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Abstract 

This study aimed to compare limb bone growth between offspring of typical crosses used in 

Australian prime lamb production. Limb bones from sheep of five genotypes – Merino (M × 

M), Border Leicester sire × Merino (BL × M), Poll Dorset sires selected for growth × Merino 

(PDg × M), Poll Dorset sires selected for eye muscle depth (PDm × M) × Merino, or second 

cross (PDg × BLM) – at four time points from 4 to 22 months of age (n = 593) were 

dissected, measured and weighed. Growth curves were fitted within genotype groups and 

used to compare (i) overall limb bone growth in terms of length and weight, (ii) differences in 

allometric growth coefficients for individual bones, (iii) relative limb bone proportions, and 

(iv) maturity proportion. Results showed two distinct phenotypes in terms of limb bone 



growth: (i) relative bone hypotrophy of lambs from PDm × M, suggesting that selection for 

loin depth (PEMD EBV) may be linked with smaller limb size and that their higher 

muscle : bone ratio may be due to a relative decrease in bone rather than increase muscle 

weight; and (ii) Merinos were found to have comparable limb length to terminal sire crosses, 

although distal limb elements were proportionately longer at the expense of the proximal 

segments that are associated larger muscles. There was a general lack of major differences in 

bone growth between sheep very different in other production traits, particularly when 

compared allometrically. Thus, differences in bone growth, proportion or skeletal maturation 

were greater between ewes and wethers than between these divergent genotypes. PDm × M 

and BL × M were found to be earlier maturing in terms of limb length, although the bone 

mineral profile (magnesium content) of PDm × M was suggestive of relative physiological 

immaturity. 

 

Introduction 

The increasing genotypic diversity in the Australian sheep meat industry has seen the 

emergence of breeds with significantly different growth rates and maturity patterns 

(Donnelly et al. 1985; Fogarty et al. 2000). The main genotypes used in Australian lamb meat 

production are a first-cross of Poll Dorset or Border Leicester terminal sires to Merino ewes, 

second cross of terminal sires to cross-bred ewes (typically Border Leicester × Merino), and 

purebred Merino strains. These genotypes are known to differ widely in size and 

conformation and this is likely to reflect different rates and patterns of skeletal growth. 

However, it is not known to what extent these differences reflect variation in the 

proportionate (i.e. allometric) growth of certain parts or in the more general rate of 

ontogenetic development. 



Further refinement of genetic selection has seen the increasing application of estimated 

breeding values (EBVs) to define specific traits such as eye muscle depth (PEMD EBV) or 

growth rate (e.g. postweaning weight; PWWT EBV) (Banks 1994). Previous experiments 

have suggested that selection for loin depth may be associated with relative limb bone 

hypotrophy (Cake et al. 2006a), consistent with the assertion that shortening of the distal 

limb bones is a defining characteristic of ‘improved’ meat breeds (Hammond 1932). 

 

Expanding export markets and recent findings that optimally processed cuts from older 

animals can maintain acceptable eating quality scores (Pethick et al. 2005) have reinvigorated 

interest in defining the growth patterns of prime lamb genotypes out to older, and potentially 

more ‘mature’, animals. Defining maturity using traditional indices referenced to bodyweight 

or composition (Berg and Butterfield 1966; McClelland et al. 1976; Butterfieldet al. 1983) 

becomes problematic when assessing divergent genotypes, particularly terminal sires selected 

for rapid lean growth. However, it is not clear to what extent alternative, qualitative maturity 

indices such as physeal closure or dental eruption accurately reflect physiological or even 

skeletal maturation. An alternative index of maturity may be bone mineral profile, in 

particular magnesium content which steadily declines in a manner which appears to reflect 

physiological rather than chronological age (Ho et al. 1989; Ravaglioli et al. 1996; Cake et 

al. 2006b). 

 

The aims of this study were to measure limb bone lengths from ewe and wether 

representatives of the above mentioned genotypes across four age cohorts spanning the lamb–

hogget transition, in order to model and compare absolute and allometric bone growth. This 



study represents the limb bone data of a larger 5 × 4 × 2 factorial, genotype × age × gender 

experiment, details of which are fully described by Hopkins et al. (2007). 

 

Materials and methods 

Progeny (n = 593) of 16 sires from five divergent genotypes were serially slaughtered at four 

ages (~4, 8, 14 and 22 months). Sire selection was based on sire EBVs for growth and muscle 

development and consisted of five crosses of Merino (M), Border Leicester (BL) and Poll 

Dorset (PD), including PD sires selected for high postweaning growth (PWWT) or eye 

muscle depth (PEMD) EBVs (PDg and PDm). PWWT EBV references liveweight at 225 days 

of age, after adjustment for environmental effects and heritability; PEMD EBV references 

ultrasonic loin muscle depth at the 12th rib, corrected to 45 kg liveweight and adjusted as for 

PWWT (Anon. 2004). All ewes were artificially inseminated with thawed frozen semen from 

the 16 sires, by commercial contractors using laparoscopy. Semen from the four Poll Dorset 

sires selected for growth (PDg) was used in both BL × M and M ewes, with the other sires 

used only across M ewes. Genotype groups were therefore: M × M, PDm × M, PDg × M, BL 

× M, and PDg × BLM (average of 30 progeny per genotype × age group; range 22–39). One 

of the Poll Dorset sires selected for loin depth (PDm, sire 5) was known to be homozygous 

for the Carwell gene (Hopkins et al. 2007). Flock management and nutrition pre- and 

postinsemination was as described by Hopkins et al. (2007). At marking the lambs were 

vaccinated against clostridial diseases, their tails were docked and the males were castrated. 

After weaning, lambs were grazed on a combination of lucerne and pasture species with some 

supplementation, as detailed by Hopkins et al. (2007). 

 



Bone analysis 

Metacarpal and metatarsal bones were collected from the slaughter chain in a commercial 

abattoir and stored at 4°C overnight. One day after slaughter the forelimb and hindlimb bones 

were excised from the left side of each carcass, partially cleaned of muscle tissue, sealed in 

plastic bags and stored frozen at –20°C for transport to Murdoch University. Upon thawing, 

bones were disjointed and cleaned of all remaining muscle and connective tissue and 

immediately weighed on digital scales. Radius and ulna were weighed together. Bone length 

measurements were made using 300-mm precision calipers (Mitutoyo Corporation, Japan) as 

previously described in the forelimb (Cake et al. 2006a), and in the hindlimb between defined 

landmarks of the femur (major trochanter to lateral condyle), tibia (medial tubercle of the 

intercondylar eminence to medial malleolus), metatarsal (proximal articular surface to sagittal 

ridge) and proximal phalanx of digit IV (sagittal groove to distal articular surface). 

 

Mineral analysis 

Bone ash calcium, phosphorus and magnesium content were determined to assess the 

‘mineral maturity’ of bone (Grynpas 1993; Ravaglioli et al. 1996; Cake et al. 2006b). 

Cylinders of cortical bone from the midshaft metacarpal were defatted in ethanol and diethyl 

ether, then dried (100°C overnight) before ashing in a muffle furnace (36 h at 600°C). For 

mineral analysis, samples were prepared from 200 mg of ash powder by digestion in aqua 

regia (1 : 3 conc. HNO3 : HCl), before further dilution in 1% nitric acid. Analysis was 

conducted by inductively coupled plasma-atomic emission spectrometry (ICP-AES), using a 

Varian Vista Simultaneous ICP-AES with a nebuliser and glass-cyclonic spray chamber, and 

appropriate standards for calibration. 



Data analysis 

As only the terminal, decelerating phase of bone growth was observed, this was found to be 

best fitted using the time exponent function L = a – b(rt) where L is bone length at age t in 

days, a is the mature length, b is the Y intercept, and r, which was always less than 1 

(typically 0.993–0.998), reflects the rate of maturation. This function was fitted iteratively 

within each sex, using the exponential FITCURVE function in Genstat (VSN International, 

Hemel Hempstead, UK), and the coefficients (a, b and r) tested for significant genotype 

effects (P< 0.05). Bone length and bone proportion (relative to the summed length of all 

bones for each limb), were tested for genotype and gender differences within each age group 

using a linear mixed effects model (SAS v.9.1, SAS Institute Inc.), with sire included as a 

random term within genotype. As genotype × gender interactions were always statistically 

significant, all presented data are split by gender. 

 

In order to assess allometric relationships in bone growth within each limb, lengthwise 

growth of each bone was compared with total limb bone length (sum of scapula + humerus + 

radius + metacarpal + proximal phalanx length, or femur + tibia + metatarsal + proximal 

phalanx length). This was done using the log form (log y = log a+ b.logx) of Huxley’s 

equation y = axb (Huxley 1932), where y represents the individual bone and x is the total limb 

bone length, analysed using a general linear model (GLM) procedure (SAS, v.9.1). In this 

case, genotype and gender were included in the model (where significant; P < 0.05) as fixed 

effects (thus representing adjustments for the a term), and as interactive terms with total limb 

bone length (representing adjustment for theb term). Similar allometric modelling was 

performed for bone weight v. hot carcass weight, to assess growth relative to all carcass 

musculoskeletal components. 



Maturity proportion was calculated for both total forelimb and hindlimb length 

(Mfore and Mhind) for each animal using the formula M = L / La where L is the measured total 

limb bone length and La is the mean asymptotic (adult) total limb length determined for each 

genotype and gender group, i.e. the a term of the exponential growth curve described above. 

This describes a proportion of maturity converging on a mean of 1 (fully mature). Data was 

insufficient to accurately model a by sire. Graphical representations of maturity were 

generated by fitting an expression of Brody’s growth equation (Brody 1945), where: M = a (1 

– e–k(t–t*)) constrained such that a = 1 and where k = decay constant, t = time (age in days), 

and t* = time at origin (of decelerating growth phase). Results were separated by gender. 

 

Results 

All measured limb bones were significantly shorter and matured earlier in ewes compared 

with wethers, such that, although the length difference was only 2–3% at 8 months (mean age 

236 days, Fig. 1), modelled mature bone lengths (a) differed in the range of 6–12% between 

sexes (Fig. 2). Sexual dimorphism in bone length was greatest overall at 8 months and was 

statistically significant in the PDm × M and PDg × BLM genotypes at this timepoint, though 

for mature lengths sexual dimorphism was greatest for the M × M genotype. 

 

Limb bone lengths differed significantly across the five genotype groups. BL × M and PDg × 

M progeny had the longest limb bones at 8 months, particularly for the more distal bones 

(Fig. 1). By contrast, PDm × M progeny had significantly shorter lengths for most bones 

examined at all time points, with this difference greatest in the more distal bones. For 

modelled mature lengths, PDm × M wethers had significantly shorter bones for all bones 



measured (except for scapula, humerus and femur, which did not differ from M × M), while 

PDm × M ewes showed a similar but less consistent pattern (Fig. 2). At 8 months, genotype 

differences in individual bone lengths were significant only for female lambs (Fig. 1). 

Exponential growth functions solved for y = a – b(rt) showed that, while wethers differed 

only in mature length (a term), ewes also differed in the b term, with the PDg× BLM 

genotype having a lower b coefficient for most bones, suggesting earlier maturation in terms 

of prenatal or early antenatal growth (data not shown). 

 

The proportions of each limb bone relative to the greater limb length also differed between 

genotypes (Fig. 3), with the most notable differences at 8 months being the proportionately 

shorter proximal bones (scapula, humerus, femur) and proportionately longer distal bones 

(radius, metacarpal, metatarsal) of M × M progeny. Also notable was the proportionately 

longer proximal bones of PDm × M progeny (scapula of ewes, humerus of wethers), and the 

proportionately shorter distal bones (metacarpal, metatarsal) of both PDm × M and PDg × 

BLM lambs. 

 

Genotype significantly affected limb bone weights at 8 months (Table 1) for all bones except 

the metatarsal of ewes. M × M bones were the lightest for most limb segments, whilst PDg × 

BLM were the heaviest, particularly in PDg × BLM wethers whose bones were significantly 

heavier than other genotypes for all proximal bones (scapula, humerus, femur, tibia). Gender 

differences were significant in the model for all bones but were greatest in PDg × BLM 

sheep. 

 



Allometric analysis of length v. total limb bone length (Table 2) confirmed that, as shown 

previously (Cake et al. 2006b), most limb bones obey a strict allometric relationship with the 

greater limb length, though this relationship is less consistent (i.e. higher residual error and 

lower r2 values) for the fore and hind cannon bones. Gender had a significant effect only on 

allometric a terms, principally in the metacarpal and to a lesser extent the scapula and femur. 

Genotype significantly affected a terms for all bones, but affected b terms only for the 

scapula, radius and metacarpal. M × M sheep showed b terms which were greater for the 

scapula and smaller for the radius and metacarpal, suggesting late and early maturation of 

proximal and distal bones, respectively; PDg × BLM sheep showed the opposite pattern. 

Genotypic differences in allometric growth, though statistically significant in both limbs, 

were quantitatively much smaller for hindlimb compared with forelimb bones. Allometric 

solutions for bone weight v. hot carcass weight (Table 3) showed a significant effect for 

gender primarily on allometric a terms (mostly higher in wethers), with an effect on b term 

only for the metacarpal and metatarsal. Genotype affected a terms for all bones and 

affected b terms for the scapula and metatarsal only. M × M sheep consistently showed the 

greatest allometric coefficients for all bones, suggesting early maturation of limb bones 

relative to the remainder of the frame; PDm × M and to a lesser extent PDg × BLM sheep 

mostly showed the opposite pattern (late maturation of limb bone weight relative to carcass 

weight). 

 

Estimates of limb bone length maturity proportion (Mfore and Mhind) were significantly lower 

in wethers compared with ewes at each time point (Table 4). M values were consistently 

significantly lower at the first three sampling points in M × M wethers, compared with higher 

values in PDm × M and BL × M wethers. However, there were fewer differences in females, 

the only notable difference being the PDm × M ewes were less mature than PDg × BLM ewes 



at the first kill (mean age 110 days). Modelling of limb length maturation curves (Fig. 4) 

demonstrated a similar pattern, with the most rapid maturation in wethers occurring in PDm × 

M and BL × M sheep and slowest maturation in M × M sheep (Fig. 4a, b) while, to some 

extent, ewes showed the opposite pattern in the forelimb (Fig. 4c) and few differences in 

length-wise maturation in the hindlimb (Fig. 4d). From these maturation curves, age 

differences at the same level of maturity could be interpolated for sexes and genotypes. 

Wethers took an additional 52 days to reach Mhind = 0.80, and an additional 188 days to 

reach Mhind= 0.95. For genotypes, age at Mhind = 0.80 was 116, 128, 134, 162 and 168 days 

for PDm × M, BL × M, PDg × M, PDg × BLM, and M × M, respectively. Age at Mhind = 0.95 

was 400, 438, 542, 576 and 588 days, respectively. Bone Ca2+-corrected magnesium content 

(Table 3) was greatest in PDm × M sheep and lowest in M × M and PDg × M sheep at 110 

days. Gender did not have a statistically significant effect on bone magnesium content. 

 

Discussion 

Hammond (1932) considered hypotrophy of distal limb bones, particularly the cannon, to be 

characteristic of ‘improved’ meat breeds and, thus, indicative of inherent productive ability. 

Of all the variation in bone growth observed in this study, the most striking phenotype is that 

of PDm × M sheep, which showed substantially shorter bones compared with other 

genotypes, particularly for more distal bones such as the fore and hind cannon. Allometric 

modelling showed PDm × M sheep to have lower weights for most bones relative to hot 

carcass weight. For example, they possessed less than 97% of the combined limb bone weight 

of PDg × M sheep. This confirms Hammond’s general association, but specifically suggests 

that selection pressure for muscling traits (in this case eye muscle depth) rather than general 

growth is associated with a decrease in limb length. This parallels the known phenomenon of 



relative bone hypotrophy in ‘double-muscled’ cattle breeds, which has been attributed to 

improved support for the increased body mass (Shanin and Berg 1987). 

 

Given that lengthening of bone normally accounts for the majority of increases in volume of 

dependant muscles (Young and Sykes 1987) and, conversely, that muscle hypertrophy 

increases dependant bone length (Banu et al. 2003), this association is not easily explained, 

though several possibilities might be advanced. First, there may be skewing of nutrient 

partitioning and/or sequence of tissue maturation promoting early muscle growth over bone 

(Cake et al. 2006a). Second, acceleration of overall maturation rate might be involved given 

that theM. longissimus thoracis et lumborum is an early maturing muscle (Butterfield 1988) 

and selection is based on eye muscle depth. While PDm × M wether progeny were found to 

be earlier maturing in this study, the same could not be shown for ewe lambs, while the early 

maturing BL × M genotype showed relatively increased growth of distal parts. Third, 

selection for loin depth may be acting through hormonal drivers of bone growth such as 

growth hormone (GH), since sheep expressing excess GH show increased bone growth yet 

relative under-muscling (Adams et al. 2006), the opposite to that observed in the PDm × M 

genotype in the present study. Alternatively, a more prosaic explanation is that selection for 

PEMD EBV, which is referenced to bodyweight (Hall et al. 2002) may inadvertently produce 

selection pressure for lighter appendages thus shorter limbs, as has been shown in other 

production animals such as rabbits (Gondret et al. 2005) and broiler chickens (Reddish and 

Lilburn 2004). However, other data from this study demonstrating shorter carcass length in 

PDm × M compared with PDg × M animals (Ponnampalam et al. 2007a), suggest that limb 

shortness is indicative of more generalised skeletal hypotrophy in this genotype. In this 

instance, selection for eye muscle depth might effectively select for a thicker, but shorter loin, 

with limited net effect on yield. DXA-derived carcass composition data from this study 



(Ponnampalam et al. 2007b) similarly suggest that, although PDm × M sheep have a higher 

lean : ash ratio than PDg × M sheep, this is primarily the result of the significantly lower ash 

percentage in the short-legged PDm × M sheep, rather than a true difference in carcass lean or 

fat percentage, which were not significantly different between the two groups. 

 

This growth study clearly demonstrated the distinctive proportions of purebred Merinos, 

whose combined limb length matured to a comparable length to the prime lamb crosses, but 

with growth impetus favouring comparatively longer distal bones and shorter proximal bones. 

Bone weights were shown allometrically to be heavier at a given carcass weight, indicative of 

the higher bone trim of this breed (Hopkins and Fogarty 1998) which may be in part a result 

of its ‘leggy’ proportions. As expected, the terminal sire crosses (PDg × M, BL × M, PDg × 

BLM) possessed larger limb bones, in accordance with their larger size. BL × M sheep 

showed earlier limb bone maturation and thus had the longest limbs at earlier time points, 

though not at maturity. By contrast, second cross (PDg × BLM) lambs matured more slowly 

to a longer mature limb length, though limb bone weights were comparatively low relative to 

hot carcass weight, due to their higher fatness (Ponnampalam et al. 2007b). 

Allometric b terms for scapula and metacarpal length relative to total limb length were both 

greater in BL × M and lower in PDg × BLM sheep, suggesting respectively earlier and later 

maturation of both bones in these genotypes. Thus, PDg × BLM and PDm × M sheep shared 

certain characteristics such as proportionately shorter cannons and longer proximal bones, 

despite their different skeletal maturation rates; likewise BL × M and M × M sheep. Other 

than suggesting that Border Leicesters are more Merino-like in their limb proportions, these 

genotypic differences are not easily reconciled with the crosses involved (for example, why 

larger second-cross PDg × BLM sheep should have a lighter limb skeleton than first-cross 

PDg × M sheep) and appear to deny any inherent association between early limb proportions 



and either productive capacity or skeletal maturity, as suggested by Hammond (1932). By 

contrast PDg × M sheep were unexceptional in most aspects of their limb bone growth. This 

result is contrary to that of Thompson et al. (1985), who found that selection of Merino 

strains for high weaning weight induced proportionately heavier skeletons (total bone weight 

as a fraction of total mature bodyweight), though it can be argued that the opposite finding 

for the PDm × M genotype in this study may have, in part, resulted from the selection of sires 

with low PWWT EBV. 

 

Gender differences in limb length were larger than expected and were greatest in PDm × M 

and PDg × BLM lambs, in line with the parallel suggestion of Hopkins et al. (2007) that 

genetic improvement may have accentuated differences in size (i.e. bodyweight) in ewes v. 

wethers of modern prime lamb genotypes compared with historical reports. However, gender 

differences in allometric terms, though statistically significant, were quantitatively minor for 

most bones. Similarly, while some genotypic differences in allometric growth relationships 

were observed, these were modest and were mainly confined to the forelimb. The scapula 

(unique in this series in not being a long bone) showed the greatest genotype difference in 

allometric growth, probably accounting for other differences in growth relative to the total 

forelimb length. The absent or minor differences in allometric b terms suggest that genotypic 

differences in bone length are mainly secondary to differences in prenatal or early antenatal 

growth. These results conform with other studies showing limb bone growth coefficients to 

be highly conserved genetically, for example between male and female Jersey cattle, or 

various pig breeds (Richmond et al. 1979; Davies et al. 1984). Results suggest that, although 

genotype and gender differences in conformation (for example, the predominance of distal 

over proximal parts in M × M sheep, and vice versa in PDg × BLM sheep) are partly 



explained by differences in allometric growth gradients, heterochronic alterations in whole 

limb growth rate play a greater role. 

 

Sheep maturity is usually indexed either as a proportion of bodyweight (McClelland et al. 

1976; Butterfield et al. 1983) or carcass composition (Berg and Butterfield 

1966; Oberbauer et al. 1994), or using qualitative traits such as the ‘breakjoints’ of USDA 

maturity scores (USDA 1982; Ho et al. 1989) or eruption of permanent dentition. We have 

previously advocated the use of maturity proportions based on limb bone lengths indexed to a 

known or estimated mature endpoint (Cake et al. 2006b). This index demonstrates that ewes 

mature skeletally earlier than wethers, and that PDm × M and BL × M wethers mature earlier 

compared with wethers of other genotypes. This is only partly consistent with tooth eruption 

data from the same study (Hopkins et al. 2007), showing that BL × M and PDg × BLM, but 

not PDm × M, lambs showed earlier eruption of permanent dentition. In agreement with this 

discrepancy, bone magnesium content of PDm × M lambs at earlier timepoints was also 

consistent with the mineral profile of physiologically less mature animals, despite their more 

relatively advanced skeletal maturity (Ravaglioli et al. 1996; Cake et al. 2006b). Similarly, 

although ewes are known to mature earlier in terms of metacarpal growth plate closure (Ho et 

al. 1989; Jeremiah et al. 1997) and were clearly demonstrated in this study to be earlier 

maturing skeletally, the absence of a gender difference in bone magnesium content and the 

later eruption of permanent dentition in ewes shown by Hopkins et al. (2007) suggests this 

does not necessarily reflect earlier physiological maturation. 

 

In summary, of the five genotypes assessed in this study as representatives of typical crosses 

used in Australian prime lamb production, two phenotypes were distinct in terms of limb 



bone growth. The relative bone hypotrophy of lambs from Poll Dorset sires with high EBVs 

for eye muscle depth (PDm × M) provides further evidence that selection for specific 

muscling traits may be linked with reduced body size. This highlights a potential danger of 

the muscle : bone ratio as a primary index of productivity; namely, that selection may 

relatively decrease bone rather than increase muscling. Second, Merinos were found to have 

comparable limb length to terminal sire crosses, but with this comprising more distal limb 

elements at the expense of more productive proximal segments, a phenomenon possibly 

contributing to the greater bone trim and lower yield of some cuts (e.g. silverside, topside) 

from Merino lambs (Hopkins and Fogarty 1998). However, also notable was the lack of 

differences in bone growth between sheep very different in other production traits, 

particularly when compared allometrically. Thus, differences in bone growth, proportion, or 

skeletal maturation were greater between ewes and wethers than between these divergent 

genotypes. 
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Fig. 1.  Limb bone lengths (mm) at 8 months (mean age 236 days) by genotype and sex. 

Arrows indicate positive (↑) or negative (↓) deviation from gender-specific mean by ± <1% 

(1 arrow), <2% (2 arrows), or <3% (3 arrows). Values followed by the same letter do not 

differ (P > 0.05); wethers (M) and ewes (F) differ by *, P < 0.05; **, P < 0.005; ***P < 

0.0005. 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 2.  Predicted limb bone lengths (mm) at maturity [a where L = a – b(rt)] by genotype and 

sex. Arrows indicate positive (↑) or negative (↓) deviation from gender-specific mean by ± 

<2% (1 arrow), <4% (2 arrows), or <6% (3 arrows). Values followed by the same letter do 

not differ between genotypes (P > 0.05) within wethers (a,b,c) or ewes (x,y,z); wethers (M) 

and ewes (F) differ within genotype by *, P < 0.05; **, P < 0.005; ***P < 0.0005. 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 3.  Predicted limb bone proportions (i.e. fraction of total limb length) at 8 months (mean 

age 236 days), by genotype and sex. Arrows indicate positive (↑) or negative (↓) deviation 

from gender-specific mean by ± <1% (1 arrow), <2% (2 arrows), or <3% (3 arrows). Values 

followed by the same letter do not differ between genotypes (P > 0.05) within wethers (a,b,c) 

or ewes (x,y,z); wethers (M) and ewes (F) differ within genotype by *, P < 0.05; **, P < 

0.005; ***P < 0.0005. 

  

 

 

 

 

 

 

 

 

 



Fig. 4.  Modelled plots of maturity proportion (i.e. proportion of mature length a where a = 1) 

for forelimb (Mfore; a, c) and hindlimb (Mhind; b, d) length of wethers (a, b) and ewes (c, d). 

 

 

 

 

 

 

 



Table 1.  Limb bone weights (g) by gender and genotype, at kills 2 (mean age 236 days) 

and 4 (662 days) 

 

Values followed by the same letter do not differ between genotypes (P < 0.05) within wethers 

(a,b,c) or ewes (x,y,z). Differences between wethers and ewes within genotype are: *, P < 

0.05; **, P < 0.01; ***, P < 0.001; s.e., standard error of mean 

 

 

 

 

 

 

 

 

 



Table 2.  Allometric regression coefficients (where log y = log a + b log x) for limb bone 

length relative to total forelimb or hindlimb length, including effect of gender where 

significant (correction for wethers relative to ewes) and genotype 

 

Total limb bone length (mm) = scapula + humerus + radius + metacarpal + proximal phalanx 

(forelimb) or femur + tibia + metatarsal + proximal phalanx (hind); constants followed by the 

same letter do not differ between genotypes (P < 0.05); s.e., standard error of mean; RMSR, 

root mean square of residual; d.f., numerator and denominator degrees of freedom. *, P < 

0.05; **, P < 0.01; ***, P < 0.001; n.s., not significant 

 

 

 

 

 

 

 



Table 3.  Allometric regression coefficients (where log y = log a + b log x) for limb bone 

weight relative to hot carcass weight, including effect of gender where significant 

(correction for wethers relative to ewes) and genotype 

 

Constants followed by the same letter do not differ between genotypes (P < 0.05); s.e., 

standard error of mean; RMSR, root mean square of residual; d.f., numerator and 

denominator degrees of freedom. *, P < 0.05; **, P < 0.01; ***, P < 0.001; n.s., not 

significant 

 

 

 

 

 

 

 



Table 4.  Mean limb length maturity proportion (M) and bone mineral maturity indices, 

by genotype and sex 

 

Values followed by the same letter do not differ between genotypes (P < 0.05) within wethers 

(a,b,c) or ewes (x, y, z); s.e., standard error 
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