channel, but also 

because of the high degree of shelter from wind activity and, in the case of H, a very 

steeply sloping substrate. 

 

2.3.1.2: Habitat prediction  

The linkage tree representing the separation of the nearshore sites into the 

habitat types identified by the above CLUSTER and SIMPROF procedures, and the 

quantitative thresholds of the enduring environmental variable(s) that best reflect the 

division at each branching node of the tree, is provided in Fig. 2.10. This tree thus 

provides a set of quantitative decision rules that enable the habitat type of any “new” 

nearshore site (i.e. one not used in the habitat classification procedure) to be identified. 

These decision rules also provide an indication of which particular enduring 

environmental variables from the full suite are the most important in differentiating 

between the various habitat types. While each of the suite of ten environmental 

variables were selected at some point in the linkage tree, five were the only ones to be 

selected at particular branching nodes, i.e. latitude, longitude, submerged aquatic 

vegetation and northerly and direct fetch (Fig. 2.10). 

To test the ability of the linkage tree to reliably predict the habitat type to which 

a “new” site belongs, 20 additional nearshore sites were randomly nominated 

throughout Broke Inlet (see Fig. 2.11) and their suite of enduring environmental 

variables measured using the methodology given in subsection 2.2.2.3 (Table 2.3). The 

measurements for each of the sites were then compared to the threshold values given at 

each branching node of the linkage tree until a terminal node (habitat type) was reached. 

Comparison of the habitat type derived for each of the new sites with that of the closest 

existing (i.e. classified) site demonstrated that, in all cases, the habitat prediction was 

appropriate (Fig. 2.11).  
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Table 2.3: Measurements for the suite of enduring environmental variables recorded at each of the 20 additional nearshore sites throughout Broke Inlet that were 

used to trial the habitat prediction tool. Full variable names and their units of measurement are given in Table 2.1. 

Site X Y N S E W D DW Sl V 

i 6,130,000 444,000        0    113    252    333    280     77 1.94 29.54 

ii 6,140,000 446,000        0 4,020    446       0 1,518     33 2.49 77.78 

iii 6,140,000 448,000        0 3,971 2,597       0 1,937     35 4.12 80.09 

iv 6,140,000 448,000 2,035    574       0    292 5,176    860 0.60 2.18 

v 6,140,000 446,000 2,940    561       0      25 2,331    651 0.36 0.00 

vi 6,140,000 445,000 1,838 3,740       0      91 2,949    162 0.65 14.04 

vii 6,140,000 445,000      84 2,698    721        0 2,788    115 0.76 0.00 

viii 6,140,000 446,000        0    144 3,952    435 2,468 1,110 0.04 0.07 

ix 6,140,000 448,000    508        0     268 3,221 3,800    787 0.24 0.00 

x 6,140,000 449,000        0       4 2,535 2,073 2,322    906 0.33 0.00 

xi 6,140,000 450,000        0       2 3,596 1,405 2,375 1,025 0.16 0.00 

xii 6,140,000 453,000        0    256 2,518       0 4,481 1,907 0.10 76.00 

xiii 6,130,000 456,000        0    264 2,342 1,855 2,436    321 0.59 0.00 

xiv 6,130,000 455,000 2,657    643       0       0 2,521 1,296 0.21 0.00 

xv 6,130,000 453,000 2,310 1,388       0       1 2,698 1,094 0.56 0.00 

xvi 6,130,000 451,000 2,247 1,974     38       0 1,228    900 0.25 34.57 

xvii 6,130,000 448,000 3,655 2,145       0 1,067 3,074    389 0.61 64.00 

xviii 6,130,000 446,000      60 2,458       7       0 4,031    945 0.73 89.02 

xix 6,130,000 445,000    265     77       0    429 2,120 1,033 0.44 0.00 

xx 6,130,000 444,000     312    270       0     54    272    255 0.76 0.00 
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Fig. 2.10: Linkage tree and associated enduring environmental variable thresholds for assigning new nearshore sites to their appropriate habitat type. Unbracketed 

and bracketed thresholds given at each branching node indicate that a left or right path should be followed, respectively. Note that all threshold values have not been 

subjected to any form of data pretreatment. The terminal node represented by the white box with a habitat type marked by an asterisk denotes an alternative path for 

assigning to that habitat (n=1). B% reflects the extent of inter-habitat differences as a proportion of that between the most dissimilar habitat types.  
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Fig. 2.11: Habitat classification of the nearshore sites (1-104) produced using the CLUSTER and SIMPROF procedures with the additional 20 nearshore sites (i-xx) 

classified using the LINKTREE procedure. The circles demark the existing sites and their respective habitat type, while the circles with a black edge and roman 

numerals identify the number and representative habitat type of the new sites. 
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2.3.2: Offshore waters 

2.3.2.1: Habitat classification 

The CLUSTER and SIMPROF routines performed on the data for the full suite 

of enduring environmental variables measured at each of the 36 offshore sites produced 

four significantly different habitat types (Figs 2.12, 2.13). As for the nearshore waters, 

each of the four offshore habitat types were coded according to the position along the 

distance axis at which they separated from the other habitat types, with the most 

environmentally-distinct habitat type labelled as A.  

Habitat A was represented by five sites located within the entrance channel and 

was best differentiated from the remaining habitat types by small fetches and narrow 

areas of deeper water in all cardinal directions, by far the largest areas of submerged 

aquatic vegetation and the most relatively steeply sloping substrate (Fig. 2.14). In 

contrast, the next most distinctive habitat, B, which comprised sites located within 

Shannon Basin, was characterised by moderate to large fetches and areas of deeper 

waters in all cardinal directions and an unvegetated and gently sloping substrate 

(Fig. 2.14). The remaining habitats, C and D, which represented sites in the Middle and 

Clarke basins, respectively, both had unvegetated substrates but were distinguished by 

their locations within the estuary and the fact that C typically had larger fetch distances 

to surrounding areas of deeper waters (Fig. 2.14). 

 

2.3.2.2: Habitat prediction 

The linkage tree containing the separation of the offshore sites into their 

respective habitat types identified by the CLUSTER and SIMPROF procedures, along 

with the quantitative thresholds for the enduring environmental variables that reflected 

the division at each branching node is shown in Fig. 2.15. As for the nearshore waters 

the predictive capacity of this linkage tree was tested by nominating ten new sites 

throughout previously unclassified areas of the offshore waters (Table 2.4; Fig. 2.16), 

measuring their enduring environmental characteristics using the methodology given in 

subsection 2.2.2.3, then comparing the resultant data to the thresholds at each 

successive split of the tree until a habitat type was reached. The linkage tree 
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successfully allocated each of the ten new sites to one of the four existing habitat types, 

and comparison of those habitat predictions with the habitat type of nearby classified 

sites demonstrated that, in each case, these predictions were appropriate (Fig. 2.16). 

 

 

 

Table 2.4: Measurements for the suite of enduring environmental variables recorded at each of 

the 10 additional offshore sites throughout Broke Inlet that were used to trial the habitat 

prediction tool. Full variable names and their units of measurement are given in Table 2.1. 

 

Site X Y N E S W NW EW SW WW Sl V 
i 6,140,261 446,599 1,232 1,073 3,033 2,084 654 454 1,895 1,657 0.10 0 

ii 6,139,034 446,530 2,228 3,139 1,048 1,851 1,781 743 933 1,335 0.00 0 

iii 6,137,919 446,459 2,413 2,644 733 1,103 1,826 1,002 338 709 0.12 0 

iv 6,137,747 447,584 1,767 2,136 961 1,805 491 536 431 1,165 0.53 0 

v 6,134,052 444,083 118 523 209 488 55 209 87 245 1.99 47 

vi 6,134,237 448,074 2,186 4,427 1,261 1,385 911 1,691 438 1,058 0.19 0 

vii 6,133,683 449,680 3,706 3,634 625 2,529 1,866 580 437 326 0.08 0 

viii 6,133,598 452,065 3,177 1,656 1,129 3,663 1,217 1,033 794 1,593 0.16 0 

ix 6,132,820 455,201 1,722 1,387 1,375 1,285 327 510 256 194 0.08 0 

x 6,132,365 455,873 2,158 779 941 2,169 314 193 533 199 0.04 0 

 

 

 

 
 

Fig. 2.12: Dendrogram derived from subjecting the enduring environmental data from each 

offshore site in Broke Inlet to CLUSTER and SIMPROF. Groups of sites marked by red lines 

do not contain significant environmental differences and thus represent habitat types. 
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Fig. 2.13: Sites representing the four offshore habitat types in Broke Inlet identified by the 

CLUSTER and SIMPROF procedures.  

 

 
 

Fig. 2.14: Means and standard deviations of each offshore enduring environmental variable at 

each offshore habitat type (a-d), expressed as a percentage of the maximum value recorded at 

any site throughout the estuary. Note in the cases of the longitude (X) and latitude (Y) variables, 

prior to being expressed as a percentage the minimum values have been subtracted. Full variable 

names are given in Table 2.1. 
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Fig. 2.15: Linkage tree and associated enduring environmental variable thresholds for assigning 

new offshore sites to their appropriate habitat type. Unbracketed and bracketed thresholds given 

at each branching node indicate that a left or right path should be followed, respectively. Note 

that all threshold values have not been subjected to any form of data pretreatment. B% reflects 

the extent of inter-habitat differences as a proportion of that between the most dissimilar habitat 

types.  
 

 
 

Fig. 2.16: Habitat classification of the offshore sites (1-36) produced using the CLUSTER and 

SIMPROF procedures with the additional 10 offshore sites (i-x) classified using the LINKTREE 

procedure. The circles demark the existing sites and their respective habitat type, while the 

circles with a black edge and roman numerals identify the number and representative habitat 

type of the new sites. The red line identifies the offshore areas. 
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2.4: Discussion 

2.4.1: Critical appraisal of the Valesini et al. (2010) Habitat Classification 

Scheme (VHCS) 

A critical appraisal of each “step” of the VHCS and its application to Broke Inlet 

is provided below. 

 

2.4.1.1: Capturing spatial and temporal variability  

Estuaries are among the most difficult aquatic environments to classify with 

respect to the habitats they contain, due to the large spatial and temporal variability in 

environmental conditions that typically occur within these systems over a variety of 

scales. Therefore, any successful scheme for classifying the various habitat types within 

estuaries must encompass a significant proportion of their environmental variability. 

Adequately capturing spatial variation may be complex in hierarchical schemes with 

nested spatial scales (e.g. Madden et al., 2005) as the scales used in the classification 

are dependent on the aims of that particular study (see Keefer et al., 2008) and thus two 

studies could theoretically classify the same sites within an estuary into different habitat 

types. However, such confusion is avoided in the VHCS as all waters from the mouth of 

the estuary to the estuarine extent of the rivers are classified. Thus, this scheme has been 

used as the basis for surveying a range of fauna, the distribution of which change at 

different spatial levels, i.e. meiofauna, hyperbenthic fauna, benthic macroinvertebrate 

fauna and ichthyofauna (Valesini et al., 2009; Chapters 3, 4 and 5).  

Capturing temporal variability in estuarine environmental conditions is more 

challenging, as a restricted or “snapshot” approach to data collection will usually not be 

adequate to characterise these dynamic systems (Keefer et al., 2008). In order to 

overcome the influence of temporal variability in environmental characteristics, the 

VHCS employs a suite of temporally-enduring abiotic variables which were selected as 

the criteria for classifying the various habitat types within estuaries, rather than non-

enduring environmental variables such as salinity and water temperature. The use of 

such criteria has several advantages, namely that they (i) are applicable at any temporal 

scale, (ii) can be measured from remotely sensed imagery in GIS, (iii) are time and cost-
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effective, relative to the resources required to obtain quantitative non-enduring 

environmental data at suitable spatio-temporal scales with appropriate levels of 

replication, (iv) often act as good surrogates for complex suites of non-enduring 

environmental characteristics (Roff & Taylor, 2000; Zacharias & Roff, 2000; Roff 

et al., 2003) and (v) can be employed in systems, such as Broke Inlet, were 

comprehensive long term water quality data are not available.  

 

2.4.1.2: Selection of sites 

The selection of sites for classification into habitat types is of fundamental 

importance, as any bias or misrepresentation of the environmental diversity in an area of 

interest will be incorporated into the resultant classification scheme. One advantage of 

the VHCS is that the initial step involves the selection of as many sites throughout the 

estuary as are required to encompass as much of the environmental diversity as possible 

using, primarily, the digital image as a reference and, secondly, experience gained from 

field reconnaissance. However, it is difficult in heavily tannin-stained systems like 

Broke Inlet to ensure that the large majority of benthic diversity in deeper waters is 

captured by the suite of sites selected using only the above two methods. This can only 

be ensured through the extensive ground-truthing that was required to validate the 

benthic classification map of the estuary (Kenny et al., 2003). 

 

2.4.1.3: Selection of the enduring environmental characteristics  

The environmental characteristics employed to delineate habitat types in the 

VHCS were required to be (i) fully quantitative, (ii) temporally-enduring, (iii) able to be 

calculated from mapped sources and (iv) biologically relevant to fish and benthic 

macroinvertebrates. The merits of using such environmental characteristics as habitat 

classification criteria have previously been described in Chapter 1 and addressed by 

other authors (e.g. Banks & Skilleter, 2002; Snelder et al., 2005; Hume et al., 2007; 

Snelder et al., 2007). Those variables employed in the VHCS (see Table 1) were 

considered to fall into three categories, namely site location with respect to marine and 

freshwater sources, exposure to wave activity and substrate/submerged aquatic 
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vegetation composition, each of which was selected on the basis that they were 

considered to influence the distribution of estuarine fish and benthic macroinvertebrate 

faunas (e.g. Ysebaert et al., 1993; Bell et al., 1997; Clark, 1997; Mattila et al., 1999; 

Beyst et al., 2001; Akin et al., 2003; Brogueira & Cabeçadas, 2006). 

Despite the sound logic and reasoning behind the three categories of 

environmental characteristics employed in the VHCS, some of the variables selected to 

represent each of the categories were not optimal. These included the use of the latitude 

and longitude variables in the location category as surrogates for a wide range of water 

physico-chemical variables. Whilst these provide a good depiction of the spatial 

differences among sites, they do not entirely capture the location of a site relative to 

marine and freshwater sources, as was their aim. In contrast, when the VHCS was 

recently applied to the Swan-Canning Estuary, a permanently-open, elongate drowned 

river valley system on the lower west coast of Australia, a “midline” drawn down the 

longitudinal axis of the estuary was used to measure the distance of the site from the 

ocean (Valesini et al., 2010). This technique provides a more accurate representation of 

the vicinity of each site to marine and freshwater sources than that employed in Broke 

Inlet, and also several other “non-linear” estuarine systems in south-western Australia 

by Valesini et al. (2009), i.e. Wilson Inlet and the Peel-Harvey Estuary. The reasoning 

provided by these workers for this difference in methodology among estuaries with 

essentially “linear” vs “non-linear” morphologies was the difficulty in objectively 

identifying a middle longitudinal axis in the latter type of system. However, it is 

proposed that for Broke Inlet, and other basin estuaries, a line could be constructed from 

the site to the nearest river and connection to the ocean, either in the form of a straight 

line, i.e. as the crow flies or a along the waterline, i.e. as the fish swims. Such a 

measurement would accurately measure the distance to marine/freshwater sources and 

overcome the problem of multiple water sources. For example, if the distance from a 

site to each marine/freshwater source was calculated, theoretically two sites on opposite 

shores of the estuary, each of which is situated near the mouth of a river, would be 

distinguished during the classification procedure. 
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With regard to the percentage cover of submerged aquatic vegetation variable, 

some workers may not consider this to be an enduring environmental characteristic, as 

some species undergo an annual period of senescence (e.g. Critchley et al., 1990) and, 

in some seasonally-open estuaries, dramatic changes in water level may result in 

macrophyte desiccation (e.g. Riddin & Adams, 2008). During the present study, 

however, the distribution of submerged aquatic vegetation was relatively consistent 

throughout the year, despite seasonal changes in biomass of Ruppia megacarpa (see 

Chapter 3). Similar trends in the distribution and biomass of this macrophyte have also 

been observed in the nearby and seasonally-open Wilson Inlet (Carruthers et al., 1999). 

Although the use of variables to account for wave exposure are common place in 

large-scale habitat classification schemes (e.g. Roff & Taylor, 2000; Zacharias & Roff, 

2000; Connor et al., 2004), they are typically less prominent amongst schemes 

developed for estuaries (e.g. Stevens & Connolly, 2004). Nevertheless, exposure to 

wave activity has been shown to influence faunal composition (e.g. Bell et al., 1997; 

Clark, 1997; Hewitt et al., 2003; Félix et al., 2007). It is thus suggested that the lack of 

incorporation of wave exposure variables into estuarine classification schemes is 

reflective of the degree of difficulty in accurately measuring this variable. However, the 

fetch calculations employed in the VHCS were simple to undertake in GIS (see Ekebom 

et al., 2003) and similar fetch calculations have been employed in other studies 

(e.g. Tolvanen & Suominen, 2005; Boström et al., 2006; Harborne et al., 2006; Allen 

et al., 2007). 

 Another feature of the VHCS with respect to the variables it employs is the 

plasticity of the approach. Thus, the classification procedure allows any enduring 

environmental variable that is able to be accurately measured from mapped sources to 

be employed, therefore allowing the approach to be successfully applied to any estuary 

(see Valesini et al., 2009). Although the choice of categories and/or representative 

variables is somewhat subjective, this is typical of many classification schemes and is 

also required to facilitate wide application of the approach. 
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2.4.1.4: Measurement of the enduring environmental characteristics 

The initial stage in the measurement of the environmental characteristics 

employed in the VHCS is the acquisition of a high resolution remotely-sensed image 

and a digital elevation model or depth soundings of the estuary of interest. For estuaries 

situated around population centres, this information is commonly available through 

local government agencies, thus negating the potentially high costs of acquiring it 

independently. These requirements, however, are substantially less than those for 

several other classification schemes that are applicable to estuaries, such as Madden 

et al. (2005), which requires a large suite of non-enduring variables (i.e. modifiers or 

classifiers, which are a set of attribute-based descriptors that may be physico-chemical, 

physical, geomorphologic, or biological in nature, such as salinity, water velocity, 

substrate relief and sediment grain-size data) to be measured using expensive and 

complex equipment (e.g. acoustic Doppler current profilers and sidescan sonar) over 

various spatial and temporal scales before classification can proceed (Keefer et al., 

2008).  

Preparation of the satellite image for use in the VHCS (see 2.2.2.1) is both 

relatively time consuming and computationally intense, moreover, in situ ground-

truthing was required to validate the accuracy of the benthic classes identified from the 

image. However, such image preparation and/or ground-truthing requirements are 

standard for most types of work involving measurements from remotely-sensed 

imagery. Furthermore, the extent of the image pretreatment stage and, to a lesser extent, 

the variable measurement stages are not influenced by the number of sites chosen 

throughout the system, unlike in schemes requiring non-enduring or biotic criteria 

(e.g. Connor et al., 2004; Madden et al., 2005; Mount et al., 2007).  

 

2.4.1.5: Classification procedure 

The fundamental aim of a habitat classification scheme is to group sites into a 

series of distinct habitat types based on their collective abiotic and/or biotic differences. 

However, very few schemes actually demonstrate that the characteristics of the resultant 

habitat types are significantly different, but instead simply assume this to be the case. 
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This is especially true for large hierarchical schemes which operate over a range of 

spatial and/or temporal scales (e.g. Roff & Taylor, 2000; Madden et al., 2005; Mount 

et al., 2007). In contrast, hierarchical agglomerative cluster analysis in combination 

with the SIMPROF test (Clarke et al., 2008) is employed in the VHCS to (i) identify 

groups of sites which do not differ significantly in their environmental characteristics 

and thus represent distinct habitats and (ii) ensure that any such group does not contain 

more than one habitat type. Similar hierarchical clustering approaches have been used 

previously in other habitat classification schemes, however, those approaches have 

typically assigned an arbitrary resemblance level as the “cut-off” point, at which those 

groups of sites identified during the clustering process are presumed to represent 

different habitat types each with homogenous characteristics (e.g. Edgar et al., 2000; 

Snelder et al., 2007). Various non-hierarchical clustering techniques, such as K-means 

clustering, have also been widely used to classify habitat types (e.g. Zharikov et al., 

2005; Orpin & Kostylev, 2006). However, these techniques require an arbitrary pre-

selection of the number of classes (i.e. habitat types) to which the data can be assigned, 

and the number of “true” classes remains unknown (e.g. Jordan & Vaas, 2000; Gregr & 

Bodtker, 2007). While some others have employed a range of statistical techniques to 

identify the optimal number of classes including cubic clustering criterion (e.g. Engle 

et al., 2007), Calinski-Harabasz criterion (e.g. Legendre et al., 2002; Orpin & Kostylev, 

2006; Verfaillie et al., 2009), and classification and regression tree algorithms

(e.g. Zharikov et al., 2005), these approaches still lack a statistical demonstration that 

the resultant classes are significantly distinct. 

Another feature of the classification approach employed in the VHCS is that it is 

completely objective and repeatable among users. This is a major advantage over 

several large hierarchical schemes (e.g. Connor et al., 2004; Madden et al., 2005), in 

which the numerous modifiers or classifiers available, may be applied to any level of 

these schemes, meaning that the resultant classification of an area of interest can 

potentially vary considerably depending on the particular choices a user may make. 

Such problems have been highlighted by workers such Keefer et al. (2008).  
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2.4.1.6: Habitat prediction 

The ability to predict the habitat type to which a new estuarine site belongs is 

widely advocated as a management tool (Zacharias et al., 1999; De'ath, 2002) but has 

rarely been developed. The habitat prediction tool in the VHCS offers a number of 

advantages over existing methods. For example, having reached the terminal node of the 

linkage tree in the VHCS, there is no ambiguity over the identification of the habitat 

type. In the scheme developed by Zacharias et al. (1999), however, there were at least 

two habitat types presented as potential options at each terminal node of the predictive 

tree. Critically, at the fourth tier of the decision tree, which identified six of the seven 

habitat types, a particular habitat type was found to occur on both sides of the binary 

split, thus suggesting that the decision rule and associated threshold value for that split 

was the not the most appropriate, or potentially that the habitat types separated by that 

split were not statistically different. Furthermore, the linkage tree produced by the 

prediction tool in the VHCS clearly identifies which environmental criteria and its 

quantitative thresholds are most responsible for the divisions among habitats as opposed 

to the PCA approach adopted by Valesini et al. (2003). 

The VHCS habitat predication method, although ultimately successful, has a 

number of issues. Firstly, the initial habitat classification employed a hierarchical 

agglomerative (“bottom-up”) approach, whereas the prediction technique employed a 

divisive (“top-down”) approach. This systematic difference in the methodology of these 

approaches may result in the subdivision of a habitat type across multiple nodes, this 

occurred in the predictive linkage tree produced for the nearshore waters of Broke Inlet. 

However, despite this minor inconsistency the classification rules for assigning sites to 

those habitats proved to be appropriate when the scheme was tested using “new” or 

“dummy” sites. Furthermore, there were some instances in that latter testing procedure 

in which a site met one/or more of the requirements for both habitats on either side of a 

terminal node. However, this generally only occurred for habitat types that lay adjacent 

to each other, and were thus typically similar.  
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2.4.2: Future developments 

 Valesini et al. (2010) envisaged the VHCS as a component of the lower levels of 

a hierarchical habitat classification scheme developed at a national scale (e.g. Mount 

et al., 2007). If this scheme were to be widely employed, there are a number of ways of 

optimising the classification methodology to save time and resources. For example, in 

estuaries where bathymetric data is not available, as was the case with Broke Inlet, this 

information can be measured remotely using laser altimetry, such as LIDAR, rather than 

extensive “in situ” surveying using SONAR (Yang, 2005; Chust et al., 2010). It is also 

possible to automat processes in GIS using routines, such as the macro-modeler in 

IDRISI, which could “automatically” perform the image pre-processing. Furthermore, 

the Wave Exposure Model (WEMo) developed by NOAA could be employed in 

conjunction with ArcGIS to calculate the exposure variables automatically at each 

nearshore and offshore site. The use of such processes to automate the image pre-

processing and calculation of some of the enduring environmental variables would save 

considerable time and allow the production of a spatially continuous classification, 

whereby the entire margin of an estuary could be classified, thus alleviating the need for 

a predictive tool.  

 In order to fully validate the results of the VHCS for Broke Inlet, quantitative 

sampling of the fish and benthic macroinvertebrate faunas have been undertaken and the 

level of “agreement” between differences in the characteristics of those assemblages 

and those of the various habitat types have been statistically tested (see Chapters 3, 4 

and 5). A good match between the habitat types and faunas will allow the habitat 

prediction tool to reliably predict the abundant fish or benthic macroinvertebrate species 

most likely to occur at any new site of interest. 
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Chapter 3 

Ichthyofaunal composition among habitat types in 

Broke Inlet 

 

3.1: Introduction 

Estuaries comprise a complex mix of inter-connected habitat types due to the 

strong physico-chemical gradients and the diversity of benthic environments that are 

often present within these systems (Pihl et al., 2002). Habitat structure and their spatial 

arrangement are thus typically important predictors of the composition of estuarine 

faunal assemblages, and sometimes also of species richness, diversity and abundance 

(Thrush et al., 2005; França et al., 2009a; Hourston et al., 2009). While biotic 

interactions such as predation and competition also play a role in structuring faunal 

composition in estuaries, many of the spatial differences in these assemblages can 

consistently be related to those in a suite of physico-chemical characteristics (including 

those within the water column and those related to hydrological processes), the substrate 

and structural heterogeneity (e.g. Marshall & Elliott, 1998; Mattila et al., 1999). 

The majority of studies on spatial differences in faunal assemblages within 

estuaries have focused on their relationships with either extremes of habitat, 

e.g. riverine vs basin regions (e.g. Potter & Hyndes, 1994; Chuwen et al., 2009b), 

vegetated vs unvegetated substrata (e.g. Sogard & Able, 1991; Humphries et al., 1992; 

Rozas & Minello, 1998; Castellanos & Rozas, 2001) or gradational patterns along the 

length of the estuary (e.g. Loneragan & Potter, 1990; Ysebaert et al., 1993; Hourston 

et al., 2009). However, relatively few studies have attempted to determine the 

relationships between the spatial distribution of estuarine fauna and larger suites of 

environmental criteria that more adequately characterise differences among habitat 

types within those systems. Moreover, even fewer studies have focused on establishing 

quantitative, rather than qualitative, links between spatial differences in faunal 

composition and those of comprehensively-defined habitats, particularly at scales that 

are most useful for estuarine management, i.e. local to regional scales. Ascertaining 
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solid relationships between faunal composition and habitat types within estuaries 

provides the foundation for predicting a range of faunal characteristics on the basis of 

the environmental criteria that collectively define habitats, which has an extensive range 

of applications for estuarine management and research. 

To date, the only published studies of spatial differences in the fish assemblages 

of Broke Inlet have been undertaken at relatively broad scales, focusing primarily on 

their differences among subjectively-defined regions and their relationships with a 

limited suite of water physico-chemical parameters, i.e. salinity, water temperature and 

dissolved oxygen concentration. This is also the case for a range of other estuaries on 

the south coast of Western Australia, including those for Wilson Inlet, for which only 

differences in the fish fauna among broad regions and vegetated vs unvegetated habitats 

have been examined (Humphries et al., 1992; Potter et al., 1993), and the Walpole-

Nornalup Estuary, Irwin Inlet, Oyster Harbour and Wellstead Estuary, where again 

ichthyofaunal differences were investigated among broad regions (Potter & Hyndes, 

1994; Chuwen et al., 2009b; Hoeksema et al., 2009) and in the case of the latter estuary 

along the length of the estuary (Young & Potter, 2002). 

In order to better characterise the spatial differences in the fish fauna of Broke 

Inlet, and to understand the extent of their relationships with those in a comprehensive 

suite of environmental characteristics, the fish assemblage was sampled seasonally for 

two years at 11 of the nearshore and three of the offshore habitat types that were 

identified quantitatively in Chapter 2. These data were used to address the following 

aims. 

(1) To test whether the species richness, density/catch rate, diversity and 

composition of the fish fauna differed significantly among habitat types 

in both the nearshore and offshore waters.  

(2) To test whether the classification of the nearshore and offshore habitat 

types provided a sound basis for predicting spatial differences in the 

nearshore and offshore fish faunas, respectively, by determining if the 

pattern of relative differences among habitat types, as defined by their 

enduring environmental criteria, was significantly correlated with that 

defined by the composition of their fish assemblages. 
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3.2: Materials and methods 

3.2.1: Sampling regime 

The fish fauna of Broke Inlet was sampled during the last month of each season 

between spring 2007 and winter 2009 at each of the habitat types identified in the 

nearshore and offshore waters of Broke Inlet (see Chapter 2). The only exceptions were 

habitats L in the nearshore waters and D in the offshore waters, which were not sampled 

as these habitats comprised only two sites. For convenience, spring 2007 to winter 2008 

and spring 2008 to winter 2009 are subsequently referred to as the years 2007/2008 and 

2008/2009, respectively. During each of the above sampling occasions, samples of the 

fish fauna were collected during the day at four sites representing each of the nearshore 

habitat types, with the exception of habitat J, for which there were only three 

representative sites and at night from three sites representing each offshore habitat type 

(Fig. 3.1). Moreover, two replicate samples were collected at each nearshore site and, 

within each season, samples from any given nearshore habitat type were collected on 

two separate days to reduce the likelihood of the resultant data being influenced by an 

atypical catch. Due to extremely low water levels, fish could not be collected from 

nearshore habitat A during the summer and autumn of both years. The number of sites 

sampled per habitat type and the number of replicates sampled per site were considered 

great enough to be representative of the nearshore and offshore waters of Broke Inlet. 

Samples of the fish fauna at nearshore habitat types were collected using a seine 

net that was 21.5 m long and consisted of two 10 m long wings (6 m of 9 mm mesh and 

4 m of 3 mm mesh) and a 1.5 m long bunt made of 3 mm mesh. The net, which was laid 

parallel to the shore and then hauled onto the beach, fished to a depth of 1.5 m and 

swept an area of 116 m
2
. Fishes in the offshore waters were collected using sunken 

composite multifilament gill nets comprising seven 20 m long panels, each with a 

height of 2 m, but containing a different stretched mesh size, i.e. either 35, 51, 63, 76, 

89 102 or 127 mm. Gill nets were set at dusk and retrieved at dawn (10-13 hours later).  

Upon capture, all fish were immediately euthanised in an ice slurry (Murdoch 

University Animal Ethics Permit # R2086/07). The total number of individuals of each 

fish species in each sample was then recorded and the total length of each individual 

measured to the nearest 1 mm, except when a large number of any one species was 

caught, in which case the lengths of a random subsample of 100 fish were measured. 



 

 

6
0

 

 
 

Fig. 3.1: Map showing location of the sampling sites in each nearshore and offshore habitat type in Broke Inlet at which the fish fauna was sampled seasonally 

between spring 2007 and winter 2009. Circles represent the actual size of the site and the red line (1 m depth contour) indicates the demarcation between the 

nearshore and offshore waters. 
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A range of non-enduring environmental variables were measured at each site at 

the same time at which fish were collected. These included water physico-chemical 

parameters, namely salinity, water temperature, dissolved oxygen concentration and pH 

and, in the nearshore waters, any submerged aquatic vegetation retained in the seine net 

during fish collection. Each of the water physico-chemical variables were measured 

using a YSI 556 Handheld Multiparameter Instrument (Yellow Spring International, 

Ohio, USA), with two replicate measurements of each variable being recorded in the 

middle of the water column at each nearshore site and at the surface and bottom of the 

water column at each offshore site. All samples of submerged vegetation were dried for 

24 hours at 60°C, subsequent drying for three hours and weighing was then employed to 

ensure each sample was completely dry (Short & Coles, 2001). 

 

3.2.2: Statistical analyses 

 Each of the following statistical analyses were performed using the PRIMER v6 

multivariate software package (Clarke & Gorley, 2006) with the PERMANOVA+ add-

on module (Anderson et al., 2008). Although habitat was the main factor of interest, 

differences among seasons and years were accounted for so that their confounding 

influence could be quantified and “removed” if necessary. 

 

3.2.2.1: Univariate analyses 

Differences in non-enduring environmental variables among habitat types, seasons, 

and/or water depth 

Prior to undertaking PERMANOVA, data for each of the dependent variables 

(i.e. salinity, water temperature, dissolved oxygen concentration, pH and dry weight of 

detached macrophytes), was examined to ascertain the type of transformation required, 

if any, to meet the test assumptions of homogenous dispersions among groups 

(Anderson, 2001). This was achieved by determining the extent of the linear 

relationship between the loge (mean) and the loge (standard deviation) of all groups of 

replicate samples, and then using the slope criteria provided by Clarke & Warwick 

(2001) to select an appropriate transformation. This methodology showed that, for the 

nearshore waters, salinity, water temperature, dissolved oxygen concentration and pH 
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required a square root transformation and the dry weight of detached macrophytes a 

loge(X+1) transformation. None of the non-enduring environmental variables in the 

offshore waters required transformation. Note that here, as in all other cases where 

trends in univariate data were employed, PERMANOVA rather than ANOVA was 

employed as the former test does not make assumptions about the distribution of the 

data (Anderson, 2001; McArdle & Anderson, 2001). 

 Euclidean distance matrices containing all pairs of replicate samples were then 

constructed separately for each non-enduring environmental variable in both the 

nearshore and offshore waters. These matrices constructed from the nearshore data were 

then subjected to a four-way PERMANOVA to test whether each dependent variable 

differed significantly among habitats, sites (nested within habitats), seasons and years. 

All factors except the nested term were considered fixed. If this analysis did not detect 

significant site differences then the replicate data recorded at each site was pooled to 

represent habitat, and these data were subjected to habitat x season x year 

PERMANOVA, with all factors considered fixed. If significant site differences were 

detected, the replicate data at each site on each sampling occasion was averaged and 

subjected to the above three-way PERMANOVA. The data for each non-enduring 

environmental variable in the offshore waters was subjected to a four-way crossed 

habitat x season x year x depth PERMANOVA with all factors being considered fixed. 

In all PERMANOVA tests, the null hypothesis of no significant differences among 

groups was rejected if the significance level (p) was < 0.05, and the relative influence of 

each term in the model was quantified using the components of variation. The main 

source of significant differences detected by PERMANOVA were identified by 

examining plots of the marginal means of the dependent variable, back transformed 

where necessary, with associated 95% confidence intervals. 

 

Differences in species richness, density and diversity among habitat types, seasons 

and years 

Species richness and Shannon-Wiener diversity were initially calculated for each 

replicate fish sample using the DIVERSE routine in PRIMER v6 (Clarke & Gorley, 

2006). The density of fish in each nearshore sample (number of fish 100 m
-2

) and the 
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catch rate of fish in each offshore sample (number of fish h
-1

) were also calculated. Each 

of these dependent variables in the nearshore and offshore waters were then individually 

examined using the method devised by Clarke and Warwick (2001) to ascertain the type 

of transformation required, if any, to satisfy the assumption of homogenous group 

dispersions for PERMANOVA (see above). These analyses indicated that, in the 

nearshore waters, species richness and Shannon-Wiener diversity required a square-root 

transformation and density a loge(X+1), while in the offshore waters, species richness 

and catch rates required a square-root transformation and Shannon-Wiener diversity a 

fourth-root transformation. Separate Euclidean distance matrices containing all pairs of 

samples were then constructed for each of the above variables in the nearshore and 

offshore waters, which were then each subjected to the same PERMANOVA tests 

described above for non-enduring water physico-chemical variables. The only exception 

was the removal of the depth term for the tests for the offshore data. The method of 

interpretation for each of these PERMANOVA analyses was the same as that described 

earlier. 

  

3.2.2.2: Multivariate analyses  

Differences in fish faunal composition among habitat types 

The replicate fish species abundance data recorded at each nearshore site in each 

season and year was initially subjected to dispersion weighting to down-weight the 

contributions of those species that exhibited erratic differences in abundance between 

replicate samples (Clarke et al., 2006b). The resultant data was then subjected to a 

square-root transformation to balance the contributions of highly abundant species with 

those that were less abundant. This pretreated data was then used to construct a Bray-

Curtis similarity matrix, which was subjected to the same PERMANOVA analyses as 

described above. 

 As the above PERMANOVA tests detected significant interactions between 

habitat and season and/or year (see subsections 3.3.1.4 and 3.3.2.4) the Bray-Curtis 

matrix was separated for each level of the relevant temporal factor(s) in order to remove 

their confounding influence, and the various sub-matrices were then each subjected to 

one-way Analysis of Similarities (ANOSIM) tests (Clarke & Green, 1988) to elucidate, 
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in more detail, the extent to which ichthyofaunal composition differed among habitats. 

In this and all subsequent ANOSIM tests, the null hypothesis that there were no 

significant differences in ichthyofaunal composition among habitats was rejected if the 

significance level (p) was < 0.05. The extent of any significant differences were 

determined by the magnitude of the test statistic (R), which typically ranges between 0 

(i.e. no group differences) to 1 (i.e. the similarities between samples from different 

groups are all less than those between samples belonging to the same group). The same 

Bray-Curtis submatrices were also subjected to non-metric Multidimensional Scaling 

(nMDS) ordination in order to display visually the differences in the fish faunal 

composition among habitats.  

When ANOSIM detected a significant difference among habitats and the 

associated R-statistic was ≥ 0.2, Similarity Percentages (SIMPER; Clarke, 1993) was 

then used to elucidate which species typified the assemblages at each habitat and those 

which contributed most to differences between each pair of habitats. Focus was placed 

on those typifying and distinguishing species that had the highest similarity/standard 

deviation ratio and dissimilarity/standard deviation ratio, respectively, and those that 

were the most abundant. 

The offshore fish faunal composition data in each replicate sample was initially 

subjected to an overall square-root transformation, i.e. the same approach as was 

considered appropriate for overall catch-rate (see subsection 3.2.2.1). Note that 

dispersion weighting could not be applied to the offshore species composition data as, 

unlike that for the nearshore waters, it comprised catch-rates and not species counts 

(Clarke et al., 2006b). The transformed data was then used to construct a Bray-Curtis 

similarity matrix, which was in turn subjected to the same three-way PERMANOVA as 

described in subsection 3.2.2.1 for the other biotic variables in the offshore waters.  

The extent and nature of significant habitat differences in offshore fish faunal 

compositions detected by PERMANOVA were further explored using one-way 

ANOSIM tests, nMDS ordinations and one-way SIMPER analyses, carried out 

separately for each season and/or year where necessary. The methods of interpretation 

of those analyses were the same as for those described above for the nearshore waters. 
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Relationships between the fish community and environmental characteristics of 

habitat types    

The RELATE routine was used to test, for each season and/or year, the extent to 

which the relative differences among habitat types, as defined by their fish faunal 

composition, were significantly correlated with those defined by their suite of 

(i) enduring environmental characteristics and (ii) non-enduring environmental 

characteristics, i.e. water physico-chemisty and, in the case of the nearshore waters, the 

dry weight of detached macrophytes. This routine was thus used to determine how 

similar the pattern of the rank orders of resemblance were between the Bray-Curtis 

similarity matrix constructed from the pretreated fish assemblage data at each habitat 

type and the complementary Manhattan distance matrices constructed, respectively, 

from the transformed and normalised (i) enduring environmental data (see subsection 

2.2.2) and (ii) non-enduring environmental data (see subsection 3.2.1). Note that, for the 

nearshore waters, the complementary fish assemblage and environmental matrices were 

constructed from data which had been averaged for each habitat type, while in the 

offshore waters, where there were three habitat types, these matrices were constructed 

from the data recorded at each site. The latter was required to increase the number of 

samples in the matrices, and thus power in the RELATE tests. The null hypothesis that 

there was no relationship in the pattern of rank order similarities between the 

complementary matrices was rejected if the significance level (p) was < 0.05. The test 

statistic, rho (ρ), was used to gauge the extent of any significant differences, with values 

close to 0 reflecting little correlation in rank order agreement and close to 1 reflecting a 

near perfect match. nMDS ordinations of the ichthyofaunal and environmental data for 

each habitat type or site in each season and/or year were also constructed to provide a 

visual indication of any matching between the complementary data sets.  

The Biota and Environment matching routine (BIOENV; Clarke & Ainsworth, 

1993) was then employed to ascertain whether a greater correlation between the 

complementary faunal and non-enduring environmental matrices could be obtained 

using only a particular subset of the non-enduring variables, rather than the full suite as 

employed in RELATE. The matrices used in this procedure were identical to those 
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employed in the RELATE routine described above. The null hypothesis, and test 

statistic for these BIOENV tests were the same as those for the above RELATE tests. 

Comparisons of the relative differences among habitat types in the fish composition vs 

the non-enduring environmental variables selected by BIOENV were displayed visually 

by subjecting the above Bray-Curtis similarity matrices to nMDS ordination and then 

overlaying circles (“bubbles”) of proportionate sizes that represented the magnitude at 

each habitat/site of the selected environmental variable. 

 

3.3: Results 

3.3.1: Nearshore waters 

3.3.1.1: Differences in non-enduring environmental variables among nearshore 

habitat types, seasons and years 

A three-way crossed PERMANOVA of the nearshore salinity data in each 

habitat, season and year detected significant differences among each of these main 

effects and all possible interactions between main effects were also significant 

(p=0.001-0.011; Table 3.1a). As indicated by the associated components of variation, 

differences between years exerted by far the greatest influence on salinity, followed by 

those among seasons and, to a notably lesser extent, among habitats. With the exception 

of the season x habitat interaction, whose relative importance was similar to that of 

habitat, the influence of the remaining interaction terms were far lower than that for any 

of the main effects (Table 3.1a). 

Salinities were generally higher in 2007/2008 than 2008/2009, except during 

winter when a similar range of values were recorded in both years among the various 

habitats (Fig. 3.2a). Salinities were consistently the highest during summer and autumn 

at all habitats (i.e. 27-33 in 2007/2008 and 15-22 in 2008/2009). During winter, 

however, salinity exhibited marked differences among habitats. Thus, whereas salinities 

remained similar or exhibited relatively small declines from summer and autumn to 

winter and spring in the channel habitats (B, G and H), they were markedly higher than 

those at habitats within Middle Basin (C and D), and particularly those located near the  

vicinity of Inlet River and within Shannon Basin (A, E, F, J, K and I) during those latter  
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Table 3.1: Mean squares (MS), pseudo F-ratios, components of variation (COV) and significance levels (p) from PERMANOVA tests on the data for mean 

(a) salinity, (b) water temperature, (c) dissolved oxygen concentration, (d) pH and (e) macrophyte dry weight recorded at the 11 nearshore habitat types in Broke 

Inlet sampled in each season between spring 2007/2008 and winter 2008/2009. df = degrees of freedom. Significant results are highlighted in bold. 

 
    (a) Salinity   (b) Water temperature   (c) Dissolved oxygen concentration 

Main effects df MS Pseudo-F COV p  MS Pseudo-F COV p   MS Pseudo-F COV p 

Year 1 9493.500 1175.900 60.933 0.001  2.096 0.400 -0.020 0.591  0.244 16.531 0.001 0.001 

Season 3 2986.600 369.930 37.193 0.001  26.475 5.049 0.265 0.001  4.557 308.910 0.057 0.001 

Habitat 10 387.380 47.982 12.789 0.001  5.050 0.963 -0.007 0.609  0.288 19.511 0.009 0.001 

Interactions                

Year x Season 3 260.170 32.225 6.296 0.001  9.021 1.720 0.094 0.104  10.901 738.970 0.272 0.001 

Year x Habitat 10 19.287 2.389 0.756 0.011  5.284 1.008 0.003 0.469  0.075 5.061 0.004 0.001 

Season x Habitat 28 95.920 11.881 11.260 0.001  4.930 0.940 -0.040 0.669  0.089 6.049 0.010 0.001 

Year x Season x Habitat 28 17.452 2.162 2.404 0.002  5.734 1.094 0.126 0.249  0.061 4.139 0.012 0.001 

Residual 244 8.074   8.074     5.244  5.244   0.015   0.015   

                

    (d) pH   (e) Macrophyte dry weight      

Main effects df MS Pseudo-F COV p  MS Pseudo-F COV p      

Year 1 0.005 5.487 0.0001 0.006  16.664 15.178 0.100 0.001      

Season 3 0.316 9.631 0.0043 0.094  66.161 60.263 0.812 0.001      

Habitat 10 0.011 3.401 0.0004 0.001  53.553 48.780 1.769 0.001      

Interactions                

Year x Season 3 0.032 37.364 0.0008 0.001  7.254 6.608 0.154 0.002      

Year x Habitat 10 0.004 4.542 0.0004 0.001  1.904 1.734 0.054 0.067      

Season x Habitat 28 0.008 2.639 0.0008 0.016  3.574 3.255 0.317 0.001      

Year x Season x Habitat 28 0.003 3.628 0.0006 0.001  2.970 2.705 0.480 0.001      

Residual 244 0.001        0.0009     1.098   1.098        
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Fig. 3.2: Mean (a) salinity, (b) dissolved oxygen concentration (mg L
-1

), (c) pH and (d) dry 

weight of detached macrophytes (g) at each the 11 nearshore habitat types in Broke Inlet 

sampled in each season between spring 2007/2008 and winter 2008/2009. For the sake of 

clarity, the average ± 95% confidence intervals have been presented for each of these plots. 
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two seasons. Thus, during winter 2008/2009 and at some habitats in spring of the same 

year, salinities < 5 were recorded and, in some cases, 1 (Fig. 3.2a). 

Water temperature exhibited significant differences only among seasons 

(p=0.001, Table 3.1b). Temperatures were highest during spring and summer (22 and 

20°C, respectively) and decreased substantially during autumn and winter (ca 15°C; 

figure not shown). Dissolved oxygen concentration differed significantly among 

habitats, seasons and years and all interaction terms between these main effects (all 

p=0.001; Table 3.1c). By far the greatest proportion of the variance was explained by 

the year x season interaction, which was due mainly to the markedly greater values 

recorded in winter 2008/2009 than in winter 2007/2008 (ca 9 and 5 mg L
-1

, 

respectively) and the much greater range of values recorded during summer 2007/2008 

(i.e. 7-14 mg L
-1

) than in summer 2008/2009 (i.e. 5-6 mg L
-1

). Dissolved oxygen 

concentrations were often greatest at channel habitat H and among the lowest at habitats 

E and K located within Shannon Basin (Fig. 3.2b).  

Mean pH differed significantly between habitats and years and among all 

interactions (p=0.001-0.016; Table 3.1d). The year x season and season x habitat 

interactions explained the largest proportion of the variance, followed by the three-way 

interaction. The first of these interactions was caused mainly by differences between the 

two years in the range of values recorded during spring (i.e. 7.5 and 8 among all habitats 

in 2007/2008 compared to 6.8 and 8.2 in 2008/2009) and winter (i.e. 7 and 8 in 

2007/2008 and 7 and 8.4 in 2008/2009). The second and, to some extent, the last of 

these interactions was due to the variability among sampling occasions in the pattern of 

pH differences between habitats. For example, whereas values at habitat J were either 

the lowest or among the lowest on most sampling occasions, they were among the 

highest in autumn 2007/2008. The opposite was true for the channel habitats B, G and H 

(Fig. 3.2c). 

The dry weight of macrophytes also differed significantly among all main 

effects and interactions (p=0.001-0.002), with the exception of the year x habitat 

interaction term (Table 3.1e). The majority of the variance in this dependent variable 

was explained by differences in habitat and to a lesser extent, season. Macrophyte 
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biomass was greatest at habitat H, followed by G, on almost all sampling occasions, and 

was commonly among the lowest at habitats A, I, J and K (Fig. 3.2d). The greatest 

quantities of detached macrophytes were recorded in summer and/or autumn, while the 

least was often recorded in winter (Fig. 3.2d). The significant interactions detected for 

this dependent variable were attributable to the notable differences among sampling 

occasions in the pattern and extent of macrophyte biomass among habitats (Fig. 3.2d). 

 

3.3.1.2: Fish species mean density and life cycle contribution at each nearshore 

habitat type 

A total of 71,593 fish were caught (i.e. after the number of fish in each sample 

was adjusted to that in 100 m
-2

 and summed) in the nearshore waters throughout Broke 

Inlet between spring 2007/2008 and winter 2008/2009. These fish comprised 27 species 

which represented 19 families. The Atherinidae and Gobiidae were the most speciose, 

each represented by three species, and together accounted for 99.6% of all fish caught 

(Table 3.2).  

Of the 11 nearshore habitat types sampled throughout the estuary, habitat H 

located in the vegetated areas of the entrance channel was the most speciose (18), 

followed closely by habitat B at the mouth of the entrance channel (17) and C on the 

southern shore of Middle Basin (15) (Table 3.2). Conversely, habitat A situated on the 

eastern shore near the mouth of Inlet River was the most depauperate and harboured 

only five species. However, it should be noted that, due to the extensive shallow 

sandbanks which surround this habitat, sampling could only be carried out during winter 

and spring of both years. The remaining habitats (D, E, F, G, I, J and K), which were all 

located within either the Shannon or Middle basins, each contained between seven to 

ten species in total. The overall mean density of fish was also highest at habitat H (342 

fish 100 m
-2

), followed by that at habitats B and G (232 and 124 fish 100 m
-2

, 

respectively). The lowest mean densities of fish were recorded at habitat A 

(30 fish 100 m
-2

), while those at the remaining habitats (i.e. C, D, E, F, I, J and K) 

ranged between 47 and 105 fish 100 m
-2

 (Table 3.2).  

The most speciose life cycle guild of fish throughout the nearshore waters of 

Broke Inlet was the marine stragglers, represented by eight species, followed by the 
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Table 3.2: Mean density (fish 100 m
-2

; M), standard error (
SE

), percentage contribution to the overall catch (%), rank by density (R), mean biomass (g; B), mean total 

length (mm; L) and length range (r) of each fish species recorded at each of the 11 nearshore habitat types in Broke Inlet in each season between spring 2007/2008 

and winter 2008/2009. Abundant species at each habitat type (i.e. those that contribute ≥ 5% to the catch) are highlighted in grey. The life cycle category (LC) of 

each species is also provided (E = estuarine resident, EM = estuarine and marine, MEO = marine estuarine-opportunist, MS = marine straggler and FS = freshwater 

straggler). The species richness, mean overall density, number of samples and adjusted number of individuals (i.e. after the number of individuals in each sample had 

been adjusted to that in 100 m
-2

) are given for each habitat type. Species are ranked by total abundance. 
 

  A B C D 

Species LC M
SE

 % R B
SE

 L
r
 M

SE
 % R B

SE
 L

r
 M

SE
 % R B

SE
 L

r
 M

SE
 % R B

SE
 L

r
 

Atherinosoma elongata E 14.742.56 49.15 1 11.595.84 38(17-87) 91.3112.12 39.42 2 63.918.32 46(12-90) 52.6712.80 49.97 1 41.7110.45 45(16-95) 26.684.69 53.56 1 25.437.92 47(16-110) 

Leptatherina wallacei E 14.684.79 48.97 2 4.221.34 34(18-73) 44.637.09 16.61 3 13.682.40 38(11-67) 27.174.79 25.78 2 13.392.41 39(20-83) 12.942.24 25.98 2 6.101.14 40(21-71) 

Leptatherina presbyteroides EM 0.270.20 0.90 3 0.160.63 40(31-60) 108.3127.99 40.31 1 41.0018.16 37(10-78) 17.3419.30 16.45 3 9.185.17 43(21-69) 3.601.21 7.22 4 0.910.30 39(19-63) 

Afurcagobius suppositus E 0.190.06 0.63 4 0.810.32 36(30-49) 2.480.67 1.07 5 3.521.61 36(30-49) 5.380.74 5.10 4 6.531.30 45(19-93) 5.471.04 10.98 3 2.410.41 35(19-73) 

Pseudogobius olorum E 
    

  1.090.67 0.47 6 0.720.40 35(21-52) 0.970.31 0.92 6 0.360.11 32(20-53) 0.300.13 0.59 6 0.240.12 37(26-52) 

Favonigobius lateralis EM 0.110.05 0.36 5 0.800.40 42(35-45) 3.620.74 1.56 4 3.690.60 41(16-77) 1.140.26 1.09 5 1.160.25 44(17-64) 0.620.17 1.24 5 0.890.25 50(28-72) 

Notolabrus parilus MS 
    

  0.350.27 0.15 
 

0.550.39 36(22-105) 0.010.01 0.01 10 0.090.09 74(74) 
     

Hyporhamphus melanochir EM 
    

  
    

  0.590.33 0.56 7 6.733.11 138(59-268) 0.010.01 0.03 8 0.030.03 97(97) 

Achoerodus gouldii MS 
    

  0.160.11 0.07 9 0.140.09 37(20-52) 
          

Engraulis australis EM 
    

  0.110.10 0.05 11 0.270.25 73(59-86) 
          

Aldrichetta forsteri MEO 
    

  0.120.10 0.05 11 1.901.56 94(55-159) 0.030.03 0.03 8 0.060.06 44(43-45) 0.200.19 0.41 7 11.0010.23 191(154-483) 

Ammotretis rostratus MEO 
    

  0.320.08 0.14 8 1.050.35 56(24-88) 0.010.01 0.01 10 0.010.01 41(41) 
     

Neoodax balteatus MS 
    

  0.030.02 0.01 13 0.200.15 100(87-112) 0.010.01 0.01 10 0.150.15 109(109) 
     

Ammotretis elongatus EM 
    

  0.130.10 0.06 10 0.44-0.31 36(36) 
          

Enoplosus armatus MS 
    

  
    

  0.030.02 0.03 8 0.020.01 30(26-33) 
     

Edelia vittata FS 
    

  
    

  
          

Mugil cephalus MEO 
    

  0.030.02 0.01 13 0.010.01 26(26) 
          

Platycephalus speculator EM 
    

  0.030.03 0.01 13 0.490.49 140(133-146) 
          

Girella zebra MS 
    

  
    

  
          

Haletta semifasciata MS 
    

  
    

  
          

Galaxias occidentalis FS 
    

  
    

  0.010.01 0.01 10 0.050.05 86(86) 
     

Lepidogalaxias salamandroides FS 
    

  
    

  
          

Urocampus carinirostris EM 
    

  
    

  0.010.01 0.01 10 0.010.01 52(52) 
     

Pseudocaranx dentex MS 
    

  
    

  0.010.01 0.01 10 0.020.02 44(44) 
     

Rhabdosargus sarba MEO 
    

  
    

  
          

Pseudorhombus jenynsii MEO 
    

  0.010.01 0.01 13 1.401.40 195(195) 
          

Cynoglossus broadhursti MS           0.010.01 0.01 13 0.240.24 135(135)                     

Species richness 5 17 15 8 

Mean overall density 30 232 105 50 

Number of samples 32 64 64 64 

Adjusted number of individuals 960 14,848 6,720 3,200 

Actual number of individuals 1,113 17,198 7,824 3,699 
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Table 3.2 Continued: 
    

      
  E F G H 

Species LC M
SE

 % R B
SE

 L
r
 M-SE % R B-SE L-r M-SE % R B-SE L-r M-SE % R B-SE L-r 

Atherinosoma elongata E 30.155.18 52.38 1 24.294.24 44(16-110) 28.625.39 58.75 1 26.880.18 47(17-97) 77.2211.88 62.49 1 66.348.08 48(15-108) 131.7418.98 38.55 1 114.1714.27 48(6-124) 

Leptatherina wallacei E 20.033.42 34.80 2 10.452.20 41(16-88) 15.383.02 31.57 2 8.150.65 41(21-79) 25.486.15 20.62 2 11.42.34 40(19-78) 94.3617.97 27.61 3 36.887.16 40(17-85) 

Leptatherina presbyteroides EM 2.180.93 3.79 4 0.690.31 42(26-68) 1.010.32 2.07 4 0.490.11 42(26-68) 9.811.74 7.93 3 3.460.64 38(16-62) 94.3735..49 27.62 2 33.7715.05 38(16-76) 

Afurcagobius suppositus E 4.540.73 7.89 3 3.570.56 39(19-82) 2.790.42 5.72 3 3.000.11 43(21-94) 6.911.19 5.59 4 6.661.08 41(15-93) 9.421.55 2.76 4 15.503.88 48(15-96) 

Pseudogobius olorum E 0.380.13 0.66 5 0.240.10 36(20-64) 0.610.28 1.24 5 0.270.10 34(23-47) 3.570.85 2.89 5 1.660.42 33(16-59) 4.541.13 1.33 5 2.290.46 36(19-78) 

Favonigobius lateralis EM 0.180.07 0.30 6 0.230.13 47(36-61) 0.260.12 0.53 6 0.240.65 42(26-57) 0.390.12 0.32 6 0.490.17 47(31-65) 3.511.40 1.02 6 2.800.52 53(25-84) 

Notolabrus parilus MS 
          

0.110.06 0.09 7 0.390.25 57(31-93) 1.260.37 0.37 7 4.081.28 46(19-134) 

Hyporhamphus melanochir EM 0.010.01 0.02 8 0.030.03 104(104) 0.040.01 0.08 7 0.950.00 187(124-233) 
     

0.380.18 0.11 10 12.376.59 187(60-413) 

Achoerodus gouldii MS 
          

0.050.04 0.04 8 0.030.02 34(32-36) 0.730.23 0.21 8 6.873.19 68(26-102) 

Engraulis australis EM 
               

0.730.49 0.21 8 2.381.59 77(61-92) 

Aldrichetta forsteri MEO 
               

0.360.27 0.10 11 3.183.06 93(32-126) 

Ammotretis rostratus MEO 0.010.01 0.02 8 0.140.14 87(87) 
          

0.050.02 0.01 15 2.982.29 132(28-207) 

Neoodax balteatus MS 
          

0.010.01 0.01 10 0.200.20 119(119) 0.170.10 0.05 12 1.411.20 93(31-134) 

Ammotretis elongatus EM 
                    

Enoplosus armatus MS 
     

0.010.01 0.03 8 0.010.00 24(24) 0.030.02 0.02 9 0.100.10 52(27-76) 0.060.04 0.02 13 0.270.27 71(68-74) 

Edelia vittata FS 0.070.06 0.12 7 0.020.02 21(17-27) 
               

Mugil cephalus MEO 
               

0.050.02 0.01 14 0.790.79 74(24-168) 

Platycephalus speculator EM 
                    

Girella zebra MS 
               

0.030.03 0.01 15 0.340.34 116(116) 

Haletta semifasciata MS 
               

0.030.03 0.01 15 0.50.5 95(95) 

Galaxias occidentalis FS 
                    

Lepidogalaxias salamandroides FS 0.010.01 0.02 8 0.060.06 26(26) 
               

Urocampus carinirostris EM 
                    

Pseudocaranx dentex MS 
                    

Rhabdosargus sarba MEO 
               

0.010.01 0.00 18 0.060.06 23(23) 

Pseudorhombus jenynsii MEO 
                    

Cynoglossus broadhursti MS 
                    

Species richness 10 8 10 18 

Mean overall density 58 49 124 342 

Number of samples 64 64 64 64 

Adjusted number of individuals 3,712 3,136 7,936 21,888 

Actual number of fish individuals 4,273 3,617 9,175 25,369 
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Table 3.2 Continued:     

     

  I J K 

Species LC M
SE

 % R B
SE

 L
r
 M

SE
 % R B

SE
 L-r M

SE
 % R B

SE
 L-r 

Atherinosoma elongata E 42.897.39 69.53 1 26.464.83 42(14-89) 25.924.29 52.80 1 17.345.97 39(15-108) 22.915.58 49.06 3 11.223.20 39(6-119) 

Leptatherina wallacei E 14.662.86 23.76 2 5.991.11 37(6-82) 15.862.91 32.31 2 6.241.63 37(15-95) 12.472.38 26.71 1 3.820.76 34(17-68) 

Leptatherina presbyteroides EM 2.010.65 3.25 3 0.690.21 38(16-57) 1.581.25 3.22 4 0.460.41 37(22-63) 10.569.62 22.61 2 5.545.21 40(20-67) 

Afurcagobius suppositus E 0.960.20 1.55 5 0.540.13 35(21-64) 5.241.46 10.68 3 1.870.45 31(18-54) 0.580.17 1.24 4 0.400.12 37(20-72) 

Pseudogobius olorum E 0.110.06 0.17 6 0.040.02 29(22-43) 0.230.10 0.48 5 0.080.04 30(18-50) 0.040.02 0.09 6 0.020.01 30(16-40) 

Favonigobius lateralis EM 1.020.23 1.66 4 0.870.23 41(23-63) 0.230.12 0.48 5 0.220.11 43(26-63) 0.090.05 0.20 5 0.100.05 41(28-57) 

Notolabrus parilus MS 

               Hyporhamphus melanochir EM 

          

0.030.03 0.06 7 0.200.20 147(141-152) 

Achoerodus gouldii MS 

               Engraulis australis EM 

          

0.010.01 0.03 8 0.020.02 57(57) 

Aldrichetta forsteri MEO 

               Ammotretis rostratus MEO 0.040.02 0.07 7 0.700.42 106(95-114) 

          Neoodax balteatus MS 

               Ammotretis elongatus EM 

               Enoplosus armatus MS 

               Edelia vittata FS 

     

0.020.02 0.04 7 0.030.03 49(49) 

     Mugil cephalus MEO 

               Platycephalus speculator EM 

               Girella zebra MS 

               Haletta semifasciata MS 

               Galaxias occidentalis FS 

               Lepidogalaxias salamandroides FS 

               Urocampus carinirostris EM 

               Pseudocaranx dentex MS 

               Rhabdosargus sarba MEO 

               Pseudorhombus jenynsii MEO 

               Cynoglossus broadhursti MS                               

Species richness 7 7 8 

Mean overall density 62 49 47 

Number of samples 64 48 64 

Adjusted number of individuals 3,968 2,352 3,008 

Actual number of fish individuals 4,579 2,733 3,467 
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 estuarine and marine (seven species), marine estuarine-opportunist (five species) 

estuarine residents (four species) and freshwater (three species) guilds. The atherinids 

Atherinosoma elongata and Leptatherina wallacei, both of which are estuarine 

residents, ranked within the top three most abundant species at all habitats and together 

represented between 56 and 98% of the total fish caught in each habitat type. 

Conversely, the other atherinid species captured, Leptatherina presbyteroides, an 

estuarine and marine species, contributed ≥ 5% of the catch at only six of the 11 habitats 

(i.e. B, C, D, G, H and K) despite representing over 21% of the total fish caught. Three 

goby species, Afurcagobius suppositus, Pseudogobius olorum and Favonigobius 

lateralis, were captured at all habitats with the exception of P. olorum at habitat A. 

Afurcagobius suppositus was the most abundant of the three gobies, representing > 5% 

of the catch at habitats C, E, F, G and J. While F. lateralis and P. olorum were never 

particularly abundant, their densities were highest at habitats B and H, and H and G, 

respectively, all of which are located within the entrance channel.  

Estuarine and marine and marine straggler species exhibited a restricted spatial 

distribution and were recorded mainly in those habitats located within or close to the 

entrance channel, i.e. B, C, G and H (Table 3.2). Some of the more numerous marine 

stragglers, i.e. Notolabrus parilus and Achoerodus gouldii, were only caught in habitats 

situated in the entrance channel. Three freshwater stragglers were caught, i.e. Edelia 

vittata, Galaxias occidentalis and Lepidogalaxias salamandroides, of which the most 

numerous, E. vittata, was caught at habitats located at the mouth of the Shannon River  

(J) or in the vicinity (E). The other two freshwater species were caught only in habitats 

C and E, respectively. 

 

3.3.1.3: Differences in species richness, density and diversity among nearshore 

habitat types, season and years 

Mean species richness differed significantly among nearshore habitats, seasons 

and years and all interaction terms among those main effects (p=0.001; Table 3.3a). As 

indicated by the associated components of variation, differences among habitats 

explained the large majority of the variance in this dependent variable. The influences 
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Table 3.3: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from PERMANOVA tests on the data for mean fish (a) species richness, 

(b) density and (c) Shannon-Wiener diversity at the 11 nearshore habitat types in Broke Inlet 

sampled in each season between spring 2007/2008 and winter 2008/2009. df = degrees of 

freedom. Significant results are highlighted in bold. 
 

 (a) Species richness 

Main effects df MS Pseudo-F COV p 

Year 1 1.489 26.602 0.009 0.001 

Season 3 1.381 24.677 0.017 0.001 

Habitat 10 1.939 34.640 0.063 0.001 

Interactions      

Year x Season 3 0.432 7.721 0.009 0.001 

Year x Habitat 10 0.213 3.802 0.011 0.001 

Season x Habitat 28 0.138 2.460 0.010 0.001 

Year x Season x Habitat 28 0.139 2.476 0.021 0.001 

Residual 244 0.056   0.056   

      

 (b) Density 

Main effects df MS Pseudo-F COV p 

Year 1 22.446 31.664 0.140 0.001 

Season 3 13.806 19.476 0.164 0.001 

Habitat 10 14.592 20.585 0.468 0.001 

Interactions      

Year x Season 3 12.235 17.260 0.288 0.001 

Year x Habitat 10 1.311 1.849 0.041 0.047 

Season x Habitat 28 1.390 1.960 0.087 0.006 

Year x Season x Habitat 28 0.974 1.374 0.068 0.123 

Residual 244 0.709   0.709   

      

 (c) Shannon-Wiener diversity 

Main effects df MS Pseudo-F COV p 

Year 1 0.206 3.497 0.001 0.071 

Season 3 1.149 19.534 0.014 0.001 

Habitat 10 0.701 11.916 0.022 0.001 

Interactions      

Year x Season 3 0.608 10.341 0.014 0.001 

Year x Habitat 10 0.290 4.935 0.016 0.001 

Season x Habitat 28 0.087 1.487 0.004 0.045 

Year x Season x Habitat 28 0.117 1.993 0.015 0.001 

Residual 244 0.059   0.059   
 

of the three-way interaction and the season main effect were the next most important 

(Table 3.3a). In all seasons and years, habitat H contained the greatest mean number of 

species, ranging from 3.2 in winter 2008/2009 to 8.1 in spring 2008/2009 (Fig. 3.3a). 

Habitats B, C, and G also contained relatively high mean numbers of species during 

most sampling occasions, i.e. between 4 and 5.5, while the least were generally recorded 

at those habitats located near freshwater sources, i.e. A, J and K, at which a mean of 1 to 

4 species were recorded (Fig. 3.3a). Despite differences in the rank orders and range 

among habitats during the various sampling occasions with respect to their mean 

species richness, which accounted for the significant interactions between all 

combinations of the main effects, the highest number of species were generally recorded  
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Fig. 3.3: Mean (a) species richness, (b) density (individuals 100 m
-2

) and (c) Shannon-Wiener 

diversity of the nearshore fish fauna at each of the 11 nearshore habitat types in Broke Inlet 

sampled in each season between spring 2007/2008 and winter 2008/2009. For the sake of 

clarity, the average ± 95% confidence intervals have been presented for each of these plots. 
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in summer 2007/2008 and/or 2008/2009 and the lowest in winter 2008/2009. During 

spring 2008/2009, in which the greatest range of mean species richness was recorded, 

i.e. 1.2 to 8.1, habitats such as G and H reached their maximums, while those such as J 

and K fell to their minimum (Fig. 3.3a).  

Mean density also differed among all main effects and interactions, except for 

the habitat x season x year interaction (p=0.001-0.047; Table 3.3b). Differences among 

habitats had by far the greatest influence on this dependent variable, followed by those 

attributable to the year x season interaction, while the influences of the remaining 

significant terms were far lower (Table 3.3b). Habitat H contained the highest mean 

density of fish in almost all seasons and years, with values of up to 550 fish m
-2 

in 

autumn 2007/2008. The other channel habitats B and, to a lesser extent, G, also 

contained relatively high mean fish densities during most sampling occasions 

(i.e. 63-381 fish 100 m
-2

). Habitats located near freshwater sources (i.e. A, I, J and K) 

often had among the lowest mean fish densities (≤ 50 fish 100 m
-2

), while the remaining 

habitats generally contained mean densities of around 50-100 fish 100 m
-2

 (Fig. 3.3b). 

The relatively important interaction between season and years was due mainly to the 

large differences in the range of fish densities recorded in autumn and winter across 

years, with those in 2007/2008 being markedly larger. During each year, fish densities 

at most habitats reached their maximum during summer or autumn. 

PERMANOVA detected significant differences in Shannon-Wiener diversity 

among habitats and seasons and all interaction terms (p=0.001-0.045; Table 3.3c). Like 

both the mean number of species and density of fish, Shannon-Wiener diversity varied 

to the greatest extent among habitats. The remaining significant terms made relatively 

moderate contributions, with the exception of the season x habitat interaction, which 

was far less important (Table 3.3c). Also like the above two dependent variables, 

habitats H, C and/or G often contained the highest species diversity, whilst the least 

diverse assemblages were typically recorded at habitats J and K (Fig. 3.3c). The least 

diverse assemblages were typically recorded during winter at most habitats, but there 

was considerable variability in the order and range among habitats during the remaining 

sampling occasions, thus explaining the relative importance of the various interaction 
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terms. Most noticeably, the range in diversity during spring and, to a lesser extent, 

summer 2008/2009 (0.12-1.52 and 0.52-1.31, respectively) was far greater than those 

for the same seasons in 2007/2008 and indeed, for any other sampling occasion. These 

trends paralleled those exhibited by the mean number of species (cf. Figs 3.3c, a). 

 

3.3.1.4: Differences in fish assemblage composition among nearshore habitat types 

Three-way crossed PERMANOVA identified significant differences in the 

species composition of the nearshore fish communities among habitats, seasons and 

years and all of their interaction terms (all p=0.001; Table 3.4). The components of 

variation for habitat was over twice that of the next most influential term, i.e. the year x 

season x habitat interaction, closely followed by the year x season interaction. On the 

basis of these results, subsequent analyses were then employed to more thoroughly 

investigate the differences among habitats in the nearshore fish community 

composition. Note that, these analyses were carried out separately for each season in 

each year in order to remove the confounding influence of these temporal factors. 

One-way ANOSIM tests identified significant differences among habitats in 

each season and year combination (all p=0.001; Table 3.5). However, the overall extent 

of those differences were low to moderate (Global R=0.237-0.485), with the greatest 

being detected in spring 2007/2008, followed closely by summer and spring 2008/2009, 

and the least in winter 2008/2009 (Table 3.5).  

 

Table 3.4: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from a three-way PERMANOVA of the nearshore ichthyofaunal 

composition recorded at the 11 nearshore habitat types throughout Broke Inlet in each season 

between spring 2007/2008 and winter 2008/2009. df = degrees of freedom. Significant results 

are highlighted in bold. 
 

  Nearshore fish assemblage composition 

Main effects df MS Pseudo-F COV p 

Year 1 13935.000 16.097 83.958 0.001 

Season 3 8664.300 10.008 97.380 0.001 

Habitat 10 11539.000 13.329 359.870 0.001 

Interactions 

     Year x Season 3 6711.100 7.752 145.980 0.001 

Year x Habitat 10 1827.300 2.111 64.841 0.001 

Season x Habitat 28 1804.000 2.084 120.270 0.001 

Year x Season x Habitat 28 1470.900 1.699 155.140 0.001 

Residual 244 865.730       865.730   
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Table 3.5: R-statistic and/or significance level (p) values derived from one-way ANOSIM tests 

of the nearshore fish faunal composition among the 11 nearshore habitat types during each 

season sampled between spring 2007/2008 and winter 2008/2009. Insignificant pairwise 

comparisons are highlighted in grey. 

 

(a) Spring 2007/2008; p=0.001, Global R=0.485 

 A B C D E F G H I J 

B 0.885          

C 0.969 0.302         

D 0.948 0.635 -0.042        

E 0.344 0.813 0.646 0.490       

F 0.167 0.740 0.240 0.198 -0.083      

G 1.000 0.719 0.010 0.031 0.771 0.313     

H 0.979 0.594 0.115 0.083 0.823 0.406 0.052    

I 0.708 0.385 0.521 0.365 0.844 0.573 0.958 0.823   

J 0.815 0.796 0.481 0.315 0.093 0.037 0.407 0.630 0.981  

K 0.167 0.708 0.677 0.365 -0.167 -0.229 0.833 0.865 0.552 0.278 

           
 

(b) Summer 2007/2008; p=0.001, Global R=0.379  

  B C D E F G H I J  

C 0.958          

D 0.990 -0.042         

E 1.000 -0.083 0.073        

F 0.990 -0.073 0.094 0.010       

G 0.844 -0.177 0.083 0.073 -0.021      

H 0.594 0.521 0.604 0.594 0.750 0.469     

I 0.969 0.375 0.604 0.302 0.135 0.219 0.844    

J 0.963 -0.093 0.148 0.000 -0.130 -0.222 0.556 -0.074   

K 1.000 0.146 0.156 0.229 0.135 0.000 0.896 -0.052 -0.056  

           
 

(c) Autumn 2007/2008; p=0.001, Global R=0.322  

  B C D E F G H I J  

C -0.156          

D 0.542 0.552         

E 0.375 0.510 -0.031        

F 0.333 0.375 0.385 -0.125       

G 0.198 0.167 0.708 0.385 0.292      

H 0.094 0.031 0.958 0.875 0.813 0.229     

I 0.302 0.333 0.208 0.427 0.219 0.635 0.854    

J 0.352 0.481 0.056 -0.148 -0.148 0.500 0.833 0.315   

K 0.167 0.271 0.406 0.250 0.156 0.375 0.479 0.156 -0.093  

           
 

(d) Winter 2007/2008; p=0.001, Global R=0.346 

 A B C D E F G H I J 

B 0.615          

C 0.854 0.271         

D 0.292 0.458 0.677        

E 0.198 0.385 0.260 0.396       

F 0.083 0.250 0.250 0.073 -0.021      

G 0.719 -0.042 0.167 0.729 0.292 0.125     

H 1.000 -0.146 0.490 0.938 0.781 0.729 0.219    

I 0.417 0.479 0.667 0.510 -0.146 0.167 0.531 0.969   

J 0.296 0.130 0.222 0.444 -0.259 -0.019 0.352 0.778 -0.148  

K 0.427 0.458 0.583 0.615 -0.260 0.135 0.354 0.927 -0.219 -0.352 
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Table 3.5 Continued: 

 

(as(e) Spring 2008/2009; p=0.001, Global R=0.467 
 A B C D E F G H I J 

B 0.781          

C 0.771 0.219         

D -0.188 0.813 0.646        

E -0.115 0.427 0.302 -0.094       

F 0.448 0.573 0.219 0.354 -0.021      

G 0.927 0.198 0.063 0.896 0.479 0.563     

H 0.979 0.542 0.615 1.000 0.719 0.885 0.698    

I -0.094 0.313 0.229 -0.146 -0.135 0.135 0.500 0.563   

J 0.296 0.963 0.907 0.389 0.111 0.426 0.981 1.000 0.046  

K 0.448 1.000 1.000 0.677 0.448 0.875 1.000 1.000 0.344 0.296 

           
 

(f) Summer 2008/2009; p=0.001, Global R=0.483  

 B C D E F G H I J  

C 0.969          

D 0.760 0.292         

E 0.833 0.292 0.302        

F 0.875 0.333 0.688 -0.042       

G 0.323 0.563 0.427 0.125 0.385      

H 0.365 0.854 0.729 0.708 0.781 0.094     

I 0.427 0.302 0.313 0.208 0.010 0.344 0.573    

J 0.815 0.926 0.722 0.093 -0.315 0.315 0.741 0.148   

K 0.990 0.865 0.958 0.875 0.396 0.917 0.990 0.198 0.500  

           
 

(g) Autumn 2008/2009; p=0.001, Global R=0.344  

 B C D E F G H I J  

C 0.094          

D 0.469 0.208         

E 0.677 0.469 0.135        

F 0.667 0.552 0.073 -0.073       

G 0.313 0.167 0.604 0.563 0.385      

H -0.021 -0.167 0.427 0.552 0.646 -0.063     

I 0.125 0.073 0.021 0.083 0.073 0.323 0.323    

J 0.667 0.630 0.056 0.241 -0.074 0.907 0.963 0.056   

K 0.719 0.729 0.448 0.740 0.354 0.844 0.927 0.250 0.056  

           
 

(h) Winter 2008/2009; p=0.001, Global R=0.237 

 A B C D E F G H I J 

B 0.063          

C 0.260 0.490         

D 0.135 0.281 -0.042        

E 0.427 0.771 0.177 0.073       

F 0.271 0.698 0.427 0.260 0.083      

G 0.417 0.563 0.073 0.042 -0.042 0.271     

H 0.094 0.115 -0.042 -0.115 0.000 0.323 -0.073    

I 0.115 0.333 0.094 -0.042 0.063 0.177 0.156 -0.125   

J 0.306 0.444 0.315 0.093 0.296 0.139 0.370 0.315 0.222  

K 0.542 0.875 0.583 0.448 0.208 0.104 0.563 0.417 0.323 0.148 

           

During spring 2007/2008 and spring and summer 2008/2009 the pairwise 

differences involving habitats A, B, H and K were typically large (i.e. R > 0.800), 

thereby reflecting the relatively distinct fish faunal compositions, with samples 

representing those habitats, in particular B and H forming discrete groups on the nMDS 
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ordinations (Figs 3.4a, e, f). In the case of habitats A and K, the estuarine atherinids 

A. elongata and L. wallacei typified the fish fauna in these seasons, however, as these 

species distinguished the ichthyofaunas of almost all habitats in all seasons of both 

years, the distinctness of these habitats was more attributable to the low densities of 

these species and the depauperate nature of the ichthyofauna (Appendix 3.1a, e, f). 

Conversely, the channel habitats B and H were, in addition to the above species, also 

characterised by several other species including the estuarine and marine F. lateralis 

and L. presbyteroides and in the case of H, the gobiids P. olorum and A. suppositus. 

Species such as Hyporhamphus melanochir, A. gouldii and N. parilus also distinguished 

this latter habitat from the others in spring and summer 2008/2009 (Appendix 3.1e, f). 

The next largest differences in fish faunal composition among habitats were 

detected in summer 2007/2008 (Global R=0.379), but only 20 of the 45 pairwise 

comparisons were significant, which almost invariably involved the channel habitats B 

and H (Table 3.5b). As reflected by the associated nMDS ordination (Fig. 3.4b), these 

habitats harboured a distinct fauna (pairwise R generally > 0.750) during this sampling 

season, paralleling the findings above for spring 2007/2008 and spring and summer 

2008/2009. Aside from A. elongata and L. wallacei, which once again characterised the 

fauna at almost all habitats during this sampling occasion, the flounder Ammotretis 

rostratus and L. presbyteroides also distinguished habitat B from the remainder, while 

the notably greater abundances of A. elongata, L. wallacei, A. suppositus and N. parilus 

best distinguished H from other habitats (Appendix 3.1b). 

The extent of the overall ichthyofaunal differences among habitats were similar 

and relatively low in autumn and winter 2007/2008 and autumn 2008/2009 (Global 

R=0.322-0.346), with habitats G and H being the most faunally distinct thus, samples 

from these seasons formed relatively discrete groups on the nMDS ordinations 

(Figs 3.4c, d, g). Once again A. elongata and L. wallacei typified the fauna at all 

habitats, however, the distinctness of the fish at habitats G and H was due mainly to the 

high abundances of A. elongata, L. wallacei and A. suppositus, while the opposite was 

true for habitat K during autumn 2008/2009. The fish faunas of habitats G and H were 

distinguished by a prevalence of A. suppositus in autumn and winter 2007/2008 and
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(a) Spring 2007/2008 (b) Summer 2007/2008 
  

(c) Autumn 2007/2008 (d) Winter 2007/2008 

 

 

(e) Spring 2008/2009 (f) Summer 2008/2009 
  

(g) Autumn 2008/2009 (h) Winter 2008/2009 
  

 

Habitat type  A   B   C   D   E   F   G   H   I   J   K 
 

 

Fig. 3.4: nMDS ordination plots of the fish faunal composition at each of the 11 nearshore 

habitat types sampled in Broke Inlet in each season between spring 2007/2008 and winter 

2008/2009.  

 

2D Stress: 0.172D Stress: 0.16

2D Stress: 0.11 2D Stress: 0.13

2D Stress: 0.18 2D Stress: 0.11

2D Stress: 0.152D Stress: 0.17



Chapter 3 

 

83 

autumn 2008/2009, L. presbyteroides during the former two seasons and P. olorum in 

habitat G in both winter 2007/2008 and autumn 2008/2009.  

Ichthyofaunal differences among habitats were lowest in winter 2008/2009 

(Global R=0.237), with many pairwise comparisons being insignificant. However, most 

comparisons involving habitat B and, to a lesser extent, K were significantly different 

and had notably high R-statistics (i.e. > 0.500) in several cases. The distinctness of 

habitat B was due mainly to higher catches of F. lateralis and A. elongata, while that of 

K was largely attributable to the relatively greater abundance of L. wallacei and lower 

abundances of A. suppositus. The fish faunas of all other habitats were characterised by 

similar abundances of A. elongata and L. wallacei (Appendix 3.1h). 

 

3.3.1.5: Relationships between the fish community and environmental 

characteristics of nearshore habitat types 

RELATE demonstrated that, with the exception of winter 2008/2009, the pattern 

of relative differences among habitats as defined by their suite of enduring 

environmental characteristics was significantly correlated with that defined by their 

average fish faunal composition in each season and year (p=0.001-0.044; Table 3.6a). 

However, the extents of the significant correlations between those complementary 

environmental and ichthyofaunal resemblance matrices were moderate (i.e. ρ=0.305-

0.475), with the greatest matches being detected in spring 2008/2009, followed by 

winter 2007/2008, i.e. cf. the spatial arrangement of habitats in the nMDS ordination 

plots shown in Fig. 3.5a with those in Figs 3.5e and f, respectively. 

RELATE was then used to determine the extent to which the pattern of the 

relative differences among nearshore habitats, as defined by their suite of non-enduring 

environmental characteristics (i.e. water physico-chemistry and biomass of detached 

macrophytes) provided a good surrogate for that exhibited by their fish fauna in each 

season and year. Significant correlations between those complementary matrices were 

detected again on all occasions except winter 2008/2009. However, the extent of those 

significant correlations were often substantially greater than the corresponding values 

obtained when the enduring environmental data was employed (Table 3.6b). 
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Table 3.6: Significance level (p) and rho statistic (ρ) values for the correlation between a 

resemblance matrix constructed from the average fish fauna data at each nearshore habitat and 

complementary matrices constructed from (a) enduring environmental variables (EEVs), (b) the 

full suite of non-enduring environmental variables (NEVs) and (c) the subset of the non-

enduring environmental variables (NEV subset) selected by the BIOENV routine. Analyses 

were repeated for each season between spring 2007/2008 and winter 2008/2009. Significant 

correlations are highlighted in bold. Temp = water temperature, Sal = salinity, DO = dissolved 

oxygen concentration, DMB = detached macrophyte biomass. 

 

(a) EEVs  (b) NEVS  (c) NEV subset 

Season/Year p ρ  p ρ  p ρ Variables selected 
Spring 2007/2008 0.020 0.305  0.001 0.527  0.003 0.613 pH 

Summer 2007/2008 0.007 0.308  0.035 0.438  0.073 0.558  

Autumn 2007/2008  0.022 0.338  0.043 0.318  0.009 0.586 Temp 

Winter 2007/2008  0.003 0.381  0.041 0.315  0.023 0.464 Sal, DO, DMB 

Spring 2008/2009  0.001 0.475  0.001 0.786  0.001 0.819 Temp, pH, DMB 

Summer 2008/2009 0.009 0.363  0.003 0.648  0.006 0.700 DO, pH, DMB 

Autumn 2008/2009  0.044 0.311  0.021 0.398  0.023 0.537 Temp, Sal, DO, pH 

Winter 2008/2009 0.395 0.032  0.053 0.315  0.244 0.386  

 

BIOENV was then employed to determine whether a greater correlation could 

be achieved between the non-enduring environmental and fish faunal matrices by only 

using a subset of those environmental variables, rather than the full suites as employed 

in RELATE. The extent of the relationship between these complementary matrices was 

considerably improved during almost all sampling occasions, and the subsets of NEVs 

that were responsible in each case are given in Table 3.6c. 

The relationships between the patterns among habitats exhibited by the 

nearshore fish faunas and the magnitude of the NEVs selected by BIOENV in each 

season and year are illustrated by the nMDS and associated bubble plots shown in 

Fig. 3.6. The channel habitats B, G and H exhibited slightly elevated levels of pH and 

water temperature during spring 2007/2008 and autumn 2007/2008 respectively, 

compared to C and D, which in turn were higher than those values recorded in habitats 

A, J and K (Figs 3.6a, b). The presence of increasing amounts of macrophyte biomass 

was accompanied by an increase in salinity diagonally from top left to bottom right in 

the associated nMDS plots in both winter 2007/2008 and spring 2008/2009, a trend also 

mirrored in pH and water temperature values in the latter season (Figs 3.6c, e, f, g, h). In 

both summer and autumn 2008/2009, channel habitats, B, G and H formed a cluster on 

the right of the associated nMDS plot. This shift in the fish faunal composition was 

mirrored in the non-enduring environmental variables by an increase in pH and 

dissolved oxygen concentration in both seasons and macrophyte biomass in
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(a) Enduring environmental data             (b) Spring 2007/2008; p=0.020, ρ=0.305             (c) Summer 2007/2008; p=0.007, ρ=0.308 

 
 

 

 

 

            (d) Autumn 2007/2008; p=0.022, ρ=0.338             (e) Winter 2007/2008; p=0.003, ρ=0.381           (f) Spring 2008/2009; p=0.001, ρ=0.475 

 
 

  

            (g) Summer 2008/2009; p=0.009, ρ=0.363             (h) Autumn 2008/2009; p=0.044, ρ=0.311           (i) Winter 2008/2009; p=0.390, ρ=0.032 

   
Fig. 3.5: nMDS ordination plots constructed from the averages of the (a) enduring environmental variables and (b-i) the fish faunal composition in each season from 

spring 2007/2008 to winter 2008/2009 at each nearshore habitat type. The significance levels (p) and rho values (ρ) obtained from RELATE tests are also provided. 
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 (a) Spring 2007/2008; p=0.003, ρ=0.613 (b) Autumn 2007/2008; p=0.009, ρ=0.586 (c) Winter 2007/2008; p=0.049, ρ=0.464 
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Fig. 3.6: nMDS ordination plots of the average fish faunal composition recorded at each nearshore habitat type in a particular sampling season. The magnitude of the 

non-enduring environmental variable(s) selected by the BIOENV routine that best match the spatial pattern displayed by the fish faunal composition are displayed 

for each habitat as circles of proportionate sizes. The significance levels (p) and rho values (ρ) obtained from the above BIOENV tests are also provided. Temp = 

water temperature, DMB = detached macrophyte biomass, DO = dissolved oxygen concentration. 
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Fig. 3.6 Continued: nMDS ordination plots of the average fish faunal composition recorded at each nearshore habitat type in a particular sampling season. The 

magnitude of the non-enduring environmental variable(s) selected by the BIOENV routine that best match the spatial pattern displayed by the fish faunal 

composition are displayed for each habitat as circles of proportionate sizes. The significance levels (p) and rho values (ρ) obtained from the above BIOENV tests are 

also provided. Temp = water temperature, DMB = detached macrophyte biomass, DO = dissolved oxygen concentration. 
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the former season and water temperature and salinity in the latter season (Figs 3.6j, k, 

m, o). Of the remaining habitats moderate pH values were recorded among C, D and F 

in both seasons whilst habitats I, J and K were distinguished by subtle differences in 

dissolved oxygen concentrations during both seasons and also water temperature in 

autumn 2008/2009 (Figs 3.6i, l, n). 

 

3.3.2: Offshore waters 

3.3.2.1: Differences in non-enduring environmental variables among offshore 

habitat types, seasons and years 

Four-way PERMANOVA detected significant differences in salinity among 

habitats, seasons, years and depths and numerous two and three-way interactions 

between these main effects (p=0.001-0.039). By far the greatest proportion of the 

variance in this dependent variable was explained by differences between years, 

followed by those in the year x season interaction (Table 3.7a). In contrast, the depth 

main effect, and several interactions involving this factor, accounted for by far the least 

variation in salinity. Mean salinities were generally greater during 2007/2008 than 

2008/2009, especially in summer and autumn (Fig. 3.7a). Thus, values during these 

seasons in 2007/2008 ranged between 29 and 41, whilst those in 2008/2009 ranged only 

between 14 and 23. Marked differences among habitats were observed during winter 

and spring of both years, with values of around 15-33 and mainly 16-26 at habitats A 

and C, respectively, as opposed to 2-12 at B (Fig. 3.7a). However, differences among 

habitats were not as marked in the remaining seasons, partly accounting for the habitat x 

season interaction. Variability in the seasonal trends among habitats also contributed to 

this latter interaction. Thus during 2007/2008 for example, values at habitat A mostly 

remained between 29 and 33 throughout the year, while those at C and B rose to their 

maximum of 40 and 41, respectively, in summer and fell to their minima of 16 and 6, 

respectively, in winter (Fig. 3.7a). Bottom and surface salinities were similar except at 

habitats A and C in winter 2007/2008 and/or spring 2008/2009, when bottom salinities 

were considerably greater (Fig. 3.7a). 
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Table 3.7: Mean squares (MS), pseudo F-ratios, components of variation (COV) and significance levels (p) from four-way PERMANOVA tests on the data for 

mean (a) salinity, (b) water temperature and (c) dissolved oxygen concentration and a three-way PERMANOVA on the data for (d) pH recorded at the three offshore 

habitat types in Broke Inlet sampled in each season between spring 2007/2008 and winter 2008/2009. df = degrees of freedom. Significant results are highlighted in 

bold. 
 

  (a) Salinity   (b) Water temperature   (c) Dissolved oxygen concentration 

Main effects df MS Pseudo-F COV p   MS Pseudo-F COV p   MS Pseudo-F COV p 

Year 1 3755.500 232.190 90.887 0.001 

 

50.098 30.942 1.178 0.001 

 

188.390 380.640 4.567 0.001 

Season 5 908.640 56.178 36.010 0.001 

 

279.230 172.460 11.201 0.001 

 

110.710 223.680 4.447 0.001 

Habitat 2 1056.000 65.289 21.455 0.001 

 

13.560 8.375 0.246 0.001 

 

0.170 0.343 -0.007 0.684 

Depth 1 325.440 20.121 4.256 0.001 

 

0.160 0.099 -0.020 0.773 

 

14.595 29.488 0.194 0.001 

Interactions 

               Year x Season 1 1068.500 66.062 51.155 0.001 

 

54.889 33.901 2.590 0.001 

 

48.578 98.152 2.337 0.001 

Year x Habitat 2 43.363 2.681 1.983 0.084 

 

30.809 19.029 2.128 0.001 

 
3.042 6.147 0.186 0.005 

Year x Depth 1 26.945 1.666 0.524 0.174 

 

0.045 0.028 -0.077 0.860 

 

0.046 0.093 -0.022 0.774 

Season x Habitat 10 249.300 15.413 28.204 0.001 

 

4.092 2.527 0.299 0.013 

 

1.989 4.019 0.181 0.001 

Season x Depth 5 47.563 2.941 2.533 0.013 

 

1.456 0.899 -0.013 0.481 

 

0.811 1.638 0.025 0.163 

Habitat x Depth 2 41.044 2.538 1.026 0.068 

 

3.076 1.900 0.060 0.151 

 

0.394 0.797 -0.004 0.427 

Year x Season x Habitat 2 62.646 3.873 6.777 0.027 

 

17.288 10.678 2.285 0.002 

 

1.077 2.177 0.085 0.115 

Year x Season x Depth 1 69.193 4.278 5.155 0.037 

 

4.197 2.592 0.251 0.109 

 

0.179 0.361 -0.031 0.564 

Year x Habitat x Depth 2 65.019 4.020 7.123 0.019 

 

2.958 1.827 0.195 0.159 

 

0.949 1.918 0.066 0.143 

Season x Habitat x Depth 10 31.891 1.972 3.803 0.039 

 

2.368 1.462 0.181 0.144 

 

0.376 0.759 -0.029 0.689 

Year x Season x Habitat x Depth 2 12.728 0.787 -1.005 0.443 

 

0.317 0.196 -0.380 0.807 

 

0.453 0.916 -0.012 0.391 

Residual 119 16.174         16.174     1.619           1.619     0.495   0.495   
 

  

(d) pH 

Main effects df MS Pseudo-F COV p 

Year 1 0.058 2.009 0.001 0.171 

Season 3 1.885 65.534 0.103 0.001 

Habitat 2 0.668 23.202 0.027 0.001 

Interactions 

    Year x Season 3 0.217 7.550 0.021 0.001 

Year x Habitat 2 0.076 2.632 0.004 0.077 

Season x Habitat 6 0.170 5.919 0.024 0.001 

Year x Season x Habitat 6 0.094 3.281 0.022 0.006 

Residual 48 0.029   0.029   
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Fig. 3.7: Mean surface and bottom (a) salinity, (b) water temperature (°C), (c) dissolved oxygen 

concentration (mg L
-1

) and (d) surface pH at each offshore habitat type in Broke Inlet during 

each season between spring 2007/2008 and winter 2008/2009 For the sake of clarity, the 

average ± 95% confidence intervals have been presented for plots a, b and d, and are given on 

all points on plot c. 

Water temperature differed significantly among habitats seasons, years and all 

interactions involving two or all three of these main effects (p=0.001-0.013; Table 

3.7b). Differences among seasons explained the majority of the variance in water 

temperature, and was more than four times greater than the next most influential term. 

In contrast, differences among habitats were the least important of the significant terms. 

Temperatures reached their maximum in spring and/or summer (ca 16-22°C) and fell to 

their minima in autumn and/or winter (ca 11-15°C). The significant interaction between 

habitats, seasons and years reflected differences in the order and range of water 

temperatures among habitats during the various sampling occasions. For example, water 

temperature was greatest at habitat B during summer 2007/2008 but the reverse was true 

in the corresponding season in 2008/2009 (Fig. 3.7b). 

Significant differences in dissolved oxygen concentration were detected among 

years, seasons and depth, with the first two main effects also interacting significantly 

with both habitat and each other (p=0.001-0.005; Table 3.7c). However, differences 

between years and seasons, followed by their interaction term, exerted a considerably 
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greater influence on this dependent variable than any other term. Seasonal trends in 

dissolved oxygen concentration differed considerably between 2007/2008 and 

2008/2009, thus explaining the significant season x year interaction. Whereas values 

reached their maxima in summer and declined to their minima in winter during 

2007/2008 (8.7 and 5.4, respectively), they remained relatively constant between spring 

and autumn (i.e. 4.5) then underwent a pronounced increase in winter (10.1) in the 

second year (Fig. 3.7c). Dissolved oxygen concentrations were always lower in the 

bottom than surface waters (Fig. 3.7c).  

Mean pH in the surface waters differed significantly among both seasons and 

habitats and all interactions except that between year and habitat (p=0.001-0.006; Table 

3.7d). The relative importance of seasonal differences was four times that of any other 

significant main effect or interaction term. The greatest mean pH values at each habitat 

were recorded during summer or autumn, while the lowest were recorded during spring 

or winter. Moreover, pH was often the greatest at habitat A and least at habitat B, 

sometimes markedly so. Inter-annually, higher mean values at each habitat were 

recorded in 2007/2008 than 2008/2009 during spring and summer, but this was often 

not the case for autumn and winter. Such findings explain, at least in part, the 

significant year x season x habitat interaction term for this variable. 

 

3.3.2.2: Fish species mean density and life cycle contribution at each offshore 

habitat type 

Sampling of the three offshore habitat types in Broke Inlet in each season 

between spring 2007/2008 and winter 2008/2009 yielded 1,050 fish. These fish 

comprised 31 species and represented 23 families, of which the Kyphosidae, 

Sillaginidae, Mugilidae, Arripidae, Labridae and Sparidae were represented by multiple 

species, i.e. two or three (Table 3.8). Unlike the fish fauna in the nearshore waters, that 

of the offshore waters was dominated by marine species, i.e. marine estuarine-

opportunists and marine stragglers, which represented 84% of the species and 80% of 

the individuals caught. Habitat A, located in the entrance channel, contained all 31 

species recorded in the offshore waters and was by far the most speciose, particularly
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Table 3.8: Catch rate (fish 10 h
-1

; C), standard error (
SE

), percentage contribution to the overall catch (%), rank by catch rate (R), biomass (g; B), mean length (mm; 

L) and length range (
r
) of each fish species recorded at each of the three offshore habitat types in Broke Inlet sampled in each season between spring 2007/2008 and 

winter 2008/2009. Abundant species at each habitat type (i.e. those that contribute ≥ 5% to the catch) are highlighted in grey. The life cycle category 

(LC) of each species is also provided (EM = estuarine and marine, MEO = marine estuarine-opportunists and MS = marine straggler). The species richness, 

mean total catch rates and adjusted number of individuals (i.e. after the number of individuals in each sample had been adjusted to caught in ten hours) 

are given for each habitat type. Species ranked according to their total catch rate. 
 

  

A B C 

Species LC CSE % R BSE Lr CSE % R BSE Lr CSE % R BSE Lr 

Arripis georgianus MEO 3.982.00 19.93 1 1120.47623.82 255(194-312) 0.730.54 10.61 3 241.16196.15 267(216-310) 3.370.91 29.01 1 774.82247.63 251(207-295) 

Mugil cephalus MEO 2.750.92 13.35 2 1072.41342.18 310(157-459) 2.740.87 41.34 1 1322.65379.65 299(118-459) 1.060.30 8.95 3 457.17180.03 309(158-432) 

Engraulis australis EM 1.500.97 6.95 4 24.9718.27 123(94-152) 0.660.42 10.06 4 5.814.85 111(82-130) 1.870.68 15.43 2 31.9413.60 119(75-176) 

Aldrichetta forsteri MEO 1.320.36 6.76 7 540.5156.74 270(140-452) 1.310.56 19.55 2 467.96206.31 315(238-403) 1.040.34 8.64 4 292.5285.04 221(172-364) 

Rhabdosargus sarba MEO 1.420.51 6.95 4 747.48332.53 271(82-321) 0.120.09 1.68 7 82.2667.45 333(261-387) 0.940.40 7.41 6 574.01212.43 296(207-415) 

Ammotretis rostratus EM 0.910.41 4.57 9 167.3593.95 250(86-501) 0.500.21 7.82 5 85.5935.76 206(145-266) 0.910.19 7.72 5 164.8246.70 194(74-273) 

Pseudocaranx dentex MEO 1.440.76 6.95 4 389.37227.38 256(185-363) 

     

0.540.28 4.32 8 205.9198.21 267(162-383) 

Pagrus auratus MEO 1.590.57 8.04 3 665.88325.41 283(152-410) 

     

0.150.09 1.23 13 58.1241.90 269(230-343) 

Arripis truttaceus MEO 1.060.48 4.94 8 765.75393.47 375(304-430) 0.080.08 1.12 8 98.5298.52 450(442-457) 0.340.30 3.09 9 12.5812.58 283(283-283) 

Sillaginodes punctatus MEO 0.470.20 2.38 12 102.4464.57 325(244-383) 0.040.04 0.56 9 13.9713.97 376(376-376) 0.800.55 6.17 7 236.22133.85 321(240-410) 

Gonorynchus greyi MEO 0.820.40 4.20 10 66.3939.75 244(143-293) 

     

0.180.09 1.54 11 4.824.46 220(112-259) 

Hyporhamphus melanochir EM 0.140.11 0.73 21 4.974.97 345(345-345) 0.430.43 7.26 6 52.6438..12 328(297-371) 0.170.07 1.54 11 25.8319.12 350(326-396) 

Enoplosus armatus MS 0.630.34 3.29 11 39.3919.84 139(85-204) 

     

  

    Pomatomus saltatrix MEO 0.190.13 0.91 18 120.0297.91 357(264-420) 

     

0.380.27 3.09 9 371.34263.56 407(257-680) 

Sillago bassensis MS 0.350.27 1.65 13 26.2819.93 195(179-219) 

     

  

    Cnidoglanis macrocephalus EM 0.240.11 1.10 15 220.56122.47 516(335-635) 

     

0.040.04 0.31 16 16.2316.23 431(431) 

Platycephalus speculator EM 0.260.12 1.28 14 64.6533.58 302(202-425) 

     

  

    Pseudorhombus jenynsii MEO 0.230.14 1.10 15 100.7259.68 314(283-349) 

     

0.040.04 0.31 16 12.2912.92 321(321) 

Achoerodus gouldii MS 0.220.11 1.10 15 49.9424.72 192(120-240) 

     

  

    Sillago schomburgkii MEO 0.190.10 0.91 18 17.3811.87 226(206-244) 

     

  

    Girella zebra MS 0.190.11 0.91 18 115.3972.01 267(253-277) 

     

  

    Mustelus antarcticus MS 0.040.04 0.18 23 556.82556.82 14101410-1410) 

     

0.120.09 0.93 14 1560.221148.16 1343(1190-1480) 

Chelidonichthys kumu MS 0.040.04 0.18 23 6.5406..54 362(362) 

     

  

    Schuettea woodwardi MS 0.050.05 0.18 23 5.405.40 196(196-196) 

     

  

    Scorpis georgiana MS 0.080.06 0.37 22 23.7416.45 243(237-249) 

     

  

    Notolabrus parilus MS 0.040.04 0.18 23 2.102.10 143(143) 

     

0.050.05 0.31 16 1.611.61 132(132) 

Myliobatis australis MS 0.050.05 0.18 23 181.82181.82 800(800) 

     

  

    Lotella rhacina MS 0.040.04 0.18 23 5.875.817 307(307-307) 

     

  

    Tilodon sexfasciatum MS 0.040.04 0.18 23 7.847.84 194(194-194) 

     

  

    Cynoglossus broadhursti MS 0.070.05 0.18 23 0.680.68 136(136) 

     

  

    Eubalichthys bucephalus MS 0.070.05 0.18 23 17.3017.30 297(297) 

  

  

  

          

Total number of species 31 9 17 

Mean catch rate 10 h-1 20 7 12 

Number of samples 24 24 24 

Adjusted number of individuals 480 168 288 

Actual number of individuals 547 179 324 
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compared to habitat B in Shannon Basin, at which only nine species were recorded. The 

same trend was also observed for overall fish abundance, with ca 1.5 and 2.5 times as 

many fish caught at habitat A than C and B, respectively. Most of the catch at habitat A 

comprised the marine estuarine-opportunists Australian Herring Arripis georgianus 

(20%), the mugilids Mugil cephalus and Aldrichetta forsteri (13 and 7%, respectively) 

and, to a lesser extent, the sparids Rhabdosargus sarba and Pagrus auratus, (7 and 8%, 

respectively), and the Silver Trevally Pseudocaranx dentex (7%). The only relatively 

abundant species representing a different life cycle guild at this habitat were the 

Australian Anchovy Engraulis australis (7%) and the Longsnout Flounder Ammotretis 

rostratus (5%), both of which are estuarine and marine species (Table 3.8). Although 14 

marine straggler species were caught at habitat A, they collectively comprised only 

ca 5% of the catch. 

Four of the most abundant species at offshore habitats B and C were also 

abundant at A, although their rank orders differed in each case. These included the 

marine estuarine-opportunists, A. georgianus, M. cephalus and A. forsteri, and the 

estuarine and marine species, E. australis, each of which represented ca 10-41% and 

9-29% of the individuals caught at habitats B and C, respectively. Ammotretis rostratus 

was also relatively abundant at habitats B and C, as were H. melanochir and 

Sillaginodes punctatus. However, habitat C harboured a far more diverse and abundant 

fauna compared to B, which was only represented by nine species (Table 3.8). 

 

3.3.2.3: Differences in species richness, catch rates and diversity among offshore 

habitat types, seasons and years 

 Three-way crossed PERMANOVA identified significant differences in the mean 

number of species among both habitats and seasons (p=0.001-0.007), with the former of 

these main effects having a substantially greater influence on this dependent variable 

(Table 3.9a). Mean species richness was highest at habitat A (6) and lowest at habitat B 

(1.5; Fig. 3.8a), and while values were similar during spring, summer and autumn 

(ca 4.5), they were markedly lower during winter (3; Fig. 3.8b).  
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Table 3.9: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from PERMANOVA tests on the data on the mean (a) species richness, 

(b) catch rate and (c) Shannon-Wiener diversity recorded at the three offshore habitat types in 

Broke Inlet sampled in each season between spring 2007/2008 and winter 2008/2009. 

df = degrees of freedom. Significant results are highlighted in bold. 

 (a) Species richness 

Main effects df MS Pseudo-F COV p 

Year 1 0.000 0.001 -0.002 0.977 

Season 3 0.386 5.172 0.019 0.007 

Habitat 2 1.370 18.351 0.061 0.001 

Interactions      

Year x Season 3 0.182 2.433 0.013 0.059 

Year x Habitat 2 0.085 1.144 0.001 0.343 

Season x Habitat 6 0.136 1.815 0.011 0.110 

Year x Season x Habitat 5 0.085 1.134 0.003 0.366 

Residual 49 0.075           0.075   

      

 (b) Catch rate 

Main effects df MS Pseudo-F COV p 

Year 1 0.979 4.990 0.024 0.024 

Season 3 0.667 3.401 0.029 0.021 

Habitat 2 1.757 8.961 0.073 0.001 

Interactions      

Year x Season 3 0.313 1.596 0.014 0.192 

Year x Habitat 2 0.021 0.108 -0.016 0.902 

Season x Habitat 6 0.436 2.222 0.043 0.059 

Year x Season x Habitat 5 0.410 2.093 0.070 0.073 

Residual 49 0.196          0.196   

      

 (c) Shannon-Wiener diversity 

Main effects df MS Pseudo-F COV p 

Year 1 0.152 1.242 0.001 0.311 

Season 3 0.327 2.679 0.012 0.052 

Habitat 2 1.970 16.145 0.086 0.001 

Interactions      

Year x Season 3 0.486 3.987 0.044 0.020 

Year x Habitat 2 0.245 2.011 0.012 0.144 

Season x Habitat 6 0.137 1.125 0.003 0.342 

Year x Season x Habitat 5 0.223 1.828 0.033 0.124 

Residual 49 0.122          0.122   

 

Catch rates differed significantly among habitats, seasons and years (p=0.001-

0.024), with the former main effect again being the most influential (Table 3.9b). Mean 

catch rates among habitats followed a similar trend to mean species richness, with the 

highest values occurring at habitat A (1.7 fish 1h
-1

) and lowest at B (0.5 fish 1h
-1

; Fig. 

3.8c). Catch rates during 2007/2008 were greatest in spring and summer (1.5 fish 1h
-1

) 

and least in autumn and winter (1.0 fish 1h
-1

), while in 2008/2009 catch rates increased 

between spring (1.7 fish 1h
-1

) and autumn (3 fish 1h
-1

), and fell sharply in winter 

(0.5 fish 1h
-1

; Fig. 3.8c). Greater values were detected during 2007/2008 than 

2008/2009 (0.8 vs 1.5 fish 1h
-1

). 
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Fig. 3.8: Mean (a, b) species richness, (c, d) catch rates (fish per h
-1

) and (e, f) Shannon-Wiener 

diversity of the offshore fish fauna among habitats, seasons and/or years. Error bars represent 

the ± 95% confidence intervals, which have been averaged on plots d and f for clarity. 
 

 

Shannon-Wiener diversity differed significantly among habitats and the year x 

season interaction (p=0.001-0.020), with the former term being the greatest (Table 

3.9c). Diversity was again highest at habitat A (1.3) and lowest at B (0.2; Fig. 2.8e). The 

significant interaction was due largely to the opposing seasonal trends exhibited by 

diversity in each of the two years. Thus, whereas it was highest in spring and winter 

2007/2008 and lowest in summer and autumn, the reverse was true in 2008/2009 

(Fig. 2.8f). 
 

3.3.2.4: Differences in fish assemblage composition among offshore habitat types 

The species composition of the fish assemblages in the offshore waters of Broke 

Inlet were shown by PERMANOVA to differ significantly among habitats, seasons and 

years, as well as with the year x season and season x habitat interactions 

(p=0.001-0.007; Table 3.10). Differences among habitats accounted for the majority of
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Table 3.10: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from a three-way PERMANOVA of the offshore ichthyofaunal 

composition recorded at the three offshore habitat types in Broke Inlet sampled in each season 

between spring 2007 and winter 2009. df = degrees of freedom. Significant results are 

highlighted in bold. 
 

  Offshore fish assemblage composition 

Main effects df MS Pseudo-F COV p 

Year 1 7620.900 3.126 143.980 0.001 

Season 3 6619.500 2.716 232.320 0.001 

Habitat 2 9523.500 3.907 295.250 0.001 

Interactions 

     Year x Season 3 4645.200 1.906 245.280 0.007 

Year x Habitat 2 3363.100 1.380 77.120 0.135 

Season x Habitat 6 3901.200 1.600 243.930 0.006 

Year x Season x Habitat 6 3292.300 1.351 284.870 0.064 

Residual 48 2437.700       2437.700   
 

the variation in ichthyofaunal composition, while those between years were the least 

influential of the significant effects. Given that habitat and season were by far the most 

influential main effects and the significant habitat x season interaction, the following 

analyses to further investigate habitat differences in offshore fish faunal composition 

were carried out separately for each season, with the data pooled over both years. 

One-way ANOSIM tests detected significant differences in ichthyofaunal 

composition among offshore habitats only during spring and autumn (p=0.004 and 

0.005, respectively), and the overall extent of those differences was relatively low 

(Global R=0.231-0.313; Table 3.11). The greatest differences were detected between 

habitats A and B in both of the above seasons (pairwise R=0.426 and 0.563, 

respectively). During spring, the composition of the fish fauna at habitat A, which was 

characterised by the arripids A. georgianus and A. truttaceus (Appendix 3.2a), was 

relatively consistent among replicate samples, as reflected by the tight group formed by 

these samples on the nMDS plot (Fig. 3.9a). However, the composition of the fish fauna 

at habitat B, which was characterised by the mugilids A. forsteri and M. cephalus 

(Appendix 3.2a), was far more variable, as reflected by the highly dispersed nature of 

the replicate samples on the nMDS plot (Fig. 3.9a). In autumn, samples from habitats A 

and B were similarly dispersed but tended to occupy opposite sides of the nMDS plot 

(Fig. 3.9c). The differences between these two habitats were caused by greater 

abundances of A. georgianus, P. auratus and P. dentex in A and greater abundances of 

M. cephalus in B (Appendix 3.2b).  
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Table 3.11: Global R-statistic and/or significance level (p) values derived from one-way 

ANOSIM tests of offshore fish faunal composition among the three habitat types, carried out 

separately for each season. Insignificant pairwise comparisons are highlighted in grey. 

 
(a) Spring; p=0.004, Global R=0.231 

 

(b) Summer; p=0.168, Global R=0.070 
  A B 

 

  A B 

B 0.426   

 

B 0.164   

C 0.154 0.113 

 

C 0.004 0.061 

       (c) Autumn; p=0.005, Global R=0.313 

 

(d) Winter; p=0.104, Global R=0.104 
  A B 

 

  A B 

B 0.563   

 

B 0.028   

C 0.085 0.250 

 

C -0.037 0.286 

 
(a) Spring (b) Summer 

  

 

(c) Autumn 

 

(d) Winter 

  
 

Habitat type  A   B   C 
 

Fig. 3.9: nMDS ordination plots of the fish faunal composition at each of the three offshore 

habitat types in each season.  

3.3.2.5: Relationships between the fish community and environmental 

characteristics of offshore habitat types 

The RELATE procedure was employed to test the extent to which the pattern of 

relative differences among offshore sites, as defined by their suite of enduring 

environmental characteristics, was correlated with that defined by their offshore fish 

faunal composition in each season. Note that, as there were only three offshore habitats, 

2D Stress: 0.10 2D Stress: 0.19

2D Stress: 0.01

2D Stress: 0.10 2D Stress: 0.13

2D Stress: 0.01



Chapter 3 

 

98 

these tests were carried out using the averages recorded at each site rather than habitat 

in order to improve statistical power. A significant correlation between these 

complementary matrices was detected only during autumn, and the extent of that 

correlation was moderate (ρ=0.416; Table 3.12a; Fig. 3.10). 

 
Table 3.12: Significance level (p) and rho statistic (ρ) values for the correlation between a 

resemblance matrix constructed from the average fish fauna data at each offshore site and 

complementary matrices constructed from (a) enduring environmental variables (EEVs), (b) the 

full suite of non-enduring environmental variables (NEVs) and (c) the subset of the non-

enduring environmental variables (NEV subset) selected by the BIOENV routine. Analyses 

were repeated for each calendar season. Significant correlations are highlighted in bold. DO = 

dissolved oxygen concentration. 

 

 

(a) EEVs  (b) NEVs  (c) NEV subset 

Season p ρ  p Ρ  p ρ Variables selected 

Spring 0.214 0.126  0.024 0.389  0.011 0.534 Surface salinity 

Summer 0.332 0.066  0.516 -0.020  0.870 0.175  

Autumn 0.016 0.416  0.022 0.362  0.049 0.465 Surface DO 

Winter 0.367 0.047  0.046 0.337  0.004 0.530 pH 
 

 

RELATE was then used to correlate the spatial patterns in the complementary 

fish faunal and non-enduring environmental, i.e. water physico-chemical, matrices 

constructed from the average data recorded at the various offshore sites in each season. 

These tests detected significant matches in all seasons except summer, with the extent 

of those matches being moderate (Table 3.12b). BIOENV was used to test whether a 

greater correlation could be obtained between complementary matrices by only 

employing particular subsets of the water physico-chemical variables, a significant 

match and greater correlation was obtained during spring, autumn and winter 

(Table 3.12). 

The relationships between the pattern of differences among habitat as exhibited 

by the offshore fish faunas and the magnitude of the NEVs selected by BIOENV in each 

season are illustrated by nMDS ordinations and associated bubble plots (Fig. 3.11). On 

the ordination plot for spring sites representing habitat B exhibited markedly lower 

surface salinities compared to those representing habitats A and C (Fig. 3.11a). Surface 

dissolved oxygen and pH levels during autumn and winter, respectively, were highest in 

sites representing habitat A and lowest at those representing habitat B (Figs 3.11b, c). 
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However, the overall ranges of these last two variables among habitats were low, for 

example, pH only ranged from 7.5-8.2 (Fig. 3.11c).  

 

(a) Enduring environmental data 

 
 

(b) Spring; p=0.214, ρ=0.126 
 

(c) Summer; p=0.332, ρ=0.066 

  
 

(d) Autumn; p=0.016, ρ=0.416 
 

(e) Winter; p=0.367, ρ=0.047 

  
 

Fig. 3.10: nMDS ordination plots constructed from the averages of the (a) enduring 

environmental variables and (b-e) the fish faunal composition in each season at each offshore 

site. The significance levels (p) and rho values (ρ) obtained from RELATE tests are also 

provided. 
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 (a) Spring; p=0.011, ρ=0.534 (b) Autumn; p=0.049, ρ=0.465 

 
 

 

(c) Winter; p=0.004, ρ=0.530  

 

Surface 
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Fig. 3.11: nMDS ordination plots of the average fish faunal composition recorded at each 

offshore site in a particular season. The magnitude of the non-enduring environmental 

variable(s) selected by the BIOENV routine are displayed for each site as circles of 

proportionate sizes. The significance levels (p) and rho values (ρ) obtained from the above 

BIOENV tests are also provided. DO = dissolved oxygen concentration. 

3.4: Discussion 

3.4.1: Nearshore fish community 

3.4.1.1: Nearshore fish assemblage characteristics 

Analysis of the nearshore fish community sampled seasonally at 11 habitat types 

throughout Broke Inlet for two consecutive years demonstrated that these fauna were 

heavily dominated by a suite of six species, namely the atherinids Atherinosoma 

elongata, Leptatherina wallacei and Leptatherina presbyteroides and the gobiids 

Afurcagobius suppositus, Pseudogobius olorum and Favonigobius lateralis. These 

species collectively represented between 99 and 100% of the total catch at each habitat. 

Such findings parallel those in a recent study by Hoeksema et al. (2009) in the 

nearshore waters of Broke Inlet, where these species represented 99.7% of all fish 

caught. Moreover, the above species are also typically abundant in other estuaries along 

the south coast of Western Australia, irrespective of their degree of connectivity to the 

ocean (Potter et al., 1993; Potter & Hyndes, 1994; Hoeksema et al., 2009).  
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Each of the above atherinid and gobiid species are able to complete their life 

cycle within the estuary (Prince & Potter, 1983; Gill et al., 1996). It is theorised that 

such a life history strategy could have developed as a response to estuaries in southern 

Australia being cut off at intervals from the ocean by the formation of sand bars, thus 

temporarily landlocking marine species and selecting those best able to adapt to 

estuarine conditions (Potter et al., 1986b; Beheregaray et al., 2000). Atherinids, for 

example, show a high degree of intra-specific morphological variability that is thought 

to be caused by the highly variable physico-chemical conditions of the estuarine 

environment, which has selected for generalist genotypes that are able to adjust their 

morphology, physiology and behaviour depending on environmental conditions 

(Bamber & Henderson, 1988; Beheregaray et al., 2002). This plasticity has enabled 

A. elongata, the most numerous fish species in Broke Inlet, to become highly euryhaline 

and able to tolerate salinities from < 5-135 (Prince et al., 1982a; Hoeksema et al., 

2006), and thus successfully colonise estuaries which undergo pronounced changes in 

salinity (Hoeksema et al., 2006; Chuwen et al., 2009a). 

Atherinid and gobiid species in south-western Australian estuaries have also 

developed a number of methods to maximise reproductive success in these 

environments. These include a protracted spawning period during times of relative 

environmental stability (Prince & Potter, 1983; 1992b; Neira & Potter, 1994; Gill et al., 

1996), demersal and adhesive eggs (Prince & Potter, 1983; White et al., 1984; Potter & 

Hyndes, 1994) and, in the case of atherinids, well developed larvae upon hatching 

(Watts, 1991). These characteristics presumably developed as a result of selection 

pressures favouring those species which are able to complete their life cycle in these 

estuaries (Potter et al., 1986b). However, such characteristics are not unique to 

Australian estuarine species, as the reproductive biology of the Brazilian atherinid 

Odontesthes argentinensis differs between populations inhabiting the Patos Lagoon and 

nearshore marine waters in terms of their spawning period, site selection and egg 

morphology (Bemvenuti, 1987; Phonlor & Vinagre, 1989; Phonlor & Cousin, 1997).  

In order for the aforementioned atherinid and gobiid species to collectively 

dominate the ichthyofaunas of many south-western Australian estuaries, they have also 

evolved to partition resources within these environments. Thus, for example, 
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L. presbyteroides and F. lateralis are typically most abundant in areas of bare sand and 

salinities of around 35, L. wallacei and A. suppositus have a tendency to occur in areas 

with dense seagrass beds and reduced salinities (sometimes < 5), A. elongata, usually 

prefer seagrass beds with intermediate salinities and P. olorum patchy seagrass areas 

with a silty substrate (Prince et al., 1982a; Gill & Potter, 1993; Humphries & Potter, 

1993; Gill & Humphries, 1995). In addition to differences in “preferred” habitat, these 

atherinid and gobiid species each possess different jaw morphology (Prince et al., 

1982b; Gill & Miller, 1990; Gill, 1993), thus enabling them to specialise in the types of 

prey they consume (Humphries, 1993). Differences in the diets of these species within 

south-western Australian estuaries have been shown to support such morphological 

differences (Gaughan, 1992; Gill & Potter, 1993; Humphries & Potter, 1993). 

The relative contribution of marine species to the nearshore ichthyofauna of 

Broke Inlet was minimal, i.e. < 1% of the total catch. Such findings are obviously 

closely related to the seasonally-open nature of Broke Inlet, thereby reducing the 

opportunity for marine species to potentially migrate into the estuary. In contrast, the 

nearshore fish fauna of Oyster Harbour, a permanently-open estuary located ca 150 km 

east of Broke Inlet, has a far larger proportion of marine species (Hoeksema et al., 

2009). Secondly, the spawning time of many of the marine estuarine-opportunist species 

that occur along the south coast of Western Australia is at a time of year when the bar at 

the mouth of Broke Inlet it typically closed (Malcolm, 1960; Chubb et al., 1981; 

Hyndes et al., 1998; Fairclough et al., 2000a, b). However, even in permanently-open 

estuaries in the region, such as the Swan-Canning and Walpole-Nornalup estuaries, the 

recruitment of larvae from marine species into these estuaries is low, contributing only 

ca 1% to the total ichthyoplankton in those systems (Gaughan et al., 1990; Neira & 

Potter, 1994). Similar trends have also been reported in seasonally-open estuaries such 

as the nearby Wilson Inlet and the Hopkins River Estuary in Victoria (Neira & Potter, 

1992a; Newton, 1996). Nevertheless, the recruitment of marine species must occur at 

some stage of their life cycle, as marine species dominate the offshore waters of these 

systems, including Broke Inlet (see subsection 3.4.2.1). It has therefore been suggested 

that the majority of the individuals are of a substantial size (i.e. > 100 mm) upon 

entering estuaries on the south coast of Western Australia and thus do not utilise the 
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nearshore waters of these systems as a nursery area to the same extent as in other 

regions (Chuwen et al., 2009b; Hoeksema et al., 2009).  

 

3.4.1.2: Differences in fish assemblages among nearshore habitat types 

Significant differences in ichthyofaunal composition were detected among the 

various nearshore habitats within Broke Inlet during each of the eight sampling seasons 

between spring 2007/2008 and winter 2008/2009. However, the extent of those spatial 

differences were low to moderate. Such findings reflect the fact that, as described in 

subsection 3.4.1.1, the nearshore ichthyofauna of this system is dominated by a suite of 

six estuarine species that, despite exhibiting preferences for particular environmental 

conditions, are able to tolerate a wide range of those conditions.  

During all sampling occasions, the most distinct ichthyofaunal assemblages 

were recorded at one or more of the habitats located in the entrance channel, i.e. B, G 

and/or H. These habitats also had highly distinct enduring environmental characteristics 

from many of those located in the estuary basin, such as small fetches, narrow wave 

shoaling margins, steeply sloping substrates and, in the case of habitats H and G, dense 

and extensive Ruppia megacarpa beds. The distinctiveness of the fish assemblages at 

these channel habitats was due firstly to the far higher abundances of atherinids and 

gobiids compared to basin habitats, and secondly to the presence of a relatively large 

suite of marine species which were largely or entirely unique to these habitats, 

e.g. Notolabrus parilus, Hyporhamphus melanochir and Achoerodus gouldii. 

The persistently higher fish densities recorded at the above channel habitats is 

possibly related to the greater level of shelter and food they provide and the physico-

chemical characteristics of the water column. Thus, Humphries et al. (1992) 

demonstrated that the densities of A. elongata, L. wallacei, A. suppositus and P. olorum 

in the nearby and seasonally-open Wilson Inlet were greatest in areas of patchy or dense 

R. megacarpa. Furthermore, the latter two species have been shown in other south-

western Australian estuaries to occur predominantly in highly sheltered areas (Gill & 

Potter, 1993). In addition, Pseudogobius olorum feeds mainly on algae, detritus and 

bacterial mats, all of which are associated with seagrass habitats (Gill & Potter, 1993), 

and A. elongata, A. suppositus and L. wallacei all feed on nereidid polychaetes and/or 
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the shrimp Palaemonetes australis, which are also typically associated with 

R. megacarpa beds (Humphries & Potter, 1993; Platell & Potter, 1996). Lastly, 

although the highly abundant and ubiquitous A. elongata is extremely euryhaline, it has 

been shown to have a preference for salinities between 20 and 36 in other south-western 

Australian estuaries (Prince et al., 1982a). These findings parallel those of the current 

study, in which the densities of this species were far greater at the channel habitats 

where salinities ranged between 17 and 33, and were least in the basin habitats in which 

salinities during six of the eight sampling occasions were ca 15 and fell to < 5 on some 

occasions. 

Further distinction of the fish assemblages among the channel habitats was also 

apparent. Thus, the estuarine and marine species L. presbyteroides and F. lateralis were 

more prevalent at habitat B than G and/or H during the majority of sampling occasions, 

reflecting the unvegetated and coarse sandy substrates present at this habitat, which 

these species are known to prefer (Prince et al., 1982a; Gill & Potter, 1993; Humphries 

& Potter, 1993). Despite large areas of unvegetated sediment being present in many of 

the basin habitats, the notably lower abundances of the above two species, both of 

which have marine affinities (Prince et al., 1982a; Gill & Potter, 1993), is presumably 

related to the lower salinities in those areas. The presence of marine species only or 

mainly at habitat B in certain seasons also helped distinguish the ichthyofauna at this 

habitat from those at the other entrance channel habitats. These included Ammotretis 

rostratus, Ammotretis elongatus, Platycephalus speculator, Pseudorhombus jenynsii 

and Cynoglossus broadhursti, all of which are well camouflaged against the sandy 

substrate at habitat B. Likewise, several weed-associated marine species, namely 

N. parilus, A. gouldii, H. melanochir, Neoodax balteatus, Enoplosus armatus and 

Girella zebra, also helped to distinguish the fish fauna at the vegetated habitat H in 

certain seasons.  

Several marine species, such as E. armatus, G. zebra and H. melanochir, were 

also recorded at habitat G, at the uppermost end of the channel, and further into the 

estuary at habitat C, located on the southern shore of Middle basin. This probably 

reflects the fact that both these habitats were relatively sheltered from wave action, 

contained R. megacarpa beds and maintained relatively high salinities throughout the 
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year. Moreover, the moderately large densities of A. elongata and L. wallacei recorded 

at habitats G and C also helped distinguish their fish faunas from those of most other 

basin habitats.  

Habitat A, situated at the mouth of Inlet River and surrounded by extensive, 

shallow and unvegetated shoals, was among the most distinct of the basin habitats with 

regard to its fish fauna, most notably due to its depauperate composition. Thus, this very 

shallow habitat could only be sampled during winter and spring of both study years and, 

in those seasons, fish densities were always low.  

It is interesting to note that freshwater species were seldom caught during this 

study, even though habitats A, J and K, which were situated at the mouths of the Inlet, 

Shannon and Forth rivers, respectively, experienced salinities of < 5 during three of the 

eight sampling occasions. Such findings may reflect the limited abundance of fish in 

these rivers, which are oligotrophic and harbour a sparse and depauperate fish fauna 

(Bunn & Davies, 1990; Morgan et al., 1998) or a tendency for these freshwater species 

not to stray from the rivers and into the basin. Furthermore, the mean densities of fish at 

these three habitats were typically among the lowest, despite the fact that L. wallacei 

and P. olorum are known to exhibit a preference for reduced salinities in other south-

western Australian estuaries (Prince et al., 1982a; Gill & Potter, 1993).  

The extent of the ichthyofaunal differences among the remaining basin habitats 

(D, E, F, and I) were typically low and, during several sampling occasions, were not 

significantly different. Any significant differences were usually due to varying densities 

of one or more of the six common estuarine species. Such findings reflect both the 

limited number of species found to inhabit the basin regions, and the apparent wide 

environmental tolerances of those species (see subsection 3.4.1.1).  

 

3.4.1.3: Relationships between the fish community and environmental 

characteristics of nearshore habitat types    

The pattern of relative differences among nearshore habitats in terms of their 

enduring environmental characteristics was significantly correlated with that exhibited 

by the fish fauna in all but one of the eight sampling seasons, with the extent of those 

correlations being moderate. This reflects the fact that, the two main channel habitats (B 
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and H) both had distinctive enduring environmental and ichthyofaunal characteristics, 

this trend was often not mirrored at many of the basin habitats. Thus, whereas the 

enduring environmental characteristics of basin habitats C, D and F were distinct from 

those of A, E, I, J and K, due mainly to presence of submerged aquatic macrophytes at 

the former habitats, their fish faunas were each largely dominated by the same suite of 

six common atherinid and goby species, which, only sometimes differed considerably in 

their relative densities with reduced abundances in typically recorded in habitat A and, 

to a lesser extent, J and K. However, the significant correlation with the enduring 

environmental variables and limited suite of species that occur in Broke Inlet make it 

possible to predict the species likely to typify any new site of interest within the estuary.  

The relative differences among habitats, as defined by the suite of non-enduring 

water physico-chemical variables were significantly matched with those of the 

ichthyofauna on all but one sampling occasion. Furthermore, the extents of those 

significant matches were often slightly greater than those for the enduring 

environmental data. This was particularly so for those seasons in which the mouth of the 

estuary had been open for a relatively prolonged period or recently closed, i.e. spring or 

summer. During those seasons, pronounced spatial differences in non-enduring 

environmental variables, such as salinity, pH and macrophyte biomass, were present 

due to current or recent freshwater input into Shannon and Clarke basins and saltwater 

intrusion from the ocean and the annual growth cycle of R. megacarpa. Such 

environmental heterogeneity was coupled with greater differences in ichthyofauna 

among habitats. However, the extent of the matches between both the enduring and non-

enduring environmental and fish faunal data in Broke Inlet were often considerably 

lower than those recorded in the permanently-open Swan-Canning Estuary which 

reflects the greater diversity of habitats and environmental conditions present within this 

system (Valesini et al., 2009).  

 

3.4.2: Offshore fish community  

3.4.2.1: Offshore fish assemblage characteristics 

In contrast to the nearshore waters, which were overwhelmingly dominated by 

estuarine species (i.e. estuarine residents and estuarine and marine species), only 5 of 

the 31 species and 20% of the individuals caught in the offshore waters, belonged to the 
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estuarine and marine guild, while no estuarine residents were caught. Instead, marine 

estuarine-opportunists were the most numerous, constituting ca 75% of the individuals 

caught in each habitat. While marine stragglers were the most speciose guild, they 

contributed the least to the overall abundance of fishes (5%). The contribution of this 

latter guild is strongly influenced by the length of time Broke Inlet is open to the ocean 

(Chuwen et al., 2009b) and, as in many other estuaries in south-western Australia, the 

distance upstream from the estuary mouth (Loneragan et al., 1989; Potter et al., 1993; 

Potter & Hyndes, 1994; Chuwen et al., 2009b). Thus, during this study, marine 

stragglers were only recorded at offshore habitat A, which was located in the entrance 

channel. However, regardless of the degree of connectivity to the ocean, marine 

estuarine-opportunists have been shown to numerically dominate the ichthyofauna of 

the deeper, offshore waters of estuaries along the southern coast of Western Australia 

(Potter et al., 1993; Potter & Hyndes, 1994; Chuwen et al., 2009b). The abundance of 

these species is primarily due to the immigration of individuals > 100 mm in length 

entering these systems from nearshore marine environments at times when the mouths 

of these estuaries are open. These productive and sheltered environments act as 

important areas for these species (Potter et al., 1997; Potter & Hyndes, 1999; Potter 

et al., in prep), compared to the exposed nearshore marine waters, which are situated 

only 30 km from the continental shelf and are subject to large swells, as this coast is not 

protected by a chain of offshore reefs like those present on the lower west coast of 

Australia (Sanderson et al., 2000).  

It is also noteworthy that, unlike the nearshore waters, no estuarine resident 

species were caught in the offshore waters of Broke Inlet during this study. This is due 

to the paucity of the sparid Acanthopagrus butcheri, which is the only estuarine resident 

in the offshore waters of estuaries in south-western Australia. Although this species is 

abundant in other estuaries in this region, the fact that this species was not caught in this 

study parallels that by Chuwen et al. (2009b), where no individuals were captured in the 

basin of Broke Inlet during two years of seasonal sampling, which may reflect the low 

salinities present in the estuary and riverine reaches during winter and spring when this 

species spawns (Willams et al., 2009). Furthermore, the abundances of the estuarine 

spawning Cnidoglanis macrocephalus were lower than those recorded in other nearby 
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seasonally-open estuaries (Chuwen et al., 2009b). As this species utilises detached 

macrophytes as a nursery area (Lenanton & Caputi, 1989; Crawley et al., 2006) the 

reduced catches recorded in Broke Inlet may be related to the paucity of macrophytes in 

this system. It is also important to note that the absence of small estuarine species, such 

as atherinids and gobiids, is likely to be related to these fishes not being susceptible to 

capture by gillnets rather than them not being present in the offshore waters.  

 

3.4.2.2: Differences in fish assemblages among offshore habitat types 

Significant differences in fish assemblage composition among the offshore 

habitats were only detected during spring and autumn and, during these seasons, the 

overall extent of those spatial differences was low. The most distinct differences 

occurred between habitat A in the entrance channel and B in Shannon Basin, the latter 

of which receives the greatest freshwater input. These differences were mainly due to 

higher abundances of Arripis truttaceus, Pagrus auratus, Pseudocaranx dentex and 

Arripis georgianus at habitat A than B, while the opposite was true for Mugil cephalus 

and Aldrichetta forsteri. These two mugilids are known to exhibit an apparent 

preference for upper estuarine/lower riverine reaches with reduced salinities (Chubb 

et al., 1981; Chuwen et al., 2009b). As only five of the 31 species recorded during this 

study belong to the estuarine and marine guild it is reasonable to assume the paucity of 

these species in habitat B may be related to the lower salinities present within that 

habitat and the relative distance from the ocean. A similar trend was detected in the 

offshore waters of the Swan-Canning Estuary where the contribution of marine 

estuarine-opportunists declined from 39 and 32% in the lower and middle estuary to 

only 5% in the upper estuary (Loneragan et al., 1989). 

Conversely, the greater abundances of the marine species A. georgianus and 

A. truttaceus in habitat A during spring may be related to the higher salinities present in 

this habitat and the fact that at this time of year they make a westward migration from 

South Australia to spawn (Fairclough et al., 2000a, b). Furthermore, these species, 

along with P. auratus and P. dentex, are known to feed on fish and crustaceans, 

particularly Palaemonetes australis (Edgar & Shaw, 1995; Hindell et al., 2000; Platell 

et al., 2006), which are most abundant in the entrance channel and related to the 

presence of Ruppia megacarpa (Tweedley & Valesini, 2008; Chapter 5).  
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The lack of a significant difference in ichthyofaunal composition among 

offshore habitats in winter may be due to the paucity of fish caught during this season, 

which was one third of that in other seasons. Such a trend was probably related to the 

very low salinities present throughout the estuary at this time and the recent breaching 

of the bar at the mouth of the estuary, thus providing an emigratory route to the ocean. 

 

3.4.2.3: Relationships between the fish community and environmental 

characteristics of offshore habitat types 

The pattern of relative differences among offshore sites in terms of their 

enduring environmental characteristics were significantly correlated with those 

exhibited by their fish fauna only during autumn. Such findings are a consequence of 

the rank order of similarities among habitats, thus, whereas the enduring environmental 

characteristics of the channel habitat A were the most distinct, habitat B contained by 

far the most distinctive ichthyofaunal assemblage and non-enduring water physico-

chemical variables. Although the pattern of spatial differences in ichthyofaunal 

composition was significantly correlated with that exhibited by the non-enduring 

environmental characteristics in all seasons except summer, only in the case of spring 

was the result “reliable”. In the case of the other significant correlations, i.e. those 

recorded in autumn and winter, BIOENV selected a single variable which exhibited 

little spatial variation. For example, pH was ca 7.5 at sites representing habitat B and ca 

7.8 at the remaining sites (habitats A and C). Such subtle variations in pH or dissolved 

oxygen concentrations, which ranged from 4.7-5 mg L
-1 

in autumn, are unlikely to affect 

the offshore fish faunal composition and thus these variables in these seasons are not 

considered to provide a reliable “explanation”.  

 

3.5: Appendices 
 

Appendix 3.1: Species that consistently typified (provided along the diagonal) and 

distinguished (provided in the sub-diagonal) the fish assemblages at each nearshore habitat 

between spring 07/08 and winter 08/09 as detected by one-way SIMPER. The habitat type in 

which each species was most abundant is given in superscript for each pairwise comparison. 

Insignificant pairwise comparisons are highlighted in grey. Asterisks denote the relative 

consistency of each species in either typifying or distinguishing the faunal composition of 

habitat types, as measured by the similarity to standard deviation ratio and dissimilarity to 

standard deviation ratio, respectively; > 1.5-3*, > 3-5**, > 5***. 
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0
 

(a) Spring 2007/2008 

  A B C D E F G H I J K 

A 
L. wallacei***                     

A. elongata***   
 

  
 

  
 

  
 

    

B 
F. lateralisB** F. lateralis**                   

A. elongataB* A. elongata* 
 

  
 

  
 

  
 

    

L. presbyteroidesB* L. presbyteroides* 
 

  
 

  
 

  
 

    

C 
A. suppositusC*   L. wallacei**                 

A. elongataC*   A. elongata**   
 

  
 

  
 

    

P. olorumC*       
 

  
 

  
 

    

D 

A. suppositusD*** A. suppositusD*   A. suppositus***               

P. olorumD* F. lateralisB*   A. elongata* 
 

  
 

  
 

    

L. wallaceiD* P. olorumD*   L. wallacei* 
 

  
 

  
 

    

 
L. presbyteroidesB*                   

E 
A. suppositusE* F. lateralisB** P. olorumC*  A. elongataD* A. elongata**             

  A. elongataB* A. elongataC*  P. olorumD* L. wallacei*   
 

  
 

    

F 
  F. lateralisB*       A. elongata*           

  A. elongataB*       L. wallacei* 
 

  
 

    

G 
A. suppositusG*** A. suppositusG**     P. olorumG* P. olorumG A. suppositus***         

P. olorumG* P. olorumG*     A. suppositusG* A. suppositusG P. olorum*   
 

    

F. lateralisG* L. presbyteroidesB*     F. lateralisG* A. elongataG A. elongata*   
 

    

H 

P. olorumH* A. suppositusH***     P. olorumH*     P. olorum**       

A. elongataH* F. lateralisB*     A. elongataH*     L. wallacei** 
 

    

 
A. elongataH 

     
A. elongata** 

   

 
A. rostratus B 

         

 
P. olorumH*     

 
    

  
    

I 
F. lateralisI**   A. suppositusC* A. suppositusD** F. lateralisI* F. lateralisI* A. suppositusG** P. olorumH* L. wallacei***     

A. elongataI*   A. elongataC* P. olorumD* A. elongataI* A. elongataI* P. olorumG* F. lateralisI* A. elongata**     

 
  P. olorumC*   A. suppositusE*   

 
  F. lateralis*     

J 

A. suppositusJ** F. lateralisB* A. suppositusJ*         A. elongataH* F. lateralisI* A. suppositus**   

 
P. olorumJ* F. lateralisC         A. suppositusH* A. suppositusJ* A. elongata*   

 
A. rostratus B A. elongataC* 

        

K 
  F. lateralisB* A. elongataC* 

 
    A. suppositusG* A. elongataH* F. lateralisI*   A. elongata*** 

  A. elongataB* A. suppositusC* 
 

    P. olorumG* P. olorumH* A. elongataI*   L. wallacei** 

    P. olorumC* 
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(b) Summer 2007/2008 

 
B C D E F G H I J K 

B 

A. rostratus***                   

L. presbyteroides*** 
 

  
 

  
 

  
 

    

L. wallacei** 

 

  

 

  

 

  

 

    

A. elongata**                   

C 

A. rostratusB*** A. suppositus***   

 

  

 

  

 

    

L. presbyteroidesB** A. elongata*   
 

  
 

  
 

    

L. wallaceiB**     

 

  

 

  

 

    

A. elongataB*     
 

  
 

  
 

    

D 

A. rostratusB***   A. suppositus***               

L. presbyteroidesB**   A. elongata** 

 

  

 

  

 

    

A. elongataB*   L. wallacei* 

 

  

 

  

 

    

L. wallaceiB*                   

E 

A. rostratusB***     A. elongata**             

L. presbyteroidesB**     A. suppositus**   

 

  

 

    

L. wallaceiB*     L. wallacei*   
 

  
 

    

F. lateralisB*                   

F 

A. rostratusB***       A. suppositus***           

L. presbyteroidesB**       A. elongata*** 

 

  

 

    

L. wallaceiB*       L. wallacei** 
 

  
 

    

F. lateralisB*                   

G 

A. rostratusB**         A. elongata**         

L. presbyteroidesB**         A. suppositus*   

 

    

L. wallaceiB*             

 

    

F. lateralisB*                   

H 

A. rostratusB**  A. elongataH* A. elongataH* A. elongataH* A. elongataH*  L. wallaceiH* A. suppositus***       

A. suppositusH*  L. wallaceiH* A. suppositusH* A. suppositusH* A. suppositusH* A. elongataH* A. elongata** 
 

    

L. wallaceiH*  A. suppositusH* L. wallaceiH* N. parilusH* N. parilusH* A. suppositusH* L. presbyteroides* 

 

    

N. parilusH* F. lateralisH N. parilusH* L. wallaceiH* L. wallaceiH*  L. presbyteroidesH L. wallacei*       

I 

A. rostratusB** F. lateralisI* L. presbyteroidesD* 

 

  A. elongataG* A. suppositusH* A. elongata***     

L. presbyteroidesB** A. suppositusC* F. lateralisI* 
 

  
 

A. elongataH* L. wallacei***     

F. lateralisB* L. wallaceiI* A. suppositusD* 

 

  

 

N. parilusH* F. lateralis**     

L. wallaceiB* 
 

A. elongataD* 
 

    L. wallaceiH*       

J 

A. rostratusB***           A. elongataH*   A. elongata***   

L. presbyteroidesB**           A. suppositusH*   F. lateralis***   

F. lateralisB*           N. parilusH*   A. suppositus*   

L. wallaceiB*           L. wallaceiH*   L. wallacei*   

K 

A. rostratusB*** 
   

    A. suppositusH*     L. wallacei*** 

L. presbyteroidesB** 

   

    A. elongataH*     A. elongata** 

L. wallaceiB* 
   

    N. parilusH*     L. presbyteroides* 

A. elongataB* 

   

    L. wallaceiH*       
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 (c) Autumn 2007/2008 

 
B C D E F G H I J K 

B 
F. lateralis***                   

L. presbyteroides* 

 

  

 

  

 

  

 

    

C 

  A. elongata**   

 

  

 

  

 

    

  A. suppositus*   

 

  

 

  

 

    

  L. presbyteroides*   
 

  
 

  
 

    

  L. wallacei*   
 

  
 

  
 

    

D 

L. wallaceiB* L. presbyteroidesC* A. suppositus***               

A. elongataB* L. wallaceiC* A. elongata*** 

 

  

 

  

 

    

F. lateralisB* A. elongataC* L. wallacei* 

 

  

 

  

 

    

E 

F. lateralisB* L. wallaceiC*   L. wallacei**             

A. elongataB* L. presbyteroidesC*   A. suppositus*   

 

  

 

    

L. presbyteroidesB*     A. elongata*   

 

  

 

    

F 

L. wallaceiB*       A. elongata***           

A. elongataB*       A. suppositus** 
 

  
 

    

L. presbyteroidesB*       L. wallacei* 
 

  
 

    

G 

    L. presbyteroidesG***  L. wallaceiG   A. elongata***         

    L. wallaceiG*  A. elongataG   A. suppositus***   

 

    

    A. elongataG*  P. olorumG*   L. wallacei**   

 

    

    F. lateralisD*  L. presbyteroidesG*   L. presbyteroides*         

H 

    L. wallaceiH** L. presbyteroidesH* L. presbyteroidesH*   A. suppositus***       

    L. presbyteroidesH* L. wallaceiH* L. wallaceiH*   A. elongata*** 

 

    

    A. elongataH* A. elongataH* A. elongataH*   F. lateralis** 

 

    

        

 

  L. wallacei**       

I 

L. wallaceiB**          L. wallaceiG* L. wallaceiH*** L. presbyteroides**     

A. elongataB*          A. elongataG A. suppositusH* A. suppositus**     

A. suppositusB*           P. olorumG* A. elongataH* L. wallacei**     

           A. suppositusG* L. presbyteroidesH* A. elongata*     

J 
 

         L. wallaceiG A. elongataH*   A. elongata**   

 

         A. elongataG L. wallaceiH*   A. suppositus**   

 

          P. olorumG* A. suppositusH*   L. wallacei*   

 

         A. suppositusG L. presbyteroidesH*       

K 

    A. suppositusD* A. suppositusE*   A. suppositusG* A. suppositusH*     A. elongata* 

    F. lateralisD A. elongataE   A. elongataG* L. wallaceiH*       

    L. presbyteroidesK L. wallaceiE   L. wallaceiG* A. elongataH*       

    

 

L. presbyteroidesK   P. olorumG* L. presbyteroidesH*       
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(d) Winter 2007/2008 
  A B C D E F G H I J K 

A 
A. elongata***                     

L. wallacei**   
 

  
 

  
 

  
 

    

B 

L. presbyteroidesB* A. elongata**                   

A. suppositusB* L. presbyteroides** 
 

  
 

  
 

  
 

    

A. elongataB* L. wallacei* 
 

  
 

  
 

  
 

    

C 

P. olorumC*** L. presbyteroidesB* P. olorum***                 

A. suppositusC** P. olorumB A. suppositus***   
 

  
 

  
 

    

L. wallaceiC* A. elongataB L. wallacei**   
 

  
 

  
 

    

A. elongataC* F. lateralisB A. elongata*                 

D 

  L. presbyteroidesB* P. olorumC*** A. elongata**               

  A. suppositusB* A. suppositusC*   
 

  
 

  
 

    

  L. wallaceiB L. wallaceiC*   
 

  
 

  
 

    

  P. olorumB F. lateralisC                  

E 

 

  L. presbyteroidesB*     L. wallacei***             

  A. suppositusB*     A. suppositus**   
 

  
 

    

  L. wallaceiE     A. elongata**   
 

  
 

    

F 

          L. wallacei**           

          A. elongata** 
 

  
 

    

          A. suppositus* 
 

  
 

    

G 

P. olorumG***     P. olorumG***     P. olorum***         

A. elongataG*     A. elongataG*     A. elongata*   
 

    

L. wallaceiG     L. wallaceiG*     A. suppositus*   
 

    

                      

H 

A. suppositusH*   L. presbyteroidesH* A. suppositusH* A. suppositusH* A. suppositusH* 
 

A. suppositus**       

L. presbyteroidesH*   
 

L. presbyteroidesH* L. presbyteroidesH* L. presbyteroidesH* 
 

A. elongata** 
 

    

A. elongataH*   
 

L. wallaceiH*   
  

L. wallacei* 
 

    

P. olorumH   
 

    
  

        

I 

A. elongataI*  L. presbyteroidesB* P. olorumC***  L. wallaceiI*     P. olorumG** A. suppositusH* L. wallacei***     

L. wallaceiI*  A. suppositusB* A. suppositusC**  A. elongataI*     A. elongataG* L. presbyteroidesH* A. elongata**     

  
 

A. elongataI*  A. suppositusD     
 

  
 

    

J 

              L. presbyteroidesH*   L. wallacei***   

              A. suppositusH*   A. elongata**   

              
 

      

K 

A. elongataK*  A. suppositusB* A. suppositusC** L. wallaceiK**     
 

A. suppositusH*     L. wallacei*** 

L. wallaceiK*  L. presbyteroidesB* P. olorumC* A. elongataK*     
 

L. presbyteroidesH*     A. elongata*** 

    A. elongataK* A. suppositusD*     
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(e) Spring 2008/2009 

 
A B C D E F G H I J K 

A 
L. wallacei**                     

A. elongata*   
 

  
 

  
 

  
 

    

B 

F. lateralisB* A. elongata**                   

L. presbyteroidesB* F. lateralis**   
  

 
  

 
  

 
    

L. wallaceiB* L. presbyteroides*   
  

 
  

 
  

 
    

A. suppositusB L. wallacei                   

C 

L. presbyteroides C**   A. suppositus***                 

A. suppositusC**   A. elongata**   
 

  
 

  
 

    

L. wallaceiC*   L. presbyteroides**    
 

  
 

  
 

    

P. olorumC   L. wallacei**                 

D 

  L. presbyteroidesB* L. presbyteroide C**  L. wallacei**               

  L. wallaceiB* A. suppositusC** A. elongata** 
 

  
 

  
 

    

  A. elongataB*  L. wallaceiC   
 

  
 

  
 

    

  A. suppositusB*  A. elongataC                 

E 

  L. wallaceiB* F. lateralisC   L. wallacei*             

  L. presbyteroidesB P. olorumC   A. elongata*   
 

  
 

    

 
F. lateralisB*  A. elongataC 

        

F 

  L. presbyteroidesB*       A. elongata***           

  L. wallaceiB*        L. wallacei** 
 

  
 

    

  A. elongataB*         
 

  
 

    

  F. lateralisB*                    

G 

A. suppositusG***      A. suppositusG***  P. olorumG* A. elongataG* A. suppositus***         

P. olorumG*      L. presbyteroidesG* A. suppositusG L. presbyteroidesG* A. elongata***   
 

    

L. presbyteroidesG*     P. olorumG* F. lateralisG P. olorumG P. olorum***   
 

    

F. lateralisG*      A. elongataG*  L. presbyteroidesG A. suppositusG L. presbyteroides*         

H 

A. suppositusH**  P. olorumH* N.  parilusH* A. suppositusH*** F. lateralisH** P. olorumH* P. olorumH* A. suppositus***       

F. lateralisH** N. parilusH L. presbyteroidesH* L. presbyteroidesH* P. olorumH* L. presbyteroidesH* A. suppositusH* F. lateralis*** 
 

    

P. olorumH**  A. suppositusH* L. wallaceiH* P. olorumH* N. parilusH* N. parilusH* L. wallaceiH* A. elongata** 
 

    

L. presbyteroidesH* A. gouldiiH A. gouldiiH* N. parilusH*  L. wallaceiH* L. wallaceiH* H. melanochirH* P. olorum**       

I 

  F. lateralisB*  
  

    A. elongataG* A. suppositusH*** A. elongata*     

  L. presbyteroidesB* 
  

    P. olorumG* F. lateralisH** 
 

    

  A. suppositusB  
  

    A. suppositusG** P. olorumH** 
 

    

  A. elongataB 
  

    L. presbyteroidesG* L. presbyteroidesH*       

J 

  A. elongataB**  L. presbyteroidesC**  A. elongataD* 
 

  A. elongataG* F. lateralisH**   L. wallacei**    

  F. lateralisB* A. elongataC** L. wallaceiD 
 

  P. olorumG* P. olorumH**   
 

  

  L. presbyteroidesB* A. suppositusC*   
 

  L. presbyteroidesG* A. elongataH**        

  L. wallaceiB* L. wallaceiC*   
 

  A. suppositusG* A. suppositusH*        

K 

L. wallaceiA* A. elongataB**  A. suppositusC**  L. wallaceiD* L. wallaceiE* A. elongataF ** A. suppositusG*** A. suppositusH***  L. wallaceiI*    A. elongata***  

A. elongataA*  F. lateralisB*  L. presbyteroidesC**  A. elongataD* A. elongataE* L. wallaceiF* P. olorumG** F. lateralisH** A. elongataI      

  L. presbyteroidesB* A. elongataC** 
 

  A. suppositusF A. elongataG* P. olorumH**       

  L. wallaceiB*  L. wallaceiC       L. presbyteroidesG* A. elongataH*       



 

 

 

1
1
5
 

(f) Summer 2008/2009 

 
B C D E F G H I J K 

B 

L. wallacei***                   

A. elongata*** 
 

  
 

  
 

  
 

    

F. lateralis*** 

 

  

 

  

 

  

 

    

L. presbyteroides*                   

C 

A. elongataB*** A. elongata***   

 

  

 

  

 

    

L. wallaceiB** L. wallacei***   
 

  
 

  
 

    

A. suppositusC  L. presbyteroides***   

 

  

 

  

 

    

L. presbyteroidesB A. suppositus***   
 

  
 

  
 

    

D 

L. wallaceiB* A. suppositusD  F. lateralis**               

A. elongataB* L. wallaceiD** L. presbyteroides** 

 

  

 

  

 

    

A. suppositusD  A. elongataD A. suppositus** 

 

  

 

  

 

    

L. presbyteroidesB F. lateralisD A. elongata*               

E 

L. wallaceiB*   A. suppositusD* L. wallacei***             

A. elongataB*    L. wallaceiD A. suppositus**   

 

  

 

    

F. lateralisB*   F. lateralisD*  A. elongata**   
 

  
 

    

L. presbyteroidesB     L. presbyteroidesD* L. presbyteroides*             

F 

A. elongataB**   L. presbyteroidesD*   L. wallacei***           

L. wallaceiB*    F. lateralisD*   A. elongata*** 

 

  

 

    

A. suppositusB*   A. suppositusD*   A. suppositus** 
 

  
 

    

F. lateralisB*   L. wallaceiF               

G 

  A. elongataG* F. lateralisD*     

 

        

  L. presbyteroidesG* P. olorumG      

 

  

 

    

  P. olorumG* L. wallaceiG*     

 

  

 

    

  A. suppositusG A. suppositusD*     

 

        

H 

  P. olorumH*** P. olorumH** P. olorumH* L. presbyteroidesH*   F. lateralis***       

  L. presbyteroidesH* L. presbyteroidesH* L. presbyteroidesH* P. olorumH*   P. olorum** 
 

    

  A. elongataH* N. parilusH N. parilusH* A. suppositusH*   L. presbyteroides** 

 

    

  A. gouldiiH* A. gouldiiH A. gouldiiH* A. gouldiiH*   A. suppositus**       

I 

L. wallaceiB* A. suppositusC* A. suppositusD* 

 

  P. olorumG* P. olorumH** A. elongata**     

L. presbyteroidesB A. elongataI*  A. elongataI 
 

  A. elongataG L. presbyteroidesH* L. wallacei**     

A. suppositusB L. wallaceiI* L. presbyteroidesD 

 

  A. suppositusG A. suppositusH*       

A. elongataB F. lateralisI L. wallaceiI 
 

  L. wallaceiG A.s gouldiiH*       

J 

A. elongataB** L. presbyteroidesC** F. lateralisD***       L. wallaceiH   L. wallacei***   

F. lateralisB* A. elongataJ ** L. presbyteroidesD*       F. lateralisH   A. suppositus***   

L. wallaceiB* A. suppositusC A. suppositusD*       P. olorumH**   A. elongata***   

A. suppositusB* L. wallaceiJ L. wallaceiJ        L. presbyteroidesH*       

K 

L. wallaceiB*** L. presbyteroidesC** F. lateralisD*** A. suppositusE** A. suppositusF* L. presbyteroidesG* P. olorumH**   
 

L. wallacei*** 

A. elongataB* A. suppositusC* L. presbyteroidesD** L. presbyteroidesE* A. elongataF A. suppositusG* L. presbyteroidesH**   

 

A. elongata* 

F. lateralisB* A. elongataK* A. suppositusD* L. wallaceiE* L. presbyteroidesF P. olorumG* A. suppositusH*   
 

  

L. presbyteroidesB*   L. wallaceiD* A. elongataE L. wallaceiF A. elongataG* L. wallaceiH*   
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(g) Autumn 2008/2009 

 
B C D E F G H I J K 

B 
A. elongata*** 

         A. suppositus*** 
         L. wallacei* 

         

C  

A. elongata*** 

        

 

A. suppositus** 

        

 

L. wallacei* 

        

D 

A. elongataB* 
 

L. wallacei*** 
       F. lateralisB 

 

A. suppositus*** 

       A. suppositusD 

 

A. elongata* 

       L. wallaceiB 
         

E 

A. elongataB* L. wallaceiC 

 

L. wallacei*** 

      A. suppositusE* L. presbyteroidesC 

 

A. suppositus** 

      F. lateralisB A. elongataC 

 

A. elongata** 

      L. wallaceiB 

         

F 

A. elongataB* A. suppositusC* 
  

A. elongata*** 
     F. lateralisB* L. wallaceiC 

  

L. wallacei** 

     L. wallaceiB A. elongataC 

  

A. suppositus** 

     

 
L. presbyteroidesC 

        

G 

P. olorumG* 

 

P. olorumG*** P. olorumG* A. elongataG* P. olorum*** 

    A. elongataB* 

 

L. wallaceiG* A. elongataG* A. suppositusG A. suppositus** 

    F. lateralisB* 

 

A. elongataG* L. wallaceiG* L. wallaceiG A. elongata** 

    L. wallaceiG 

 

A. suppositusG A. suppositusG 

 

L. wallacei* 

    

H 
  

L. presbyteroidesH* L. presbyteroidesH* L. presbyteroidesH* 
 

A. suppositus*** 
   

  

L. wallaceiH* L. wallaceiH* A. suppositusH* 

 

A. elongata*** 

   

  

A. elongataH A. elongataH* A. elongataH* 

 

L. wallacei*** 

   

  
F. lateralisH A. suppositusH L. wallaceiH* 

     

I      

A. suppositusG F. lateralisH* A. elongata** 

  

     

L. wallaceiG A. elongataH* L. wallacei* 

  

     

P. olorumG*** L. wallaceiH 

   

J 

A. elongataB** A. suppositusC 

   

P. olorumG*** L. presbyteroidesH*** 

 

L. wallacei** 

 F. lateralisB* A. elongataC 
   

A. elongataG** L. wallaceiH* 
 

A. elongata* 
 L. wallaceiB L. wallaceiC 

   

L. wallaceiG* A. elongataH* 

   L. presbyteroidesB L. presbyteroidesC 

   

A. suppositusG A. suppositusH* 

   

K 

A. elongataB** A. suppositusC A. suppositusD* A. suppositusE* A. suppositusF* P. olorumG*** A. suppositusH** 
  

A. elongata*** 

F. lateralisB* L. wallaceiC L. wallaceiD* L. wallaceiK P. olorumF A. suppositusG* L. presbyteroidesH** 

  

L. wallacei** 

A. suppositusB* L. presbyteroidesC 

 

A. elongataK A. elongataK A. elongataG* L. wallaceiH* 

   L. wallaceiB A. elongataC 

   

L. wallaceiG A. elongataH* 
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(h) Winter 2008/2009 
  A B C D E F G H I J K 

A 

 

A. elongata***                     

L. wallacei**   
 

  
 

  
 

  
 

    

    
 

  
 

  
 

  
 

    

B 

 

  F. lateralis*                   

  A. elongata* 
 

  
 

  
 

  
 

    

                      

C 

  F. lateralisB* A. elongata**                 

  A. elongataB*  L. wallacei*   
 

  
 

  
 

    

  A. suppositusC* A. suppositus*   
 

  
 

  
 

    

  L. wallaceiC                   

D 

  A. elongataB*   A. suppositus**               

  A. suppositusD   A. elongata* 
 

  
 

  
 

    

  L. wallaceiD   L. wallacei* 
 

  
 

  
 

    

  F. lateralisB                   

E 

A. suppositusE* F. lateralisB*     A. elongata*             

A. elongataA* A. elongataB*     A. suppositus*   
 

  
 

    

F. lateralisA* A. suppositusE     L. wallacei*   
 

  
 

    

  L. wallaceiE                   

F 

  F. lateralisB**       L. wallacei**           

  A. elongataB*         
 

  
 

    

  

 

        
 

  
 

    

G 

  A. suppositusG*         L. wallacei**         

  A. elongataB*         A. suppositus*   
 

    

  F. lateralisB         A. elongata*   
 

    

  L. wallaceiG                   

H 

  

              A. suppositus***       

              L. wallacei* 
 

    

              A. elongata* 
 

    

I  

  F. lateralisB*             A. suppositus***     

  A. elongataB             L. wallacei*     

  A. suppositusI              
    

J 

A. suppositusJ A. elongataB*     A. suppositusJ          None   

A. elongataA* A. suppositusJ     L. wallaceiE*             

F. lateralisA L. wallaceiB     A. elongataE*             

K 

A. elongataA* F. lateralisB* A. elongataC* L. wallaceiD*     L. wallaceiK* A. elongataH*     L. wallacei* 

F. lateralisA* A. elongataB* A. suppositusC* A. elongataD*     A. elongataK* A. suppositusH       

  L. wallaceiK L. wallaceiC A. suppositusD     A. suppositusG* F. lateralisH        
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Appendix 3.2: Species that consistently typified (provided along the diagonal) and distinguished 

(provided in the sub-diagonal) the fish assemblages at each offshore habitat in (a) spring, (b) summer, 

(c) autumn and (d) winter as detected by one-way SIMPER. The habitat type in which each species 

was most abundant is given in superscript for each pairwise comparison. Insignificant pairwise 

comparisons are highlighted in grey. Asterisks denote the relative consistency of each species in either 

typifying or distinguishing the faunal composition of habitat types, as measured by the similarity to 

standard deviation ratio and dissimilarity to standard deviation ratio, respectively; > 1-3*, > 3-5**, > 

5***. 

 
(a) Spring 

 

A B C 

A 

Arripis georgianus
***

     

Arripis truttaceus
*
     

      

B 

Arripis georgianus
A*

 Aldrichetta forsteri   

Arripis truttaceus
A*

 Mugil cephalus   

Engraulis australis
A
     

Aldrichetta forsteri
B*

     

C 

    Arripis georgianus
*
 

    Aldrichetta forsteri 

      

 

(b) Autumn 

 

A B C 

A 

Arripis georgianus     

Gonorynchus greyi     

Pagrus auratus     

B 

Arripis georgianus
A*

 Ammotretis rostratus*   

Mugil cephalus
B*

 Aldrichetta forsteri   

Pagrus auratus
A*

 Engraulis australis   

Pseudocaranx dentex
A*

     

C 

  Mugil cephalus
B*

 Ammotretis rostratus* 

    Arripis georgianus 
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Chapter 4 

Temporal differences in ichthyofaunal composition 

among habitat types in Broke Inlet 

4.1: Introduction 

Estuaries are dynamic ecosystems which undergo considerable changes in 

physico-chemical conditions across a range of temporal scales, such as diel/tidal 

(e.g. Hoguane et al., 1999), seasonal (e.g. Uncles et al., 2000), inter-annual 

(e.g. Chuwen et al., 2009a) and/or longer time scales driven by large climatic events, for 

instance the El Niño Southern Oscillation (e.g. Tolan, 2007) or climate change 

(e.g. Najjar et al., 2010). While faunal species that spend considerable portions of their 

life cycle within estuaries have typically developed a suite of adaptations for coping 

with variability in water and/or sediment conditions (e.g. Kinne, 1964, 1966; 

Lockwood, 1976), their distributions often reflect their “preference” for a particular 

range of these conditions. As a result, temporal changes in the ichthyofaunal 

composition of estuaries have frequently been related to concurrent changes in a range 

of environmental parameters (Marshall & Elliott, 1998; Jaureguizar et al., 2003; 

Selleslagh & Amara, 2008), and in particular salinity (Barletta et al., 2005; Hoeksema 

et al., 2006), due to its effect on fish growth, survival and reproductive success 

(Gilchrist, 1995; Boeuf & Payan, 2001). 

Temporal changes in estuarine fish assemblages are also driven by the manner in 

which particular species use estuaries throughout their life cycle, i.e. estuarine-use 

guilds (see subsection 1.2; Elliott et al., 2007). The consistent and pronounced seasonal 

changes in fish faunal composition, in many holarctic systems, including the Severn, 

Thames, Elbe and Scheldt estuaries, have been attributed to the sequential immigration 

and emigration of marine estuarine-opportunist species in downstream regions, the 

migrations of diadromous species and the influx of freshwater species into upstream 

regions (Potter et al., 1986a; Potter et al., 1997; Araújo et al., 1998, 1999; Thiel & 

Potter, 2001; Maes et al., 2005). Despite marked differences in the relative abundances 

of species representing the various estuarine-use guilds between estuaries in holarctic 
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regions and those in south-western Australia (cf. Potter & Hyndes, 1999; Nordlie, 

2003), monthly or seasonal changes in fish faunal composition have also been 

demonstrated in some permanently-open systems in the latter region, such as the Peel-

Harvey and Swan-Canning estuaries (Young & Potter, 2003; Hoeksema & Potter, 

2006). In the former system, these changes were generally attributable to differences in 

the relative abundances of marine species, augmented by estuarine resident species 

(Young & Potter, 2003). In the upper Swan-Canning Estuary, however, monthly 

changes in ichthyofaunal composition were due primarily to the time-staggered 

differences in peak abundances of several estuarine resident species, reflecting 

differences in their recruitment patterns and, to a lesser extent, the migration of marine 

species into those upper reaches (Hoeksema & Potter, 2006).  

 Temporal changes in fish fauna have also been detected in estuaries with an 

ephemeral connection to the ocean (e.g. Pollard, 1994a; Chuwen et al., 2009b). The 

pattern of these changes are governed by the timing and duration over which the sand 

bar at the mouths of these systems are breached (Bennett, 1989; Whitfield & Kok, 1992; 

Young et al., 1997) and thus estuary type, e.g. permanently-open vs seasonally-open 

(Kok & Whitfield, 1986; Potter & Hyndes, 1994; Whitfield, 1999). For example, 

prolonged phases of estuary closure to the ocean not only prevent the recruitment and 

subsequent emigration of marine estuarine-opportunist species, but may also cause 

dramatic increases in estuarine salinity, and thus the mortality of less tolerant species 

(Young & Potter, 2002; Hoeksema et al., 2006). 

 Given the wide range of habitats that typically occur in estuaries, and thus their 

different fish faunas, the types of temporal changes that are observed in ichthyofaunal 

composition are also likely to differ spatially throughout a given system. In the Peel-

Harvey Estuary for instance, the nature and extent of seasonal changes in the fish fauna 

varied among regions (Young & Potter, 2003). Moreover, given the differences in 

environmental change that are likely to be experienced by different habitats in Broke 

Inlet throughout the year (e.g. those closest to the mouth of the tributaries will undergo 

a considerably greater decline in salinity than those near the entrance channel; see 

Fig. 3.2), it is expected that temporal differences in ichthyofaunal composition will also 

vary spatially throughout this estuary. 
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 The nearshore fish fauna of Broke Inlet is heavily dominated by a suite of 

estuarine species (Hoeksema et al., 2009; Chapter 3), many of which have a one year 

life cycle (Prince & Potter, 1983; Gill et al., 1996) and have been shown to undergo 

monthly changes in their abundance in other estuaries in south-western Australia 

(Hoeksema & Potter, 2006). In contrast, the offshore ichthyofauna is dominated by 

marine species which immigrate and emigrate from the estuary following the breaching 

of the bar at the mouth of the estuary (Chuwen et al., 2009b; Chapter 3). With this in 

mind, temporal variation in the characteristics of the fish fauna at the various nearshore 

and offshore habitats within Broke Inlet were investigated to address the following 

aims.  

(1) Determine the extent of any seasonal and inter-annual changes in species 

richness, density/catch rate and composition of the fish fauna in each 

nearshore and offshore habitat. 

(2) Identify whether any seasonal changes occur in a cyclical pattern.  

(3) Determine whether temporal changes in the characteristics of the 

ichthyofauna in each habitat are influenced by non-enduring 

environmental variables (e.g. salinity, water temperature, dissolved 

oxygen concentration). 

(4) Investigate whether the pattern of relative differences in ichthyofaunal 

composition among seasons and years varies among nearshore habitats. 

 

4.2: Materials and methods 

4.2.1: Sampling regime 

Details on the methodology for site selection, collection of fish samples and the 

measurement of fish lengths and weights are described in subsection 3.2.1 along with 

the measurement of non-enduring environmental variables 

 

4.2.2: Statistical analyses 

All statistical analyses were performed using the PRIMER v6 multivariate 

software package (Clarke & Gorley, 2006) and the PERMANOVA+ add-on (Anderson 
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et al., 2008). Seasonal and inter-annual changes in the non-enduring water physico-

chemical variables, i.e. salinity, water temperature, dissolved oxygen content, pH and 

macrophyte biomass, and fish species richness, density/catch rate and diversity in both 

the nearshore and offshore waters were investigated in conjunction with their spatial 

differences. The methodology for which is described in section 3.2.2.1.  

 

4.2.2.1: Temporal differences in ichthyofaunal composition  

The statistical methodology employed to investigate the overall extent of 

spatio-temporal differences in the composition of the nearshore and offshore 

ichthyofauna, which incorporated analyses of their differences among seasons and 

years, are described in subsection 3.2.2.2.  

Where PERMANOVA detected significant interactions between habitat type 

and season and/or year, temporal differences in the ichthyofaunal composition of both 

the nearshore and offshore waters were investigated for each habitat separately in order 

to remove the confounding influence of that factor (see Table 3.4, 3.10). Thus, 

appropriate Bray-Curtis sub-matrices containing samples from the various seasons 

and/or years in any one habitat were constructed and each subjected to two-way 

Analysis of Similarities (ANOSIM) tests (Clarke & Green, 1988) to determine whether 

the ichthyofaunal composition was significantly influenced by season and/or year. The 

null hypothesis and test statistic are the same as that used in subsection 3.2.2.2. Non-

metric Multidimensional Scaling (nMDS) was then employed to display visually any 

differences detected in the fish faunal composition among seasons and/or years in each 

habitat.  

When ANOSIM detected a significant difference among any temporal factor and 

the associated R-statistic was ≥ 0.2, Similarity Percentages (SIMPER) was then used to 

elucidate which species typified the assemblages in that season and/or year and those 

which contributed most to differences between each pair of the above two factors 

(Clarke, 1993). Focus was placed on those species that had the highest similarity (or 

dissimilarity)/standard deviation ratio, and those that were the most abundant. 
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Temporal cyclicity in fish composition, whereby consecutive units (e.g. seasons) 

form a circular pattern in which the first unit is situated near the last, was investigated 

for each nearshore and offshore habitat type using the RELATE routine. The pretreated, 

replicate fish assemblage data recorded within each habitat type was averaged for each 

season and year combination (e.g. spring 2007/2008), and the resultant data used to 

construct a Bray-Curtis similarity matrix. Each of the matrices from each habitat was 

then subjected to nMDS ordination, to allow trends among the samples from different 

seasons and years to be displayed. To test for cyclicity, a Euclidean distance model 

matrix was constructed from the inter-point distances of two sets of four points, each of 

which represented a season in a particular year, e.g. spring 2007/2008 and spring 

2008/2009. Within each year, the seasonal points were “positioned” at 90° increments 

from each other, such that summer vs winter and autumn vs spring were the most 

dissimilar (180°), but consecutive seasons, such as summer vs autumn, were the most 

similar (90°). The two “circles” representing each year were slightly offset to account 

for any inter-annual differences. The RELATE routine was then employed to determine, 

for each nearshore and offshore habitat type separately, how similar the patterns of the 

rank orders of resemblance were between the model matrix and the matrix constructed 

from the fish faunal data. The null hypothesis that there was no relation in the pattern of 

rank order similarities between the two matrices was rejected if the significance level 

(p) was < 0.05. For significant results, the magnitude of the test statistic, rho (ρ) was 

used to determine the extent of the correlation, with values close to 0 reflecting no 

correlation and those close to 1 representing a perfect match.  

 

4.2.2.2: Matching temporal patterns between the fish community and non-

enduring environmental characteristics at each habitat type 

The Biota and Environment matching routine (BIOENV; Clarke & Ainsworth, 

1993) was employed to elucidate which subset of the non-enduring environmental 

variables recorded concurrently with the collection of all fish samples provided the best 

correlation with the temporal patterns displayed by the fish assemblage data in each 

habitat averaged for each season and year combination. The non-enduring 
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environmental variables employed in these analyses, including their collection methods 

and subsequent data pre-treatment, are described in subsections 3.2.1 and 3.2.2.1, 

respectively. However, one extra variable was added here which was not used in those 

previous analyses, namely bar state, with positive values reflecting the number of days 

that the bar had been open to the ocean and negative values those since the bar had 

closed. The use of Draftsman plots (see subsection 2.2.3.1) between this variable and 

the other non-enduring environmental variables indicated that it did not require any 

transformation prior to analysis. The resultant transformed non-enduring environmental 

variable matrix was then normalised to place all variables on a common scale. The 

reference resemblance matrix employed in the BIOENV analysis was a Bray-Curtis 

matrix constructed from the pretreated fish assemblage data averaged for each season 

and year, while the secondary matrix was the complementary pretreated 

(i.e. transformed and normalised) non-enduring environmental data. Manhattan distance 

was used to construct resemblance matrices from this data during the matching 

procedure. For each of the above BIOENV tests the null hypothesis, criteria for 

rejecting it and the interpretation of significant results were the same as those described 

for the RELATE test above. 

Comparisons between the temporal patterns exhibited by (i) the ichthyofaunal 

composition data and (ii) the non-enduring environmental variables selected by the 

BIOENV routine were illustrated by subjecting the relevant Bray-Curtis similarity 

matrix constructed from the former data to nMDS ordination, then overlaying circles 

(“bubbles”) of proportionate sizes that represented the magnitude of the selected 

environmental variables in each corresponding sample. 

 

4.2.2.3: Matching temporal patterns in fish faunal composition among habitat types 

To investigate whether the temporal pattern of ichthyofaunal composition 

differed among nearshore habitats, the Bray-Curtis similarity matrices described in 

subsection 4.2.2.2, i.e. those constructed from the pretreated fish assemblage data, 

averaged for each season and year combination, in each individual habitat, were 

subjected to RELATE to test the null hypothesis of no correlation in the pattern of their 
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rank order similarities, i.e. that the temporal pattern of ichthyofaunal composition in one 

habitat was unrelated to that in another. The resultant pairwise ρ values were then used 

to produce a second-stage resemblance matrix, which was then subjected to nMDS 

ordination. The distribution of the points on the resultant plot, each of which 

represented a particular habitat, enabled detection of whether the pattern of 

ichthyofaunal differences among sampling occasions differed among habitats. Note that, 

each of the matrices employed in this routine are required to contain complementary 

samples, therefore, habitat A, which was only able to be sampled during spring and 

winter of both years, was excluded from this analysis. 

 

4.3: Results 

4.3.1: Nearshore waters 

4.3.1.1: Nearshore fish species mean density and life cycle contribution in each 

season 

In both 2007/2008 and 2008/2009, the highest number of species were recorded 

during spring and summer (14-16) and lowest in autumn and winter (9-11). The mean 

density of fish averaged among habitats varied from ca 51 to 222 fish 100 m
-2

 in the 

first year to ca 37 to 141 fish 100 m
-2

 in the second. Moreover, the seasonal trends in 

mean density also differed among years. Thus, whereas by far the lowest mean density 

in the first year was recorded in spring, similarly low mean densities were recorded in 

all seasons of the second year except summer (Table 4.1). 

The atherinid Atherinosoma elongata was the most abundant species in all but 

one season contributing between 36 and 76% to the total catch. Leptatherina wallacei 

and Leptatherina presbyteroides were also highly abundant, typically ranking either 

second or third in each season (Table 4.1). In spring 2008/2009 however, L. wallacei 

was the most abundant species throughout the nearshore waters of the estuary, while the 

winter of that year was the only season in which densities of L. presbyteroides were 

relatively low. The gobiids Afurcagobius suppositus, Pseudogobius olorum and 

Favonigobius lateralis frequently also ranked amongst the top five most abundant 

species. Each of these six atherinid and gobiid species is able to complete their entire
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 Table 4.1: Mean density (fish 100 m
-2

; M), standard error (
SE

), percentage contribution to the overall catch (%), rank by density (R), mean biomass (g; B), mean 
total length (mm; L) and length range (r) of each fish species recorded at the 11 nearshore habitat types in Broke Inlet in each season between spring 2007/2008 and 
winter 2008/2009. Abundant species in each season (i.e. those that contribute ≥ 5% to the overall mean density) are highlighted in grey. The life cycle category (LC) 
of each species is also provided (E = estuarine residents, EM = estuarine and marine, MEO = marine estuarine-opportunist, MS = marine straggler and FS = 
freshwater straggler). The species richness, mean overall density, number of samples and adjusted number of individuals (i.e. after the number of individuals in each 
sample had been adjusted to that in 100 m

-2
) are given for each season sampled. Species are ranked by total abundance. 

 

  Spring 2007/2008 Summer 2007/2008 Autumn 2007/2008 Winter 2007/2008 

Species LC MSE % R BSE Lr MSE % R BSE Lr MSE % R BSE Lr MSE % R BSE Lr 

Atherinosoma elongata E 38.405.58 75.74 1 49.678.59 52(17-108) 73.8611.956 52.94 1 45.836.38 43(14-119) 103.8714.75 46.78 1 63.8211.1 39(15-89) 74.4013.40 40.79 1 48.908.86 42(16-97) 

Leptatherina wallacei E 5.201.35 10.26 2 2.940.58 43(27-79) 23.335.28 16.72 3 10.462.06 42(19-95) 58.1111.38 26.17 2 20.133.43 38(15-85) 33.407.64 18.31 3 15.444.45 37(15-82) 

Leptatherina presbyteroides EM 1.990.72 3.93 4 1.370.45 46(16-67) 27.858.41 19.96 2 5.591.71 34(17-63) 49.8115.36 22.43 3 20.587.68 38(20-76) 67.2531..63 36.87 2 33.7216.92 41(16-63) 

Afurcagobius suppositus E 2.370.59 4.67 3 5.142.11 55(20-90) 8.621.37 6.18 4 4.540.94 34(15-79) 7.570.95 3.41 4 4.90.51 37(19-93) 4.610.74 2.53 4 10.502.52 53(17-96) 

Pseudogobius olorum E 1.620.50 3.20 5 1.000.31 38(25-52) 1.890.77 1.35 6 0.490.19 26(16-62) 0.490.18 0.22 6 0.130.06 30(18-44) 1.940.76 1.07 5 0.610.25 30(17-64) 

Favonigobius lateralis EM 0.880.25 1.74 6 0.970.35 43(17-72) 2.600.86 1.86 5 1.300.30 35(16-67) 1.700.35 0.77 5 2.020.35 48(22-77) 0.580.14 0.32 6 1.010.29 51(21-84) 

Notolabrus parilus MS 0.030.02 0.06 9 0.370.21 90(86-94) 0.140.08 0.10 10 0.580.44 61(41-80) 0.010.01 0.00 9 0.40.24 92(85-100)      

Hyporhamphus melanochir EM 0.030.02 0.06 9 0.380.34 162(124-184) 0.230.13 0.17 8 3.052.22 151(60-214) 0.390.27 0.17 7 4.233.53 128(59-257)      

Achoerodus gouldii MS      0.180.11 0.13 9 2.531.57 83(51-101)           

Engraulis australis EM      0.690.41 0.49 7 2.171.32 77(59-92) 0.010.01 0.00 9 0.020.02 57(57)      

Aldrichetta forsteri MEO 0.010.01 0.02 11 0.010.01 46(46)           0.150.14 0.08 7 8.187.62 191(154-483) 

Ammotretis rostratus MEO 0.090.04 0.18 7 0.060.03 33(24-45) 0.070.03 0.05 11 0.340.19 72(55-88) 0.08.04 0.03 8 1.170.73 90(62-160) 0.010.01 0.01 8 1.601.60 207(207) 

Neoodax balteatus MS           0.010.01 0.00 9 0.120.12 109(109)      

Ammotretis elongatus EM 0.010.01 0.02 11 0.010.01 36(36)                

Enoplosus armatus MS 0.040.02 0.08 8 0.020.02 28(24-33)                

Edelia vittata FS                     

Mugil cephalus MEO                0.020.01 0.01 8 0.010.01 27(24-29) 

Platycephalus speculator EM      0.020.02 0.02 12 0.410.41 140(133-146)           

Girella zebra MS      0.020.02 0.02 12 0.270.28 116(116)           

Haletta semifasciata MS      0.020.02 0.02 12 0.420.42 95(95)           

Galaxias occidentalis FS                     

Lepidogalaxias salamandroides FS                     

Urocampus carinirostris EM                0.010.01 0.01 8 0.010.01 52(52) 

Pseudocaranx dentex MS 0.010.01 0.02 11 0.010.01 44(44)                

Rhabdosargus sarba MEO                     

Pseudorhombus jenynsii MEO 0.010.01 0.02 11 1.041.04 195(195)                

Cynoglossus broadhursti MS                     

Species richness 14 14 11 10 

Mean overall density 51 140 222 182 

Number of samples 86 78 78 86 

Adjusted number of individuals 4,386 10,920 17,316 15,652 

Actual number of individuals 5,058 12,624 20,091 18,194 
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Table 4.1 Continued:     

      

  Spring 2008/2009 Summer 2008/2009 Autumn 2008/2009 Winter 2008/2009 

Species LC MSE % R BSE Lr MSE % R BSE Lr MSE % R BSE Lr MSE % R BSE Lr 

Atherinosoma elongata E 21.152.53 35.77 2 25.573.56 52(20-124) 56.44.45 40.08 1 46.935.68 48(12-97) 30.694.45 58.51 1 27.505.11 45(16-60) 20.984.47 56.67 1 23.617.61 47(19-96) 

Leptatherina wallacei E 24.823.65 41.97 1 12.041.69 41(20-84) 47.139.80 33.46 2 19.103.32 42(11-88) 16.612.38 31.67 2 7.031.27 45(16-87) 13.422.29 36.26 2 5.250.96 35(17-67) 

Leptatherina presbyteroides EM 9.082.14 15.36 3 3.620.79 40(23-67) 27.486.34 19.51 3 9.342.34 38(10-78) 1.770.60 3.37 4 0.690.37 34(16-60) 0.010.01 0.03 7 0.010.01 46(46) 

Afurcagobius suppositus E 1.080.21 1.83 5 2.640.63 59(25-93) 5.681.02 4.03 4 2.970.69 34(19-93) 2.110.28 4.02 3 1.730.32 39(19-96) 1.840.46 4.98 3 1.330.40 36(15-90) 

Pseudogobius olorum E 1.380.38 2.34 4 0.760.20 37(24-57) 1.400.38 1.00 6 1.360.37 44(21-78) 0.330.14 0.63 6 0.210.09 37(21-54) 0.080.04 0.22 5 0.030.02 26(16-41) 

Favonigobius lateralis EM 0.230.05 0.39 7 0.710.17 63(38-84) 1.460.93 1.04 5 0.840.26 48(20-72) 0.750.29 1.43 5 0.770.28 45(26-77) 0.630.18 1.71 4 0.790.22 47(26-76) 

Notolabrus parilus MS 0.690.31 1.17 6 0.490.29 31(19-105) 0.420.17 0.30 7 2.030.88 59(22-134) 0.060.03 0.11 8 0.240.18 57(41-93)      

Hyporhamphus melanochir EM 0.180.09 0.31 8 7.173.94 197(69-413) 0.020.02 0.02 12 1.050.75 236(204-268)           

Achoerodus gouldii MS 0.300.11 0.51 9 0.220.09 36(20-52) 0.270.15 0.19 9 3.001.96 80(56-102)           

Engraulis australis EM                     

Aldrichetta forsteri MEO 0.100.07 0.17 10 1.250.32 68(32-159) 0.290.22 0.20 8 2.822.29 101(55-126)           

Ammotretis rostratus MEO 0.010.01 0.02 13 0.010.01 28(28) 0.040.03 0.03 11 0.190.12 62(53-87) 0.040.03 0.08 9 0.480.30 86(63-114)      

Neoodax balteatus MS 0.030.02 0.05 12 0.010.01 36(31-41) 0.130.08 0.09 10 1.470.91 110(87-134)           

Ammotretis elongatus EM      0.010.01 0.01 13 0.030.03 63(63) 0.090.08 0.17 7 0.330.26 66(54-93)      

Enoplosus armatus MS 0.010.01 0.02 13 1.251.14 27(27) 0.040.03 0.03 11 0.290.21 72(68-76)           

Edelia vittata FS 0.050.04 0.08 11 0.020.02 21(17-27)           0.010.01 0.03 7 0.020.02 49(49) 

Mugil cephalus MEO                0.030.02 0.08 6 0.590.32 73(26-168) 

Platycephalus speculator EM                     

Girella zebra MS                     

Haletta semifasciata MS                     

Galaxias occidentalis FS                0.010.01 0.03 7 0.040.04 86(86) 

Lepidogalaxias salamandroides FS      0.010.01 0.01 13 0.010.01 46(46)           

Urocampus carinirostris EM                     

Pseudocaranx dentex MS                     

Rhabdosargus sarba MEO 0.010.01 0.02 13 0.010.01 23(23)                

Pseudorhombus jenynsii MEO                     

Cynoglossus broadhursti MS      0.010.01 0.01 13 0.190.19 135(135)                     

Species richness 15 16 9 9 

Mean overall density 59 141 52 37 

Number of samples 86 78 78 86 

Adjusted number of individuals 5,074 10,998 4,056 3,182 

Actual number of individuals 5,899 12,743 4,746 3,693 
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life cycle in the estuary. The number of marine estuarine-opportunists and marine 

straggler species was greatest during spring and summer of both years, although their 

mean densities were always relatively low. Juveniles of the labrid species Notolabrus 

parilus and Achoerodus gouldii (i.e. individuals < 100 mm total length), both of which 

are marine stragglers, were relatively prevalent, i.e. totalling 199 individuals. The 

former labrid species was caught in all seasons except winter and the latter species in 

three of the eight sampling occasions. Other marine species that were recorded in two or 

more seasons included juveniles of the marine estuarine-opportunists Aldrichetta 

forsteri and Ammotretis rostratus. 

 

4.3.1.2: Differences in nearshore fish assemblage composition among seasons and 

years 

 Three-way PERMANOVA of the spatio-temporal trends in the composition of 

the nearshore fish community of Broke Inlet detected significant differences among all 

main effects, i.e. habitats, seasons and years and also for the three-way interaction term 

(p=0.001; see subsection 3.3.1.4, Table 3.3). Thus, in order to investigate temporal 

differences in the nearshore ichthyofauna without the confounding influence of habitat, 

the following analyses were carried out separately for each habitat. 

Two-way crossed season x year ANOSIM tests detected significant 

ichthyofaunal differences between years and seasons in all habitats, with the exception 

of year in habitat A (p=0.287; Table 4.2). The overall extent of those significant inter-

annual differences ranged from low to moderate (Global R=0.141-0.569), with the most 

pronounced differences detected in habitats G, H and J, while the lowest were recorded 

in habitats C, E and I. These findings were reflected on the nMDS plots constructed for 

each habitat, whereby samples collected in 2007/2008 were typically situated on the 

opposite side of the plot from those collected in 2008/2009 at habitat J, whereas they 

were more intermingled in the other habitats in particular C and E (Fig. 4.1). Two-way 

crossed SIMPER demonstrated that the significant inter-annual differences detected at 

all habitats except A were caused, in part, by greater densities of the atherinids 

A. elongata and L. presbyteroides and the gobiids F. lateralis and A. suppositus in 
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Table 4.2: R-statistic and/or significance level (p) values derived from two-way crossed year x 

season ANOSIM tests on the nearshore fish faunal composition data recorded at habitat types 

A-K (a-k). Insignificant pairwise comparisons are highlighted in grey. 

 

(a) Habitat A  (b) Habitat B 

Year: p=0.287, Global R=0.042  Year: p=0.001, Global R=0.326 

Season: p=0.027, Global R=0.286  Season: p=0.001, Global R=0.284 

       Spring Summer Autumn 

     Summer 0.349   

     Autumn 0.172 0.359  

     Winter 0.328 0.500 0.047 

XXXX

X 

XXXX

X 

XXXX

X 

XXXX

X 

XXX

XX 

XXXXX XXX

XX 

XXXX

X 

XXXXX 

(c) Habitat C  (d) Habitat D 

Year: p=0.001, Global R=0.263  Year: p=0.001, Global R=0.365 

Season: p=0.001, Global R=0.269  Season: p=0.001, Global R=0.457 

 Spring Summer Autumn   Spring Summer Autumn 

Summer 0.206    Summer 0.729   

Autumn 0.318 0.401   Autumn 0.609 0.479  

Winter 0.333 0.281 0.260  Winter 0.292 0.531 0.234 

XXXX

X 

XXXX

X 

XXXX

X 

XXXX

X 

XXX

XX 

XXXXX XXX

XX 

XXXX

X 

XXXXX 

(e) Habitat E  (f) Habitat F 

Year: p=0.020, Global R=0.258  Year: p=0.007, Global R=0.315 

Season: p=0.001, Global R=0.330  Season: p=0.008, Global R=0.205 

 Spring Summer Autumn   Spring Summer Autumn 

Summer 0.448    Summer 0.182   

Autumn 0.453 0.370   Autumn 0.208 0.260  

Winter 0.271 0.370 0.073  Winter 0.141 0.286 0.042 

XXXX

X 

XXXX

X 

XXXX

X 

XXXX

X 

XXX

XX 

XXXXX XXX

XX 

XXXX

X 

XXXXX 

(g) Habitat G  (h) Habitat H 

Year: p=0.001, Global R=0.477  Year: p=0.001, Global R=0.568 

Season: p=0.003, Global R=0.294  Season: p=0.001, Global R=0.377 

 Spring Summer Autumn   Spring Summer Autumn 

Summer 0.031    Summer 0.349   

Autumn 0.443 0.255   Autumn 0.823 0.391  

Winter 0.441 0.380 0.313  Winter 0.766 0.344 0.010 

XXXX

X 

XXXX

X 

XXXX

X 

XXXX

X 

XXX

XX 

XXXXX XXX

XX 

XXXX

X 

XXXXX 

(i) Habitat I  (j) Habitat J 

Year: p=0.050, Global R=0.141  Year: p=0.001, Global R=0.569 

Season: p=0.013, Global R=0.177  Season: p=0.010, Global R=0.237 

 Spring Summer Autumn   Spring Summer Autumn 

Summer 0.016    Summer 0.519   

Autumn 0.214 0.031   Autumn 0.136 0.259  

Winter 0.245 0.297 0.255  Winter 0.352 0.204 0.065 

XXXX

X 

XXXX

X 

XXXX

X 

XXXX

X 

XXX

XX 

XXXXX XXX

XX 

XXXX

X 

XXXXX 

(k) Habitat K      

Year: p=0.001, Global R=0.378      

Season: p=0.001, Global R=0.331      

 Spring Summer Autumn      

Summer 0.422        

Autumn 0.339 -0.047       

Winter 0.609 0.349 0.333      
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(a) Habitat A (b) Habitat B (c) Habitat C 

   

(d) Habitat D (e) Habitat E (f) Habitat F 

   

(g) Habitat G (h) Habitat H (i) Habitat I 

   

(j) Habitat J (k) Habitat K  

  

 

 

 

 

 

 

 

 

Season spring   summer   autumn   winter 

 
Fig. 4.1: nMDS ordination plots of the fish faunal composition at each nearshore site in each 

season and year at habitat types A–K (a-k). Closed circles represent samples from 2007/2008, 

while open circles 2008/2009. Note that habitat A was only able to be sampled in spring and 

winter in both years. 

 

2007/2008 than 2008/2009 (Appendix 4.1b-k). In contrast, the densities of L. wallacei 

did not exhibit consistent inter-annual trends in each of the various habitats, with greater 

densities being recorded in 2007/2008 in habitats located in Shannon and Clarke basins 

(E, F, J and K) and habitat H in the entrance channel while the reverse was true for 

habitats located in the Middle basin (C, D, G, and I) and habitat B in the entrance 

channel.  

2D Stress: 0.13 2D Stress: 0.18 2D Stress: 0.20

2D Stress: 0.20 2D Stress: 0.14 2D Stress: 0.16

2D Stress: 0.18 2D Stress: 0.16 2D Stress: 0.20

2D Stress: 0.14 2D Stress: 0.16
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 The overall extent of seasonal differences in ichthyofaunal composition in each 

habitat was generally less than that of year, i.e. Global R=0.177-0.457, with the greatest 

differences occurring at habitats D and H and the least at habitats F and I (Table 4.2). At 

least one pair of seasons did not differ significantly in every habitat. At habitat D, 

moderately large to large differences were detected for spring vs summer and autumn, 

and moderate differences were also recorded for summer vs autumn and winter. These 

findings were clearly illustrated on the associated nMDS ordination plots in which 

samples from summer formed a cluster on the middle left of the plot (Fig. 4.1d). 

SIMPER showed that these differences were due to the highest densities of the three 

atherinid species in summer, followed by spring, which in turn were greater than those 

in either autumn or winter, while densities of the gobiid species F. lateralis and 

A. suppositus were lowest in spring (Appendix 4.1d). At habitat H however, by far the 

most pronounced differences were detected for spring vs autumn and winter (pairwise 

R=0.766-0.823). Samples from the former season were relatively distinct from those in 

the latter two seasons (Fig. 4.1h), which were caused, in some part, by the lower 

densities of L. wallacei and L. presbyteroides and higher densities of P. olorum present 

during spring (Appendix 4.1h). In most of the remaining habitats, namely, E, K and J, 

the greatest differences were recorded between spring and one or more of the other 

seasons which generally contained lower densities of atherinid species with the 

exception of winter in habitat J when these species were more abundant (Appendix 4.1e, 

k and j). 

 

4.3.1.3: Cyclical temporal changes in nearshore ichthyofaunal composition 

 No significant cyclical changes in the composition of the nearshore fish fauna 

were detected among the various seasons in each year in any habitat except C. However, 

the extent of the correlation between the temporal patterns recorded in that latter habitat 

and the cyclical model matrix was low (p=0.020; ρ=0.250). The lack of temporal 

cyclicity was clearly demonstrated, for each habitat, by the nMDS plots of the average 

fish faunal composition in each season and year (Fig. 4.2). Note that habitat A was not 

included in this analysis as insufficient data was recorded at this habitat. 
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  (a) Habitat B; p=0.555, ρ=-0.037      (b) Habitat C; p=0.020, ρ=0.250 

 
 

 
 

  (c) Habitat D; p=0.068, ρ=0.263     (d) Habitat E; p=0.449, ρ=0.02 

 
 

 
 

   (e) Habitat F; p=0.798, ρ=-0.095      (f) Habitat G; p=0.461, ρ=0.018 

 
 

 
 

  (g) Habitat H; p=0.330, ρ=0.111      (h) Habitat I; p=0.258, ρ=0.101 

 
 

 
 

  (i) Habitat J; p=0.699, ρ=-0.105     (j) Habitat K; p=0.121, ρ=0.122 

 
 

 

Fig. 4.2: nMDS ordination plots of the average fish faunal composition recorded in each season 

and year for habitats B-K (a-j). The lines join consecutive seasons from spring 2007/2008 to 

winter 2008/2009. The significance levels (p) and rho values (ρ) obtained from RELATE tests 

between the matrices used to construct each nMDS plot and cyclical model matrix are also 

provided. 
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4.3.1.4: Matching temporal patterns between the fish community and non-

enduring environmental characteristics at each nearshore habitat type 

The RELATE procedure was employed to determine the extent to which the 

pattern of relative differences in the fish faunal composition in each season and year 

matched that displayed by the complementary suite of non-enduring environmental 

variables. These analyses, which were carried out separately for each habitat, did not 

detect a significant correlation in any case (Table 4.3). Moreover, when BIOENV was 

employed to determine whether a better correlation with the fish faunal data could be 

achieved by only employing a particular subset of those non-enduring environmental 

variables, no significant matches were detected, with the exception of habitat G, located 

at the basin end of the entrance channel, at which salinity alone provided a moderately 

good correlation (p=0.042, ρ=0.619).  

 

4.3.1.5: Matching temporal patterns in nearshore fish faunal composition among 

habitat types 

 Temporal patterns in fish faunal compositions were compared among each of the 

11 nearshore habitats, with the exception of A, at which sampling was only able to be 

conducted during spring and winter of both years. This analysis, which was conducted 

using the RELATE routine, detected a significant match in 19 of the 45 pairwise 

comparisons among habitats, with the greatest correlations in temporal patterns 

typically being detected between pairs of habitats that were located in close proximity to 

each other, e.g. B vs H, F vs H and K vs I (Table 4.4). Such findings were summarised 

by the second-stage ordination of the correlation values shown in Table 4.4 (Fig. 4.3). 

On this plot, adjacent habitats tended to be closely grouped, e.g. I, J and K, reflecting 

the similarity in their underlying temporal patterns of fish faunal composition, whereas 

habitat C, whose temporal patterns was not significantly correlated with those of any 

other habitat, was distantly separate from the remaining habitats (Table 4.4; Fig. 4.3).  
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Table 4.3: Significance levels (p) and rho statistic (ρ) values for the correlation between a 

resemblance matrix constructed from the average fish faunal data in each season and year and 

complementary matrices constructed from (a) the full suite of non-enduring environmental 

variables (NEVs), and (b) the subset of the non-enduring environmental variables (NEV subset) 

selected by the BIOENV routine. Analyses were repeated for each nearshore habitat type (with 

the exception of A, at which insufficient data was collected). Significant correlations are 

highlighted in bold.  

 

 (a) NEVs  (b) NEV subset 

Habitat p ρ  p ρ Variables selected 

B 0.809 -0.166  0.965 0.038  

C 0.469 0.002  0.821 0.201  

D 0.814 -0.168  0.384 0.331  

E 0.115 0.242  0.255 0.405  

F 0.053 0.294  0.071 0.589  

G 0.577 -0.086  0.042 0.619 Salinity 

H 0.602 -0.057  0.714 0.212  

I 0.432 0.257  0.185 0.459  

J 0.577 -0.046  0.766 0.105  

K 0.130 0.292  0.197 0.499  

 

 

 

Table 4.4: Rho statistic (ρ) and significance level (p) derived from the RELATE routines in 

which complementary matrices constructed from the average fish faunal data recorded in each 

season and year were correlated for all pairs of nearshore habitat types (except A at which 

insufficient data was recorded). Insignificant pairwise comparisons are highlighted in grey. 

 B C D E F G H I J 

C -0.215         

D 0.057 -0.061        

E 0.551 -0.025 0.327       

F 0.495 0.386 -0.209 0.337      

G 0.501 0.227 0.001 0.595 0.568     

H 0.807 0.184 -0.057 0.584 0.669 0.445    

I 0.048 -0.229 0.401 0.224 -0.271 0.117 -0.127   

J 0.498 -0.283 0.304 0.375 0.241 0.539 0.310 0.383  

K 0.349 -0.144 0.403 0.333 -0.022 -0.023 0.209 0.517 0.447 

 

 
 

 
 

Fig. 4.3: nMDS ordination of the second-stage matrix shown in Table 4.4. 

B

C

DE
F

G

H

I

J
K

2D Stress: 0.10



Chapter 4 

135 

4.3.2: Offshore waters 

4.3.2.1: Offshore fish species mean density and life cycle contribution in each 

season 

The number of species caught in the offshore waters in spring and summer in 

both 2007/2008 and 2008/2009 was relatively consistent, ranging between 16 and 18 

species. While similar numbers of species were also caught in autumn and winter of the 

first year, 21 and 6 species, respectively, were caught in those seasons in the second 

year (Table 4.5). The total number of fish caught in spring and summer of both years 

was similar i.e. 122-188 fish. However, while notably lower total catches were recorded 

in autumn 2007/2008 (92 fish), they were far higher in autumn 2008/2009 than any 

other occasion (258 fish). Total catches in the winters of both years were similar (59-65 

fish), and were by far the lowest recorded in any season (Table 4.5).  

Australian Herring (Arripis georgianus), a marine estuarine-opportunist, was 

ranked between first and third in terms of their catch rate in all seasons except winter 

2008/2009. Mugil cephalus, Engraulis australis and, to a lesser extent, Aldrichetta 

foresteri, were also frequently ranked in the top four species. However, the remaining 

abundant species, i.e. those that contributed > 5% to the total catch, varied considerably 

among seasons and years. Despite this, marine estuarine-opportunists numerically 

dominated the offshore fish fauna on all sampling occasions, representing between 59 

and 86% of the fish collected. This guild was also the most speciose comprising 

between eight and 11 representatives in all seasons and years except winter 2008/2009, 

during which only four species were caught. The number of estuarine and marine 

species caught also remained largely consistent among sampling occasions (3-4), with 

the exception of winter 2008/2009 (2 species). Marine stragglers, in contrast, exhibited 

pronounced temporal changes, both in the number of species caught (0-7) and their 

contributions to the total catch (0-13%). This variability is reflected in the fact that, of 

the 14 marine straggler species caught throughout the duration of this study, only four, 

Enoplosus armatus, Sillago bassensis, Achoerodus gouldii and Girella zebra were 

caught on more than two occasions (Table 4.5). 
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 Table 4.5: Catch rate (fish 10 h
-1

; C), standard error (
SE

), percentage contribution to the overall catch (%), rank by catch rate (R), biomass (g; B), mean length (mm; 

L) and length range (
r
) of each fish species recorded at the three offshore habitat types in Broke Inlet in each season sampled between spring 2007/2008 and winter 

2008/2009. Abundant species in each season (i.e. those that contribute > 5% to the catch) are highlighted in grey. The life cycle category (LC) of each species is also 

provided (EM = estuarine and marine, MEO = marine estuarine-opportunist, MS = marine straggler). The species richness, mean total catch rates and adjusted 

number of individuals (i.e. after the number of individuals in each sample have been adjusted to caught in ten hours and summed) are given for each season sampled. 

Species ranked according to their total catch rate. 
 

  Spring 2007/2008 Summer 2007/2008 Autumn 2007/2008 Winter 2007/2008 

Species LC CSE % R BSE Lr CSE % R BSE Lr CSE % R BSE Lr CSE % R BSE Lr 
Arripis georgianus MEO 3.341.60 23.26 1 517.09261.39 236(202-2880) 1.440.38 10.66 3 320.3282.75 237(194-282) 4.332.63 42.39 1 910.69553.63 249(212-290) 1.110.35 15.38 3 315.46133.35 236(200-257) 

Mugil cephalus MEO 1.450.84 10.08 3 567.28299.57 326(213-407) 1.330.94 9.84 4 694.42494.09 352(299-396) 0.110.11 1.09 12 56.7556.75 352(352) 1.220.22 16.92 2 937.19214.33 316(214-411) 

Engraulis australis EM 1.340.65 9.30 4 13.507.32 114(84-128) 0.670.29 4.92 7 4.572.03 102(84-119) 0.440.24 4.35 6 6.663.53 91(76-110) 1.330.62 18.46 1 31.2217.29 121(98-141) 

Aldrichetta forsteri MEO 1.120.43 7.75 7 317.03111.37 317(247-414) 2.440.82 18.03 2 839.04323.07 313(168-383) 0.670.55 6.52 5 207.6180.11 315(291-340) 1.000.41 13.85 4 529.22222.84 207(140-452) 

Rhabdosargus sarba MEO 0.450.25 3.10 9 179.68111.67 279(225-397) 0.560.29 4.10 8 258.69163.17 278(82-387) 0.110.11 1.09 12 102.46102.46 283(382) 0.220.22 3.08 7 17.2717.27 173(171-174) 

Ammotretis rostratus EM 0.780.58 5.43 8 154.40123.78 305(188-501) 0.220.15 1.64 12 61.4741.09 277(263-291) 0.890.26 8.70 3 49.1918.61 139(74-212) 0.890.42 12.31 5 156.2372.9 208(127-251) 

Pseudocaranx dentex MEO 0.120.12 0.78 13 27.3727.37 269(269) 2.781.98 20.49 1 777.39546.77 274(250-290) 0.220.22 2.17 10 28.8528.85 212(208-215)       

Pagrus auratus MEO 1.340.90 9.30 4 151.6798.52 191(174-210) 1.330.67 9.84 4 315.8171.01 241(82-387) 0.330.33 3.26 0 9999 257(245-266) 0.110.11 1.54 10 43.4743.47 290(290) 

Arripis truttaceus MEO 1.340.99 9.30 4 740.44528.29 361(339-380)                  

Sillaginodes punctatus MEO 0.230.15 1.55 11 65.8643.60 373(370-376)       0.440.44 4.35 6 87.4319.12 285(244-304) 0.330.17 4.62 6 73.1244.68 325(307-362) 

Gonorynchus greyi MEO 0.230.15 1.55 11 17.0911.37 2410230-251) 0.330.24 2.46 11 23.2618.12 233(210-246) 1.000.53 9.78 2 323.1269.61 263(238-293) 0.110.11 1.54 10 10.8610.86 246(246) 

Hyporhamphus melanochir EM 1.891.43 13.18 2 129.03154.56 339(297-386) 0.110.11 0.82 14 12.1412.14 345(345) 0.220.15 2.17 9 126.643.03 343(343-340) 0.110.11 1.54 10 41.3441.34 341(326-364) 

Enoplosus armatus MS       0.110.11 0.82 14 4.714.71 150(150) 0.780.78 7.61 4 29.1529.15 121(85-131) 0.110.11 1.54 10 3.173.17 131(131) 

Pomatomus saltatrix MEO       0.890.61 6.56 6 570.66383.85 388(351-420)            

Sillago bassensis MS                        

Cnidoglanis macrocephalus EM       0.110.11 0.82 14 19.8719.87 335(335)      0.110.11 1.54 10 37.8737.87 431(431) 

Platycephalus speculator EM 0.120.12 0.78 13 30.9930.99 355(355) 0.220.22 1.64 12 13.7713.77 224(222-226) 0.110.11 1.09 12 4848 202(202)       

Pseudorhombus jenynsii MEO 0.120.12 0.78 13 13.1213.12 225(225) 0.560.38 4.10 8 185.21132.22 307(283-336)            

Achoerodus gouldii MS             0.330.33 3.26 8 36.8236.82 167(120-195)       

Sillago schomburgkii MEO 0.120.12 0.78 13 30.1430.14 320(320)            0.220.15 3.08 7 14.589.67 209(206-212) 

Girella zebra MS                  0.220.22 3.08 7 157.07157.07 268(253-277) 

Mustelus antarcticus MS       0.440.24 3.28 10 5001.622712.38 1357(1190-1480)            

Chelidonichthys kumu MS 0.340.17 2.33 10 90.7045.51 290(275-304)            0.110.11 1.54 10 59.8359.83 362(362) 

Schuettea woodwardi MS 0.120.12 0.78 13 6.366.36 166(166)                  

Scorpis georgiana MS                        

Notolabrus parilus MS                        

Myliobatis australis MS                        

Lotella rhacina MS             0.110.11 1.09 12 34.1634.16 362(362)       

Tilodon sexfasciatum MS                        

Cynoglossus broadhursti MS                        

Eubalichthys bucephalus MS              0.110.11 1.09 12 42.2942.29 297(297)           

Species richness 17 16 16 15 

Mean total catch rate 14 14 10 7 

Number of samples 9 9 9 9 

Adjusted number of individuals 126 126 90 63 

Actual number of individuals 129 122 92 65 
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Table 4.5 Continued:     

      

  Spring 2008/2009 Summer 2008/2009 Autumn 2008/2009 Winter 2008/2009 

Species LC CSE % R BSE Lr CSE % R BSE Lr CSE % R BSE Lr CSE % R BSE Lr 

Arripis georgianus MEO 4.121.23 26.06 2 808.62273.39 256(242-264) 3.331.48 15.96 2 903.59456.38 268(225-310) 7.00.5.89 24.42 1 1814.121528.17 267(232-312)       

Mugil cephalus MEO 0.230.15 1.41 9 90.7560.31 332(327-336) 6.442.10 30.85 1 2729.99638.89 351(118-459) 5.331.50 18.60 2 1771.4661.85 274(148-420) 3.441.75 52.54 1 640.79349.66 243(156-396) 

Engraulis australis EM 4.672.83 29.58 1 78.2448.82 125(93-176) 2.001.18 9.57 4 19.3911.44 117(107-136) 0.560.56 1.94 11 8.335.75 120(109-131) 0.780.78 11.86 3 8.048.04 111(75-132) 

Aldrichetta forsteri MEO 0.340.17 2.11 7 120.3973.51 307(203-365) 2.671.27 12.77 3 815.89356.25 305(238-403) 1.560.85 5.43 7 482.46281.67 315(247-364) 1.330.94 20.34 2 153.06102.45 216(172-268) 

Rhabdosargus sarba MEO 1.120.88 7.04 5 321.22204.30 239(207-374) 1.670.78 7.98 5 1002.14561.30 290(234-387) 2.671.32 9.30 3 1344.29684.76 296(258-354) 0.440.18 6.78 4 321.55144.04 344(280-415) 

Ammotretis rostratus EM 0.670.29 4.23 6 103.7450.49 217(180-252) 0.780.36 3.72 7 156.2683.01 246(208-270) 2.441.07 8.53 4 365.61225.03 213(85-292) 0.440.24 6.78 4 79.7945.50 210(136-273) 

Pseudocaranx dentex MEO 0.340.34 2.11 7 72.9872.98 256(242-264) 0.220.22 1.06 11 92.2392.23 273(162-383) 2.111.12 7.36 5 460.77170.76 243(185-363)       

Pagrus auratus MEO       0.320.24 1.60 10 192.03162.01 326(254-410) 1.891.21 6.59 6 1067.3771.83 322(152-392)       

Arripis truttaceus MEO 1.340.67 8.45 4 796.26398.16 361(334-384) 1.221.22 5.85 6 903.20903.20 386(304-409) 0.330.24 1.16 13 339.27248.51 443(430-457) 0.110.11 1.69 6 29.3429.34 283(283) 

Sillaginodes punctatus MEO 1.671.43 10.56 3 344.97297.56 310(291-331) 0.670.47 3.19 8 196.89154.74 335(240-383) 0.440.24 1.55 12 186.6107.32 388(372-410)       

Gonorynchus greyi MEO       0.110.11 0.53 13 13.5813.58 272(272) 1.441.08 5.04 8 125.8394.29 224(112-264)       

Hyporhamphus melanochir EM       0.110.11 0.53 13 18.9418.94 396(396)             

Enoplosus armatus MS            1.000.78 3.49 9 59.2739.61 152(121-204)       

Pomatomus saltatrix MEO       0.670.55 3.19 8 556.67532.32 407(257-680) 0.110.11 0.39 15 32.4932.49 312(312)       

Sillago bassensis MS 0.120.12 0.70 13 7.927.92 194(194) 0.110.11 0.53 13 8.128.12 204(204) 0.780.78 2.71 10 48.2048.20 194(179-219)       

Cnidoglanis macrocephalus EM 0.230.15 1.41 9 108.4772.84 441(406-475)      0.330.24 1.16 13 410.82287.73 627(615-635)       

Platycephalus speculator EM       0.220.22 1.06 11 57.4557.45 343(320-365) 0.110.11 0.39 15 55.8155.81 425(425)       

Pseudorhombus jenynsii MEO            0.110.11 0.39 15 61.0061.00 349(349)       

Achoerodus gouldii MS 0.120.12 0.70 13 23.6623.66 210(210) 0.110.11 0.53 13 44.0444.04 240(240) 0.110.11 0.39 15 17.5617.56 199(199)       

Sillago schomburgkii MEO 0.230.23 1.41 9 27.9127.91 243(242-244)                  

Girella zebra MS 0.230.23 1.41 9 81.3181.31 262(253-271) 0.110.11 0.53 13 43.6843.68 273(273)             

Mustelus antarcticus MS                        

Chelidonichthys kumu MS                        

Schuettea woodwardi MS 0.120.12 0.70 13 13.1913.19 239(207-374)                  

Scorpis georgiana MS 0.120.12 0.70 13 31.6231.62 249(249)      0.110.11 0.39 15 26.3926.39 237(237)       

Notolabrus parilus MS 0.120.12 0.70 13 3.753.75 132(132)      0.110.11 0.39 15 5.145.14 143(143)       

Myliobatis australis MS 0.120.12 0.70 13 444.45444.45 800 (800)                  

Lotella rhacina MS                       

Tilodon sexfasciatum MS      0.110.11 0.53 13 19.1619.16 194(194)             

Cynoglossus broadhursti MS           0.110.11 0.39 15 1.651.65 136(136)       

Eubalichthys bucephalus MS                         

Species richness 18 18 21 6 

Mean total catch rate 16 21 29 7 

Number of samples 9 9 9 9 

Adjusted number of individuals 144 189 261 63 

Actual number of individuals 142 188 258 59 
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4.3.2.2: Differences in offshore fish composition among seasons and years 

Initial investigation of the spatial and temporal differences in the composition of 

the offshore ichthyofaunal community, employing PERMANOVA, detected significant 

differences among all main effects, i.e. habitat, season and year, and also the two-way 

interactions between year and season, and season and habitat (p=0.001-0.007; see 

subsection 3.3.2.4; Table 3.10). Thus, in order to more fully investigate temporal 

differences in the offshore ichthyofauna without the confounding influence of habitat, 

the subsequent analyses were conducted for each habitat separately. 

Two-way crossed ANOSIM tests detected significant differences in 

ichthyofaunal compositions among both seasons and years in each of the three offshore 

habitats (p=0.005-0.039). The overall extent of those differences, however, were low 

(Global R=0.173-0.316) with slightly larger R values detected for season than year in 

habitats A and B, while the reverse was true for habitat C (Table 4.6). Within habitat A, 

the greatest seasonal differences were recorded between spring and each of the other 

seasons (pairwise R=0.370-0.481), which was also reflected by the fact that the samples 

from this season formed the most discrete group on the ordination plot (Fig. 4.4a). Two-

way crossed SIMPER showed that while A. georgianus typified the fauna in all seasons 

at habitat A, it was particularly prevalent in spring. Moreover, greater catch rates of 

another arripid, Arripis truttaceus, also distinguished the fish fauna recorded in spring 

from that in other seasons (Appendix 4.2a). Significant differences were also detected 

between autumn and winter at habitat A, which was mainly due to greater catches of 

several marine estuarine-opportunist species in the former season, namely 

A. georgianus, Pagrus auratus, Gonorynchus greyi and Pseudocaranx dentex. 

Mugilids dominated the offshore fish fauna of habitat B, with M. cephalus 

typifying the catch throughout most of the year and A. forsteri characterising that during 

spring and summer (Appendix 4.2b). The greatest seasonal differences at this habitat 

were between summer and winter and also between summer and autumn. The relative 

distinctness of the fish fauna in the first of these seasons was illustrated on the 

ordination, in which samples collected in summer were situated in a broad cluster below 

those from autumn and winter (Fig. 4.4b). SIPMER demonstrated that the ichthyofaunal 
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Table 4.6: R-statistic and/or significance level (p) values derived from two-way crossed year x 

season ANOSIM tests on the offshore fish faunal composition data recorded at habitat types 

A-C (a-c). Insignificant pairwise comparisons are highlighted in grey. 

 

(a) Habitat A  (b) Habitat B 

Year: p=0.039, Global R=0.278  Year: p=0.031, Global R=0.242 

Season: p=0.005, Global R=0.316  Season: p=0.006, Global R=0.299 

 Spring Summer Autumn   Spring Summer Autumn 

Summer 0.370    Summer 0.046   

Autumn 0.444 0.000   Autumn 0.259 0.407  

Winter 0.481 0.204 0.204  Winter 0.167 0.539 0.333 

         

(c) Habitat C      

Year: p=0.027, Global R=0.227      

Season: p=0.038, Global R=0.173      

 Spring Summer Autumn      

Summer -0.176        

Autumn 0.306 -0.056       

Winter 0.343 0.241 0.333      

 

 

 

 
(a) Habitat A: (b) Habitat B: 

  

(c) Habitat C:  

 

 

 

 

 

 

 

 

 

 

 

Season spring   summer   autumn   winter 

 

Fig. 4.4: nMDS ordination plots constructed from the offshore fish assemblage data recorded at 

each site in each sampling season at habitat A (a), B (b) and C (c). Closed circles represent 

samples from 2007/2008, while open circles 2008/2009. 
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differences among these seasons were mainly due to higher catch rates during summer 

of the estuarine and marine species, E. australis, and the marine estuarine-opportunists 

A. georgianus and A. forsteri. The next greatest difference detected was between 

autumn and winter and was due mainly to greater catches of M. cephalus and 

A. rostratus (Appendix 4.2b). 

The extent of the pairwise seasonal differences at habitat C were low to 

moderate, half of which were not significant (Table 4.6c). The greatest differences in 

fish composition were recorded for winter vs spring and autumn. SIMPER showed that 

while the ichthyofauna of this habitat was characterised by A. georgianus in all seasons 

and A. forsteri in most, the former species was more abundant during spring and 

summer, while M. cephalus, A. forsteri and E. australis were more abundant during 

winter. Autumn and winter were distinguished by higher abundances of A. georgianus 

and A. rostratus during the former season and E. australis and M. cephalus in winter 

(Appendix 4.2c).  

The significant but small inter-annual differences (p=0.027-0.039; Global 

R=0.227-0.278) detected at each offshore habitat were generally attributable to greater 

catches of A. forsteri during 2007/2008 than 2008/2009, while the opposite was true for 

M. cephalus. Furthermore, greater catches of Rhabdosargus sarba were recorded in 

2008/2009 at habitats A and C, while P. auratus was more prevalent in 2007/2008 at the 

first of these habitats (Appendix 4.3). 

 

4.3.2.3: Cyclical temporal changes in offshore ichthyofaunal composition 

RELATE identified that the temporal changes in ichthyofaunal composition 

matched that in the model cyclical matrix only at habitat B, with the extent of the 

cyclical relationship being moderate (ρ=0.432). Thus, seasonal samples from the first 

year form a cyclical pattern that was slightly offset from that in the second year 

(Fig. 4.5b). Although the seasonal fish composition in the first year at habitats A and C 

exhibited a small tendency to form a cyclical temporal pattern this was not the case in 

the second year. In particular, the fish fauna in winter 2008/2009 was markedly 

different from that recorded in all other sampling occasions (Figs 4.5a, c). 
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(a) Habitat A; p=0.062, ρ=0.170 (b) Habitat B; p=0.014, ρ=0.432 

  
 

(c) Habitat C; p=0.603, ρ=-0.020  

 

 

Fig. 4.5: nMDS ordination plots of the average fish faunal composition recorded in each season 

and year for habitats A-C (a-c). The lines join consecutive seasons from spring 2007/2008. The 

significance levels (p) and rho values (ρ) obtained from RELATE tests between the matrices 

used to construct each nMDS plot and cyclical model matrix are also provided. 

  

4.3.2.4: Matching temporal patterns between the fish community and non-

enduring environmental characteristics at each offshore habitat type 

RELATE was employed to determine, separately for each offshore habitat, the 

extent to which the relative differences in fish faunal composition among the various 

sampling occasions matched that defined by the suite of complementary non-enduring 

environmental variables recorded during fish sampling. A significant and moderately 

high correlation between those complementary matrices was detected only at habitat B 

(p=0.002; ρ=0.595).  

BIOENV was then employed to test whether a better match between each pair of 

complementary matrices could be detected if a subset of the non-enduring 

environmental variables were employed, rather than the full suite. Considerable 

improvements were detected for habitats B and C by using only surface and bottom 
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water temperature, bottom salinity and bar state at the former habitat and surface 

salinity at the latter. 

Relationships between the temporal patterns exhibited by the fish fauna and the 

magnitude of those non-enduring environmental variables selected by the BIOENV 

routine are illustrated, for habitats B and C by the nMDS and associated bubble plots 

shown in Fig. 4.6. In the first of these habitats, the notable shift in fish composition 

between samples collected in winter and autumn to those in summer and spring was 

well mirrored by the notably greater surface and bottom water temperatures during the 

latter two seasons (Figs 4.6a, b). Moreover, the relative distinctness of samples 

collected in autumn and summer at this habitat, particularly in 2007/2008, was well 

reflected by considerably higher bottom salinities and prolonged bar closure, i.e. ca 30 

and 120 days in summer and autumn, respectively (Figs 4.6c, d). At habitat C, the 

differences in the fish composition among several sampling occasions was reasonably 

well reflected by differences in surface salinity. Thus, samples collected in summer and 

autumn 2007/2008 and winter 2008/2009, which contained notably distinct fish fauna, 

had the highest and lowest surface salinities, respectively (Fig. 4.6e).  

 

4.3.2.5: Matching temporal patterns in offshore fish faunal composition among 

habitat types 

 The pattern of temporal differences in offshore fish faunal composition in each 

season and year combination was found to be moderately similar between habitats A 

and C (p=0.05 ρ=0.454). However, the cyclical pattern in the extent of seasonal 

differences exhibited in habitats B was found to be unrelated to that in either habitat A 

or C (p=0.364 and 0.095, respectively).  
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 (a) Habitat B; p=0.001, ρ=0.740 (b) Habitat B; p=0.001, ρ=0.740 

  

(c) Habitat B; p=0.001, ρ=0.740 
 

(d) Habitat B; p=0.001, ρ=0.740 

  
 

(e) Habitat C; p=0.034, ρ=0.608 

 

 

Surface 

Temp 

Bottom 

Temp 
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Bottom 
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Surface 
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Fig. 4.6: nMDS ordination plots of the average fish faunal composition recorded in each season 

and year in offshore habitats B (a-d) and C (e). The magnitude of the non-enduring 

environmental variables selected by the BIOENV routine that best matched the temporal pattern 

displayed by the fish faunal composition are displayed for season and year as circles of 

proportionate sizes. The significance levels (p) and rho values (ρ) obtained from the above 

BIOENV tests are also provided. 

 

4.4: Discussion 

4.4.1: Nearshore fish community 

4.4.1.1: Temporal changes in nearshore ichthyofaunal composition 

The nearshore fish faunal composition of Broke Inlet exhibited both seasonal 

and inter-annual differences, however, the extent of those differences were low to 

moderate, with seasonal changes generally being slightly less than those of inter-annual 
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changes. Inter-annual trends in the abundances of species were generally consistent 

among habitats, with greater densities of Atherinosoma elongata, Afurcagobius 

suppositus, Leptatherina presbyteroides and Favonigobius lateralis observed during 

2007/2008 than 2008/2009. The latter two species, which are also represented by 

nearshore marine populations (Potter & Hyndes, 1999; Valesini et al., 2004), are 

typically most abundant in areas of the estuary where salinities are closest to that of the 

marine environment (Prince et al., 1982a; Gill & Potter, 1993; Humphries & Potter, 

1993). Thus, the reduced abundance of these species during 2008/2009 is consistent 

with the marked reductions in salinity recorded during that year across all habitats. 

Furthermore, despite A. elongata being able to osmoregulate over a wide range of 

salinities, peak abundances of this species tend to be associated with salinities of 

between 20-36 (Prince et al., 1982a) and thus, the reduced abundance of this species in 

2008/2009 may be a consequence of the lower salinities recorded throughout that year. 

Conversely, densities of L. wallacei, an estuarine resident species that often exhibits an 

apparent preference for reduced salinities (Prince et al., 1982a), increased in a number 

of habitats during 2008/2009 and particularly those that exhibited the highest salinities 

in the preceding year.  

Despite significant seasonal changes being detected in the nearshore fish faunal 

composition of Broke Inlet, the extent of those differences were moderate at best, which 

mirrors research in other seasonally-open Australian estuaries (e.g. Griffiths, 2001; 

Hoeksema et al., 2009). This reflects not only the adaptability of the suite of small and 

short-lived estuarine species that dominate the nearshore fish fauna of Broke Inlet to 

variable water physico-chemical conditions, but also the seasonally-open nature of the 

estuary. Seasonal changes in the ichthyofauna of such estuaries have been related to the 

timing and duration of bar opening events (e.g. Bennett, 1989). For example, periods of 

bar closure prevent the migration of marine species into and out of estuaries (Chuwen 

et al., 2009a). Thus it is relevant that the seasonal changes recorded in Broke Inlet and 

other nearby seasonally-open estuaries on the south coast of Western Australia were 

considerably less pronounced than those exhibited by the nearshore fish faunas of 

permanently-open estuaries on the lower west coast (e.g. Young & Potter, 2003; 
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Hoeksema & Potter, 2006). The increased temporal differences in ichthyofaunal 

composition of these systems can be related to their permanent and free connection to 

the ocean, particularly those estuaries that have a linear morphology. For example the 

Swan-Canning Estuary exhibits a pronounced longitudinal water physico-chemical 

gradient from mouth to source within which species tended to distribute themselves 

according to their environmental tolerances (e.g. Prince et al., 1982a; Gill & Potter, 

1993). These distributions subsequently change with the seasonal movements of the salt 

wedge and river plume that result from changes in the relative contributions of tidal vs 

riverine water movements (Stephens & Imberger, 1996; Hamilton et al., 2001). 

Moreover, seasonal changes in the ichthyofauna of these estuaries are also enhanced by 

marine species whose often highly seasonal migrations between these systems and the 

marine environment are facilitated by their permanent connection with the sea (Maes 

et al., 2005; Hoeksema & Potter, 2006).  

  Significant cyclical changes in ichthyofaunal composition were not detected at 

any of the nearshore habitats of Broke Inlet except C, where a low degree of cyclicity 

was recorded. These results parallel the findings of a recent study in five estuaries along 

the south coast of Western Australia, in which any seasonal changes in nearshore fish 

faunal composition were not associated with a clearly definable cyclical progression 

(Hoeksema et al., 2009). Such results may be attributed to the limited contributions of 

the juveniles of marine species whose passage into these systems is determined by the 

state of the bar and the timing of duration over which they have a free connection with 

the ocean and a lack of a distinct breeding season among estuarine species, as found in 

the upper reaches of the Swan-Canning Estuary (Prince & Potter, 1983; Gill et al., 

1996). 

In the nearshore waters of the Swan-Canning Estuary, which are also dominated 

by estuarine species, significant and cyclical changes were detected in ichthyofaunal 

composition, particularly in those years and regions of the estuary that exhibited marked 

and consistent seasonal variations in environmental variables, due to the differential 

recruitment of juveniles of different species and thus time-staggered differences in their 

peak abundances (Hoeksema & Potter, 2006). However, despite the fact that several of 
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the species that were most responsible for the cyclical changes observed in the upper 

Swan-Canning Estuary are among the most numerous fish species in Broke Inlet, 

i.e. L. wallacei, P. olorum and A. suppositus, similar cyclical changes were not observed 

in the latter system. Moreover, whereas A. elongata and L. presbyteroides, which were 

also highly abundant in Broke Inlet, have been shown to have distinct spawning periods 

in the Swan-Canning Estuary, this was not the case in the current study. Thus, 

comparisons of the length class compositions of A. elongata among seasons and years 

in each habitat demonstrated that juveniles of this species, i.e. individuals ≤ 20 mm, 

were present in each season (data not presented), therefore strongly suggesting that the 

spawning period of this species in Broke Inlet is far more protracted than in the Swan-

Canning Estuary.  

The ability of atherinids to complete their life cycle in estuaries has been 

attributed to selection pressures associated with the landlocking of these species in 

systems which were closed to the sea (Potter et al., 1986b). Although these atherinids in 

the Swan-Canning Estuary exhibit a preferred spawning period in which environmental 

conditions are optimal for juvenile survival and recruitment, seasonally-open estuaries 

do not always undergo the same consistent seasonal and inter-annual changes in water 

physico-chemistry. For example, in spring, when A. elongata spawns in the Swan-

Canning Estuary, salinities in Broke Inlet ranged from 12-35 in 2007/2008 and 1-18 in 

2008/2009 and thus did not undergo the progressive increase in salinity during that 

season that is typically observed in the Swan-Canning Estuary. Therefore in response to 

the lack of consistent seasonal changes in water physico-chemistry that act to stimulate 

the onset of spawning (Prince & Potter, 1983), it is suggested that this species does not 

have a clearly defined spawning period in Broke Inlet and may spawn on multiple 

occasions over a given year, as is the case with some other atherinid species 

(e.g. Bayliff, 1950; Hubbs, 1976; Conand, 1993). It is therefore noteworthy that the 

spawning period in several atherinid species has been shown to vary with latitude 

(e.g. Henderson & Bamber, 1987; Conand, 1993) and that the latitudes of Broke Inlet 

and the Swan-Canning Estuary differ substantially, i.e. by 3°. Furthermore, another 

estuarine species present in Broke Inlet, the gobiid P. olorum, has been shown to spawn 
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in both spring and autumn, with the lack of summer spawning attributed to water 

temperatures exceeding 25°C (Gill et al., 1996). It is therefore relevant that, the water 

temperature in Broke Inlet rarely exceeded this upper thermal limit for reproductive 

success (Chuwen et al., 2009a; Chapter 3) and thus this species may be able to spawn 

throughout spring, summer and autumn.  

 

4.4.1.2: Matching temporal patterns between the fish community and non-

enduring environmental characteristics at each nearshore habitat type 

The pattern of temporal differences in the composition of the nearshore fish 

fauna were not significantly correlated with that exhibited by the non-enduring 

environmental variables. Furthermore, when BIOENV was employed to identify the 

particular subset of those environmental variables that was best correlated with the 

temporal trends in ichthyofaunal composition, a significant correlation was still only 

detected in a single habitat. Such findings indicate that temporal changes in the suite of 

non-enduring environmental variables have little influence on the composition of the 

nearshore fish faunas of Broke Inlet. The fact that a similar suite of estuarine species 

dominates the ichthyofauna in all seasons at all habitats regardless of the environmental 

conditions is likely to account for such findings. The extensive adaptation of these 

species to the variable environmental conditions in south-western Australian estuaries is 

exemplified by the fact that the most abundant species, A. elongata, can survive in 

salinities ranging from < 5-136 (Prince et al., 1982a; Hoeksema et al., 2006). Indeed, 

this atherinid was the sole surviving species in Culham Inlet, a normally-closed estuary 

on the south coast of Western Australia when salinities exceeded 80. Furthermore, 

another estuarine species, the gobiid P. olorum which generally occurs in the upper 

reaches of estuaries, was recorded in Culham Inlet in salinities of up to 76 (Hoeksema 

et al., 2006). It has been hypothesised that the large variations in water physico-

chemistry experienced by estuarine fish species has led to the selection for generalist 

genotypes that enable morphological, physiological and behavioural characteristics to 

be expressed that suit a wide range of environmental conditions (Bamber & Henderson, 

1988). Thus, despite displaying “preferences” for particular environmental conditions 
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and exhibiting predictable distributions in those systems that have clearly defined 

progressions in water physico-chemistry, such as the Swan-Canning Estuary (e.g. Prince 

et al., 1982a; Gill & Potter, 1993), the generalist nature of those species enables them to 

maintain ubiquitous distributions throughout estuaries along the south coast of Western 

Australia irrespective of the environmental conditions present within those systems 

(Hoeksema et al., 2009).  

 

4.4.1.3: Matching temporal patterns in nearshore fish faunal composition among 

habitat types 

 The patterns of temporal changes in ichthyofaunal composition were found to be 

similar in numerous combinations of habitats, particularly those situated in close 

proximity. Such findings demonstrate that temporal similarity was influenced more by 

the spatial location of the habitat within the estuary rather than the suite of enduring 

environmental variables used to distinguish those habitats. Thus, for example, habitat B, 

the second most distinct habitat with respect to its enduring environmental 

characteristics, was correlated with the highest number of other habitats on the basis of 

its fish fauna. This suggests that neither the individual enduring environmental 

characteristics of a habitat nor its level of dissimilarity to nearby habitats in terms of 

those environmental characteristics that determine the extent of the temporal changes 

exhibited by that habitat and that it is the spatial location of the habitat within the 

estuary which governs its temporal similarity to other habitats. The environmental 

forces influencing the temporal changes in ichthyofauna therefore, act at a “regional” 

scale within the estuary, which may be augmented by subtle differences on a habitat 

basis, i.e. depending on the characteristic of individual habitats.  

 

4.4.2: Offshore fish community 

4.4.2.1: Temporal changes in offshore ichthyofaunal composition 

Significant seasonal and inter-annual differences in ichthyofaunal composition 

were detected in each offshore habitat, with the extent of those differences being 

slightly greater for season than years in habitats A and B. While the overall extent of 
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these seasonal differences was low, moderate differences were detected between 

particular pairs of seasons. In the channel habitat A, in which the greatest overall 

seasonal differences were recorded, for example, the most distinct differences were 

recorded between spring and each of the other three seasons. This was due mainly to the 

greater prevalence of adult Arripis georgianus and Arripis truttaceus in this habitat the 

former of which undertake a westward migration from waters in South Australia to their 

spawning grounds on the lower west and south coasts of Western Australia around that 

time of year (Fairclough et al., 2000a). It has been suggested that the adults of these 

marine estuarine-opportunists enter these estuaries during their migration to their 

spawning grounds, when these systems are freely connected with the ocean, as they 

typically provide increased shelter from the highly exposed marine waters of the south 

coast and an abundant source of food (Haedrich, 1983; Beck et al., 2001). 

The ichthyofaunal differences between spring and summer at habitat A were 

also due to the fact that various other marine estuarine-opportunists characterised this 

habitat in summer, namely the mugilids Aldrichetta forsteri and Mugil cephalus and the 

sparid Pagrus auratus. Although the bar at the mouth of the estuary closed during the 

summer of both years, preventing the movement of the above species from the estuary, 

it typically reopens in late winter, allowing species with marine affinities the chance to 

emigrate from the estuary to the nearshore marine environment.  

The significant seasonal changes in the composition of the offshore fish fauna at 

habitat B, in Shannon Basin, were found to exhibit strong temporal cyclicity, which was 

due largely to the sequential immigration and subsequent emigration from that habitat 

of the various marine fish species. Thus, during spring the ichthyofauna was typified by 

A. forsteri which subsequently moved into the lower estuary during autumn, a trend also 

recorded in the Swan-Canning Estuary (Chubb et al., 1981). During summer, this 

habitat was also characterised by A. georgianus and Engraulis australis, with the 

spawning in E. australis occurring during this season in the nearby Walpole-Nornalup 

Estuary and Wilson Inlet (Neira & Potter, 1992a; Neira & Potter, 1994). Furthermore, 

individuals of this species are known to immigrate into the estuaries in southern 

Australia at this time to spawn (Blackburn, 1950). The abundances of these two species 
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decreased in autumn while those of the estuarine and marine species 

Ammotretis rostratus increased, and characterised the offshore fish fauna at this habitat 

until spring. This period coincides with the spawning time of this species, which 

extends from May to November (Crawford, 1984; Jenkins, 1986). Adult M. cephalus 

also typified the fish assemblages at habitat B in autumn and also winter, which may 

reflect their movement out of the rivers and into the upper reaches of the estuary which 

they are known to undertake at this time of year on route to the marine environment to 

spawn (Thomson, 1955; Chubb et al., 1981; Chuwen et al., 2009b). It is also thus 

relevant that by far the lowest numbers of this species in all habitat were caught during 

spring. 

The offshore ichthyofauna of habitat C also differed seasonally, although to a 

lesser extent than the other habitats. In the first year the fish fauna followed a seasonal 

cyclical pattern with greater abundances of arripids during spring, an influx of marine 

estuarine-opportunists that had recently entered the system when it was freely connected 

with the sea, such as P. auratus, Rhabdosargus sarba, Gonorynchus greyi and 

Pseudocaranx dentex, during summer and autumn as salinities increased. These species 

emigrated from this habitat in winter when fluvial discharge increases markedly, 

reducing salinity and re-establishing the connection with the ocean. This cycling in the 

fish fauna is likely to be driven by the seasonal changes in salinity which underwent a 

“typical” and pronounced seasonal pattern during the first year of sampling, but did not 

follow the same pattern in the second year in which salinities were consistent, i.e. ca 15 

until winter. This pattern of temporal differences in surface salinity at this habitat was 

found to be strongly correlated with those exhibited by fish faunal composition 

(Fig. 4.6). Furthermore, the lack of a cyclical trend in the second year conforms with 

other research on seasonally-open estuaries in southern Australia in which seasonal 

changes in ichthyofauna are typically small (e.g. Pollard, 1994a; Griffiths, 2001). On 

the south coast of Western Australia the estuaries which underwent the greatest seasonal 

changes in ichthyofauna were also found to experience the most pronounced changes in 

salinity (Chuwen et al., 2009b). It is therefore hypothesised that the small seasonal 

changes observed during the second year of sampling at habitat C may reflect the 
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relatively small seasonal fluctuations in salinity at that habitat during spring, summer 

and autumn 2008/2009.The small inter-annual differences in the composition of the 

offshore ichthyofauna detected at each habitat was due to marine species, such as 

A. forsteri and P. auratus, being more abundant during 2007/2008 than 2008/2009. 

Such findings may reflect the fact that salinities in Broke Inlet during this year were 

higher than in 2008/2009. Furthermore, this reduction in salinity between the two 

sampling years may have contributed to the increase in M. cephalus during 2008/2009, 

as this species is capable of occupying regions of reduced salinities in estuaries and, as 

such, was found to be more abundant in the saline reaches of rivers than in the basins of 

five estuaries on the south coast of Western Australia (Chuwen et al., 2009b).  

 

4.4.2.2: Matching temporal patterns between the fish community and non-

enduring environmental characteristics at each offshore habitat type 

The pattern of temporal differences in non-enduring environmental 

characteristics, i.e. those reflecting water physico-chemistry was significantly correlated 

with that exhibited by the offshore fish fauna in habitats B and C, with the extent of 

those correlations ranging from moderately high to high. Unlike some of the variables 

selected by the BIOENV procedure in subsection 3.3.2.5, which were identified as 

being correlated with spatial differences in fish faunal composition in a particular 

season, the BIOENV procedure in these analyses selected variables with a large range 

of values which was well distributed among the samples (e.g. surface salinity at habitat 

B ranged from ca 8-41). These selected non-enduring environmental variables were thus 

considered to provide a more reliable “explanation” of differences in fish faunal 

composition than some of those referred to above. 

Temporal changes in the ichthyofauna of habitat B were strongly correlated 

those exhibited by surface and bottom water temperature, bar state and bottom salinity, 

while those at habitat C were correlated only with changes in surface salinity. Salinities 

at both of those habitats underwent pronounced temporal changes ranging between ca 3 

in winter 2008/2009 to 40 in summer 2007/2008. Salinity has been shown to influence 

the distribution of fish species, and particularly marine species, in numerous other 
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south-western Australian estuaries (e.g. Loneragan et al., 1987; Loneragan & Potter, 

1990; Hoeksema & Potter, 2006). At habitat A however, salinities ranged only between 

20 and 35 and were generally always highest at this habitat. It is therefore proposed that 

this habitat provides a refuge for species with marine affinities when the bar is closed 

and salinities in other habitats have declined markedly.  

Significant correlations between the temporal patterns of differences in offshore 

ichthyofaunal composition were detected between habitats A and C, however, neither of 

these patterns were correlated with those recorded in habitat B. This reflects the fact that 

habitat B was the only habitat in which temporal changes in offshore fish composition 

exhibited a significant cyclical pattern due to the immigration and emigration of various 

marine species. It is also noteworthy that, while the offshore water at habitats A and C 

are directly linked, this is not the case with habitat B. As such, the movement of fish 

from this habitat, which harboured the most distinct and depauperate ichthyofaunal 

assemblage, and other habitats is restricted by a ca 1.5 km stretch of very shallow water, 

i.e. < 50 cm over an extensive sand bar (Fig. 2.3), greatly influencing temporal patterns 

of fish movement between habitats and distinguishing it from the rest of the estuary. 
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4.5: Appendices 

 

Appendix 4.1: Species that consistently typified (provided along the diagonal) and 

distinguished (provided in the sub-diagonal) the nearshore fish assemblages at each habitat in 

each season and/or year between spring 2007 and winter 2009 as detected by two-way crossed 

SIMPER. The season or year in which each species was most abundant is given in superscript 

for each pairwise comparison. Insignificant pairwise comparisons are highlighted in grey. 

Asterisks denote the relative consistency of each species in either typifying or distinguishing the 

faunal composition in that season or year, as measured by the similarity to standard deviation 

ratio and dissimilarity to standard deviation ratio, respectively; > 1.5-3*, > 3-5**, > 5***. 

 

(a) Habitat A: 

  Spring Winter 

Spring 

L. wallacei***   

A. elongata*   

    

    

Winter 

L. wallaceiSp L. wallacei** 

A. elongataSp A. elongata* 

F. lateralisW   

A. suppositusW   
 

 

 
 

 

(b) Habitat B: 

 

2007/2008 2008/2009 

  

2007/2008 

A. elongata*   

  L. presbyteroides*   

  F. lateralis   

  L. wallacei   

  

2008/2009 

L. presbyteroides07/08 A. elongata* 

  A. elongata07/08 F. lateralis 

  L. wallacei08/09 L. wallacei* 

   F. lateralis07/08 L. presbyteroides 

  

       Spring Summer Autumn Winter 

Spring 

L. presbyteroides 
   

A. elongata 

 

    

L. wallacei 

 

    

F. lateralis 

 

    

Summer 

L. wallaceiSu* A. elongata* 

 

  

L. presbyteroidesSu* F. lateralis** 

 

  

A. elongataSu* L. presbyteroides* 

 

  

F. lateralisSu L. wallacei 

 

  

Autumn 

L. presbyteroidesA L. presbyteroidesSu* A. elongata*   

L. wallaceiA* L. wallaceiSu* L. wallacei   

A. elongataA A. elongataSu F. lateralis   

F. lateralisSp F. lateralisSu* A. suppositus   

Winter 

L. presbyteroidesW* L. wallaceiSu*   A. elongata* 

L. wallaceiSp L. presbyteroidesSu*   F. lateralis 

A. elongataW A. elongataSu   L. presbyteroides 

A. suppositusW  F. lateralisSu   L. wallacei 
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(c) Habitat C: 

 
2007/2008 2008/2009 

  

2007/2008 

A. suppositus*   

  A. elongata**   

  L. wallacei*   

      

  

2008/2009 

A. suppositus07/08 L. wallacei* 

  L. wallacei08/09* A. suppositus* 

  A. elongata07/08 A. elongata** 

  F. lateralis07/08   

  
 

    
 

Spring Summer Autumn Winter 

Spring 

A. elongata** 

 

    

L. wallacei* 

 

    

A. suppositus 

 

    

P. olorum 

 

    

Summer 

  A. suppositus*** 

 

  

  A. elongata* 

 

  

  L. wallacei 

 

  

    

 

  

Autumn 

L. wallaceiA* L. wallaceiA* A. elongata**   

F. lateralisA A. elongataA L. wallacei*   

P. olorumSp F. lateralisA A. suppositus*   

L. presbyteroidesA L. presbyteroidesA     

Winter 

A. suppositusW L. wallaceiW* L. wallaceiA* A. suppositus** 

L. wallaceiW* F. lateralisW A. elongataA L. wallacei* 

P. olorumSp A. elongataW* F. lateralisA A. elongata* 

A. elongataSp* L. presbyteroidesSu L. presbyteroidesA   
 

 

 

(d) Habitat D: 

 
2007/2008 2008/2009 

  

2007/2008 

A. suppositus*   

  A. elongata*   

  L. wallacei*   

      

  

2008/2009 

A. suppositus07/08* L. wallacei* 

  L. wallacei08/09 A. suppositus* 

  F. lateralis07/08 A. elongata* 

  A. elongata07/08   

  
 

    
 

Spring Summer Autumn Winter 

Spring 

L. wallacei* 

 

    

A. elongata* 

 

    

A. suppositus 

 

    

  

 

    

Summer 

A. suppositusSu* A. suppositus*** 

 

  

L. presbyteroidesSu* A. elongata* 

 

  

A. elongataSu* L. wallacei* 

 

  

L. wallaceiSu L. presbyteroides 

 

  

Autumn 

A. suppositusA* A. suppositusSu A. suppositus***   

A. elongataSp F. lateralisA L. wallacei*   

F. lateralisA* A. elongataSu* A. elongata*   

P. olorumSp L. presbyteroidesSu*     

Winter 

L. wallaceiSp A. suppositusSu*   A. elongata* 

A. suppositusW L. wallaceiSu   A. suppositus 

A. elongataSp L. presbyteroidesSu*   L. wallacei 

F. lateralisW A. elongataSu*   F. lateralis 

 



Chapter 4 

155 

 

(e) Habitat E: 

 
2007/2008 2008/2009 

  

2007/2008 

A. suppositus*   

  L. wallacei*   

  A. elongata**   

      

  

2008/2009 

L. wallacei07/08 A. suppositus* 

  A. elongata07/08 L. wallacei* 

  A. suppositus07/08 A. elongata* 

  P. olorum08/09   

  
 

    
 

Spring Summer Autumn Winter 

Spring 

L. wallacei* 

 

    

A. elongata* 

 

    

A. suppositus 

 

    

  

 

    

Summer 

A. suppositusSu* A. suppositus** 

 

  

A. elongataSu A. elongata** 

 

  

L. wallaceiSu* L. wallacei** 

 

  

    

 

  

Autumn 

A. suppositusA A. elongataSu* A. suppositus**   

L. wallaceiSp* A. suppositusSu* A. elongata*   

A. elongataA L. wallaceiSu* L. wallacei**   

  P. olorumSu     

Winter 

  A. suppositusSu*   A. suppositus* 

  L. wallaceiW*   L. wallacei* 

  A. elongataSu*   A. elongata* 

  L. presbyteroidesSu     
 

 

 

(f) Habitat F:  

 
2007/2008 2008/2009 

  

2007/2008 

A. suppositus*   

  A. elongata**   

  L. wallacei*   

      

  

2008/2009 

A. suppositus07/08 L. wallacei** 

  A. elongata07/08 A. elongata* 

  L. wallacei07/08 A. suppositus 

  P. olorum07/08   

  
 

    
 

Spring Summer Autumn Winter 

Spring 

L. wallacei* 

 

    

A. elongata** 

 

    

A. suppositus 

 

    

  

 

    

Summer 

  A. suppositus* 

 

  

  A. elongata** 

 

  

  L. wallacei** 

 

  

    

 

  

Autumn 

  L. wallaceiA* A. elongata***   

  A. elongataA* A. suppositus**   

  A. suppositusSu L. wallacei*   

  F. lateralisSu     

Winter 

  A. elongataSu*   L. wallacei* 

  A. suppositusSu*   A. elongata 

  L. wallaceiSu   A. suppositus 

  F. lateralisSu     
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(g) Habitat G: 

 
2007/2008 2008/2009 

  

2007/2008 

A. elongata**   

  A. suppositus*   

  P. olorum   

  L. wallacei   

  

2008/2009 

A. elongata07/08 A. suppositus* 

  P. olorum07/08* A. elongata* 

  L. wallacei08/09* L. wallacei* 

  A. suppositus07/08 P. olorum 

  
 

    
 

Spring Summer Autumn Winter 

Spring 

A. elongata** 

 

    

A. suppositus* 

 

    

P. olorum* 

 

    

  

 

    

Summer 

  A. elongata* 

 

  

  A. suppositus* 

 

  

  L. wallacei 

 

  

    

 

  

Autumn 

L. wallaceiA L. wallaceiA A. elongata***   

A. elongataA P. olorumSu* L. wallacei**   

P. olorumSp A. suppositusSu A. suppositus***   

L. presbyteroidesA* A. elongataA P. olorum*   

Winter 

A. elongataSp* P. olorumSu* L. wallaceiA* A. suppositus* 

P. olorumSp* A. elongataSu* A. elongataA A. elongata* 

L. presbyteroidesSp* A. suppositusSu  P. olorumA* L. wallacei 

L. wallaceiW* L. wallaceiSu* A. suppositusA   
 

 

 

(h) Habitat H: 

 
2007/2008 2008/2009 

  

2007/2008 

A. elongata*   

  A. suppositus*   

  L. wallacei*   

      

  

2008/2009 

L. wallacei07/08 L. wallacei* 

  L. presbyteroides07/08 A. suppositus** 

  A. elongata07/08* A. elongata* 

  A. suppositus07/08*   

  
 

    
 

Spring Summer Autumn Winter 

Spring 

A. elongata 

 

    

P. olorum** 

 

    

L. wallacei* 

 

    

A. suppositus* 

 

    

Summer 

L. wallaceiSu A. elongata* 

 

  

A. suppositusSu A. suppositus* 

 

  

L. presbyteroidesSu L. wallacei* 

 

  

H. melanochirSu L. presbyteroides* 

 

  

Autumn 

L. wallaceiA L. wallaceiA L. wallacei**   

L. presbyteroidesA F. lateralisSu A. elongata***   

P. olorumSp L. presbyteroidesSu* A. suppositus***   

N. parilusSp A. suppositusSu* L. presbyteroides*   

Winter 

L. presbyteroidesW L. wallaceiSu   A. suppositus*** 

L. wallaceiW L. presbyteroidesW*   A. elongata* 

P. olorumSp* P. olorumSu*   L. wallacei* 

A. elongataW* F. lateralisSu   L. presbyteroides 
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(i) Habitat I: 

 
2007/2008 2008/2009 

  

2007/2008 

A. elongata*   

  L. wallacei*   

  F. lateralis   

  A. suppositus   

  

2008/2009 

F. lateralis07/08 A. elongata 

  A. elongata07/08 L. wallacei 

  L. wallacei08/09 A. suppositus 

  A. suppositus07/08   

  
 

    
 

Spring Summer Autumn Winter 

Spring 

A. elongata 

 

    

L. wallacei 

 

    

F. lateralis 

 

    

  

 

    

Summer 

  A. elongata** 

 

  

  F. lateralis 

 

  

  L. wallacei** 

 

  

    

 

  

Autumn 

A. suppositusA   A. elongata*   

A. elongataA   A. suppositus   

L. wallaceiSp   L. wallacei*   

A. rostratusA       

Winter 

A. elongataW A. elongataSu A. elongataW* L. wallacei* 

L. wallaceiW L. wallaceiW* L. wallaceiW* A. elongata* 

A. suppositusW F. lateralisSu A. suppositusA A. suppositus 

F. lateralisSp A. suppositusW F. lateralisA   
 

 

 

(j) Habitat J: 

 
2007/2008 2008/2009 

  

2007/2008 

A. elongata**   

  A. suppositus*   

  L. wallacei   

      

  

2008/2009 

A. suppositus07/08 L. wallacei* 

  A. elongata07/08 A. elongata 

  L. wallacei07/08 A. suppositus 

      

  
 

    
 

Spring Summer Autumn Winter 

Spring 

L. wallacei 

 

    

A. suppositus 

 

    

A. elongata 

 

    

  

 

    

Summer 

A. elongataSu A. elongata* 

 

  

A. suppositusSu A. suppositus** 

 

  

L. wallaceiSu L. wallacei* 

 

  

F. lateralisSu F. lateralis 

 

  

Autumn 

    A. elongata*   

    L. wallacei*   

    A. suppositus   

        

Winter 

A. suppositusSp     L. wallacei 

L. wallaceiSp*     A. elongata 

A. elongataSp     A. suppositus 

F. lateralisSp       
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(k) Habitat K: 

 
2007/2008 2008/2009 

  

2007/2008 

A. elongata*   

  L. wallacei*   

  A. suppositus   

  

2008/2009 

A. elongata07/08 L. wallacei* 

  L. wallacei07/08 A. elongata 

  A. suppositus07/08   

  L. presbyteroides07/08   

  
 

    
 

Spring Summer Autumn Winter 

Spring 
A. elongata** 

 

    

L. wallacei 

 

    

Summer 

A. elongataSu L. wallacei* 

 

  

L. wallaceiSu A. elongata* 

 

  

A. suppositusSu A. suppositus 

 

  

Autumn 

A. elongataA*   A. elongata*   

L. wallaceiA   L. wallacei   

A. suppositusA       

L. presbyteroidesA       

Winter 

L. wallaceiW A. elongataW A. elongataW L. wallacei* 

A. elongataW* L. wallaceiW* L. wallaceiW* A. elongata 

A. suppositusW A. suppositusSu A. suppositusW   
 
 

Appendix 4.2: Species that consistently typified (provided along the diagonal) and 

distinguished (provided in the sub-diagonal) the offshore fish assemblages at each habitat in 

each season and year between spring 2007 and winter 2009 as detected by two-way crossed 

SIMPER. The season or year in which each species was most abundant is given in superscript 

for each pairwise comparison. Insignificant pairwise comparisons are highlighted in grey. 

Asterisks denote the relative consistency of each species in either typifying or distinguishing the 

faunal composition in that season or year, as measured by the similarity to standard deviation 

ratio and dissimilarity to standard deviation ratio, respectively; > 1.5-3*, > 3-5**, > 5***. 

(a) Habitat A: 

 

2007/2008 2008/2009 

  

2007/2008 

A. georgianus* 

   A. forsteri 

   P. auratus 

   M. cephalus 

   

2008/2009 

M. cephalus08/09 M. cephalus 

  A. forsteri07/08 A. georgianus 

  R. sarba08/09 A. truttaceus 

  P. auratus07/08 R. sarba 

  

       Spring Summer Autumn Winter 

Spring 
A. georgianus*** 

   
A. truttaceus 

   

Summer 

M. cephalusSu M. cephalus 

  A. truttaceusSp A. forsteri 

  A. forsteriSu* P. auratus 

  A. georgianusSp A. georgianus 

  

Autumn 

P. auratusA 

 

A. georgianus 

 R. sarbaA* 

 

M. cephalus 

 A. georgianusA 

 

R. sarba 

 A. truttaceusSp 

 

G. greyi 

 

Winter 

A. truttaceusSp* 

 

A. georgianusA M. cephalus 

A. georgianusSp 

 

P. auratusA A. forsteri 

M. cephalusW* 

 

G. greyiA A. georgianus 

A. rostratusSp 

 

P. dentexA 
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(b) Habitat B: 

 

2007/2008 2008/2009 

  

2007/2008 

M. cephalus 

   A. rostratus 

   E. australis 

   A. forsteri 

   

2008/2009 

M. cephalus08/09 M. cephalus 

  A. rostratus08/09 A. rostratus 

  
 

A. forsteri 

  
    

       Spring Summer Autumn Winter 

Spring 
A. forsteri 

   

    

Summer 
 

M. cephalus 

  

 

A. forsteri 

  

 

A. georgianus 

  

 

E. australis 

  

Autumn 

M. cephalusA A. forsteriSu M. cephalus 

 A. rostratusA A. georgianusSu A. rostratus 

 A. forsteriSp A. rostratusA E. australis 

 

 

E. australisSu 

  

Winter 

M. cephalusW A. forsteriSu M. cephalusA M. cephalus 

A. forsteriSp A. georgianusSu A. rostratusA A. rostratus 

 

E. australisSu 

  
     

 
 

(c) Habitat C: 

 

2007/2008 2008/2009 
  

2007/2008 

A. georgianus 

   A. rostratus 

   E. australis 

   A. forsteri 

   

2008/2009 

A. georgianus08/09 A. georgianus 
  E. australis08/09 A. rostratus 

  M. cephalus08/09 R. sarba 
  R. sarba08/09 A. forsteri 
  

       Spring Summer Autumn Winter 

Spring 

A. georgianus 
   

A. rostratus 

   A. forsteri 

   

    

Summer 
 

A. georgianus 

  

 

A. forsteri 

  

    

    

Autumn 

A. georgianusSp 

 

A. rostratus 

 A. rostratusA 

 

A. georgianus 

 M. cephalusSp 

 

H. melanochir 

 A. forsteriSp 

 

P. dentex 

 

Winter 

A. georgianusSp 

 

A. georgianusA* E. australis 

M. cephalusW 
 

E. australisW R. sarba 

A. forsteriW 

 

M. cephalusW A. forsteri 

A. rostratusW 

 

A. rostratusA A. georgianus 

   

M. cephalus 
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Chapter 5 

Benthic macroinvertebrate composition among 

habitat types and seasons in Broke Inlet 

 

5.1: Introduction 

Benthic macroinvertebrate communities, which comprise mainly polychaetes, 

molluscs and crustaceans, are a vital component of estuarine environments. These small 

benthic fauna perform a range of crucial functions, such as aiding the decomposition of 

organic matter, recycling nutrients and translocating materials (Riisgård, 1991; Wallace 

& Webster, 1996; Constable, 1999; Pennifold & Davis, 2001; De Roach et al., 2002). 

They also provide an important food source for many fish and avian species (Kalejta & 

Hockey, 1991; Humphries & Potter, 1993; Platell et al., 2006).  

The species richness, density and composition of the benthic macroinvertebrate 

faunas of estuaries have been shown by many workers throughout the world to vary 

spatially and temporally (e.g. Edgar & Barrett, 2002; Giberto et al., 2004; França et al., 

2009b; Wildsmith et al., 2009). Thus, numerous studies have demonstrated that the 

spatial distributions of the various benthic macroinvertebrate species within estuaries 

are strongly related to spatial differences in certain environmental variables and in 

particular salinity (e.g. Ysebaert et al., 2002; Ellis et al., 2006), the grain size and 

organic content of the sediment (e.g. Gray, 1974; Teske & Wooldridge, 2003), benthic 

structural heterogeneity (e.g. Gilinsky, 1984; Attrill et al., 2000; Basset et al., 2007) and 

water flow/wave exposure (e.g. Warwick et al., 1991; Mettam, 1994). The strong links 

between benthic macroinvertebrate composition and environmental variables are 

reflected in the demonstration that the pattern of relative differences in the compositions 

of these faunas among habitat types in the Swan-Canning Estuary are strongly 

correlated with the suite of enduring environmental characteristics that were used to 

identify those habitat types (Valesini et al., 2009). This presumably reflects differences 

in the tolerances to and/or preferences of the various species for particular enduring 

environmental conditions (Valesini et al., 2009). 
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Temporal changes in the characteristics of benthic macroinvertebrate 

assemblages within estuaries have been related to differences in the timing of the 

recruitment of certain species and in the extent of their mortality at different times of the 

year, both of which typically reflect the marked seasonal changes that often occur in 

estuarine hydrology, and especially salinity, water temperature and river flow 

(e.g. Rainer, 1981; Kalejta & Hockey, 1991; Sardá et al., 1995; Platell & Potter, 1996; 

Kanandjembo et al., 2001). 

Most studies of the spatial and/or temporal differences in benthic 

macroinvertebrate composition in estuaries in Western Australia have been undertaken 

in the large permanently-open systems of the lower west coast (e.g. Semeniuk & Wurm, 

2000; Kanandjembo et al., 2001; Wildsmith, 2007; Valesini et al., 2009; Wildsmith 

et al., 2009). However, studies of the benthic macroinvertebrate faunas in estuaries on 

the south coast of Western Australia are largely restricted to limited qualitative surveys 

of those assemblages in a number of these systems (e.g. Hodgkin & Clark, 1987-1990) 

and to molluscs in Oyster Harbour (e.g. Wells & Roberts, 1980; Wells & Threlfall, 

1980). The only detailed study of the benthic macroinvertebrate fauna in estuaries on 

this coast is that undertaken by Platell & Potter (1996) in Wilson Inlet, which is located 

approximately 100 km to the east of Broke Inlet and is likewise seasonally-open 

(Brearley, 2005). 

Environmental conditions in the Broke and Wilson inlets differ markedly, with 

the former being essentially oligotrophic and containing only small areas of 

macrophytes, whereas the latter is eutrophic and contains large and dense stands of the 

aquatic macrophyte Ruppia megacarpa (Lukatelich et al., 1987; Carruthers et al., 1999; 

Brearley, 2005). The study of Wilson Inlet by Platell and Potter (1996) yielded 41 

benthic macroinvertebrate species, which were numerically dominated by capitellid and 

spionid polychaetes and the gastropod Hydrococcus brazieri. The densities of benthic 

macroinvertebrates at sites in the shallows varied markedly throughout the estuary, 

ranging from about 300 to 3,000 individuals 0.1m
-2

, with a mean overall density of 

approximately 1,000 0.1m
-2

. This mean density is similar to those recorded in the 

permanently-open Peel-Harvey and Swan-Canning estuaries on the lower west coast of 
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Australia (Valesini et al., 2009; Wildsmith et al., 2009) and comparable with that in the 

Gippsland Lakes in south-eastern Australia (Poore, 1982). The presence of fewer 

species of benthic macroinvertebrates in Wilson Inlet (41) than in the Peel-Harvey (63) 

and Swan-Canning (69) estuaries parallels the findings in both South African and 

eastern Australian estuaries that are seasonally-open to the ocean vs those that are 

permanently-open (e.g. Teske & Wooldridge, 2001; Dye & Barros, 2005a, b).  

The study of the benthic macroinvertebrate fauna of Wilson Inlet was 

undertaken at relatively broad scales and focused primarily on an area in each of the 

upper and lower regions and water depths and their relationships with a limited suite of 

water physico-chemical parameters (i.e. salinity, water temperature) and the presence of 

R. megacarpa and shell debris (Platell & Potter, 1996). During the present study in four 

consecutive seasons the benthic macroinvertebrate assemblages in Broke Inlet were 

sampled quantitatively at six of the nearshore habitat types and at each of the three 

offshore habitats identified in Chapter 2 to test the following hypotheses. 

(1) The species richness, density, diversity and the composition of the 

benthic macroinvertebrate fauna differ significantly among the various 

habitat types sampled in both the nearshore and offshore waters. 

(2) The pattern of relative differences among habitat types exhibited by the 

compositions of the benthic macroinvertebrate faunas is significantly 

correlated with that defined by the suite of enduring environmental 

variables used to identify those habitats in both the nearshore and 

offshore waters. 

(3) The species richness, density, diversity and species composition of 

benthic macroinvertebrates in both the nearshore and offshore waters 

differ significantly among the four seasons. 
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5.2: Materials and methods 

5.2.1: Sampling regime 

Benthic macroinvertebrates were sampled at four sites at each of six of the 11 

nearshore and at all three of the offshore habitats that were identified in Broke Inlet 

during the current study (Chapter 2; Fig. 5.1). Three randomly-located cores of 

sediment (that contained invertebrates) were collected subtidally at each site in the 

nearshore and offshore waters, using a pole-mounted cylindrical corer, which was 

11 cm in diameter, had a surface area of 96 cm
2
 and sampled to a depth of 15 cm. 

Sampling was undertaken seasonally between spring 2007 and winter 2008 at nearshore 

sites and between summer and spring 2008 at offshore sites. The sediment samples were 

preserved in 5% formalin buffered in estuarine water and then wet-sieved through a 

500 μm mesh. The invertebrates were removed from any sediment retained on the mesh, 

identified to the lowest possible taxonomic level and counted. The number of 

individuals of each macroinvertebrate taxon in each replicate sample was converted to a 

density, i.e. number of individuals 0.1 m
-2

.  

Various non-enduring environmental water physico-chemical variables were 

recorded at the time at which the benthic macroinvertebrate fauna was sampled, 

i.e. salinity, water temperature, dissolved oxygen concentration, pH and macrophyte 

biomass, the methods for which are described in subsection 3.2.1. A range of other non-

enduring environmental variables that were related directly to the sediment, 

i.e. percentage contributions of various sediment grain size fractions and particulate 

organic matter (%POM) and the depth of the transitional zone were also measured at the 

time of faunal collection. The methods for these latter parameters are given below.  

Two further sediment cores were collected seasonally at each site in each 

nearshore and offshore habitat type using a cylindrical corer that was 3.57 cm in 

diameter (10 cm
2
 in area) and sampled to a depth of 10 cm. The depth in each of these 

cores of the transitional zone, where the colour of the sediment changes from light to 

dark and demarks the region of biologically available oxygen (Hourston et al., 2009), 

was recorded to the nearest 0.5 cm. The cores were dried for 24 h at 80°C, weighed to 

the nearest 1 mg and then ashed for 2 h at 550°C and re-weighed (Heiri et al., 2001).



 

 

 

1
6
5
 

 
 

Fig. 5.1: Map showing location of the sampling sites in each nearshore and offshore habitat type in Broke Inlet at which the benthic macroinvertebrate fauna was 

sampled. Circles represent the area of the site and the red line (1 m depth contour) demarcates the nearshore and offshore waters. 
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The difference between the dry and ashed weight enabled the percentage contribution of 

POM in each sample to be calculated.  

Each ashed sample was wet-sieved through a 63 µm sieve to remove the fine 

sediment particles, dried and re-weighed. The remaining material was wet-sieved 

through a stack of sieves with mesh sizes corresponding to the Wentworth Scale for 

grain size, i.e. 2,000, 1,000, 500, 250, 125 and 63 µm (Wentworth, 1922). After 

separation, the samples for each grain size were dried for 24 h and weighed to the 

nearest mg, enabling their percentage contributions by weight to be calculated. 
 

5.2.2: Statistical analyses 

All statistical analyses were performed using the PRIMER v6 multivariate 

software package (Clarke & Gorley, 2006) with the PERMANOVA+ add-on (Anderson 

et al., 2008). 
 

5.2.2.1: Univariate analyses 

Differences in the non-enduring environmental variables among habitat types and 

seasons  

Permutational multivariate analysis of variance (PERMANOVA; Anderson, 

2001; Anderson et al., 2008) was employed to determine the extent to which each of the 

non-enduring environmental variables were related to habitat type and season. The 

statistical methodology for each of the water physico-chemical parameters, i.e. salinity, 

water temperature, dissolved oxygen concentration, pH and the dry weight of any 

detached macrophytes, are given in subsection 3.2.2.1.  

With respect to the sediment characteristics, the percentage contribution of each 

of the seven sediment grain sizes in both the nearshore and offshore waters were 

subjected to a square-root transformation. In the case of both %POM and the depth of 

the transition zone in the nearshore and offshore waters, the relationship between the 

loge (mean) and loge (standard deviation) of each group of replicate samples was 

examined to ascertain which type of transformation was required, if any, to meet the test 

assumption of homogenous sample dispersions among groups (Clarke & Warwick, 

2001). This procedure showed that %POM in both the nearshore and offshore waters 
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required a loge(X+0.1) transformation, while the depth of the transition zone required a 

fourth root transformation in nearshore waters and no transformation in offshore waters. 

 Following the approach adopted in Chapters 3 (see subsection 3.2.2.1), 

preliminary PERMANOVA tests were performed on Euclidean distance matrices 

constructed from replicate data for each sediment characteristic at each site in both the 

nearshore and offshore waters, i.e. employing habitat, season and site (nested within 

habitat) as main effects, to determine if there were any significant differences among 

sites, and thus which level of replication was most appropriate for examining 

differences among habitat types. Habitat and season were considered fixed, while site 

was treated as a random factor. As a significant site and/or site x season interaction 

effect was detected in all cases, the replicate data recorded at each nearshore and 

offshore site on each sampling occasion was averaged. These data were then used to 

construct three separate Euclidean distance matrices for the sediment characteristics, 

i.e. the collective multivariate suite of sediment grain size contributions, %POM and 

depth of the transition zone. Each resemblance matrix was then subjected to 

PERMANOVA to test whether the above three non-enduring environmental variables 

differed among habitats and seasons, both of which were considered fixed factors. In all 

PERMANOVA tests, the null hypothesis that there were no significant differences 

among a priori groups was rejected if the significance level (p) was < 0.05. The relative 

influence of each of the terms in the model was quantified using their components of 

variation. The main causes of any significant differences in each dependent variable 

were identified from plots of their estimated marginal means and associated 95% 

confidence levels, which were back transformed when appropriate. Note that 95% 

confidence levels were not calculated for the sediment grain size contributions as these 

were multivariate analyses. 

 

Differences in species richness, density and diversity among habitat types and seasons 

The number of individuals of each benthic macroinvertebrate species in each 

replicate sample at each nearshore and offshore site in each season was used to calculate 

the species richness, density (individuals 0.1m
-2

), Shannon-Weiner diversity and 
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average quantitative taxonomic distinctness for each sample using the DIVERSE 

routine. The latter variable is a measure of species diversity that accounts for the extent 

to which individuals from different species are related based on their taxonomic 

separation through the hierarchical levels of the Linnaean tree (Warwick & Clarke, 

1995). The extent of the slope of the loge (mean) and the loge (standard deviation) of the 

various groups of replicates for each of the above variables indicated that species 

richness and density in both the nearshore and offshore waters required a square-root 

and log(X+1) transformation, respectively, to approximate the assumptions of 

PERMANOVA. In contrast, Shannon-Weiner diversity and average quantitative 

taxonomic distinctness did not require transformation. Euclidean distance matrices, 

constructed separately for each variable in the nearshore and offshore waters, were 

subjected to the same PERMANOVA tests as described above for the non-enduring 

sediment characteristics. The methods for interpreting these tests were the same as those 

described above. 

 

5.2.2.2: Multivariate analyses 

Differences in benthic macroinvertebrate composition among habitat types and seasons 

The abundances of the various benthic macroinvertebrate species in replicate 

samples collected from each nearshore and offshore site in each season were initially 

subjected to dispersion weighting in order to down-weight the contributions of those 

species that exhibited erratic differences in abundance between replicate samples 

(Clarke et al., 2006b). These data were subjected to a square root transformation to 

reduce the influence of any very abundant and consistently occurring species and then 

used to construct separate Bray-Curtis similarity matrices for both the nearshore and 

offshore waters. These matrices were then each subjected to the same PERMANOVA 

tests as described above. 

Any significant habitat and/or seasonal differences detected by PERMANOVA 

were investigated in more detail by subjecting the above matrices to one-way Analysis 

of Similarities (ANOSIM) tests (Clarke & Green, 1988). In those cases in which 

PERMANOVA detected a significant habitat x season interaction, the ANOSIM tests 
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for the first of these factors were carried out for each level of the second factor (and vice 

versa) to remove any confounding influences. In these and all subsequent ANOSIM 

tests, the null hypothesis that there were no significant differences in benthic 

macroinvertebrate composition among a priori groups was rejected if the significance 

level (p) was < 0.05. The extent of any such significant differences was determined by 

the magnitude of the test statistic (R), which typically ranges between 0, i.e. no group 

differences, to 1, i.e. the similarities between samples from different groups are always 

less than those between samples belonging to the same group. Non-metric 

Multidimensional Scaling (nMDS) ordination was then employed to display visually the 

ways in which the samples from each a priori group are distributed in low dimensional 

space (2D or 3D) according to their faunal compositions.  

When ANOSIM detected a significant difference in the compositions of benthic 

macroinvertebrates among habitats and/or seasons and the associated R-statistic was 

≥ 0.2, one-way Similarity Percentages (SIMPER; Clarke, 1993) was used to elucidate 

which species typified the assemblages at each habitat and/or in each season and which 

species contributed most to differences between each pair of those combinations. Focus 

was placed on those species that had the highest similarity/dissimilarity to standard 

deviation ratio and were most abundant. 

 

Relationships between the benthic macroinvertebrate community and environmental 

characteristics of habitat types   

The RELATE routine was used to test whether the relative pattern of differences 

among habitats in benthic macroinvertebrate composition were significantly correlated 

with those defined by their (i) enduring environmental characteristics and (ii) non-

enduring characteristics, i.e. water physico-chemical variables and sediment 

characteristics. This routine was thus used to determine the extent to which the pattern 

of the rank orders of resemblance in the Bray-Curtis similarity matrix constructed from 

the nearshore or offshore faunal assemblage data averaged for every habitat type or site, 

respectively, matched the complementary Manhattan distance matrices constructed from 

the pretreated (i) enduring environmental data (see Chapter 2) and (ii) non-enduring 
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environmental data (see subsections 3.2.2.1; 5.2.1). Note that the matrices employed for 

the offshore analyses were constructed from the averages recorded at each site rather 

than habitat type in order to increase the number of samples in the reference (faunal) 

matrices and thus minimize the likelihood of RELATE finding a significant match 

between the complementary matrices by chance. Note also that the RELATE analyses 

for the nearshore waters were carried out separately for each season as significant 

interactions between habitats and seasons were detected for the faunal and/or non-

enduring environmental data (see subsections 5.3.1.4 and 3.3.1.1). However, this was 

not the case for the offshore waters (see subsections 5.3.2.4 and 5.3.2.1) and thus those 

analyses were carried out using data averaged over all seasons. The null hypothesis that 

there is no relationship in the pattern of the rank orders of resemblance between the two 

matrices was rejected if the significance level (p) was < 0.05. The test statistic, rho (ρ), 

was used to determine the relative extent of any significant differences, with a value of 

0 reflecting no correlation in rank order pattern and a value of 1 indicating a perfect 

match. nMDS ordinations were also constructed from the aforementioned matrices to 

provide a visual indication of any matching in the spatial arrangement of habitat types 

as defined by their faunal vs environmental characteristics. 

The Biota and Environment matching routine (BIOENV; Clarke & Ainsworth, 

1993) was then employed to ascertain whether a better correlation between 

complementary faunal and non-enduring environmental matrices could be achieved by 

using only a particular subset of the non-enduring variables, rather than the full suite. 

The faunal (reference) resemblance matrices used in this procedure were identical to 

those employed in the RELATE routine described above, while the non-enduring 

(secondary) matrices employed were the same as those used to produce the non-

enduring resemblance matrices used in the above RELATE tests. Manhattan distance 

was considered an appropriate resemblance coefficient for these latter data for the 

BIOENV procedure, as this distance measure was employed for these variables in the 

classification procedure. The null hypothesis and test statistic for these were the same as 

those described above for RELATE. Comparisons of the spatial patterns among the 

different habitat types exhibited by (i) the average benthic macroinvertebrate faunal 
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composition vs (ii) the averages of the complementary non-enduring environmental 

variables selected by BIOENV, were displayed visually by subjecting the Bray-Curtis 

similarity matrices constructed from the faunal data to nMDS ordination, then 

overlaying circles (“bubbles”) of proportionate sizes that represented the magnitude of 

the selected non-enduring environmental variables at each habitat/site. 

 

5.3: Results 

5.3.1: Nearshore waters 

5.3.1.1: Differences in the non-enduring environmental variables among nearshore 

habitat types and seasons 

 The ways in which the range of non-enduring water physico-chemical variables 

(i.e. salinity, water temperature, dissolved oxygen concentration and pH) and detached 

macrophyte biomass varied among habitats and seasons have been described in 

subsections 3.3.1.1 and 3.3.2.1, respectively, for all nearshore and offshore habitats at 

which benthic macroinvertebrates were sampled. 

 Two-way PERMANOVA showed that sediment grain size composition differed 

significantly among habitats and seasons and that there was no interaction between 

these two main effects (p=0.001-0.016; Table 5.1a). On the basis of the values for the 

components of variation, habitat made by far the greatest contribution to the variance in 

this dependent variable. However, these spatial differences were not extreme. Thus, the 

sediment at all habitats was dominated by medium sands with grain sizes of 250-499 

μm. The differences in grain size composition among habitats were greatest between A 

and K, which contained the greatest amount of sediment in the 250-499 μm fraction 

(68%), and F and H, which had the least amount of this fraction (50-55%; Fig. 5.2a). 

The last of these habitats and C contained the least amount of the 125-249 μm fraction, 

i.e. 7-11% vs 15-19%, while D contained the greatest proportion of sediment in the 

< 2000, 1000-1999, 63-124 and > 63 μm size fractions (Fig. 5.2a). Differences among 

seasons were not pronounced, with the largest differences being that between winter and 

spring. The 250-499 μm size fraction again dominated in samples for each season, but 

the percentage contribution of the 500-999 μm fraction was greater in winter (30%)
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Table 5.1: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from PERMANOVA tests on the data for mean (a) sediment grain size 

composition, (b) percentage organic matter content and (c) transition zone depth at the six 

nearshore habitat types in Broke Inlet sampled in each season between spring 2007 and winter 

2008. df = degrees of freedom. Significant results are highlighted in bold. 
 

 

 

 

 
 

Sediment grain size (μm)  < 2000  1000-1999  500-999  250-499  125-249  63-124  > 63 

 

Fig. 5.2: Mean percentage sediment grain size contributions recorded at each of the six 

nearshore habitat types in Broke Inlet among (a) habitat types and (b) seasons sampled between 

spring 2007 and winter 2008. 
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(a) Sediment grain size composition 

Main effects df MS Pseudo-F COV p 

Season 3 14.348  2.422 0.395 0.016 

Habitat 5 38.115 6.434 2.236 0.001 

Interactions 

     Season x Habitat 13 4.328 0.731 -0.389 0.877 

Residual 66 5.927 

 

5.924 

 

      

 
(b) Particulate organic matter  

Main effects df MS Pseudo-F COV p 

Season 3 0.505 2.688 0.0148 0.062 

Habitat 5 1.192 6.343 0.0697 0.001 

Interactions 

     Season x Habitat 13 0.218 1.159 0.007 0.327 

Residual 66 0.188 

 

0.188 

 

      

 
(c) Transition zone depth 

Main effects df MS Pseudo-F COV p 

Season 3 0.010 1.722 0.019 0.168 

Habitat 5 0.016 2.663 0.068 0.030 

Interactions 

     Season x Habitat 13 0.010 1.705 0.010 0.073 

Residual 72 0.006 

 

0.062 
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than spring (18%), and the contribution of the 125-249 μm fraction was least during 

winter (10%; Fig. 5.2b). 

The percentage contribution of POM and the depth of the transition zone both 

differed significantly only among habitats (p=0.001 and 0.030, respectively; Table 5.1). 

Mean values for the former variable were greatest at habitats D and H, i.e. 2 and 1.6%, 

respectively, and lowest at C and K, i.e. 0.5% (Fig. 5.3a). The mean depth of the 

transition zone exceeded the length of the core (i.e. 10 cm) at habitats A, H and K but 

was shallowest at D (ca 8 cm; Fig. 5.3b). 

 

 
 

Fig. 5.3: Mean (a) percentage particulate organic matter content (%POM) and (b) depth of the 

transition zone at each of the six nearshore habitat types in Broke Inlet sampled in each season 

between spring 2007 and winter 2008. 

5.3.1.2: Densities of benthic macroinvertebrate phyla, species and feeding guilds 

among nearshore habitat types 

A total of 7,162 benthic macroinvertebrates were collected from sites throughout 

the nearshore waters of Broke Inlet between spring 2007 and winter 2008. These fauna 

comprised 28 species belonging to seven phyla (Table 5.2). The Annelida, represented 

by nine polychaete species from seven families, accounted for 64% of the individuals 

collected. The Arthropoda was the next most speciose and abundant phyla, comprising 

two species of both amphipod and isopod and a single decapod and mysid species, and 
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Table 5.2: Mean density (number of individuals 0.1m
-2

; M), standard error (
SE

), percentage contribution to the overall mean density (%) and the rank by density (R) 

of the benthic macroinvertebrate taxa recorded at the six nearshore habitat types sampled in Broke Inlet in each season between spring 2007 and winter 2008. 

Abundant taxa at each habitat type (i.e. those that contribute ≥ 5% to the mean overall density) are highlighted in grey. Each taxon has been assigned to its respective 

phyla and class (P/C; i.e. A = Annelida, Ar = Arthropoda, C = Cnidaria, H = Hemichordata, M = Mollusca, N = Nemertea, Pl = Platyhelminthes, S = Sipuncula and 

B = Bivalvia, I = Insecta, Ma = Malacostraca, P = Polychaeta, Sc = Scyphozoa, T = Thaliacea) and predominant feeding mode (F; i.e. Dp = deposit feeder, 

Dt = detritus feeder, S = suspension feeder, P = predator, U = Unknown). The total number of species, overall mean density and adjusted number of individuals 

sampled (i.e. after the number of individuals in each sample had been adjusted to that in 0.1 m
-2

 and summed) are also provided for each habitat type. Species ranked 

by total abundance. 
 

 
A C D F H K 

Species P/C F M SE % R M SE % R M SE % R M SE % R M SE % R M SE % R 

Capitella capitata A/P Dp 73.318.0 43.46 1 31.111.7 11.71 3 16.511.0 8.63 3 140.420.6 34.94 1 167.932.4 39.18 1 63.413.9 34.60 1 

Ceratonereis aequisetis A/P Dp/Dt 2.9 1.3 1.73 8 81.214.5 30.55 1 77.910.7 40.64 1 35.9 7.9 8.94 3 133.224.6 31.10 2 5.7 1.7 3.09 6 

Corophium minor Ar/Ma Dt/S 29.614.2 17.53 2 18.1 6.8 6.8 6 0.7 0.4 0.34 9 99.925.5 24.86 2 12.8 6.7 3.00 7 51.413.7 28.06 2 

Cyathura hakea Ar/Ma P 1.7 1.4 0.99 9 49.0 9.1 18.43 2 35.9 6.1 18.73 2 20.7 5.5 5.15 4 13.1 3.7 3.05 6 2.2 0.7 1.19 10 

Armandia intermedia A/P Dp 
  

  30.7 6.4 11.55 4 15.7 5.3 8.17 4 19.2 5.1 4.77 5 4.4 2.5 1.02 10 27.0 5.6 14.74 3 

Pontomyia sp. Ar/I Dt 25.0 6.0 14.81 3 27.4 8.2 10.32 5 13.7 3.9 7.15 5 12.6 4.4 3.14 7 6.3 1.9 1.47 9 4.8 1.6 2.62 7 

Fluviolanatus subtorta M/B S 
  

  0.7 0.5 0.25 13 11.1 4.4 5.79 7 13.1 4.0 3.25 6 28.7 7.6 6.71 3 0.4 0.3 0.24 14 

Scoloplos normalis A/P Dp 9.6 2.9 5.68 5 11.3 2.1 4.26 7 12.0 2.2 6.24 6 9.6 1.4 2.38 10 3.0 1.0 0.71 12 4.6 1.0 2.50 8 

Arthritica semen M/B Dp/S 10.0 4.1 5.93 4 3.5 1.0 1.31 9 
  

  8.7 2.6 2.17 11 13.7 4.9 3.20 5 9.6 2.9 5.23 4 

Melita matilda Ar/Ma Dp 6.7 2.9 3.95 6 6.1 4.4 2.29 8 6.7 2.9 3.52 8 12.0 6.8 2.98 8 2.4 2.2 0.56 13 5.9 3.7 3.21 5 

Prionospio cirrifera A/P Dp 
  

  
  

  
  

  6.1 4.1 1.52 12 22.011.3 5.13 4 0.2 0.2 0.12 17 

Cirolanidae sp. Ar/Ma P 5.0 1.7 2.96 7 1.3 0.7 0.49 11 
  

  9.8 2.7 2.44 9 0.2 0.2 0.05 19 2.0 1.3 1.07 11 

Pseudopolydora sp. A/P Dp/Dt 

  

  0.9 0.5 0.33 12 

  

  3.9 2.5 0.98 14 10.5 4.0 2.44 8 

  

  

Nemertea sp. N P  
  

  
  

  
  

  4.8 1.9 1.19 13 2.4 1.2 0.56 13 2.4 1.6 1.31 9 

Capitellid sp. A/P Dp 1.7 0.8 0.99 9 0.7 0.5 0.25 13 0.2 0.2 0.11 11 2.4 1.5 0.60 15 0.9 0.4 0.20 16 1.5 1.3 0.83 12 

Palaemonetes australis Ar/Ma S/Dp 
  

  0.2 0.2 0.08 18 0.2 0.2 0.11 11 
  

  3.9 1.3 0.91 11 0.2 0.2 0.12 17 

Desdemona ornata A/P S 
  

  0.2 0.2 0.08 18 0.2 0.2 0.11 11 2.0 0.9 0.49 16 0.4 0.4 0.10 18 0.9 0.7 0.48 13 

Ficopomatus enigmaticus A/P S 
  

  0.4 0.3 0.16 16 0.4 0.3 0.23 10 
  

  1.7 1.0 0.41 15 
  

  

Sanguinolaria biradiata M/B S 1.3 1.0 0.74 12 0.7 0.4 0.25 13 0.2 0.2 0.11 11 
  

  0.7 0.4 0.15 17 0.2 0.2 0.12 17 

Chironomidae sp. Ar/I Dt 
  

  1.7 1.2 0.66 10 
  

  
  

  
  

  
  

  

Ceratopogonidae sp. Ar/I U 1.7 1.7 0.99 9 
  

  
  

  
  

  
  

  0.4 0.3 0.24 14 

Gastrosaccus sorrentoensis Ar/Ma S 0.4 0.4 0.25 13 
  

  
  

  0.2 0.2 0.05 17 
  

  0.4 0.3 0.24 14 

Bivalvia spp. M/B U 
  

  0.4 0.3 0.16 16 0.2 0.2 0.11 11 
  

  
  

  
  

  

Sipuncula sp. S Dp 
  

  
  

  
  

  
  

  0.2 0.2 0.05 19 
  

  

Diptera sp. Ar/I U 
  

  
  

  
  

  0.2 0.2 0.05 17 
  

  
  

  

Triplectides australis Ar/I Dt 

  

  

  

  

  

  0.2 0.2 0.05 17 

  

  

  

  

Rhizostomeae sp. C/Sc U 
  

  
  

  
  

  0.2 0.2 0.05 17 
  

  
  

  

Salpida sp. H/T S       0.20.2 0.08 18                         

Species richness 13 20 15 20 20 19 

Overall mean density 169 266 192 402 429 183 

Number of samples 24 48 48 48 48 48 

Adjusted number of individuals 4,056 12,768 9,216 19,296 20,592 8,784 

Actual number of individuals 405 1,221 881 1846 1968 841 
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which together contributed 24% to the total number of benthic macroinvertebrates. The 

Mollusca and Uniramia, represented by four bivalve and five insect species, accounted 

for 6 and 5%, respectively, of the invertebrates sampled (Table 5.2). 

The faunas at habitats C, F and H were the most speciose (20), closely followed 

by K (19), while habitat A contained the least number of species (13; Table 5.2). It 

should be noted, however, that due to the extensive shallow sandbanks that surround the 

last habitat, sampling could be carried out only during spring and winter. Similarly, the 

mean densities of benthic macroinvertebrates were greatest at habitat H, which is 

located in the vegetated areas of the entrance channel, and at F on the south-western 

shore of Shannon Basin, i.e. 429 and 402 individuals 0.1 m
-2

, respectively, while, as 

with species richness, the lowest mean densities were recorded at habitat A (169 

individuals 0.1m
-2

). Relatively low densities were also recorded at habitats K and D at 

the mouth of the Forth River in Shannon Basin and in the northern shore of Middle 

Basin, respectively (i.e. 183 and 192 individuals 0.1m
-2

, respectively; Table 5.2). 

Deposit feeders were the most numerous feeding guild at habitats A, F, K and H, 

representing between 47 and 56% of individuals, with detritus/suspension feeders 

making the next largest contribution at the first three habitats (18-28% of the 

individuals; Table 5.2). At habitats C and D, deposit/detritus feeders were most 

numerous, comprising between 31 and 41% of the total number of individuals, 

respectively, followed by deposit feeders (27-30%) and predators (19%). Conversely, 

suspension feeders contributed only 4 to 7% in habitats D, F and H and ca 1% in 

habitats A, C and K (Table 5.2).  

The Polychaeta was the most abundant class, contributing to between 51 and 

81% of the individuals collected from each habitat, with their mean density being 

greatest at habitats H and F. The dominance of polychaetes at habitat H was due to the 

presence of high densities of Capitella capitata and Ceratonereis aequisetis, with the 

former species ranking first or third in terms of abundance at each habitat (Table 5.2). 

At habitat F, C. capitata and the amphipod Corophium minor collectively represented 

60% of the total number of individuals. These two species also ranked first and second, 

respectively, in terms of density and contributed a similarly high proportion of the 
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invertebrate fauna sampled at habitats A and K. Other abundant species at A and K were 

the insect larvae of Pontomyia sp. and the opheliid polychaete Armandia intermedia, 

which represented 15% of the fauna sampled at these habitats, respectively. The most 

numerous species at habitat D were the nereidid polychaete C. aequisetis (40%) and the 

anthurid isopod Cyanthura hakea (19%), while C. capitata and A. intermedia (both 8%) 

were also relatively abundant. Molluscs were most abundant at habitat H and, to a lesser 

extent, at F, due mainly to relatively high densities of the bivalves Fluviolanatus 

subtorta (7 and 3%, respectively) and Arthritica semen (3 and 2%, respectively; Table 

5.2). 

 

5.3.1.3: Differences in species richness, density and diversity among nearshore 

habitat types and seasons 

 The species richness of the nearshore benthic macroinvertebrate fauna differed 

significantly among both habitats and seasons (p=0.03-0.034), with the components of 

variation for the latter variable being about twice that of the former (Table 5.3a). Mean 

species richness was greatest in summer (5.1) and spring (4.6) and least in autumn and 

winter (3.3) (Fig. 5.4a). The fauna was most speciose at habitat F (5.3) and least 

speciose at D and K, at which an average of ca 3.3 species were recorded in each 

sample (Fig. 5.4b). 

PERMANOVA demonstrated that mean density differed significantly among 

seasons (p=0.044) but not habitats (Table 5.3b), with the densities being highest in 

summer (398 individuals 0.1m
-2

) and lowest during autumn and winter (220 and 239 

individuals 0.1m
-2

, respectively; Fig. 5.4c). 

Shannon-Wiener diversity was shown by PERMANOVA to differ among 

habitats and seasons, with an interaction being detected between these two main effects 

(p=0.001-0.012; Table 5.3c). Differences among seasons and the season x habitat 

interaction each explained approximately twice the variance in this dependent variable 

than did differences among habitats. Diversity in the majority of habitats was greatest in 

spring and/or summer, with the values in these seasons being highest at habitats C, F 

and H and lowest at K. The significant season x habitat interaction was attributable to 

differences in the rank order and extent of differences among habitats in the various 
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Table 5.3: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from PERMANOVAs on the data for mean (a) species richness, 

(b) density, (c) Shannon-Weiner diversity and (d) average quantitative taxonomic distinctness of 

the benthic macroinvertebrate assemblages at the six nearshore habitat types in Broke Inlet 

sampled in each season between spring 2007 and winter 2008. df = degrees of freedom. 

Significant results are highlighted in bold. 
 

 
(a) Species richness 

Main effects df MS Pseudo-F COV p 

Season 3 1.063 6.405 0.040 0.003 

Habitat 5 0.480 2.892 0.022 0.034 

Interactions 

     Season x Habitat 13 0.281 1.692 0.287 0.100 

Residual 66 0.166 

 

0.166 

 
      

 
(b) Density 

Main effects df MS Pseudo-F COV p 

Season 3 2.105 2.859 0.064 0.044 

Habitat 5 1.296 1.760 0.038 0.132 

Interactions 

     Season x Habitat 13 0.868 1.178 0.032 0.334 

Residual 66 

  

0.736 

 
      

 
(c) Shannon-Weiner diversity 

Main effects df MS Pseudo-F COV p 

Season 3 0.993 11.781 0.039 0.001 

Habitat 5 0.230 2.931 0.015 0.012 

Interactions 

     Season x Habitat 13 0.213 2.713 0.035 0.003 

Residual 66 0.078 

 

0.783 

 
      

 

(d) Average quantitative taxonomic distinctness 

Main effects df MS Pseudo-F COV P 

Season 3 1056.800 3.829 36.600 0.018 

Habitat 5 910.710 3.300 44.079 0.011 

Interactions 

     Season x Habitat 13 467.380 1.694 47.853 0.081 

Residual 66 275.970 

 

275.970 

  

seasons. For example, diversity at habitat H was the third highest in both spring and 

summer, but was the lowest during autumn and second lowest during winter. 

Species diversity, as measured using average quantitative taxonomic 

distinctness, differed among both habitats and seasons (p=0.011-0.018), with the latter 

of these main effects explaining a greater proportion of the variance in this dependent 

variable (Table 5.3d). Values of this variable was greatest at habitat A (95), even though 

this habitat type could be sampled only during spring and winter, and was least at 

habitat H (69). The values for average quantitative taxonomic distinctness at the 

remaining habitats ranged between 84 and 87 (Fig. 5.4e). As with species richness and 

density, the values for average quantitative taxonomic distinctness were highest during 

spring and summer and lowest in autumn and winter (Fig. 5.4f). 
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Fig. 5.4: Mean (a, b) species richness, (c) density (individuals 0.1 m
-2

), (d) Shannon-Weiner 

diversity and (e, f) average quantitative taxonomic distinctness of the benthic macroinvertebrate 

assemblages at each of the six nearshore habitat types and/or seasons in Broke Inlet sampled 

between spring 2007 and winter 2008.  
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5.3.1.4: Differences in benthic macroinvertebrate assemblage composition among 

nearshore habitat types 

Two-way crossed PERMANOVA demonstrated that the species composition of 

the nearshore benthic macroinvertebrate communities differed significantly among 

habitats and seasons and that there was an interaction between those main effects 

(p=0.001; Table 5.4). The components of variation were by far the highest for habitat 

and were least for the season x habitat interaction (Table 5.4). However, given the 

significance of this interaction term, subsequent analyses to more fully elucidate the 

nature and extent of habitat differences in the composition of the nearshore benthic 

macroinvertebrate assemblages were carried out separately for each season. 

 

Table 5.4: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from a two-way PERMANOVA of the benthic macroinvertebrate 

compositions at six of the nearshore habitat types in Broke Inlet sampled in each season 

between spring 2007 and winter 2008. df = degrees of freedom. Significant results are 

highlighted in bold. 

 

  Nearshore benthic macroinvertebrate composition 

Main effects df MS Pseudo-F COV p 

Season 3 9656.100 6.108 378.530 0.001 

Habitat 5 9125.800 5.773 523.950 0.001 

Interactions 

     Season x Habitat 13 2426.700 1.535 211.450 0.001 

Residual 66 1580.900 

 

1580.900 

  

One-way ANOSIM tests demonstrated that the benthic macroinvertebrate 

composition differed significantly among habitats in each season (p=0.001-0.007), with 

the overall extent of those differences being low to moderate (Global R=0.277-0.591; 

Table 5.5). The differences among habitats were greatest in spring, with almost every 

pair of habitats differing significantly from each other. In this season, the faunal 

composition at habitat K was the most distinct, with all but one of the pairwise 

comparisons involving this habitat generating R values > 0.800 (Table 5.5a). These 

findings were reflected on the ordination plot derived from composition data for spring, 

with samples from habitat K forming a tight and discrete group to one side of the plot 

(Table 5.5a; Fig. 5.5a). The fauna at this habitat, which is located near the mouth of the 

Forth River (Fig. 5.1), was characterised by the presence of relatively high densities of 

the polychaete C. capitata and the bivalve A. semen, which were also mainly 
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Table 5.5: R-statistic and/or significance level (p) values derived from one-way ANOSIM tests 

of nearshore benthic macroinvertebrate composition among the six nearshore habitat types 

during each season sampled between spring 2007 and winter 2008. Insignificant pairwise 

comparisons are highlighted in grey. Note, habitat A was not sampled in either summer or 

autumn. 

 

(a) Spring; p=0.001, Global R=0.591  (b) Summer; p=0.001, Global R=0.521 

 A C D F H   C D F H  

C 0.490      D 0.063     

D 0.396 0.167     F 0.313 0.469    

F 0.771 -0.063 0.396    H 0.823 0.396 0.396   

H 0.969 0.729 0.510 0.573   K 0.896 0.833 0.417 1.000  

K 0.688 0.896 0.813 0.896 0.896        

             
(c) Autumn; p=0.003, Global R=0.322  (d) Winter; p=0.007, Global R=0.277 

 C D F H    A C D F H 

D 0.063      C 0.646     

F 0.719 0.719     D 0.958 -0.281    

H 0.063 0.208 0.146    F 0.219 0.135 0.229   

K 0.333 0.500 0.260 0.271   H 0.510 0.063 0.146 0.219  

       K 0.021 0.375 0.615 0.010 0.427 

 

 
 

(a)  Spring (b)  Summer 

  

(c) Autumn (d)  Winter 

  
 

Habitat type A   C   D   F  H   K 
 

Fig. 5.5: nMDS ordination plots of the benthic macroinvertebrate composition at each of the six 

nearshore habitat types sampled in Broke Inlet in each season between spring 2007 and winter 

2008. Plots derived from Bray-Curtis similarity matrices constructed from the average benthic 

macroinvertebrate assemblage data recorded at each site representing each habitat type. 

2D Stress: 0.20 2D Stress: 0.14

2D Stress: 0.15 2D Stress: 0.19
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responsible for distinguishing the fauna at K from those at A, D and H (Appendix 5.1a). 

The habitat with the next most distinct fauna during spring, i.e. A (Table 5.5a; 

Fig. 5.5a), was typified by the presence of appreciable numbers of Pontomyia sp. and 

A. semen, with greater numbers of the former species being important in distinguishing 

the fauna at this habitat from those at the others. Ceratonereis aequisetis typified the 

benthic macroinvertebrate assemblages at habitats C, F and H, with the fauna at the last 

of these habitats also being distinguished from those of others by greater densities of the 

bivalves A. semen and F. subtorta and the polychaete C. aequisetis (Appendix 5.1a).  

The pattern of differences in the benthic macroinvertebrate faunas among the 

various habitats in spring remained the same during summer, with significant 

differences being recorded between each pair of habitats except for C vs D (Table 5.5b). 

Thus, the fauna at habitat K was again the most distinct (Table 5.5b; Fig. 5.5b), but, in 

this season, this was due to relatively high densities of the polychaete A. intermedia and 

low densities of species such as C. aequisetis, C. hakea and F. subtorta (Appendix 

5.1b). The fauna at habitat H was distinguished from those at C and F by greater 

densities of F. subtorta and C. aequisetis, while those at habitats C and D contained 

greater densities of C. hakea than those at habitats F and K (Appendix 5.1b).  

The differences in faunal composition among habitats were not as pronounced in 

autumn and particularly winter (Global R=0.322 and 0.277, respectively), with 

significant differences typically being found only between habitats near the mouths of 

rivers (A and K) and those elsewhere in the basin (C, D and F; Table 5.5c,d). This less 

marked seasonal distinction in faunal composition among most habitats is reflected by 

the fact that the samples for each of those habitats did not form discrete groups on the 

ordination plots constructed from the data recorded in these two seasons (Figs 5.5c, d). 

The fauna at habitats A and K in winter and K in autumn were characterised, in 

particular, by the consistent presence of appreciable densities of the polychaetes 

S. normalis and C. capitata and of the amphipod C. minor. These species were also 

mainly responsible for distinguishing the fauna at habitats A and K and from those at 

other habitats in winter (Appendix 5.1d). 
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5.3.1.5: Relationships between the benthic macroinvertebrate community and 

environmental characteristics of nearshore habitat types   

 RELATE demonstrated that the pattern of relative differences among habitats, as 

exhibited by their suite of enduring environmental variables, was significantly matched 

with that defined by the benthic macroinvertebrate composition only during spring 

(p=0.004), with the extent of that correlation being strong, i.e. ρ=0.764 (Table 5.6a). 

These findings were reflected in the similarity between the distributions of the pairs 

representing the various habitats on the associated nMDS plots (cf. Fig. 5.6a, b). In the 

plots constructed from the faunal composition data recorded in each of the other three 

seasons, however, the points for habitats C and D lay closer together than in that 

constructed from the enduring environmental data, whereas the reverse trend occurred 

with habitats F and H. Such findings explain, at least in part, the lack of a significant 

correlation between the faunal and enduring environmental data in these seasons 

(p=0.133-0.858). 

RELATE was then used to determine the extent to which the pattern of relative 

differences among habitats, as defined by their suite of non-enduring environmental 

variables (i.e. water physico-chemical variables and sediment characteristics), provided 

a good surrogate for those exhibited by the benthic macroinvertebrate fauna in each 

season. A significant correlation between the complementary faunal and water physico-

chemical variables and amount of detached macrophytes matrices was detected in 

summer only (p=0.001) and the extent of that correlation was very high (ρ=0.891; Table 

5.6b). When BIOENV was used to ascertain whether stronger correlations between the 

above matrices could be achieved by using only a particular subset of the water physico-

chemical variables, a significant match was again obtained only during summer. This 

match employed, however, the same full set of variables as that used by RELATE and 

thus the extent of the correlation was the same (ρ=0.891; Table 5.6c).  

RELATE detected a significant and moderately high correlation between the 

spatial patterns exhibited by the benthic macroinvertebrate fauna and the suite of 

sediment characteristics during spring (p=0.017; ρ=0.636), but not in the other seasons 

(Table 5.6d). Moreover, when BIOENV was used to correlate all possible 
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Table 5.6: Significance level (p) and rho statistic (ρ) values for the correlation between a 

resemblance matrix constructed from the average benthic macroinvertebrate fauna data at each 

offshore site in each season between spring 2007 and winter 2008 and complementary matrices 

constructed from (a) enduring environmental data (EEV), (b) water physico-chemical (W) and 

(d) sediment characteristic (S) data. The results of BIOENV tests between the above faunal data 

and the complimentary water /detached macrophytes physico-chemistry and sediment data are 

provided in (c) and (e) respectively. Significant correlations are highlighted in bold. 
 

 (a) EEV (b) W (c) W subset (d) S (e) S subset 

 

p ρ p ρ p ρ p ρ p ρ 

Spring 0.004 0.764 0.398 0.086 0.250 0.414 0.017 0.636 0.108 0.729 

Summer 0.133 0.527 0.011 0.891 0.009 0.891 0.466 0.055 0.225 0.721 

Autumn  0.858 -0.212 0.735 -0.212 0.862 0.127 0.887 -0.418 0.455 0.699 

Winter  0.305 0.125 0.128 0.393 0.401 0.482 0.857 -0.254 0.919 0.096 

 
 

 

 

 (a) Enduring environmental variables 

 
 

(b) Spring; p=0.004, ρ=0.764 (c) Summer; p=0.133, ρ=0.527 

  
 

(d) Autumn; p=0.858, ρ=-0.212 (e) Winter; p=0.305, ρ=0.125  

  
 

Fig. 5.6: nMDS ordination plots constructed from the averages of the (a) enduring 

environmental variables and (b-e) the benthic macroinvertebrate composition in each season 

from spring 2007 to winter 2008, at each of the six nearshore habitat types sampled. The 

significance levels (p) and rho values (ρ) obtained from the RELATE tests are also provided.  

A
C

D

F

H

K

2D Stress: 0.03

H

C

F

A

D

K 2D Stress: 0.00

C
D

F

H

K
2D Stress: 0.00

C

D

F

H

K

2D Stress: 0.00
A

C

D
F

H

K

2D Stress: 0.00



Chapter 5 

184 

subsets of those sediment characteristics with the faunal data, a significant correlation 

was not detected in any season (Table 5.6e).  
 

5.3.1.6: Differences in the mean density of the nearshore benthic 

macroinvertebrate species among seasons 

The total number of benthic macroinvertebrate species recorded in the nearshore 

waters was similar in each season (21-22: Table 5.7), whereas the overall mean density 

was far higher in summer (415 individuals 0.1m
-2

) than in the other three seasons 

(230-255 individuals 0.1m
-2

).  

Deposit feeding was the most prevalent feeding mode, comprising between 36 

and 46% of all individuals in the various seasons. The contributions made by 

deposit/detritus feeders varied considerably among seasons, declining from 27% in 

spring and 34% in summer to 14-17% in autumn and winter (Table 5.7). 

Detritus/suspension feeders and predators each contributed between 6 and 17% to the 

number of individuals in each season, and suspension feeders contributed 6-9% in 

spring and summer and only 1% in autumn and winter (Table 5.7). 

The polychaetes C. capitata and C. aequisetis and the amphipod C. minor were 

the three most abundant species in each season, and collectively comprised between 54 

and 79% of the total number of individuals recorded. Other species, such as C. hakea, 

contributed more than 5% in each season and the same was true for A. intermedia in 

summer and autumn (Table 5.7). 
 

5.3.1.7: Differences in nearshore benthic macroinvertebrate composition among 

seasons 

 Two-way PERMANOVA detected significant seasonal differences in benthic 

macroinvertebrate composition as well as a significant interaction between season and 

habitat (Table 5.4). Therefore, in order to further examine these seasonal trends without 

the confounding influence of habitat, one-way ANOSIM tests among seasons were 

carried out separately for each nearshore habitat type. These analyses identified 

significant seasonal differences in benthic macroinvertebrate composition in only three 

of the six habitats, namely C, H and K (p=0.001-0.033; Table 5.8).  



 

 

 

1
8
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Table 5.7: Mean density (number of individuals 0.1m
-2

; M), standard error (
SE

), percentage contribution to the overall mean density (%) and the rank by density (R) 

of the benthic macroinvertebrate taxa recorded in each season between spring 2007 and winter 2008 at the six nearshore habitat types sampled in Broke Inlet. 

Abundant taxa in each season (i.e. those that contribute ≥ 5% to the overall mean density) are highlighted in grey. Keys for phylum and class (P/C) and predominant 

feeding guild (F) of each taxon are provided in Table 5.2. The total number of species, overall mean density and adjusted number of individuals sampled (i.e. after 

the number of individuals in each sample had been adjusted to that in 0.1 m
-2

 and summed) are also provided for each season. Species ranked by total abundance. 
 

 

Spring Summer Autumn Winter 

Species P/C F Mean SE % R Mean SE % R Mean SE % R Mean SE % R 

Capitella capitata A/P Dp 94.112.0 36.94 1 82.419.7 19.83 2 43.514.6 17.41 2 106.121.5 46.06 1 

Ceratonereis aequisetis A/P Dp/Dt 60.111.3 23.60 2 103.317.1 24.86 1 42.8 9.1 17.13 3 41.8 9.1 18.15 2 

Corophium minor Ar/M Dt/S 16.1 4.0 6.33 3 52.317.4 12.58 3 46.515.3 18.59 1 33.8 9.7 14.68 3 

Cyathura hakea Ar/M P 14.8 3.5 5.82 5 28.2 5.8 6.79 5 30.5 7.4 12.19 5 17.4 3.4 7.56 4 

Armandia intermedia A/P Dp 0.7 0.5 0.29 15 36.9 5.8 8.89 4 39.7 5.6 15.88 4     

Pontomyia sp. Ar/I Dt 14.9 3.3 5.87 4 28.2 7.0 6.79 5 6.4 2.0 2.58 7 8.1 2.0 3.53 5 

Fluviolanatus subtorta M/B S 11.9 3.6 4.68 6 27.0 6.3 6.50 7 1.7 1.0 0.70 12 0.1 0.1 0.06 17 

Scoloplos normalis A/P Dp 8.9 1.8 3.48 8 9.8 1.4 2.35 9 6.4 1.3 2.58 7 8.0 1.3 3.47 6 

Arthritica semen M/B Dp/S 11.6 2.0 4.56 7 8.0 3.2 1.93 10 3.3 2.8 1.32 9 6.1 1.9 2.65 7 

Melita matilda Ar/M Dp 2.9 1.1 1.14 11 5.6 2.1 1.34 11 18.5 7.1 7.38 6 1.5 0.5 0.63 9 

Prionospio cirrifera A/P Dp 0.4 0.2 0.17 17 20.7 9.5 4.99 8 
  

  1.2 1.0 0.50 10 

Cirolanidae sp. Ar/M P 3.8 1.2 1.48 10 5.2 1.9 1.26 12 1.7 1.1 0.70 12 1.0 0.4 0.44 11 

Pseudopolydora sp. A/P Dp/Dt 8.4 3.0 3.31 9 0.7 0.7 0.17 16 1.0 0.8 0.42 15 0.3 0.3 0.13 15 

Nemertea sp. N P  
  

  2.8 1.3 0.67 13 2.8 1.2 1.11 10 1.7 1.1 0.76 8 

Capitellid sp. A/P Dp 2.5 1.0 0.97 12 0.2 0.2 0.04 17 2.1 1.2 0.84 11     

Palaemonetes australis Ar/M S/Dp 0.7 0.4 0.29 15 2.1 1.0 0.50 14 0.3 0.2 0.14 16 0.3 0.2 0.13 15 

Desdemona ornata A/P S 0.9 0.5 0.34 14 1.4 0.7 0.34 15 0.3 0.2 0.14 16 0.1 0.1 0.06 17 

Ficopomatus enigmaticus A/P S 1.0 0.6 0.40 13 0.2 0.2 0.04 17 0.2 0.2 0.07 20 0.4 0.2 0.19 14 

Sanguinolaria biradiata M/B S 0.3 0.3 0.11 18 0.2 0.2 0.04 17 0.3 0.2 0.14 16 0.9 0.3 0.38 12 

Chironomidae sp. Ar/I Dt 
  

  0.2 0.2 0.04 17 1.2 0.9 0.49 14     

Ceratopogonidae sp. Ar/I U 
  

  
  

  
  

  0.9 0.6 0.38 12 

Gastrosaccus sorrentoensis Ar/M S 0.3 0.2 0.11 18 
  

  0.2 0.2 0.07 20 0.1 0.1 0.06 17 

Bivalvia spp. M/B U 
  

  
  

  0.3 0.2 0.14 16 0.1 0.1 0.06 17 

Sipuncula sp. S Dp 0.1 0.1 0.06 20 
  

  
  

      

Diptera sp. Ar/I U 
  

  
  

  
  

  0.1 0.1 0.06 17 

Triplectides australis Ar/I Dt 0.1 0.1 0.06 20 
  

  
  

      

Rhizostomeae sp. Cn/S U 
  

  0.2 0.2 0.04 17 
  

      

Salpida sp. H/T S   
 

  
 

    
 

    0.1 0.1 0.06 17 

Species richness 21 21 21 22 

Overall mean density 255 415 250 230 

Number of samples 72 60 60 72 

Adjusted number of individuals 18,329 24,923 15,006 16,584 

Actual number of individuals 1,754 2,385 1,436 1,587 
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Table 5.8: R-statistic and/or significance level (p) values derived from one-way ANOSIM tests 

among seasons carried out on the nearshore benthic macroinvertebrate composition data 

recorded in each habitat type seasonally between spring 2007 and winter 2008. Insignificant 

pairwise comparisons are highlighted in grey. 
 

(a) Habitat A  (b) Habitat C 

Season: p=0.057, Global R=0.365  Season: p=0.003, Global R=0.358 

       Spring Summer Autumn 

     Summer 0.510   

     Autumn 0.500 0.500  

     Winter 0.292 0.417 0.021 
XXXX XXXX    XX XX XX XXX 

(c) Habitat D  (d) Habitat F 

Season: p=0.109, Global R=0.135  Season: p=0.066, Global R=0.203 

 Spring Summer Autumn   Spring Summer Autumn 

Summer 0.125    Summer 0.052   

Autumn 0.125 0.083   Autumn 0.531 0.083  

Winter 0.052 0.510 0.031  Winter 0.031 0.229 0.344 
XXXX XXXX    XX XX XX XXX 

(e) Habitat H  (f) Habitat K 

Season: p=0.033, Global R=0.234  Season: p=0.001, Global R=0.688 

 Spring Summer Autumn   Spring Summer Autumn 

Summer 0.021    Summer 1.000   

Autumn 0.469 0.302   Autumn 1.000 0.115  

Winter 0.469 0.229 0.010  Winter 0.740 0.500 0.615 
 

The most pronounced seasonal changes in faunal composition were those at 

habitat K, with the extent of those differences being large (Global R=0.688), and all but 

one of the pairwise comparisons being significant. The fauna in spring, which was 

characterised and distinguished by consistently high densities of the polychaete 

C. capitata and bivalve A. semen, was completely distinct from those in summer and 

autumn (pairwise R=1.000), with its representative samples forming a tight and distinct 

group to one side of the associated nMDS plot (Fig 5.7f). The fauna in spring was also 

distinguished from those in summer and autumn by lower densities of A. intermedia, 

and from those in winter by lower densities of S. normalis (Appendix 5.2c). Higher 

densities of the amphipod C. minor and lower densities of A. intermedia also 

distinguished the fauna in winter from those in the other seasons at habitat K. 

The fauna at habitat C underwent moderate seasonal changes (Global R=0.358), 

with all pairwise comparisons involving either spring or summer being significant 

(Table 5.8b). The samples from these two seasons each formed relatively tight groups 

towards one side of the associated nMDS plot, while those representing autumn and 

winter were far more widely dispersed (Fig. 5.7b). The faunas in spring and summer at 

habitat C were characterised by and often distinguished by a relatively diverse 
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assemblage, including S. normalis, C. aequisetis, C. capitata, C. hakea and Pontomyia 

sp. In contrast, those in autumn and winter were more depauperate and were typified 

mainly by only C. haeka. and C. aequisetis (Appendix 5.2a). The overall extent of the 

seasonal differences at habitat H was low (Global R=0.234) and, at a pairwise level, 

significant differences were only detected between spring and both autumn and winter 

(Table 5.8e). These differences were reflected in the greater prevalence of F. subtorta 

and C. aequisetis in spring than autumn and winter, and to the lower abundances of 

C. capitata in spring than in winter (Appendix 5.2b). 

 

(a) Habitat A (b) Habitat C 

 
 x  
(c) Habitat D (d) Habitat F 

 
 

 
 

(e) Habitat H (f) Habitat K 

  
 

Season spring   summer   autumn   winter 
 

Fig. 5.7: nMDS ordination plots of the benthic macroinvertebrate composition at each nearshore 

site in each season between spring 2007 and winter 2008 at habitats (a) A, (b) C, (c) D, (d) F, 

(e) H and (f) K. 

2D Stress: 0.07

2D Stress: 0.16 2D Stress: 0.15

2D Stress: 0.14 2D Stress: 0.10

2D Stress: 0.12
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5.3.2: Offshore waters 

5.3.2.1: Differences in the non-enduring environmental variables among offshore 

habitat types and seasons 

 Analysis of the spatio-temporal differences in each of a range of non-enduring 

water physico-chemical parameters, i.e. salinity, water temperature, dissolved oxygen 

concentration and pH, have previously been described for the full range of offshore 

habitats at which the benthic macroinvertebrate fauna was sampled (see subsection 

3.3.2.1). 

Sediment grain size composition was found by PERMANOVA to differ 

significantly among offshore habitats (p=0.001) but not seasons, and neither was there 

an interaction between these two main effects (Table 5.9a). The grain size composition 

of the substrate at habitat A, situated in the entrance channel, was the most distinct, 

containing by far the greatest proportion of sediment in the 500-999 μm fraction, 

i.e. 46%, compared to 10-16% at habitats B and C in the basin (Fig. 5.8). Conversely, 

the composition of sediment at habitats B and C, which were similar, contained higher 

proportions of the 125-249 μm, 63-124 μm and fine fractions and, to a lesser extent, 

also the 250-499 μm faction. 

PERMANOVA also detected a significant difference among offshore habitats in 

%POM (p=0.043; Table 5.9b), with the sediments at habitats B and C containing over 

three times the %POM of habitat A (Fig. 5.9a). The depth of the transition zone was 

also found to differ among habitats (p=0.001; Table 5.9c), with the depth of this zone 

extending beyond the length of the core at habitat A, but being ca 2 and 0 cm below the 

sediment surface at habitats C and B, respectively (Fig. 5.9b). 

 

5.3.2.2: Densities of benthic macroinvertebrate phyla, species and feeding guilds 

among offshore habitat types 

A total of 2,459 benthic macroinvertebrates were collected from the substrate of 

the offshore waters in Broke Inlet between summer and spring 2008. These fauna 

comprised 26 species, which represented five phyla (Table 5.10). The Annelida, 

represented by nine polychaete species from seven families, accounted for 57% of the
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Table 5.9: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from PERMANOVA tests on the data on the mean (a) sediment grain 

size composition, (b) particulate organic matter content and (c) transition zone depth at the three 

offshore habitat types in Broke Inlet sampled in each season between summer and spring 2008. 

df = degrees of freedom. Significant results are highlighted in bold. 
 

 
(a) Sediment grain size composition 

Main effects df MS Pseudo-F COV p 

Season 3 10.621 1.131 0.105 0.342 

Habitat 2 106.080 11.291 6.201 0.001 

Interactions 

     Season x Habitat 6 2.933 0.312 -1.655 0.990 

Residual 35 9.395 

 

9.395 

 XXX 

     

 
(b) Percentage organic matter 

Main effects df MS Pseudo-F COV p 

Season 3 0.510 0.369 0.075 0.792 

Habitat 2 4.760 3.448 0.217 0.043 

Interactions 

     Season x Habitat 6 0.334 0.242 -0.268 0.963 

Residual 35 1.381 

 

1.381 

 XXX 

     

 
(c) Transition zone depth 

Main effects df MS Pseudo-F COV p 

Season 3 2.250 0.258 -0.538 0.871 

Habitat 2 370.77 42.577 22.629 0.001 

Interactions 

     Season x Habitat 6 1.689 0.193 -1.755 0.985 

Residual 36 8.708 

 

8.708 

  

 
Sediment size (μm)  < 2000  1000-1999  500-999  250-499  125-249  63-124  > 63  
 

Fig. 5.8: Mean percentage sediment grain size contributions recorded at each of the three 

offshore habitat types in Broke Inlet sampled in each season between summer and spring 2008. 
 

 
Fig. 5.9: Mean (a) particulate organic matter content (%POM) and (b) depth of the transition 

zone at each of the three offshore habitat types in Broke Inlet sampled in each season between 

summer and spring 2008. 
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Table 5.10: Mean density (individuals 0.1 m
-2

; M), standard error (
SE

), percentage contribution 

to the overall mean density (%) and the rank by density (R) of the benthic macroinvertebrate 

taxa recorded at the three offshore habitat types sampled in Broke Inlet in each season between 

summer and spring 2008. Abundant taxa at each habitat type (i.e. those that contribute > 5% to 

the overall mean density) are highlighted in grey. Keys for phylum and class and predominant 

feeding guild of each taxon are provided in Table 5.2. The total number of species, overall mean 

density and adjusted number of individuals sampled (i.e. after the number of individuals in each 

sample had been adjusted to that in 0.1 m
-2

 and summed) are also provided for each habitat type. 

Species ranked by total abundance. 

 

 
A B C 

Species P/C F MSE % R MSE % R MSE % R 

Corophium minor Ar/M Dt/S 3.0 1.5 1.41 9 93.831.0 50.83 1 6.72.2 5.02 7 

Capitella capitata A/P Dp 56.215.7 25.98 1 37.2 7.4 20.17 2 2.60.9 1.94 9 

Ceratonereis aequisetis A/P Dp/Dt 41.6 8.9 19.23 2 1.3 0.6 0.71 9 37.26.5 27.67 1 

Cyathura hakea Ar/M P 30.0 6.2 13.90 4 6.3 1.6 3.42 6 36.47.3 27.02 2 

Armandia intermedia A/P Dp 35.110.4 16.21 3 19.8 4.8 10.73 3 12.43.7 9.22 3 

Scoloplos normalis A/P Dp 8.5 2.9 3.93 7 8.7 2.2 4.72 5 10.72.8 7.93 5 

Prionospio cirrifera A/P Dp 14.6 8.7 6.75 6 0.7 0.4 0.35 12 7.02.0 5.18 6 

Pontomyia sp. Ar/I Dt 15.0 3.7 6.95 5 1.3 0.7 0.71 9 2.41.0 1.78 10 

Desdemona ornata A/P S 
      

12.05.2 8.90 4 

Melita matilda Ar/M Dp 3.9 1.3 1.81 8 2.4 1.0 1.30 7 4.11.8 3.07 8 

Nemertea sp. N P 0.4 0.3 0.20 15 8.9 2.3 4.83 4 0.40.4 0.32 13 

Gastrosaccus sorrentoensis Ar/M S 1.5 0.6 0.70 11 0.2 0.2 0.12 13 0.40.3 0.32 13 

Arthritica semen M/B Dp/S 0.9 0.6 0.40 13 1.3 0.6 0.71 9 
  

  

Sanguinolaria biradiata M/B S 2.2 1.2 1.01 10 
     

  

Cirolanidae sp. Ar/M P 
  

  2.0 0.9 1.06 8 
  

  

Tanaidacea sp. Ar/M Dt 1.1 0.6 0.50 12 
  

  0.70.5 0.49 11 

Capitellid sp. A/P Dp 0.9 0.5 0.40 13 
  

  0.20.2 0.16 16 

Ficopomatus enigmaticus A/P S 
  

  
  

  0.70.5 0.49 11 

Fluviolanatus subtorta M/B S 
  

  0.2 0.2 0.12 13 0.40.3 0.32 13 

Bivalvia sp. M/B U 0.4 0.4 0.20 15 
     

  

Ceratopogonidae sp. Ar/I U 0.4 0.3 0.20 15 
     

  

Prionospio sp. 2 A/P Dp 0.2 0.2 0.10 18 
     

  

Turbellarian sp. Pl/T P 
      

0.20.2 0.16 16 

Palaemonetes australis Ar/M S/Dp 0.2 0.2 0.10 18 
      

Xenostrobus inconstans M/B S 
  

  0.2 0.2 0.12 13 
   

Triplectides australis Ar/I Dt 
  

  0.2 0.2 0.12 13 
   

Number of species 19 16 17 

Overall mean density 216 185 135 

Number of samples 48 48 48 

Adjusted number of individuals 10,377 8,862 6,458 

Actual number of individuals 993 848 618 

 

individuals sampled. The Arthropoda was the next most speciose and abundant phyla, 

comprising two species of amphipods, two of the isopods and one decapod, tanaid and 

mysid species, which together contributed 36% of the invertebrates collected. The 

Uniramia and Mollusca, represented by three insect and five bivalve species, accounted 

for 4 and 1% of the total number of invertebrates, respectively, while nemerteans 

contributed 2% (Table 5.10). 
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The benthic macroinvertebrate fauna at habitat A was the most speciose (19), 

followed by those at C (17) and B (16). The overall mean density of invertebrates was 

greatest at habitat A, and least at C (Table 5.10). Deposit feeding was the dominant 

feeding mode in habitat A (55% of the individuals) and was also well represented in 

habitats B and C (37 and 28%, respectively). In addition habitat B was dominated by 

detritus/suspension feeders (51%) and habitat C by equal abundances of deposit/detritus 

feeders and predators (28%; Table 5.10). 

Polychaetes dominated the benthic macroinvertebrate faunas at habitats A and 

C, representing 73 and 61%, of the total number of individuals, respectively. Capitella 

capitata, C. aequisetis and A. intermedia were notably abundant and ranked first, 

second and third, respectively, at habitat A, with the latter two species also being 

abundant at habitat C ranking first and third, respectively (Table 5.10). Other abundant 

species at habitat C included the polychaetes Desdemona ornata and S. normalis which 

were most abundant at this habitat and the crustaceans C. hakea and C. minor. 

Crustaceans dominated the fauna at habitat B (56%), with the amphipod C. minor being 

particularly abundant, i.e. 94 individuals 0.1 m
-2

 (Table 5.10). Nemerteans were also 

markedly more abundant in habitat B, i.e. 8.9 individuals 0.1 m
-2

 in comparison to both 

habitats A and C, i.e. 0.4 individuals 0.1 m
-2

 (Table 5.10).  

 

5.3.2.3: Differences in species richness, density and diversity among offshore 

habitat types and seasons 

 The mean species richness of the benthic macroinvertebrate fauna, in the 

sediments of the offshore waters differed significantly among seasons (p=0.049) but not 

habitats (Table 5.11a). The highest values were recorded in summer (4.5) and the lowest 

in winter (2.7), with intermediate values in spring (3.2) and autumn (3.8; data not 

shown). In contrast, the mean density, Shannon-Weiner and average quantitative 

taxonomic distinctness of benthic macroinvertebrates in the offshore waters did not 

differ significantly among habitats, seasons or the interaction between these main 

effects (p=0.07-0.701; Table 5.11b-d). Mean densities of invertebrates in each habitat in 

each season ranged from 120-200 individuals 0.1m
-2

, and the values for Shannon-
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Table 5.11: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from PERMANOVA tests on the data for mean (a) species richness, 

(b) density, (c) Shannon-Weiner diversity and (d) average quantitative taxonomic distinctness of 

the benthic macroinvertebrate assemblages at the three offshore habitats in Broke Inlet sampled 

in each season between summer and spring 2008. df = degrees of freedom. Significant results 

are highlighted in bold. 
 

 
(a) Species richness 

Main effects df MS Pseudo-F COV p 

Season 3 0.533 2.970 0.0295 0.049 

Habitat 2 0.318 0.886 -0.001 0.441 

Interactions 

     Season x Habitat 6 0.581 0.540 -0.002 0.748 

Residual 36 0.180 

 

0.180 

 XXX 

     

 
(b) Density 

Main effects df MS Pseudo-F COV p 

Season 3 1.831 2.504 0.091 0.070 

Habitat 2 1.057 1.446 0.020 0.254 

Interactions 

     Season x Habitat 6 0.515 0.704 -0.054 0.632 

Residual 36 

  

0.731 

 XXX 

     

 
(c) Shannon-Weiner diversity 

Main effects df MS Pseudo-F COV p 

Season 3 0.355 2.236 0.016 0.101 

Habitat 2 0.059 0.376 -0.006 0.694 

Interactions 

     Season x Habitat 6 0.100 0.632 -0.014 0.701 

Residual 36 0.159 

 

0.159 

 XXX 

     

 
(d) Average quantitative taxonomic distinctness 

Main effects df MS Pseudo-F COV p 

Season 3 1230.400 2.154 54.923 0.105 

Habitat 2 1288.900 2.256 44.845 0.127 

Interactions 

     Season x Habitat 6 569.430 0.997 -0.476 0.455 

Residual 36 571.330 

 

571.330 

 
 

Weiner diversity and average quantitative taxonomic distinctness between 0.5 and 1.1 

and 54 and 91, respectively (data not shown). 
 

5.3.2.4: Differences in benthic macroinvertebrate assemblage composition among 

offshore habitat types 

The composition of benthic macroinvertebrate fauna in the offshore waters of 

Broke Inlet differed significantly among both habitats and seasons (p=0.001-0.007; 

Table 5.12). Differences among habitats explained a far greater proportion of the 

variability in faunal composition than those among seasons, the component of variation 

for the former factor being approximately four times that of the latter. As the interaction 

factor between these main effects was not significant, subsequent analyses to examine 

habitat differences in more detail were undertaken after pooling the data for all seasons. 
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Table 5.12: Mean squares (MS), pseudo F-ratios, components of variation (COV) and 

significance levels (p) from a two-way crossed PERMANOVA on the benthic 

macroinvertebrate composition at the three offshore habitats in Broke Inlet sampled in each 

season between summer and spring 2008. df = degrees of freedom. Significant results are 

highlighted in bold. 

 

  Offshore benthic macroinvertebrate composition 

Main effects df MS Pseudo-F COV p 

Season 3 4048.600 2.009 169.440 0.007 

Habitat 2 13242.000 6.571 701.690 0.001 

Interactions 

     Season x Habitat 6 2158.200 1.071 35.729 0.350 

Residual 36 2015.300 

 

2015.300 

  

One-way ANOSIM tests identified a significant difference in faunal composition 

among habitats overall (p=0.001) and between each pair of habitats (p=0.001). The 

extents of those differences, however, were low to moderate, being greatest between A 

and B (R=0.489), least between A and C (R=0.189) and intermediate between B and C 

(R=0.382).  

The fauna at habitat B was the most distinct, as illustrated by the fact that the 

majority of samples representing that habitat formed a group on the top of the nMDS 

plot (Fig. 5.10). The fauna at this habitat was characterised by relatively high densities 

of C. capitata, S. normalis, C. minor and Nemertea sp. (Appendix 5.3), and the first two 

species were also important in distinguishing the fauna at this habitat from those at C 

and A, respectively. The small difference in faunal composition between habitats A and 

C is reflected in the considerable intermingling of the samples from these habitats on 

the nMDS plot (Fig. 5.10). These differences were partly caused by the greater densities 

of Pontomyia sp. and C. aequisetis at habitat A compared to C, while the opposite was 

true for S. normalis and the anthurid C. hakea (Appendix 5.3). 

 

5.3.2.5: Relationships between the benthic macroinvertebrate community and 

environmental characteristics of offshore habitat types   

RELATE demonstrated that the pattern of relative differences among offshore 

sites, in terms of their suite of average enduring environmental characteristics, was not 

significantly correlated with that derived from their average benthic macroinvertebrate 

composition (p=0.072, ρ=0.230). When the matrix constructed from the enduring
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Habitat type  A   B   C 

 

Fig. 5.10: nMDS ordination plot of the benthic macroinvertebrate composition at each of the 

sites representing three offshore habitat types in Broke Inlet sampled in each season between 

summer and spring 2008. 

environmental data was subjected to nMDS ordination, the sites formed two distinct 

groups on the resultant plot, one containing those from habitat A and the other 

containing those from habitats B and C (Fig. 5.11a). However, when the mean data for 

the benthic macroinvertebrate composition across all seasons was subjected to 

ordination, the samples for habitat B were generally distinct, while particularly, samples 

from habitats A and C lay close to each other (Fig. 5.11b). 

The RELATE procedure was then used to identify whether the pattern of 

differences among offshore sites in either the suite of non-enduring water physico-

chemical variables or sediment characteristics were correlated with those exhibited by 

the invertebrate fauna. In both cases, a significant correlation was detected (p=0.008 and 

0.016). Furthermore, the values for the correlations between both the water and 

sediment parameters and the faunal composition (ρ=0.388 and 0.287, respectively) were 

greater than was the case with the enduring environmental characteristics. BIOENV was 

then employed to ascertain whether the extent of these matches could be improved 

using a subset of both suites of variables. In the case of the water physico-chemical 

variables, BIOENV achieved a greater correlation (ρ=0.515) using three variables, 

i.e. surface water temperature, dissolved oxygen concentration and pH (Fig. 5.12). 

2D Stress: 0.20
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However, in the case of all three water physico-chemical variables the ranges of those 

values were low, with pH for example, ranging between 7.6 and 8.5. Although the 

extent of the correlation with the sediment characteristics was improved slightly by 

using only percentage fines, organic material and the 500 and 63μm fractions 

(R=0.336), this correlation was not significant (p=0.123). 

 

(a) Enduring environmental data (b) Benthic macroinvertebrate composition 

  
 

Fig. 5.11: nMDS ordination plots constructed from the averages at each offshore site of the 

(a) enduring environmental variables and (b) benthic macroinvertebrate composition recorded 

between summer and spring 2008. 
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Fig. 5.12: nMDS ordination plots of the average benthic macroinvertebrate composition 

recorded at each offshore site. The magnitude of the non-enduring environmental variable(s) 

selected by the BIOENV routine that best match the spatial pattern displayed by the benthic 

macroinvertebrate composition are displayed for each habitat as circles of proportionate sizes. 

The significance levels (p) and rho values (ρ) obtained from the above BIOENV tests are also 

provided. Temp = surface water temperature and DO = dissolved oxygen concentration. 
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5.3.2.6: Differences in the mean density of the offshore benthic macroinvertebrate 

species among seasons 

 A greater number of species was recorded during summer and autumn (18-19) 

than during winter and spring (14-16; Table 5.13). Similar trends were evident in the 

mean density of individuals, with 206-266 0.1m
-2

 invertebrates being recorded in the 

first two seasons and 115-127 0.1m
-2 

invertebrates in the latter two seasons.  

Deposit feeders were the best represented of the feeding modes, with their 

numbers contributing between 43 and 56% to the total number of individuals during 

summer and autumn and between 21 and 35% in winter and spring. Other important 

feeding modes included deposit/detritus feeders and predators, which contributed more 

in winter and spring (21-26%) than in summer and autumn (10-12%). The 

detritus/suspension feeding C. minor contributed between 7 and 27%, with the highest 

values of 24-27% being recorded in autumn and winter. 

The benthic macroinvertebrate fauna in each season was dominated by the 

crustaceans C. minor and C. haeka and the polychaetes C. capitata and C. aequisetis, 

which always ranked in the top five species and together contributed 53-82% to the total 

number of individuals collected (Table 5.13). However, A. intermedia contributed 

approximately 19% to the total number of individuals in both summer and autumn, but 

was not recorded during either winter or spring (Table 5.13). Several other species were 

also relatively abundant in one or two seasons, such as S. normalis, Prionospio cirrifera 

and D. ornata. 

 

5.3.2.7: Differences in offshore benthic macroinvertebrate composition among 

seasons 

PERMANOVA identified that the composition of the offshore benthic 

macroinvertebrate faunas differed significantly among seasons (p=0.007), but this main 

effect explained only a quarter of the variance as habitat and did not significantly 

interact with habitat (Table 5.12). One-way ANOSIM, which was then used to examine 

the nature and extent of these seasonal differences in more detail, demonstrated that 

only two of the six pairwise comparisons were identified as significant (i.e. spring vs 
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Table 5.13: Mean density (number of individuals 0.1m
-2

; M), standard error (
SE

), percentage contribution to the overall mean density (%) and the rank by density (R) 

of the benthic macroinvertebrate taxa recorded in each season between summer and spring 2008 at the three offshore habitat types sampled in Broke Inlet. Abundant 

taxa in each season (i.e. those that contribute ≥ 5% to the overall mean density) are highlighted in grey. Keys for phylum and class (P/C) and predominant feeding 

guild (F) of each taxon are provided in Table 5.2. The total number of species, overall mean density and adjusted number of individuals sampled (i.e. after the 

number of individuals in each sample had been adjusted to that in 0.1 m
-2

 and summed) are also provided for each season. Species ranked by total abundance. 

 

 

Summer Autumn Winter Spring 

Species P/C F MSE % R MSE % R MSE % R MSE % R 

Corophium minor Ar/M Dt/S 29.3 9.5 14.23 3 71.440.3 26.89 1 27.612.2 23.93 1 9.93.5 7.78 5 

Capitella capitata A/P Dp 40.110.2 19.44 1 52.819.6 19.89 2 14.8 5.2 12.85 4 20.37.2 16.02 3 

Ceratonereis aequisetis A/P Dp/Dt 19.7 6.1 9.58 4 31.9 9.4 12.02 4 26.7 8.1 23.17 2 28.07.8 22.43 1 

Cyathura hakea Ar/M P 19.7 4.0 9.58 4 26.1 8.0 9.84 5 25.3 7.1 21.91 3 25.87.5 20.37 2 

Armandia intermedia A/P Dp 39.510.3 19.15 2 50.210.2 18.91 3 
  

      

Scoloplos normalis A/P Dp 13.1 3.0 6.34 7 2.9 1.0 1.09 10 2.0 0.9 1.76 9 19.24.6 15.10 4 

Prionospio cirrifera A/P Dp 18.611.6 9.01 6 5.5 2.5 2.08 7 3.8 1.1 3.27 5 1.70.7 1.37 10 

Pontomyia sp. Ar/I Dt 6.7 3.3 3.24 8 9.9 3.6 3.72 6 2.3 1.3 2.02 8 6.12.4 4.81 7 

Desdemona ornata A/P S 6.1 5.5 2.96 9 1.5 1.2 0.55 11 
  

  8.44.2 6.64 6 

Melita matilda Ar/M Dp 4.6 2.3 2.25 10 3.5 1.4 1.31 9 2.9 1.2 2.52 6 2.91.4 2.29 8 

Nemertea sp. N P 4.4 2.2 2.11 11 5.5 2.0 2.08 7 2.6 1.6 2.27 7 0.60.6 0.46 11 

Gastrosaccus sorrentoensis Ar/M S 1.2 0.6 0.56 12 1.5 0.7 0.55 11 0.3 0.3 0.25 14     

Arthritica semen M/B Dp/S 0.6 0.6 0.28 13 1.2 0.8 0.44 13 1.2 0.6 1.01 11     

Sanguinolaria biradiata M/B S 0.6 0.6 0.28 13 0.6 0.4 0.22 14 1.7 1.5 1.51 10     

Cirolanidae sp. Ar/M P 0.6 0.4 0.28 13 
  

  2.0 1.2 1.76 9     

Tanaidacea sp. Ar/M Dt 
  

  
  

  
  

  2.31.0 1.83 9 

Capitellid sp. A/P Dp 0.3 0.3 0.14 17 0.3 0.3 0.11 15 0.9 0.6 0.76 12     

Ficopomatus enigmatius A/P S 
  

  0.3 0.3 0.11 15 0.6 0.6 0.50 13     

Fluviolanatus subtorta M/B S 0.6 0.4 0.28 13 
  

  
  

  0.30.3 0.23 13 

Bivalvia sp. M/B U 
  

  
  

  0.6 0.6 0.50 13     

Ceratopogonidae sp. Ar/I U 
  

  
  

  
  

  0.60.4 0.46 11 

Prionospio sp. 2 A/P Dp 
  

  0.3 0.3 0.11 15 
  

      

Turbellaria sp. Pl/T P 0.3 0.3 0.14 17 
  

  
  

      

Palaemonetes australis Ar/M S/Dp 0.3 0.3 0.14 17 
  

  
  

      

Xenostrobus inconstans M/B S 
  

  
  

  
  

  0.30.3 0.23 13 

Triplectides australis Ar/I Dt 
  

  0.3 0.3 0.11 15 
  

      

Species richness 19 18 16 14 

Overall mean density 206 266 115 127 

Number of samples 36 36 36 36 

Adjusted number of individuals 7,420 9,562 4,149 4,567 

Actual number of individuals 710 915 397 437 
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autumn and summer vs winter), with the extents of those differences being low 

(R=0.161 and 0.103, and p=0.013 and 0.031, respectively). The small influence of 

season is illustrated by the fact that none of the samples for any season formed discrete 

groups on the nMDS plot shown in Fig. 5.13. For this reason, SIMPER was not 

subsequently used to identify which species best typified and/or distinguished between 

those samples. 
  

 
 

Season  spring   summer   autumn   winter 
 

 

Fig. 5.13: nMDS ordination of the benthic macroinvertebrate composition at each offshore site 

in each season between summer and spring 2008. 

5.4: Discussion 

5.4.1: Benthic macroinvertebrate community 

This study showed that the benthic macroinvertebrate faunas in both the 

nearshore and offshore waters of Broke Inlet were dominated by polychaetes (64 and 

57% of the individuals collected, respectively) and crustaceans (24 and 36% of the 

individuals collected, respectively), as is typical for estuaries in both south-western 

Australia (e.g. Platell & Potter, 1996; Wildsmith et al., 2009) and temperate regions of 

the northern and southern hemispheres (e.g. Jones et al., 1986; Kalejta & Hockey, 1991; 

Ysebaert et al., 1993). Furthermore, the majority of benthic macroinvertebrate species 

recorded during this study have been found in previous qualitative surveys of the fauna 

in Broke Inlet and/or quantitative studies of those in nearby seasonally-open estuaries 

(Hodgkin & Clark, 1987-1990; Forbes, 1994; Platell & Potter, 1996) and permanently-

2D Stress: 0.20
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open estuaries on the lower west coast of Australia (Wildsmith, 2007; Valesini et al., 

2009; Wildsmith et al., 2009). Sampling of the benthic macroinvertebrate fauna of 13 

permanently and seasonally-open estuaries in South Africa likewise yielded similar 

suites of species in both estuary types (Teske & Wooldridge, 2001). 

The number of benthic macroinvertebrate species recorded during extensive 

sampling of the nearshore and offshore waters of Broke Inlet, i.e. 28 and 26, 

respectively, is similar to the 40 and 33 species, respectively, recorded in the nearshore 

and offshore waters of the nearby and seasonally-open Wilson Inlet (Platell & Potter, 

1996) and the 21-30 species recorded in seasonally-open South African estuaries (Teske 

& Wooldridge, 2001). However, species richness in the nearshore waters of Broke Inlet 

is considerably lower than the 69 and 63 species, recorded, respectively, during 

comparable sampling of the nearshore waters of the permanently-open Swan-Canning 

and Peel-Harvey estuaries (Valesini et al., 2009; Wildsmith et al., 2009).  

The relatively small number of benthic macroinvertebrate species found in the 

seasonally-open estuaries of south-western Australia and South Africa presumably 

reflects, in part, the fact that the mouths of these systems are closed to the ocean for a 

period during the year when marine benthic macroinvertebrate species typically spawn 

(i.e. summer and autumn), thus preventing the recruitment of their larvae into these 

systems (Kalejta & Hockey, 1991; Wooldridge, 1999). Furthermore, the narrow 

entrance channel and microtidal environment of estuaries in these regions results in 

limited water exchange between the estuary and adjacent marine environment 

(Ranasinghe & Pattiaratchi, 1999a), and thus the absence of a mechanism for 

transporting larvae into these systems (e.g. Neira & Potter, 1992b; Wooldridge, 1999). 

In addition, for much of the year, the salinities of seasonally-open estuaries, such as the 

Broke and Wilson inlets, are less than that of full-strength seawater and often markedly 

so, which would preclude colonisation by stenohaline species. This accounts for the 

observation that reduced salinities are often accompanied by a relatively low number of 

benthic macroinvertebrate species (Ysebaert et al., 1993).  

Irrespective of whether an estuary is permanently or seasonally-open in south-

western Australia, the species richness of their benthic macroinvertebrate faunas are 
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much lower than those of nearby marine waters. For example, the greatest number of 

benthic macroinvertebrate species recorded in any estuary in this region, i.e. 69 in the 

nearshore waters of the Swan-Canning Estuary (Valesini et al., 2009), is far less than 

the 121 species recorded in nearshore marine waters along the same south-western 

Australian coast (Wildsmith et al., 2005). Furthermore, the same trend has been 

reported in south-eastern Australia with 90 species being recorded in the Gippsland 

Lakes compared with 803 in nearby shallow coastal waters (cf. Poore, 1982; Coleman 

et al., 1997). 

The mean seasonal densities of benthic macroinvertebrates in the nearshore and 

offshore waters of Broke Inlet, i.e. 230-415 and 115-266 individuals 0.1 m
-2

, 

respectively, are substantially less than those recorded in the corresponding waters of 

the nearby Wilson Inlet, i.e. 554-1,160 and 578-948 individuals 0.1 m
-2

, respectively, 

despite the latter study employing a mesh size of 1 mm as opposed to 0.5 mm in the 

current study which would presumably exclude smaller individuals (Platell & Potter, 

1996). The overall mean densities of benthic macroinvertebrates were even greater in 

the nearshore waters of the permanently-open Swan-Canning and Peel-Harvey estuaries, 

i.e. 959 and 1,220 individuals 0.1 m
-2

, respectively (Wildsmith, 2007; Wildsmith et al., 

2009). However, while the mean seasonal densities of these fauna in Broke Inlet are 

relatively low for a south-western Australian estuary, they are far greater than the 

overall mean densities recorded in the nearshore waters of the lower west and east 

coasts of Australia, i.e. 61 and 94 individuals 0.1 m
-2

, respectively (Dexter, 1984; 

Wildsmith et al., 2005). 

As the Broke and Wilson inlets are both seasonally-open, of a similar size and 

shape and separated by a distance of only ca 100 km, the very large differences in the 

mean densities of benthic macroinvertebrates are presumably related, at least in part, to 

differences in the primary productivity of those two systems. It is thus relevant that 

Broke Inlet is unique among south-western Australian estuaries in being oligotrophic 

and containing only a few areas of macrophytes whereas Wilson Inlet is eutrophic and 

contains large areas of macrophytes, and particularly of Ruppia megacarpa (Lukatelich 

et al., 1987; Hodgkin & Clark, 1989a; Department of Environment, 2003; Brearley, 
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2005). The paucity of macrophyte growth in Broke Inlet partly reflects the fact that the 

water entering this estuary flows through a fully-forested catchment and is thus, low in 

nutrients (Bunn & Davies, 1990) and heavily stained with tannin, which severely limits 

light penetration (Edgar & Cresswell, 1991). The very substantial areas of macrophytes 

in Wilson Inlet would provide shelter and, after decomposition, also food for benthic 

macroinvertebrates (Connolly et al., 2005; Hyndes & Lavery, 2005). The value of these 

macrophytes is emphasised by the correlation between the density of some 

macroinvertebrate species, including Ceratonereis aequisetis and Capitella capitata, 

and the biomass of R. megacarpa in Wilson Inlet (Platell & Potter, 1996).  
 

5.4.2: Benthic macroinvertebrate composition among nearshore habitat types 

and seasons 

The benthic macroinvertebrate composition differed significantly among the 

various nearshore habitats in Broke Inlet in each season between spring 2007 and winter 

2008. However, the extent of those differences varied, being greatest in spring and 

summer and least in autumn and winter.  

The most distinct of the faunal compositions were those recorded at habitat A in 

the two seasons in which it could be sampled, i.e. spring and winter, and at K in all 

seasons except autumn. The faunas at both of these habitats, which were unvegetated 

and experienced the lowest salinities, were particularly depauperate, a trend that has 

been associated with similar habitats in other estuaries (e.g. Ysebaert et al., 1993; Edgar 

et al., 1994; Connolly, 1997). Throughout this study, the benthic macroinvertebrate 

faunas at these habitats were characterised by C. capitata and Arthritica semen, both of 

which can tolerate a wide range of salinities (Warren, 1977; Wells & Threlfall, 1982) 

and contribute substantially to the benthic macroinvertebrate fauna of the upper region 

of the Swan-Canning Estuary (Kanandjembo et al., 2001; Valesini et al., 2009). The 

densities of these species are also inversely correlated with salinity in the nearby Wilson 

Inlet and the extents of those correlations were among the greatest for any benthic 

macroinvertebrate species recorded in that estuary (Platell & Potter, 1996). Wolff 

(1973) suggested that reduced salinities provide C. capitata with a competitive refuge 

by excluding less euryhaline species.  
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The next most distinct benthic macroinvertebrate fauna was found at habitat H. 

This habitat, which was located in the entrance channel and contained patches of dense 

vegetation, had the greatest mean densities of the polychaetes C. aequisetis, C. capitata 

and Prionospio cirrifera. and the bivalves Fluviolanatus subtorta and A. semen. 

Densities of the former two polychaete species and the last bivalve species were shown 

to be positively correlated with the biomass of the seagrass R. megacarpa in Wilson 

Inlet (Platell & Potter, 1996). This macrophyte species provides a food source for 

C. aequisetis and, upon decomposition, for the deposit-feeding C. capitata and 

P. cirrifera (Fauchald & Jumars, 1979; Connolly et al., 2005). It also provides 

protection for all of those polychaete species, which are preyed on by atherinids and 

gobies, the most abundant fish taxa in the nearshore waters of this estuary (Humphries 

& Potter, 1993; Chapter 3). The coarse marine-derived sediment present at habitat H has 

also been positively correlated with the occurrence of F. subtorta in other estuaries, 

while the location of this habitat in the entrance channel means that it does not undergo 

the same dramatic seasonal reductions in salinity that may occur in other parts of the 

estuary, and which have been shown to lead to the mortality of this species (Jones et al., 

1986; Jones, 1987). 

  The benthic macroinvertebrate fauna at habitats C, D and F did not differ 

significantly between a number of their pairwise comparisons and particularly during 

winter when no significant differences were detected between any combination of these 

habitats. The faunas at these habitats were characterised by Scoloplos normalis, 

C. aequisetis, Cyanthura hakea and Armandia intermedia during summer and autumn, 

all of which are known to be associated with R. megacarpa, which occurred in patches 

at each of these habitats. Thus, the anthurid C. hakea, which is an active predator, is 

well camouflaged against vegetation (Poore & Lew Ton, 1985) and the densities of the 

remaining polychaete species have been found by other workers to be related to the 

presence of macrophytes (Platell & Potter, 1996; Hutchings, 2000a). Moreover, 

although A. intermedia is a marine species (Joydas & Damodaran, 2009), it was only 

recorded in seasons when the salinity was ~30. This species prefers fine sediments 
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which may explain why it was more abundant in the basin habitats as opposed to that in 

the entrance channel (Hutchings, 1984). 

The extents of the seasonal changes in the nearshore benthic macroinvertebrate 

fauna of Broke Inlet, were typically less than those among habitats, a trend also 

recorded in Tasmanian estuaries (e.g. Edgar & Barrett, 2002). Indeed, seasonal changes 

were only observed at habitats C, H and K. Traditionally, such changes in benthic 

macroinvertebrate composition have been related to differences in the time of year when 

species spawn, recruit or undergo mortality (e.g. Rainer, 1982; Sardá et al., 1999; 

Ducrotoy & Ibanez, 2002; Reiss & Kröncke, 2005). However, the densities of some of 

the most numerous benthic macroinvertebrate species in Broke Inlet did not exhibit 

conspicuous seasonal trends in abundance. It is thus relevant that C. capitata and 

A. semen, which ranked first and ninth in terms of total abundance, respectively, have 

been shown to breed continuously (Wells & Threlfall, 1982; Hutchings, 2000b). 

The small but significant seasonal differences in benthic macroinvertebrate 

composition in certain habitats were due, however, to the densities of some species 

peaking at a particular time. For example, C. aequisetis in south-eastern Australian 

estuaries has a one year life cycle, with sexual maturity being obtained in late spring and 

spawning occurring in summer (Glasby, 1986). Furthermore, at habitats H and K in 

which the benthic macroinvertebrate composition underwent some seasonal changes, 

A. intermedia was present in relatively large numbers only during summer and autumn, 

reflecting the life history of this marine species, which spawns in marine waters with 

some larvae being recruited into estuaries during spring and summer. The absence of 

this species in winter may be due to a seaward migration of its adults in winter and/or 

mortality due to the low salinities in winter and spring (Tamaki, 1985).  

 

5.4.3: Benthic macroinvertebrate composition among offshore habitat types 

and seasons 

The composition of the benthic macroinvertebrate fauna at the three offshore 

habitats within Broke Inlet differed significantly, but the extents of those differences 

were low to moderate. The most distinct assemblages were recorded at habitat B in 

Shannon Basin, which contained the lowest species richness and was dominated by 
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three species that together represented 80% of the individuals. Although the most 

abundant of these species, the amphipod C. minor, was collected at all habitats, it 

occurred in appreciable numbers only at habitat B. As this species feeds on detritus, 

such findings are presumably related to the relatively large amount of organic matter in 

the substrate of this habitat. This is probably a consequence of the fact that the Shannon 

and Forth Rivers, which provide 90% of water input to the estuary, discharge into this 

habitat after flowing through dense Karri, Jarrah and Marri forests, and thus make the 

largest contribution to the allochthonous material in the estuary. Other abundant species 

at habitat B, i.e. C. capitata and A. intermedia, are non-selective deposit feeders 

(Fauchald & Jumars, 1979), and would thus similarly be able to exploit the relatively 

large amount of sedimentary organic matter present at this habitat.  

The benthic macroinvertebrate fauna at the channel habitat A, the only vegetated 

offshore habitat, was the next most distinct and comprised species that have been related 

to the presence of macrophytes, e.g. C. capitata, C. aequisetis, C. hakea and 

A. intermedia (Hutchings, 1984; Poore & Lew Ton, 1986; Platell & Potter, 1996). 

Furthermore, the relatively high densities of Pontomyia sp. presumably reflects the 

close proximity of this habitat to the terrestrial marshes inhabited by the adults of this 

species (Davis & Christidis, 1997).  

The extents of the seasonal differences in the benthic macroinvertebrate 

composition of the offshore waters were negligible, and far less than those related to 

habitat. In fact, densities of only two of the 26 species collected from the offshore 

waters underwent notable seasonal changes, i.e. A. intermedia and C. minor, which 

paralleled those exhibited by these species in the nearshore waters. The overall lack of 

seasonal differences in benthic macroinvertebrate composition parallels that recorded in 

other studies in seasonally-open estuaries in Tasmania and South Africa where seasonal 

differences were low (e.g. Teske & Wooldridge, 2001, 2003; Edgar & Barrett, 2002). 
 

5.4.3: Relationships between the benthic macroinvertebrate community and 

environmental characteristics of habitat types  

 The pattern of relative differences in benthic macroinvertebrate composition 

among nearshore habitats was significantly correlated with the enduring environmental 
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characteristics used to classify those habitats only in spring, while no such correlation 

was observed in the offshore waters. This reflects the fact that differences in benthic 

macroinvertebrate composition among nearshore habitats were greatest during this 

season and declined markedly in autumn and winter. The lack of significant differences 

in faunal composition among many habitat types in these last two seasons thus 

precluded the effectiveness of any correlations to the enduring environmental variables. 

Several other workers have also been unsuccessful in their attempts to correlate benthic 

macroinvertebrate composition in Australian estuaries with enduring environmental 

characteristics (e.g. Hirst, 2004; Stevens & Connolly, 2004). In contrast, strong and 

significant correlations between enduring environmental variables and benthic 

macroinvertebrates assemblages were detected in the Swan-Canning Estuary 

(Wildsmith, 2007; Valesini et al., 2009). However, this study was undertaken in a large 

permanently-open estuary with marked longitudinal differences in salinity and sediment 

composition (Valesini et al., 2009). Unlike the latter estuary, Broke Inlet does not 

exhibit longitudinal gradients in environmental conditions and sampling of the upper 

estuary (which includes the lower reaches of the tributaries) in Broke Inlet was not able 

to be conducted. These factors are thus considered to have precluded the range of 

differences in habitat, non-enduring environmental conditions and faunal compositions.  

 Numerous studies have related the spatial distribution of benthic 

macroinvertebrates in the permanently-open macrotidal estuaries of the northern 

hemisphere to a range of environmental variables, such as salinity and sediment 

composition (e.g. Holland et al., 1987; Ysebaert et al., 1993; Snelgrove & Butman, 

1994). However, within the seasonally/temporarily-open microtidal estuaries of 

southern Australia and Africa, these trends are less clear. For example, Teske & 

Wooldridge (2003) found that the influence of salinity on the benthic macroinvertebrate 

fauna of 13 permanently and temporarily-open estuaries in South Africa was minimal, 

and decreased with increasing distance from the estuary mouth. Although the salinity in 

Broke Inlet ranged from 6 in winter to 33 in summer, the 10 most abundant species, 

representing ca 95% of the total number of individuals in both the nearshore and 

offshore waters, contained only one and two species, respectively, that were not 
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recorded in a season or were recorded at a very low density compared with other 

seasons. This suggests that the benthic macroinvertebrate species in Broke Inlet are 

euryhaline, as is the case with many fish species that inhabit this estuary (Chapter 3; 

Hoeksema et al., 2009). Such a trait would be obligatory for these fauna, given the 

marked seasonal and inter-annual changes in salinity that can occur in seasonally-open 

systems such as Broke Inlet (Chapter 3; Hoeksema et al., 2006; Chuwen et al., 2009a). 

It is thus relevant that individuals of the polychaete genus Ceratonereis, which occurs in 

estuarine environments including Broke Inlet, brood although atypical of nereidids, 

brooding reduces the osmotic stress for their larvae (Hutchings, 1999). Teske & 

Wooldridge (2003) also found that the benthic macroinvertebrate species of South 

African estuaries could be allocated to one of four categories, i.e. marine fauna, 

oligohaline fauna and two groups of estuarine fauna, one of which occurred in sandy 

sediments and the other in muddy sediments. Only species belonging to the “estuarine 

fauna” were present in temporarily/seasonal-open estuaries.  

In the present study, the relative differences among nearshore habitats in the 

composition of their benthic macroinvertebrate fauna were significantly correlated with 

those exhibited by suites of non-enduring water physico-chemical variables and 

sediment characteristics, during only summer and spring, respectively. This was also 

true for offshore sites. However, the extents of those significant correlations were, at 

best, only moderate. Such findings parallel those of a study in the nearby Wilson Inlet, 

in which, although the densities of the eight most abundant species were significantly 

correlated with salinity, water temperature, shell debris and the biomass of 

R. megacarpa, significant correlations were recorded in only half of the comparisons 

and the extent of those matches were moderate at best (Platell & Potter, 1996). The 

relatively modest correlations between spatial differences in the benthic 

macroinvertebrate fauna and those in the non-enduring environmental variables in 

Broke Inlet also reflect the fact that some environmental variables exhibit limited 

variation among habitats. For example, mean salinity ranged only from 28 to 33 among 

the various nearshore habitats in summer and autumn. This was also the case for several 

of the sediment characteristics in the nearshore waters which were similar. 
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5.5: Appendices 
 

Appendix 5.1: Species that consistently typified (provided along the diagonal) and distinguished (provided in the sub-diagonal) the benthic macroinvertebrate 

assemblages at each nearshore habitat between spring 2007 and winter 2008 as detected by one-way SIMPER. The habitat type in which each species was most 

abundant is given in superscript for each pairwise comparison. Insignificant pairwise comparisons are highlighted in grey. Asterisks denote the relative consistency 

of each species in either typifying or distinguishing the faunal composition of habitat types, as measured by the similarity to standard deviation ratio and 

dissimilarity to standard deviation ratio, respectively; > 1.5-3*, > 3-5**, > 5-10***, > 10****. 
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Appendix 5.2: Species that consistently typified (provided along the diagonal) and 

distinguished (provided in the sub-diagonal) the benthic macroinvertebrate assemblages in each 

season between spring 2007 and winter 2008 at each of the nearshore habitats where significant 

differences were detected. Species detected by one-way SIMPER analysis. The season in which 

each species was most abundant is given in superscript for each pairwise comparison. 

Insignificant pairwise comparisons are highlighted in grey. Asterisks denote the relative 

consistency of each species in either typifying or distinguishing the faunal composition of 

seasons, as measured by the similarity to standard deviation ratio and dissimilarity to standard 

deviation ratio, respectively; > 1-3*, > 3-5**, 5-10***, > 10****. 
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(c) Habitat K 
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Appendix 5.3: Species that consistently typified (provided along the diagonal) and 

distinguished (provided in the sub-diagonal) the benthic macroinvertebrate assemblages at each 

offshore habitat between summer and spring 2008 as detected by one-way SIMPER. The habitat 

type in which each species was most abundant is given in superscript for each pairwise 

comparison. Insignificant pairwise comparisons are highlighted in grey. Asterisks denote the 

relative consistency of each species in either typifying or distinguishing the faunal composition 

of habitat types, as measured by the similarity to standard deviation ratio and dissimilarity to 

standard deviation ratio, respectively; > 1.5-3*, > 3-5**, > 5-10***, > 10****. 
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Chapter 6 

General Discussion 
 

6.1: Classification of habitat types in Broke Inlet  

This study represents the first attempt to statistically identify the different habitat 

types in the shallow, nearshore as well as the deeper, offshore waters of a south-western 

Australian estuary using a suite of enduring environmental variables. This habitat 

classification for the seasonally-open Broke Inlet on the south coast of Western 

Australia was achieved using the methodology developed by Valesini et al. (2010) for 

shallow, nearshore estuarine waters. The development of a quantitative habitat 

classification scheme for Broke Inlet will enable scientists and environmental managers 

to predict the habitat type to which any site in this estuary belongs, simply by using 

measurements for a range of its enduring environmental characteristics. It also provides 

a quantitative framework for exploring the extent to which the compositions of the fish 

and benthic macroinvertebrate faunas within the estuary are related to habitat type. 

 

6.2: Relationships between faunal compositions and habitat type 

The classification of sites in the nearshore and offshore waters of Broke Inlet 

into 11 and three habitat types, respectively, was shown to be ecologically relevant, in 

that the compositions of the ichthyofaunas in the nearshore waters and those of the 

benthic macroinvertebrate faunas in the nearshore and offshore waters, were shown to 

differ significantly among habitat types in all seasons. Thus, in the nearshore waters, the 

fish and benthic macroinvertebrate faunas varied most markedly in the case of habitats 

containing substantial amounts of macrophytes vs those with bare substrate. Moreover, 

nearshore habitats located in the entrance channel also had relatively distinct fish faunas 

from those in the basin. The composition of the benthic macroinvertebrate fauna in the 

offshore waters, differed mainly between habitat A in the entrance channel and habitat 

B in Shannon Basin. These differences were shown to be correlated with the 

consistently lower dissolved oxygen concentrations, pH, salinities, smaller sediment 

grain size and greater sedimentary organic content at the latter habitat, which receives 
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direct freshwater input from the Shannon River. In contrast to the above, the 

ichthyofauna in the offshore waters differed significantly among habitat types only in 

spring and autumn. Like those for the offshore benthic macroinvertebrates, these 

differences were greatest between habitats A and B.  

In addition to the demonstrated differences in fish composition among nearshore 

habitat types, the pattern of relative differences among those habitats in terms of their 

fish fauna was significantly correlated with that defined by their enduring 

environmental characteristics in all but one of the eight sampling seasons. This 

matching demonstrates that reliable predictions of the approximate composition of the 

fish fauna at any nearshore site in Broke Inlet can be made at any time of year.  

The pattern of relative differences among nearshore habitat types, as defined by 

their benthic macroinvertebrate faunas, was significantly matched with that exhibited by 

their enduring environmental characteristics only during spring, although a moderate 

but non-significant correlation was detected during summer. The non-significant 

matches in the remaining seasons were often related to the relatively small differences 

in faunal composition among habitats. Thus, while the benthic macroinvertebrate 

compositions differed between ca 90% of the pairwise habitat comparisons during both 

spring and summer, this was true in only 40-50% of these comparisons during winter 

and autumn. A similar trend was recorded for the offshore ichthyofauna, where a 

significant correlation was detected between the fish and enduring environmental data 

only in the season in which the faunal differences among habitats were greatest, 

i.e. autumn. The lack of a significant correlation in the other three seasons reflects the 

fact that (i) the fish fauna did not differ significantly among habitats in summer or 

winter and (ii) that there was a mismatch in the rank orders of resemblance between the 

faunal and enduring environmental matrices, with habitat B being the most faunally-

distinct, while habitat A was the most environmentally-distinct. The latter was also the 

case with regard to the offshore benthic macroinvertebrate fauna. 

The strength of the spatial correlations between the benthic macroinvertebrate 

and offshore fish faunas and the enduring environmental data largely do not support 

their use for predicting the species likely to typify the assemblage at any “new” site 
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within Broke Inlet. However, it is important to note that differences in benthic 

macroinvertebrate composition among sites were greatly reduced in autumn and winter 

as was the composition of the offshore ichthyofauna in summer and winter and thus in 

these seasons, any “new” site would likely contain a similar fauna to any other site.  

The data collected during this study represent the most comprehensive 

quantitative sampling of the ichthyofauna and the only quantitative sampling of the 

benthic macroinvertebrate fauna undertaken in this system. These data therefore enable 

comparisons to be made between the fish and/or benthic macroinvertebrate fauna in this 

uniquely “near-pristine” estuary and those of other estuaries throughout south-western 

Australia. 

 

6.3: The faunas of Broke Inlet: comparisons with other south-western 

Australian estuaries  

The estuaries of south-western Australia are diverse, differing in their 

morphological, physico-chemical and biotic characteristics. They also vary in the extent 

to which they have suffered from detrimental anthropogenic effects (Table 6.1a). As a 

consequence, environmental conditions in these estuaries differ markedly (e.g. Potter & 

Hyndes, 1999; Hoeksema et al., 2006; Chuwen et al., 2009b). Since the 1970s, the 

ichthyofaunas of 14 estuaries in south-western Australia have been studied in detail. 

These estuaries range from the intermittently-open Moore River Estuary, ca 80 km 

north of Perth, and the permanently-open estuaries on the lower west coast to the 

seasonally-open and normally-closed estuaries of the south coast of Western Australia 

(Table 6.1; Fig. 6.1). The following subsections focus on comparing the faunal data 

obtained for the seasonally-open Broke Inlet during the present study with those 

collected for other estuaries. Note that for each estuary only the most comprehensive 

study of the nearshore and offshore ichthyofaunas has been selected for inclusion in the 

comparison with Broke Inlet. 
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Table 6.1: (a) Physical characteristics of 14 south-western Australian estuaries, including latitude, longitude, basin size (km
2
), estuary type (i.e. PO = permanently-open, 

IO = intermittently-open, SO = seasonally-open and NC = normally-closed), catchment size (km
2
), percentage of the catchment cleared (%), median rainfall (mm), mean annual flow 

(GL) and level of anthropogenic modification (NP = near-pristine, LU = largely unmodified, M = modified and EM = extensively modified). Mean density (fish 100 m
-2

) or mean 

catch rates (fish h
-1

), number of species and families and the contribution of the different life cycle (LC) guilds to the (b) nearshore and (c) offshore ichthyofauna of each estuary. The 

most abundant guilds (i.e. those that contribute > 15% to the total catch) are highlighted in grey. Moore = Moore River Estuary, Swan = Swan-Canning Estuary, Peel = Peel-Harvey 

Estuary, Lesch = Leschenault Estuary, Black = Blackwood River Estuary, Wal/Nor = Walpole-Nornalup Estuary, Broke = Broke Inlet, Irwin = Irwin Inlet, Wilson = Wilson Inlet, 

Oys H = Oyster Harbour, Well = Wellstead Estuary, Ham = Hamersley Inlet, Culham = Culham Inlet and Stokes = Stokes Inlet.  
 

 Moored Swane,f Peele,g Leschh Blacki, j Wal/Nork Broke Irwinl, m Wilsone, m Oys Hl, m Welle, m Hamn Culhamn Stokesn 

(a) Physical Characteristics 

Latitude 31.4 °S 32.1 °S 32.5 °S 33.3 °S 34.2 °S 35.0 °S 34.9 °S 35.0 °S 35.0 °S 35.0 °S 34.4 °S 33.9 °S 33.5 °S 33.9 °S 

Longitude 115.5 °E 115.7 °E 115.7 °E 115.7 °E 115.1 °E 116.7 °E 116.4 °E 116.9 °E 117.3 °E 117.9 °E 119.4 °E 119.9 °E 120.0 °E 121.1 °E 

Basin sizea 1.5 50 131 27 9 13 48 10 48 15.6 2.5 2.3 11.3 14 

Estuary typea IO PO PO PO PO PO SO SO SO PO NC NC NC NC 

Catchment sizeb 14,400 121,000 10,050 4,600 22,070 5,725 680 2,290 2,180 2,966 720 840 2,300 4,410 

Percentage clearingb 82 60 42 36 83 44 95 39 46 72 75 10 34 65 

Median rainfallb 500 450 850 925 700 1,200 1,400 800 850 800 465 440 400 400 

Annual flowb 98 600 810 570 860 363.2 162 164 161.4 504 14 1.2 3.4 19 

Modificationc EM EM EM EM  LU NP LU M EM M M EM M 

(b) Nearshore ichthyofauna 

Mean density 366 184 363 169 359  81 345 334 206 1192 744 680 236 

Number of species 27 60 71 42 42  27 20 23 33 18 6 6 5 

Number of families 14 26 34 26 25  19 15 14 17 12 5 4 5 

LC contribution               

Anadromous 0.01 0.26             

Freshwater straggler 0.03 0.37 0.03    0.17 0.10     0.33 0.02 

Estuarine resident 92.70 30.26 43.02 14.90 39.36  81.94 82.36 95.99 49.60 98.91 99.98 97.58 99.93 

Estuarine and marine 2.08 36.05 10.15 52.96 43.14  16.80 14.57 3.87 43.24 1.08 0.00 2.10 0.06 

Mar. est.-opportunist 4.91 32.43 46.59 30.60 17.23  0.42 2.97 0.10 3.98 0.01 0.01   

Marine straggler 0.28 0.62 0.21 1.54 0.27  0.67   0.03 3.18         

(c) Offshore ichthyofauna 

Catch rate  26.02 70.55 10.05 1.72 5.55 0.91 6.43 4.08 4.08 87.18 11.81 2.3 23.16 

Number of species  22 20 26 14 23 31 27 27 45 17 6 1 8 

Number of families  17 15 20 10 18 22 21 21 29 13 4 1 6 

LC contribution               

Anadromous  61.10 12.80 18.16           

Freshwater straggler               

Estuarine resident  4.00 3.30   15.30  0.40 3.40 7.10 25.40 83.80 100.00 96.25 

Estuarine and marine  10.00 7.10 4.26 13.77 20.70 19.64 23.40 38.70 6.70 1.80   1.14 

Mar. est.-opportunist  15.90 72.80 74.11 84.81 57.40 77.45 75.60 57.20 76.50 72.70 16.20  2.61 

Marine straggler   9.00 4.00 3.47  1.42 6.60 2.91 0.60 0.70 9.70 0.10       
a Brearley (2005), b Pen (1999), c Commonwealth of Australia (2002), d Young et al. (1997), e Valesini et al. (2009), f Loneragan et al. (1989), g Loneragan et al. (1987), h Potter et al. (2000), i Valesini 

et al. (1997), j Valesini (1995), k Potter & Hyndes (1994), l Hoeksema et al. (2009), m Chuwen et al. (2009b), n Hoeksema et al. (2006). 
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Table 6.2: List of species, families and life cycle (LC) categories of fish recorded in the nearshore waters of Broke Inlet during the present study and their presence 

(*) or absence in studies of the nearshore ichthyofauna of other estuaries in south-western Australia. Full estuary names and life cycle categories are given in Table 

6.1. Species ranked by their total abundance during the present study. Data collected from the sources in Table 6.1. 

 

Species Family LC Moore Swan Peel Lesch Black Wal/Nor Irwin Wilson Oys H Well Ham Culham Stokes 

Atherinosoma elongata Atherinidae E 

 

* * * * * * * * * * * * 

Leptatherina wallacei Atherinidae E * * * * * * * * * * * * 

 Leptatherina presbyteroides Atherinidae EM * * * * * * * * * * 

   Afurcagobius suppositus Gobiidae E * * * * * 

 

* * * * 

   Pseudogobius olorum Gobiidae E * * * * * * * * * * * * * 

Favonigobius lateralis Gobiidae EM * * * * * * * * * * 

 

* * 

Notolabrus parilus Labridae MS 

   

* * 

  

* 

     Hyporhamphus melanochir Hemiramphidae EM 

   

* * 

 

* * 

     Achoerodus gouldii Labridae MS 

             Engraulis australis Engraulidae EM 

 

* * * * 

 

* * 

 

* 

  

* 

Aldrichetta forsteri Mugilidae MEO * * * * * * * * * * * 

 

* 

Ammotretis rostratus Pleuronectidae MEO 

     

* * * * * 

   Neoodax balteatus Odacidae MS 

 

* 

      

* 

    Ammotretis elongatus Pleuronectidae EM 

 

* * * * 

   

* 

    Enoplosus armatus Enoplosidae MS 

 

* * * * 

   

* 

    Edelia vittata Percichthyidae FS 

             Mugil cephalus Mugilidae MEO * * * * * * * * * * 

   Platycephalus speculator Platycephalidae EM 

 

* * * * 

  

* 

     Girella zebra Kyphosidae MS 

             Haletta semifasciata Odacidae MS 

 

* * * * 

   

* * 

   Galaxias occidentalis Galaxiidae FS 

 

* * 

          Lepidogalaxias salamandroides Lepidogalaxiidae FS 

             Urocampus carinirostris Syngnathidae EM 

 

* * * * 

 

* * * * 

   Pseudocaranx dentex Carangidae MS 

  

* 

 

* 

        Rhabdosargus sarba Sparidae MEO * * * * * * 

 

* 

 

* 

   Pseudorhombus jenynsii Paralichthyidae MEO * * * * * * 

 

* * 

    Cynoglossus broadhursti Cynoglossidae MS 

             



 

 

 

2
1
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Fig. 6.1: Map of south-western Australia detailing 14 estuaries in which the ichthyofauna has been studied since the 1970s. The scale bar in the map of each estuary 

represents 2 km. 
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6.3.1: Ichthyofaunal community 

6.3.1.1: Nearshore ichthyofauna 

During the present study, 83,047 fish were caught from the nearshore waters of 

Broke Inlet over two consecutive years of seasonal sampling. These fish comprised 27 

species, of which 22 had been recorded during recent studies of other south-western 

Australian estuaries (Table 6.2). The six most abundant species recorded in Broke Inlet, 

i.e. the atherinids Atherinosoma elongata, Leptatherina wallacei and Leptatherina 

presbyteroides and the gobiids Afurcagobius suppositus, Pseudogobius olorum and 

Favonigobius lateralis, are found in virtually all estuaries from the Moore River Estuary 

on the lower west coast to the Hamersley, Culham and Stokes inlets on the south coast 

of Western Australia (Table 6.2).  

In contrast, five of the fish species collected from the nearshore waters of Broke 

Inlet, i.e. Achoerodus gouldii, Cynoglossus broadhursti, Girella zebra, Edelia vittata 

and Lepidogalaxias salamandroides, were not recorded during detailed studies of any 

other south-western Australian estuary. Although the first three of these species are 

typically characterised as marine stragglers and, in the case of the last two of those 

three, were represented by only one individual, A. gouldii was the ninth most abundant 

species in the nearshore waters of Broke Inlet. The small size of the individuals of 

A. gouldii, i.e. 26 to 105 mm total length, a labrid which grows to a large size, indicates 

that these fish had been transported inshore early in life into the vicinity of Broke Inlet 

and that currents then favoured their movement into that estuary at a time when its 

mouth was open. Another labrid, Notolabrus parilus, which is rarely found in south-

western Australian estuaries and which was caught at similarly small sizes, ranked 

seventh in abundance in the nearshore waters of Broke Inlet. It must be recognized, 

however, that all 199 individuals of A. gouldii and N. parilus caught during this study 

were found in the entrance channel, and thus only used that restricted part of the estuary 

as a nursery area. Moreover, the juveniles of N. parilus and Achoerodus viridis, a 

similar species to A. gouldii, are known to occupy seagrass beds (Gillanders, 1997; Lek 

et al., submitted), which were present in abundance at habitat H in the entrance channel.  



Chapter 6 

 

220 

Both of the other two species that were “unique” to the samples from Broke 

Inlet, i.e. E. vittata and L. salamandroides, are endemic freshwater species (Morgan 

et al., 1998). The presence of these two species, and that of Galaxias occidentalis, in 

this estuary was thus presumably due to their having been flushed downstream in small 

numbers by heavy winter rains from their typical riverine habitats. 

The number of species and families recorded in the nearshore waters of south-

western Australian estuaries, are highest in the permanently-open systems of the lower 

west and south coasts and lowest in the normally-closed estuaries along the south coast 

(Table 6.1b), in which the opportunity for marine species to become recruited into these 

systems is limited. The number of fish taxa recorded in Broke Inlet during the present 

study is similar to that recorded in other seasonally-open estuaries in this region.  

The mean density of fish in the nearshore waters of Broke Inlet, i.e. 81 fish 

100 m
-2

, is less than that recorded in any of the other 12 estuaries in south-western 

Australia which were sampled with the same type of seine net, i.e. a 21.5 m long net 

(Table 6.1b). This probably reflects the low productivity in Broke Inlet, which is most 

likely due to the low levels of nutrients (nitrogen and phosphorus) and consequently a 

paucity of aquatic macrophytes (Hodgkin & Clark, 1989a; Brearley, 2005). Substantial 

clearing of estuary catchments for urban development and/or agriculture (Pen, 1999) 

have resulted in a number of estuaries in south-western Australia becoming eutrophic 

(e.g. Lukatelich et al., 1987; McComb & Lukatelich, 1995). For example, high levels of 

nutrient run-off into the nearby, similarly-sized and seasonally-open Wilson Inlet has 

led to the development of very extensive growths of the seagrass Ruppia megacarpa 

(Department of Environment, 2003). The fact that the overall fish density in the 

nearshore waters of that system was more than four times greater than that in the 

oligotrophic Broke Inlet (Table 6.1b) is consistent with the findings that the abundances 

of several of the dominant atherinid and gobiid species are positively correlated with the 

density of R. megacarpa (Humphries et al., 1992). 

 The compositions of the fish faunas in the nearshore waters of Broke Inlet were 

compared to those of the 12 other estuaries in south-western Australia that had been 

sampled using a 21.5 m seine net (Figs 6.2a, b). These MDS ordination analyses used 

the mean density of each fish species in each habitat type in these systems in which the 
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(a)  (b) 

  
 (c)  (d) 

  
 Permanently-open  Seasonally-open  Intermittently-open  Normally-closed 

M=Moore, S=Swan-Canning, P=Peel-Harvey, L=Leschenault, B=Blackwood, Br=Broke, N=Walpole-Nornalup, 

I=Irwin, W=Wilson, O=Oyster Harbour, We=Wellstead, H=Hamersley, C=Culham and St=Stokes 

 

Fig. 6.2: nMDS plots constructed from the mean density data for each fish species caught in 

nearshore waters (a, b) and the mean percentage contribution of each fish species caught in 

offshore waters (c, d) of each of the estuaries detailed in Fig. 6.1. Each point represents either an 

estuary or habitat type/region of an estuary if that system was spatially subdivided during the 

original study. Points coded for estuary (a, c) and estuary type (b, d). 
 

Valesini et al. (2010) classification scheme had been applied, i.e. Broke Inlet (current 

study) the Swan-Canning Estuary, Peel-Harvey Estuary, Wilson Inlet and Wellstead 

Estuary (Valesini et al., 2009). Where such habitat-related data were not available for an 

estuary, the densities of each species in each well-defined region (i.e. channel, basin 

and/or upper estuary) were employed for the analyses, i.e. Blackwood River Estuary 

and Hamersley, Culham and Stokes inlets. When no habitat or regional data were 

available for an estuary, as with that of the Moore River Estuary, Leschenault Estuary, 

Irwin Inlet and Oyster Harbour, the mean density for each species throughout the whole 

estuary was used. The above density data were forth-root transformed and used to 

construct a Bray-Curtis similarity matrix, which was subjected to nMDS ordination. On 

the resultant plot, the samples from each estuary formed relatively discrete groups that 

progress in an anticlockwise direction from the most northern estuary on the west coast 
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(Moore River Estuary) and the nearby Swan-Canning and Peel-Harvey estuaries (top 

left hand corner of the plot), downwards to those from the Blackwood River Estuary on 

the south-western tip of Western Australia and then further around to those for the 

Wilson, Irwin and Broke inlets on the western part of the south coast (Fig 6.2a). The 

samples for the Hamersley, Culham and Stokes inlets, which are located the furthest 

east of all the estuaries studied along the south coast of Western Australia lay a notable 

distance to the right of those from Broke Inlet and also Wellstead Estuary, the latter of 

which formed a group close to the centre of the plot. The single sample for Oyster 

Harbour lay to the left of those for Wilson and Broke inlets, even though that estuary is 

located further to the east. 

 When the samples in Fig. 6.2a were coded for estuary type rather than estuary, 

they each formed discrete groups on the basis of that factor (Fig 6.2b). Thus, the 

samples from permanently and intermittently-open estuaries lay mostly on the opposite 

side of the plot from those for the normally-closed estuaries, while the samples from the 

seasonally-open estuaries occupied an intermediate position (Fig 6.2b).  

 In terms of abundance, the nearshore ichthyofauna of Broke Inlet is dominated 

(82%) by species which are restricted to estuaries, a situation which parallels that in the 

other nearby seasonally-open systems, i.e. Irwin (82%) and Wilson (96%) inlets 

(Table 6.1b). This life cycle guild made an even greater contribution (> 98%) to the 

nearshore fish faunas of the Wellstead Estuary and the Hamersley, Culham and Stokes 

inlets, which is hardly surprising given that these estuaries are not normally connected 

to the ocean. However, the contribution of this guild to the nearshore ichthyofaunas of 

the Swan-Canning, Peel-Harvey, Leschenault and Blackwood River estuaries and 

Oyster Harbour is far lower (15-50%), largely reflecting the ability of marine species to 

enter these permanently-open estuaries.  

 

6.3.1.2: Offshore ichthyofauna 

 Sampling in the offshore waters of Broke Inlet yielded 1,050 fish, the five most 

abundant of which were Arripis georgianus, Mugil cephalus, Engraulis australis, 

Aldrichetta forsteri and Rhabdosargus sarba. All of these species with the exception of 
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A. georgianus in the Swan-Canning and Peel-Harvey estuaries and R. sarba in the 

Swan-Canning Estuary have been recorded in the offshore waters of all permanently 

and seasonally-open estuaries in south-western Australia and are likewise abundant in 

those systems (Table 6.3). However, some other species found in Broke Inlet, such as 

Ammotretis rostratus, Pagrus auratus, Enoplosus armatus, Sillago bassensis, 

Achoerodus gouldii and Mustelus antarcticus have been recorded only in estuaries on 

the south coast. Although seven species (Girella zebra, Schuettea woodwardi, Scorpis 

georgiana, Lotella rhacina, Tilodon sexfasciatum, Cynoglossus broadhursti and 

Eubalichthys bucephalus) found in Broke Inlet during the current study have not been 

recorded in any other south-western Australian estuary, it should be recognised that all 

of these species were rare and are classified as marine stragglers (Table 6.3). 

There are two notable omissions from the list of fish species found in the 

offshore waters of Broke Inlet. The first of these species, the sparid Acanthopagrus 

butcheri, is abundant in the offshore waters of all other estuaries in south-western 

Australia and especially in those of normally-closed estuaries, in which it can represent 

up to 100% of the individuals (Hoeksema et al., 2006; Chuwen et al., 2009b). 

Furthermore, previous sampling at regular intervals of the offshore waters of the basin 

of Broke Inlet and those of its major tributary, the Shannon River, yielded only two 

individuals (Chuwen et al., 2009b). These data clearly demonstrate that, unlike the 

situation in other south-western Australian estuaries and particularly in the saline 

reaches of their tributaries, A. butcheri is rare in Broke Inlet. It has been proposed that 

the paucity of this species in Broke Inlet is related to the very low salinities found 

during winter in the tributary rivers, which provide the “preferred” habitat of this 

species (Hodgkin & Clark, 1989a; Chuwen et al., 2009b) and often also in spring when 

A. butcheri typically use this region of estuaries to spawn (Willams et al., 2009).  

The second species that was a notable omission from the samples from Broke 

Inlet was the Western Striped Grunter Pelates octolineatus, which is abundant in the 

offshore waters of other estuaries in this region, comprising, for example, 29% of the 

total catch obtained from Oyster Harbour (Chuwen et al., 2009b). The absence of this 

species from Broke Inlet (previously referred to as Pelates sexlineatus in Western 

Australia) is probably related to the fact that seagrass constitutes its main habitat and
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Table 6.3: List of species, families and life cycle (LC) categories of fish recorded in the offshore waters of Broke Inlet during the present study and their presence 

(*) or absence in studies of the offshore ichthyofauna of other estuaries in south-western Australia. Full estuary names and life cycle categories are given in Table 

6.1. Species ranked by their total abundance during the present study. Data collected from the sources in Table 6.1. 
 

Species Family LC Swan Peel Lesch Black Wal/Nor Irwin Wilson Oys H Well Ham Culham Stokes 

Arripis georgianus Arripidae MEO 

  

* * * * * * * * 

 

* 

Mugil cephalus Mugilidae MEO * * * * * * * * * * 

 

* 

Engraulis australis Engraulidae EM * * * * * * * * * 

  

* 

Aldrichetta forsteri Mugilidae MEO * * * * * * * * * * 

 

* 

Rhabdosargus sarba Sparidae MEO 

 

* * * * * * * * * 

  Ammotretis rostratus Pleuronectidae EM 

    

* * * * * 

   Pseudocaranx dentex Carangidae MEO 

  

* * * * * * * * 

  Pagrus auratus Sparidae MEO 

   

* * * * * * 

   Arripis truttaceus Arripidae MEO 

  

* * 

 

* * * * * 

  Sillaginodes punctata Sillaginidae MEO 

 

* * * * * * * * 

   Gonorynchus greyi Gonorynchidae MEO 

    

* * * * 

    Hyporhamphus melanochir Hemiramphidae EM 

 

* * 

  

* * * * 

   Enoplosus armatus Enoplosidae MS 

   

* 

 

* * * 

    Pomatomus saltatrix Pomatomidae MEO * * * * * * * * * 

   Sillago bassensis Sillaginidae MS 

    

* 

       Cnidoglanis macrocephalus Plotosidae EM * * * * * * * * * 

  

* 

Platycephalus speculator Platycephalidae EM 

    

* * * * * 

   Pseudorhombus jenynsii Paralichthyidae MEO * * * 

 

* * * * 

    Achoerodus gouldii Labridae MS 

     

* * * 

    Sillago schomburgkii Sillaginidae MEO 

 

* * * 

 

* * * 

    Girella zebra Kyphosidae MS 

            Mustelus antarcticus Triakidae MS 

  

* 

 

* 

       Chelidonichthys kumu Triglidae MS * 

  

* 

        Schuettea woodwardi Monodactylidae MS 

            Scorpis georgiana Kyphosidae MS 

            Notolabrus parilus Labridae MS 

      

* * 

    Myliobatis australis Myliobatidae MS 

  

* 

 

* 

       Lotella rhacina Moridae MS 

            Tilodon sexfasciatum Kyphosidae MS 

            Cynoglossus broadhursti Cynoglossidae MS 

            Eubalichthys bucephalus Monacanthidae MS 
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macrophyte growths are not abundant in this system (Connolly, 1994; Sanchez-Jerez 

et al., 2002). 

The number of species and families recorded in Broke Inlet during the present 

study are similar to those recorded by Chuwen et al. (2009b) in the seasonally-open 

Irwin and Wilson inlets. The number of taxa recorded in Oyster Harbour by Chuwen 

et al. (2009b), however, was greater than in those three estuaries due to the presence of 

a greater number of marine species, which reflects the fact that this estuary is 

permanently-open and thus provides a continuous potential route for the entry of marine 

species. This type of difference parallels that recorded for seasonally and permanently-

open estuaries in South Africa in which marine species likewise contribute greatly to the 

ichthyofaunas of those systems (e.g. Bennett, 1989; Harrison & Whitfield, 2006).  

As with the mean densities of fishes in the nearshore waters, the mean catch 

rates of fishes in the offshore waters of Broke Inlet were the lowest of all estuaries in 

south-western Australia for which there are comprehensive and comparable data on gill 

net catches (Table 6.1c). Such findings also presumably reflect the oligotrophic nature 

of Broke Inlet and, in particular, the sparseness of its macrophyte growth (Brearley, 

2005). This is reinforced by the fact that, the greatest mean catch rates in offshore 

waters were recorded in the normally-closed Wellstead Estuary, which contains 

extensive growths of R. megacarpa (Brearley, 2005; Chuwen et al., 2009b). 

The compositions of the offshore fish faunas in Broke Inlet were compared with 

those from the other 12 estuaries in south-western Australia that have also been sampled 

using composite gill nets (Figs 6.2c, d). In the case of Broke Inlet, this analysis used the 

percentage contribution of each fish species in each habitat type. Where such habitat-

related data were not available for a system, the percentage contribution of each species 

in each well-defined region of the estuary were employed, i.e. Swan-Canning, 

Blackwood River and Wellstead estuaries and Stokes Inlet. Where no habitat or regional 

data were available for an estuary, as with the Peel-Harvey, Leschenault and Walpole-

Nornalup estuaries, Oyster Harbour and the Wilson, Irwin, Hamersley and Culham 

inlets, the percentage contribution of each species throughout the whole estuary was 

used. Percentage contribution data was employed in this analysis as the gill nets used in 

the various studies differed slightly in their mesh sizes. 
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 The above percentage contribution data were square-root transformed, used to 

construct a Bray-Curtis similarity matrix and subjected to nMDS ordination. On the 

resultant plot, the samples from the various estuaries followed the same anticlockwise 

progression according to location as was exhibited on the corresponding ordination plot 

for the nearshore fish faunas (cf. Fig. 6.2a, c). Thus, samples from the Swan-Canning 

Estuary lie in the top left-hand corner of the plot, above those, in sequence, for the Peel-

Harvey, Leschenault and Blackwood River estuaries, while those for Broke Inlet, 

Wilson Inlet, Wellstead Estuary and the Hamersley, Stokes and Culham inlets form a 

progressive line to the right along the bottom of the plot (Fig. 6.2c).  

 When the offshore samples were coded for estuary type rather than estuary, they 

formed essentially discrete groups according to that factor (Fig. 6.2d). Thus, as with the 

samples from nearshore waters, most of those for permanently-open estuaries lie on the 

opposite side of the plot from those for normally-closed estuaries, with those for 

seasonally-open estuaries forming a tight group between them. 

In terms of percentage composition, the offshore ichthyofauna of Broke Inlet is 

dominated by marine estuarine-opportunists (77%) and, to a lesser extent, estuarine and 

marine species (20%; Table 6.1c). Representatives of these life cycle guilds were also 

abundant in the other seasonally-open estuaries. In contrast, estuarine resident species 

were moderately to remarkably abundant in normally-closed estuaries (25-100%), while 

the permanently-open estuaries on the lower west coast were the only systems to 

contain anadromous species and thus help to account for the marked differences 

observed for the different estuary types (Table 6.1c). 

 

6.3.2: Benthic macroinvertebrate community 

 The only extensive quantitative data on the composition of the benthic 

macroinvertebrate assemblages for any estuary on the south coast of Western Australia, 

excepting that collected during the current study, is that published by Platell and Potter 

(1996) for Wilson Inlet. It should be noted, however, that although these workers used a 

1 mm mesh as opposed to the 0.5 mm mesh employed in the current study, a trial within 

that original study indicated that no additional species were recorded in samples 

employing a 0.5 mm mesh and that > 90% of the biomass was retained on the 1 mm 

sieve (Platell, 1990). The mean number of benthic macroinvertebrate species recorded 
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seasonally in the nearshore and offshore waters of Broke Inlet, i.e. 21-22 and 14-19, 

respectively, were less than those recorded in the corresponding water depths in Wilson 

Inlet, i.e. 28-32 and 19-26, respectively. Furthermore, mean seasonal densities of 

benthic macroinvertebrates in the nearshore waters of Broke Inlet (230-415 individuals 

0.1 m
-2

) were far less than those recorded in Wilson Inlet (470-1,740 individuals 

0.1 m
 2

), and the same was true for the offshore waters (115-266 vs 570-1,140 

individuals 0.1 m
-2

, respectively). The greater densities of benthic macroinvertebrates in 

Wilson than Broke Inlet reflect the fact that the former estuary is eutrophic while the 

latter is oligotrophic (Lukatelich et al., 1987; Department of Environment, 2003; 

Brearley, 2005). High densities of benthic macroinvertebrates are typically an indication 

of eutrophication in other parts of the world (Gray et al., 2002; Karlson et al., 2002). 

Following nMDS ordination of the mean square-root transformed densities of 

each benthic macroinvertebrate species in samples collected seasonally from the 

nearshore and offshore waters of Broke and Wilson inlets, the samples for the two 

estuaries formed very tight and widely separated groups on the resultant plot (Fig. 6.3a). 

This marked inter-estuarine difference in faunal composition at the species level was 

attributable, in particular, to the far greater densities of Corophium minor, Mesanthura 

sp. and Armandia intermedia in Broke Inlet and of Heteromastus filiformis, Capitella 

capitata and Hydrococcus brazieri in Wilson Inlet.  

The groups of samples from the two estuaries remained discrete on the ordination 

plot even when the benthic macroinvertebrate data were analysed at the phylum rather 

than species level (cf. Fig. 6.3a, b). Such differences were due mainly to the greater 

contributions made by polychaetes to the nearshore and offshore faunas of Wilson Inlet 

(69 and 91%, respectively) than Broke Inlet (64 and 57%, respectively), and to the reverse 

situation for crustaceans, i.e. 1 and 0.3%, respectively, for Wilson Inlet vs 24 and 36%, 

respectively, for Broke Inlet. The pronounced trend for the densities of polychaetes to be 

greater in the eutrophic Wilson Inlet (particularly in the offshore waters) and for those of 

crustaceans to be greater in the oligotrophic Broke Inlet is consistent with the 

generalisation that polychaetes often thrive in eutrophic and disturbed environments and 

that crustaceans are particularly sensitive to such conditions (Reise, 1982; Warwick & 

Clarke, 1993; Wildsmith et al., 2009). 
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 (a)  (b) 

  
 

Broke Inlet:  nearshore waters  offshore waters  

Wilson Inlet:  nearshore waters  offshore waters  
 

Fig. 6.3: nMDS ordination plots constructed from the mean density data for each benthic 

macroinvertebrate (a) species and (b) phylum caught seasonally in the nearshore and offshore 

waters of Broke and Wilson Inlets. 

 

6.4: Future developments and management implications 

 This study has provided detailed, quantitative data on both the fish and benthic 

macroinvertebrate fauna present within Broke Inlet and their relationships with a range 

of environmental characteristics. Comparisons of the fauna in Broke Inlet to other 

estuaries in south-western Australia suggest that while this system harbours a similar 

ichthyofauna to other seasonally-open estuaries, such as the nearby Wilson Inlet, their 

invertebrate communities differ markedly. Since this study is only the second 

quantitative study on benthic macroinvertebrate community composition in seasonally-

open estuaries on the south coast of Western Australia, these findings highlight the need 

for more detailed quantitative sampling of the benthic macroinvertebrate assemblages 

present in estuaries along this coast. The results of such a study would greatly enhance 

our knowledge on the faunal composition of these systems. Furthermore, as Broke Inlet 

has been suggested as a benchmark for detecting the affects of anthropogenic change 

given its “near-pristine” status (Commonwealth of Australia, 2002), the habitat 

classification framework and faunal data collected during this study provide a detailed 

and fully quantitative platform for gauging the extent of any future shifts in the abiotic 

and biotic characteristics of this estuary and for making comparisons with other more 

anthropogenically-degraded estuaries in south-western Australia. 

2D Stress: 0.01 2D Stress: 0.02
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Home Time: Sunset over Broke Inlet after another hard day at the “office”. 

 

 

 

  


