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Abstract. Formal Concept Analysis (FCA) is an emerging data tech-
nology that has applications in the visual analysis of large-scale data.
However, data sets are often too large (or contain too many formal con-
cepts) for the resulting concept lattice to be readable. This paper com-
plements existing work in this area by describing two methods by which
useful and manageable lattices can be derived from large data sets. This
is achieved though the use of a set of freely available FCA tools: the
context creator FcaBedrock and the concept miner In-Close, that were
developed by the authors, and the lattice builder ConExp. In the first
method, a sub-context is produced from a data set, giving rise to a read-
able lattice that focuses on attributes of interest. In the second method,
a context is mined for ‘large’ concepts which are then used to re-write
the original context, thus reducing ‘noise’ in the context and giving rise
to a readable lattice that lucidly portrays a conceptual overview of the
large set of data it is derived from.

1 Introduction

It has been shown that a variety of data sets can be converted into formal con-
texts [7,2] by a process of discretising and Booleanising the data. However, data
sets of only modest size can produce contexts containing hundreds of thousands
of formal concepts [9], making the resulting concept lattices unreadable and un-
manageable. Perhaps more pertinent than size, however, is the density of and
‘noise’ in a context; factors that increase the number of formal concepts. There
is also an issue in computing large numbers of formal concepts; much of the
existing software are not capable of carrying out this task on a large scale. Tools
such as ToscanaJ [5] and Concept Explorer (ConExp) [14] exist that compute
and visualise concept lattices but are not designed to do so for large numbers of
concepts.

This paper describes two ways in which concept lattices can be produced
from data sets: 1) by creating sub-contexts by restricting the conversion of the
data to information of interest, and 2) by removing relatively small concepts
from a context to reduce ‘noise’, so that a readable, yet still meaningful, concept
lattice can be produced.



2 Analysis of Sub-Contexts from Data Sets

FcaBedrock1 is a freely available tool developed by the authors that converts csv
format data files into formal context cxt files and FIMI data format files [3]. It
reads a data file and automatically converts each many-valued data attribute in
the file to formal attributes. The process is guided by the user in deciding how
the data set should be interpreted. The user can specify, for example, discrete
ranges for continuous data attributes and what names should be given in the cxt
file to the formal attributes. The user can also create sub-contexts by restricting
the conversion to only the data attributes of interest for a particular analysis.
Such meta-data, used to guide the conversion process, is stored in a separate file
called a Bedrock file. These files can be loaded into FcaBedrock to repeat the
conversion, or allow changes in the meta-data to be made to produce different
sub-contexts for alternative analyses.

2.1 Attribute Exclusion

To illustrate the production of concept lattices from data sets using sub-contexts,
the well-known Mushroom and Adult data sets from the UCI Machine Learning
Repository [4] will be used. The Mushroom data set contains data of 8124 edible
and poisonous mushrooms of the families agaricus and lepiota. It is many-valued
categorical data with attributes describing properties such as stalk shape, cap
colour and habitat. As an example of the agaricus family of mushrooms, Figure
1 is of a meadow agaricus.

Fig. 1. A meadow
agaricus mush-
room (source
www.50birds.com/
gmushrooms1.htm)

The data set was converted by FcaBedrock using all of the attributes and
their categories. The resulting cxt file was processed by a formal concept miner
developed by one of the authors, called In-Close2 [1], generating over 220,000
concepts; far too many to visualise.

However, let us say we are interested in the relationship between mushroom
habitat and population type. Figure 2 shows the meta-data for the Mushroom
data set loaded into FcaBedrock. The Convert column was used to select only
habitat and population to convert. In this way, a Mushroom sub-context was
created containing formal attributes only for habitat and population. There were
13 formal attributes in all, corresponding to the 7 categories of habitat: grasses,

1 https://sourceforge.net/projects/fcabedrock
2 https://sourceforge.net/projects/inclose

www.50birds.com/gmushrooms1.htm
www.50birds.com/gmushrooms1.htm
https://sourceforge.net/projects/fcabedrock
https://sourceforge.net/projects/inclose


leaves, meadows, paths, urban, waste and woods, and 6 categories of population
type: abundant, clustered, numerous, scattered, several and solitary.

Fig. 2. Mushroom habitat/population sub-context being created by FcaBedrock

This cxt file was then processed by ConExp to produce the concept lattice in
Figure 3. In ConExp, the size of the node in the lattice can be made proportional
to the number of own objects (mushrooms), so it can be seen that, for example,
clusters of mushrooms are found in similar numbers in woods, leaves and waste
ground, but not in other habitats. Solitary mushrooms are most likely to be
found in woods, although they can occasionally be found in paths, urban areas
and grassland.

A similar approach is applied by TocscanaJ [5], where an individual cat-
egorical attribute or a pair of continuous attributes are scaled to produce a
lattice. A further attribute can be added as a nested lattice. The nested re-
sults are not always easy to interpret, however, sometimes requiring some visual
cross-referencing of diagrams, and adding further lattice ‘nests’ does not appear
possible or practical.

2.2 Object Exclusion

A second analysis was carried out, this time using the Adult data set [4]. This
data set is US Census data of 32,561 adults, with attributes such as age, edu-



Fig. 3. Mushroom habitat/population lattice in ConExp

cation and employment type. The formal context produced when all the (suit-
able) attributes were converted contained over 100,000 concepts. However, let us
say that in this analysis we are interested in comparing how pay is effected by
gender in adults who have had a higher education. To carry out this analysis,
FcaBedrock was used (Figure 4) to convert only the sex (male, female), class
(pay <=$50k, pay >$50k) and education attributes. Furthermore, FcaBedrock’s
attribute value restriction feature was used to convert only those objects (adults)
with the education attribute value Bachelors, Masters or Doctorate (three out
of the 16 possible categories of education in the data set). This resulted in a
sub-context with 7 formal attributes and 7,491 objects.

The resulting concept lattice in ConExp is shown in Figure 5, containing 37
concepts. The number of objects (and the percentage of the whole) is being dis-
played for the concepts of interest. Because only objects with Bachelors, Masters
or Doctorate education categories were included in the conversion, there were 13
education categories (such as 10th grade and high school graduate) left with zero
objects associated with them. Such unsupported formal attributes are normally
labeled at the infimum of the concept lattice, but these labels can be hidden in
ConExp.

Although a little cluttered with lines, the lattice is still readable, aided by
a ConExp feature whereby information regarding a concept is displayed when
a node is pointed to with the mouse. An examination of the concepts allows
us to compare the percentage of males and females who earn more than $50k,
for each type of higher education. With a Bachelor’s degree, 21% of females
and 50% of males earned more than $50k. This ‘gender gap’ was maintained at
Master’s level, with 33% of females and 65% of males earning more than $50k,



Fig. 4. Adult Degree/sex/pay sub-context being created by FcaBedrock

but narrowed slightly at Doctorate level, with 58% of females and 78% of males
earning more than $50k.

3 Reducing ‘Noise’ in a Context

The approaches described so far rely on reducing the size of the context. The
next approach is to focus on the size of the concepts, using the well-known idea
of minimum support [15] to filter out relatively small concepts (noise) from the
data. This is achieved by specifying a minimum number of objects and/or at-
tributes for a concept. Noise is therefore simply the concepts containing numbers
of attributes or objects smaller than the user-defined minimums. This approach
has been shown to be useful in gene-expression analysis [8] although the process
described appeared to involve a degree of manual manipulation of the data and
bespoke programming, and the analysis stopped short of visualising the results
in a concept lattice.

In contrast, the approach described here is a semi-automated form of lattice
‘iceberging’ [13] to reduce noise using minimum support to such an extent that a
manageable and meaningful concept lattice can be produced from the remaining
concepts, thus giving a broad conceptual overview of the data. The reduction
of noise is achieved by mining a context for concepts that satisfy a minimum
support and then re-writing the context using only those concepts.



Fig. 5. Adult Degree/sex/pay lattice in ConExp

In-Close does this automatically. After mining concepts that satisfy a mini-
mum support, In-Close uses them to output a ‘quiet’ (or ‘clean’) version of the
original cxt file. This can then be used to produce a readable concept lattice.
Figures 6 and 7 show a small example of applying a minimum support of two
attributes and two objects. The two concepts large enough to satisfy the mini-
mum support are ({a0,a1,a2},{o0,o1}) and ({a2,a3},{o1,o2}). These are mined
and used to create the ‘quiet’ version. The lattices of the small ‘noisy’ and ‘quiet’
examples are shown in Figures 8 and 9 respectively.

In contrast to traditional iceberging, where a lattice is truncated by remov-
ing concepts that do not have a defined minimum number of objects, a complete
hierarchy is maintained here in the resulting lattice, because where the large
concepts ‘overlap’, other concepts are found during a second pass of concept
mining (with no minimum support) when producing the concept lattice. In this
way, possibly significant concepts that would not have satisfied the original min-
imum support are retained. In this simple example, the connecting concepts are
({a2},{o0,o1,o2}) and ({a0,a1,a2,a3},{o1}). These will be generated, along with
the ones that satisfied the original minimum support. It should be noted that
this means that it is the second, usually larger number of concepts that has to
be noted when deciding on the level at which a manageable lattice is produced.



a0 a1 a2 a3 a4 a5

o0 × × ×
o1 × × × × ×
o2 × ×
o3 × ×

Fig. 6. A small ‘noisy’ context

a0 a1 a2 a3 a4 a5

o0 × × ×
o1 × × × ×
o2 × ×
o3

Fig. 7. A ‘quiet’ version of the ‘noisy’ context

Fig. 8. Lattice in ConExp of the small ‘noisy’ context

Fig. 9. Lattice in ConExp of the small ‘quiet’ context



3.1 A Student Survey Example

To illustrate this method, an analysis is carried out here on a set of student
survey data [6] consisting of demographic and ‘problem’ data from 587 university
undergraduates. The ‘problem’ data consists of ‘yes/no’ responses to 36 problems
(or reasons for problems) that a student may have experienced during their
studies; such as missing too many lectures, performing below their expectations,
finding it difficult to settle or having high outside commitments. This is a good
example of a noisy data set: there were 145 formal attributes when all the original
attributes were converted by FcaBedrock, and the rather subjective ‘yes/no’ data
gave rise to a context that was quite dense (20%) and noisy. Using In-Close, there
were found to be 22,760,243 concepts.

However, let us say that we were only interested in analysing the ‘problem’
data. By only converting these attributes and excluding the demographic ones,
a context containing 339,672 concepts was produced; a significant reduction but
still far too many for a readable lattice. To reduce this number of concepts
further, In-Close was used with minimum support specified for the intent and
extent. The minimum size of intent was set to four. Although this may seem an
arbitrary choice, it was decided that this would represent a sensible number if we
were interested in combinations of problems that are experienced by students.
The minimum support for the extent (number of students) was then varied to
obtain large concepts that were small enough in number to obtain a readable
lattice. Experimenting with In-Close, it appeared that a minimum support of
between 80 and 70 students would produce a manageable lattice with between
32 and 160 nodes.

The lattice shown in Figure 10 was produced using the context generated by
In-Close with a minimum support of 80 students (minimum of four attributes). In
this case, the nodes in ConExp had a fixed radius to make them more prominent.
The attributes related to the following problems asked in the student survey:

– course: Have sometimes found course stressful
– stress: Stress problems
– leave: Considered changing/leaving at some stage
– different: Course different from expectation
– examinations: Examination performance below expectations
– commitments: Outside commitments high
– distractions: Too many distractions that affect ability to study

The lattice appeared to give some useful insight into commonly connected
problems experienced by undergraduates. It seemed that a stressful course was
a common problem (217 students) in combination with general stress problems,
considering leaving a course, finding a course different to expectations and not
performing as expected in examinations. Problems that were less common, but
still related, seemed to be having high outside commitments and a large number
of distractions; all students who reported these problems found their course
stressful.



Fig. 10. Student problem lattice in ConExp

3.2 Comparing Quiet Sub-Contexts

To further illustrate the usefulness of this method, a second analysis of the
Mushroom data set was carried out, this time to investigate differences between
poisonous and edible mushrooms. The attribute value restriction of FcaBedrock
was used to divide the mushroom context into an edible mushroom sub-context
and a poisonous mushroom sub-context. There were 4,208 objects (mushrooms)
and 92,543 concepts in the edible mushroom sub-context and 3,916 objects and
86,198 concepts in the poisonous mushroom sub-context. To provide a significant
number of attributes to compare, 10 was chosen as the minimum support for
intent. The process of reducing noise using minimum support by In-Close was
carried out, resulting in an edible mushroom concept lattice containing 2,848
objects and 17 concepts, and a poisonous mushroom concept lattice containing
3,344 objects and 14 concepts (Figures 11 and 12).

Similarities were identified as attributes expressed in both lattices and were
moved to the right of each lattice. Differences were identified as attributes ex-
pressed in only one lattice and were moved to the left, thus giving a clear visual-
isation for comparison. Examining the lattices suggest combinations of features
that indicate if a mushroom is safe to eat. For example, it seems that smooth-
stalked mushrooms are likely to be safer to eat than silky-stalked ones. The
lattices also suggest that mushrooms with pendant rings are more wholesome
than those with evanescent rings. The combination of a foul smell, bulbous root
and a chocolate coloured spore print would seem to be a strong indication of
danger. The fact that bruised mushrooms are likely to be edible could be be-



Fig. 11. Edible mushroom lattice in ConExp

Fig. 12. Poisonous mushroom lattice in ConExp



cause foraging animals may damage mushrooms that are near to ones they are
eating.

4 Conclusion

Although large data sets may be difficult to deal with computationally, it is the
number of formal concepts derived from a data set that is the key factor in de-
termining if a concept lattice will be useful as a visualisation. Typical data sets
contain too many concepts. It has been shown here that readable lattices can
be produced from real data sets with a straightforward process of creating sub-
contexts and reducing noise, using freely available software. Whilst the analyses
presented here have not been rigorously corroborated with domain expertise or
statistical analysis of the data, we have nonetheless demonstrated that under-
standable results are obtainable from existing data sources where this would not
normally have been the case. Formal contexts that would normally be intractable
for visualisation have been processed in a disciplined manner to provide mean-
ingful results. This has been achieved by 1) focusing on information of interest
and by 2) reducing ‘noise’ in the context, thus revealing readable lattices that
lucidly portray conceptual meaning in large data sets.

The cxt format, commonly used in FCA, was used successfully here to inter-
operate between the tools. Further integration of the tools would make the anal-
ysis easier to perform. This would also give scope for improvements such as
discarding the attributes that are left with no objects after the second pass of
concept mining, rather than manually hiding these labels in ConExp. Integra-
tion will also open up the possibility of more dynamic analysis, where a user
can quickly see changes in the lattice when altering the parameters of analy-
sis. Some of the operations, such as determining the level of minimum support,
would particularly benefit from this greater degree of automation.

There may be limitations in the technique of noise reduction presented here;
for example, if two otherwise identical attributes that have high support differ
only in one object (possibly even due to error of data entry), concepts for the
first and second attribute will be included in the resulting lattice. Such anoma-
lies might be removed by applying the notion of concept stability, where the
stability of a concept is defined by the extent to which its attributes are de-
pendent on its objects (a stable concept is not affected by attribute ‘noise’ in
object descriptions) [10] or by applying so-called fault-tolerant FCA, in allowing
a bound number of exceptions (false values) in a concept [11]. A comparison of
techniques of noise reduction and concept clustering would be useful.
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