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The existing formulations of electron-impact ionization of a hydrogenic target suffer from a number of
formal problems including an ambiguous and phase-divergent definition of the ionization amplitude. An alter-
native formulation of the theory is given. An integral representation for the ionization amplitude which is free
of ambiguity and divergence problems is derived and is shown to have four alternative, but equivalent, forms
well suited for practical calculations. The extension to amplitudes of all possible scattering processes taking
place in an arbitrary three-body system follows. A well-defined conventionalpost form of the breakup ampli-
tude valid for arbitrary potentials including the long-range Coulomb interaction is given. Practical approaches
are based on partial-wave expansions, so the formulation is also recast in terms of partial waves and partial-
wave expansions of the asymptotic wave functions are presented. In particular, expansions of the asymptotic
forms of the total scattering wave function, developed from both the initial and the final state, for electron-
impact ionization of hydrogen are given. Finally, the utility of the present formulation is demonstrated on some
well-known model problems.
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I. INTRODUCTION

Electron-impact ionization of hydrogenic targets is the
simplest three-body Coulomb problem, and, therefore, of
fundamental importance. In particular over the last decade
the study of this process through direct numerical solution of
the relevant Schrödinger equation has emerged as a powerful
approach to the problem. The direct method comprising the
solution of a set of coupled partial differential equations in a
two-dimensional radial lattice was first applied by Temkin
[1] to a simplified model of the electron-hydrogen scattering
problem which retained only states with zero orbital angular
momenta. Later, Poet[2] suggested an efficient numerical
approach to this model problem which essentially made it
exactly solvable below the first excitation threshold of hy-
drogen. This model has since been referred to as the Temkin-
Poet(TP) model and has served as a testing ground for other
theoretical approaches. Subsequently, numerical methods
were extended to include more partial waves and applied to
the full problem at energies between the first and the second
excitation thresholds[3–6]. More recently, Jones and Stelbo-
vics [7] used a direct integration method to calculate
electron-impact ionization within the framework of the TP
model. A major advance in the direct solution of the
Schrödinger equation was made using the exterior complex
scaling (ECS) technique[8–10] when calculations reached
the stage of yielding quantitative agreement with measure-
ments of e-H fully differential ionization cross sections.
Close-coupling-based methods, such as the convergent close-
coupling[11], R matrix [12], T matrix [13], and other meth-
ods, have also yielded excellent agreement with experiment.

However, from the theory point of view several issues
relating to a complete formal understanding of the process

remain open. Considerable progress in numerical computa-
tions based on the Scrödinger equation mentioned above has
been made in spite of such formal problems. To be more
specific, we emphasize, for example, that all of the sophisti-
cated approaches to the ionization problem mentioned above
rely on some form of approximation when it comes to ex-
tracting the ionization amplitude from the calculated total
scattering wave function. In fact, the ionization cross sec-
tions are calculated from a formally incomplete definition of
the ionization amplitude as we pointed out[14]. Thus, de-
spite the success of the computational methods, the formal
theory of ionization has not been able to show how to calcu-
late the ionization amplitude unambiguously. One reason
preventing the direct integration methods from extracting
ionization cross sections rigorously has been a lack of an
ambiguity-free form of the asymptotic wave function for
positive energies. The well-known Peterkop asymptotic wave
function [15] is not valid in all asymptotic domains relevant
to the problem and is ambiguous where it is valid[16]. In
part because of this it has been impossible to define the ion-
ization amplitude in a divergence-free manner. The full and
unambiguous asymptotic forms of the three-body scattered
wave function has been given recently[16,17]. This allowed
us to obtain an integral representation for the ionization am-
plitude which is free of ambiguity and divergence problems
[14]. In part, our analysis has provided a formal justification
of the cross sectionsobtained in the ECS-based method
[8–10].

In this work we give details of the results outlined in[14].
In addition, we present four alternative forms of the ioniza-
tion amplitude. These forms designed for ionization are then
generalized to all possible scattering processes which may
take place in the system. Our formulation is also shown to
resolve another long-standing formal problem, the extension
of the conventionalpost form of the breakup amplitude,
valid for short-range potentials, to long-range potentials. We
develop a well-defined post form of the breakup amplitude*Electronic address: A.Kadyrov@murdoch.edu.au
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valid for arbitrary potentials including the long-range Cou-
lomb interaction. We then generalize the results for the full
amplitudes to the individual partial amplitudes as these are
extracted in practical calculations and combined to make up
the physical ionization amplitude. This naturally requires
knowledge of the partial waves of the asymptotic wave func-
tions. The partial-wave expansion of the asymptotic wave
function is developed for both the incident-[18,19] and
scattered-wave[16,17] asymptotic forms of the three-body
wave functions. Though we deal here with thee-H system,
the formalism presented is general. The results given below
are readily applicable to extraction of amplitudes in direct
calculations of other atomic and molecular breakup pro-
cesses including the double photoionization of helium[20]
and similar problems in nuclear physics. They may also be
useful in further developing the effective-charge perturbation
approaches[21–23]. The partial-wave forms of the three-
body wave functions presented in this work have other uses.
For instance, they are capable of immediately reducing the
six-dimensional integrals used in the distorted-wave Born
approximation[19,24,25] to two-dimensional ones.

The plan of the paper is as follows. In Sec. II we first
discuss the formal and consequent practical problems of the
existing theory of ionization. In Sec. III we derive a formally
correct, unambiguous, and divergence-free representation for
the ionization amplitude. In Sec. IV we show that the ioniza-
tion amplitude in the present formulation directly takes
forms also ideally suited for practical calculations. We dem-
onstrate that there are four alternative forms of the ionization
amplitude in addition to the two forms known in the litera-
ture as the post and prior forms. These forms are then ex-
tended beyond the ionization amplitude to cover also ampli-
tudes of all other possible scattering processes. A partial-
wave analysis of the initial- and final-state three-body wave
functions is performed in Sec. V. Then in Sec. VI we extend
the results of Sec. III to the partial ionization amplitudes. The
utility of the present formulation of the theory of electron-
impact ionization will be demonstrated in Sec. VII for well-
known model problems. The so-called screening and collin-
ear models of electron-hydrogen ionization will be
considered. In Secs. VIII and IX we discuss and summarize
the results of the present work.

Atomic units are used throughout this work; we also as-
sume that the proton is infinitely heavy compared to the elec-
trons and remains at the origin of the coordinate system. To
avoid inessential complications we assume the electrons to
be distinguishable. The generalization to the case of indistin-
guishable electrons(and to arbitrary masses as well) is
straightforward.

II. THE PETERKOP FORMALISM

Consider scattering of electrone1 with incident momen-
tum ki off a hydrogen atomsp,e2d in initial statefisr2d of
energyEi. Assume that the energy of the projectileki

2/2 is
enough to break up the target. The ionization amplitude in
the prior form is well defined and given according to[26]
(for brevity we omit the index prior in the notation; other
forms of the amplitude which we introduce later will have a
corresponding label)

Tsk1,k2d =E dr1dr2C f
−psr1,r2dV̄iF

sidsr1,r2d. s1d

Here C f
− is the total scattering wave function developing

from an initial state of three particles in the continuum with
incoming scattered-wave boundary condition and describes
the

e1 + e2 + p → 5e1 + e2 + p,

e1 + sp,e2d,

e2 + sp,e1d
6 s2d

processes[we call them 3→3 scattering and 3→2 (recom-
bination) processes]. The wave functionC f

− satisfies the
Schrödinger equation

sE − HdC f
−sr1,r2d = 0, s3d

where H=H0+V is the total three-body Hamiltonian,H0=
−Dr1

/2−Dr2
/2 is the free three-body Hamiltonian,V is the

full interaction, andE=ki
2/2+Ei =k1

2/2+k2
2/2 is the total en-

ergy of the system,V̄i =V−Vi in Eq. (1) is the interaction of
the incident electron with the target particles,r1 and r2 are
the coordinates of the electrons relative to the proton, andk1
and k2 are their momenta. The wave function representing
the initial two-fragment channel is given by a product of the
incident plane wave and the initial bound-state wave func-
tion

Fsidsr1,r2d = eiki·r1fisr2d. s4d

For further reference we note, however, that, in general, the
initial-channel wave function satisfies

sE − H0 − VidFsidsr1,r2d = 0, s5d

whereVi is the potential responsible for the bound state in
the initial channel. According to our particular choice of the
initial channel,Vi is the Coulomb interaction of electrone2
and the proton.

The ionization amplitude given by the form(1) is difficult
to calculate because it requires the total scattering wave
function C f

−, which evolves from a free three-particle initial
state. In addition, for the ionization amplitude to be calcu-
lated from this definition, a knowledge ofC f

− in the entire
space is necessary. Therefore, this form of the ionization am-
plitude has often been used in distorted-wave Born-type cal-
culations(see, e.g.,[19,24,25,27] and references therein).

Instead, Peterkop[28,29] and Rudge[30] considered the
integral

Iz1,z2
sk1,k2d =E dr1dr2Fi

+sr1,r2dsH − EdCz1,z2

s2Cd−psr1,r2d,

s6d

whereFi
+ is a solution of the Schrödinger equation

sE − HdFi
+sr1,r2d = 0, s7d

with outgoing scattered-wave boundary condition[31]. The
wave functionFi

+ describes
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e1 + sp,e2d → 5e1 + e2 + p,

e1 + sp,e2d,

e2 + sp,e1d
6 s8d

processes[we call them 2→3 (ionization) and 2→2 scatter-
ing processes]. The functionCz1,z2

s2Cd− is a product of the two
Coulomb(2C) wave functions with effective chargesz1 and
z2:

Cz1,z2

s2Cd−sr1,r2d = eik1·r1+ik2·r2cz1
sk1,r1dcz2

sk2,r2d, s9d

with incoming-wave boundary condition. The Coulomb part
is given by

cnsk,rd = Gs1 + in/kdexpspn/2kd 1F1„− in/k,1;− iskr + k · rd…,
s10d

where1F1 is the confluent hypergeometric function.
Using Eq.(7) and the Green’s theorem[32] the volume

integral in Eq.(6) can be written as a surface integral

Iz1,z2
sk1,k2d =

1

2
lim
R→`

R5E dr̂1dr̂2E
0

p/2

da sin2 a

3cos2 aSCz1,z2

s2Cd−p]Fi
+

]R
− Fi

+
]Cz1,z2

s2Cd−p

]R
D ,

s11d

where R=sr1
2+r2

2d1/2 is a hyperradius,sr̂1, r̂2,ad is a five-
dimensional hyperangle, witha=arctansr2/ r1d.

The advantage of the integral form(11) is that here the
total wave functionFi

+ develops from the exact initial state
Fsid given by the product of a plane wave and a hydrogen
bound-state wave function. Additionally, Eq.(11) is readily
expanded in partial waves leading to a sum of one-
dimensional integrals. On the other hand Eq.(1) reduces to a
two-dimensional integral upon partial-wave expansion. Most
importantly, the integralIz1,z2

depends only on the asymptotic
behavior of the wave functionsFi

+ and Cz1,z2

s2Cd− on an infi-
nitely large hypersphere and, therefore, knowledge of the
wave functionFi

+ over the entire space is not required.
Let us define the domainV0 to correspond to the space

where all interparticle distances are large, i.e.,r1, r2, r3 sr3

=r1−r2d→`, in a manner thatr1/ r2→constÞ0. In this do-
main the asymptotic behavior ofFi

+ was found by Peterkop
[15] and is written, in the leading order ofR, as

Fi
+sr1,r2d→

V0

Asr̂1, r̂2,adR−5/2eikR+ig lnskRd, s12d

wherek=s2Ed1/2,

g =
1

k
S 1

cosa
+

1

sina
−

1

Î1 − r̂1 · r̂2 sin 2a
D , s13d

and A is Peterkop’s ionization amplitude. Peterkop showed
that the integralIz1,z2

exists and differs from amplitudeA
only by a phase factor:

Ask̂1,k̂2,a8d =
k3/2

s2pd5/2eibsRd+ip/4Iz1,z2
sk1,k2d, s14d

wherea8=arctansk2/k1d. However, the phase factorbsRd di-
verges asR→` unless the so-called Peterkop condition

z1

k1
+

z2

k2
=

1

k1
+

1

k2
−

1

uk1 − k2u
s15d

is satisfied. In this casebsRd vanishes for largeR. The rela-
tion (14) is known as the Peterkop integral representation for
the ionization amplitude.

Thus, in Peterkop’s effective-charge approachz1 and z2
depend on vectorsk1 andk2. For this reason this method was
not very useful in practice for it was not clear how to imple-
ment condition(15) in realistic calculations. The problems
associated in numerical work with the effective-charge ap-
proach were discussed recently by McCurdyet al. [33].
Their calculations showed that use of effective chargesz1
and z2 leads to severe numerical problems due to nonor-
thogonality of the Coulomb wave of a nonunit effective
charge to the bound states of hydrogen. From a formal point
of view, even if the Peterkop condition were satisfied, one
could not establish the ionization amplitude in full. This is
because, as mentioned by Peterkop[29], an arbitrary part of
the complex amplitudeA in asymptotic form(12) can be
moved to the phase factor and the resulting wave function
would still be a solution to the original Eq.(7) transformed
into the six-dimensional hyperspace. Thus, the remaining
part of A can equally well be called an ionization amplitude
and there is no way of choosing between the different phase
possibilities, which is clearly unsatisfactory.

Other formal problems with the scattering theory will be
highlighted later. To explain the origin of the problems, we
consider the Peterkop formulation summarized by Eqs.(11)
and (14), and show that it is incomplete. For further discus-
sion we need to distinguish all possible geometries where the
condition R→` is satisfied. In addition to theV0 domain
defined earlier, we identify the domain wherer1→`, r2
→` with limited r3 asV3 and whenr2 (or r1) goes to infinity
but r1 sr2d remains limited asV2 sV1d:

V1: r1 → `, r2/r1 → 0, s16d

V2: r2 → `, r1/r2 → 0, s17d

V3: r1,r2 → `, r3/r1,r3/r2 → 0. s18d

For brevity of notation, whenr1 andr2 belong toVi we write
this asRPVi. The domainsV1, V2, andV3 correspond to
a→p /2, a→0, anda→p /4 in the surface integral(11),
respectively.

The problems with Peterkop’s integral representation for
the ionization amplitude originate from the fact that the
Peterkop asymptotic form used to calculate the integral(11)
is valid only in V0. It is clearly seen from Eq.(13) that the
Peterkop form cannot be used whena→0 and a→p /2.
This wave function is singular also whena→p /4 if r̂1·r̂2
=1. At the same time integration overa runs through all
these points. Thus, in the integral representation suggested
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by Peterkop the contributions fromV1, V2, andV3 domains
are either missing, or taken into account incorrectly. In the
next section we show how to generalize the Peterkop formu-
lation to all domainsVi, i =0–3, ofcoordinate space.

III. INTEGRAL REPRESENTATION FOR THE
IONIZATION AMPLITUDE

We begin by noting that the full ambiguity-free
asymptotic form of the total scattering wave functionF+

valid in all asymptotic domains asR→` has been given
recently [16,17]. In the present paper we ignore the three-
body correlation effects. In electron-impact ionization, due to
the unit charge of the electrons and the proton, they contrib-
ute in the next-to-the-leading order, and are therefore negli-
gible. However, the importance of these effects may increase
with the charge of the particles. Reference[14] shows, in
particular, that in the general formulation of the theory for
arbitrary particles, three-body correlation effects can easily
be incorporated. Without these correlations the full
asymptotic wave function may be expressed in the form

Fi
+sr1,r2d ,

R→`

F1
+sr1,r2d + F2

+sr1,r2d + Fc
+sr1,r2d, s19d

where

F1
+sr1,r2d = Fsidsr1,r2d −

1

2p
o
n

Fsknr̂1,kid
eiknr1

r1
fnsr2d,

s20d

F2
+sr1,r2d = −

1

2p
o
m

Gskmr̂2,kid
eikmr2

r2
fmsr1d, s21d

with the summations restricted to discrete target states and

Fc
+sr1,r2d =

1

s2pd5/2TSk

R
r1,

k

R
r2Dk3/2

R5/2eikR+ip/4

3 c1Sk

R
r1,r1Dc1Sk

R
r2,r2Dc−1/2S k

2R
r3,r3D .

s22d

The last factor in Eq.(22) corresponds to the Coulomb inter-
actions between the two electrons. It is defined by Eq.(10)
with index n referring to the charge-mass factor of the inter-
acting particles. In this casen=−1/2. The ionization ampli-
tude T is as defined according to Eq.(1) (see[16,17]) and
therefore unambiguous. We emphasize thatFc

+, the con-
tinuum part of the asymptotic wave function, is valid in all
asymptotic domains specified above. In Eqs.(20) and(21) F
and G are amplitudes describing the direct and rearrange-
ment scattering. The relative momenta in two-fragment chan-
nels are given bykn=f2sE−Endg1/2.

As our starting point we return to Peterkop’s integral form
Iz1,z2

sk1,k2d defined by Eq.(6). We note that for any large but
finite R Peterkop’s integral isR dependent even in the case
whenz1 andz2 satisfy the Peterkop condition(15). We make
this dependence explicit by the notationIz1,z2

sk1,k2;Rd.
Then, only if z1 and z2 satisfy the Peterkop condition does
the following limit exist:

Iz1,z2
sk1,k2d = lim

R→`
Iz1,z2

sk1,k2;Rd. s23d

Therefore, in the general case, extra care must be exercised
when dealing with such integrals. In this section we first
work with finite, but sufficiently largeR, so that the
asymptotic forms(19)–(22) are valid (we call this “asymp-
totically largeR” ), until we reach a point where taking the
R→` limit is no longer problematic.

We also note that we can partition the full scattering func-
tion Fi

+ into a sum of three components whose form is left
unspecified in the internal region of thesr1,r2d space but has
the asymptotic behavior(20)–(22). Then the volume integral
(6) can be replaced by a sum of three volume integrals, each
containing the mentioned components. Now in an analogous
way to the standard Peterkop approach we convert each of
the integrals into surface integrals for asymptotically largeR.
The full surface integral form then reads

Iz1,z2
sk1,k2;Rd = Iz1,z2

s1d sk1,k2;Rd + Iz1,z2

s2d sk1,k2;Rd

+ Iz1,z2

scd sk1,k2;Rd, s24d

with

Iz1,z2

s1d sk1,k2;Rd =
1

2
R2E dr̂1dr2

3SCz1,z2

s2Cd−p]F1
+

]r1
− F1

+
]Cz1,z2

s2Cd−p

]r1
D

r1=R
,

s25d

Iz1,z2

s2d sk1,k2;Rd =
1

2
R2E dr1dr̂2

3SCz1,z2

s2Cd−p]F2
+

]r2
− F2

+
]Cz1,z2

s2Cd−p

]r2
D

r2=R
,

s26d

Iz1,z2

scd sk1,k2;Rd =
1

2
R5E dr̂1dr̂2E

0

p/2

da sin2 a

3cos2 aSCz1,z2

s2Cd−p]Fc
+

]R
− Fc

+
]Cz1,z2

s2Cd−p

]R
D .

s27d

The different surfaces follow as a consequence of the differ-
ent asymptotic forms(20)–(22). It is not difficult to see that

Iz1,z2

s1d sk1,k2;Rd ~E dr2e
−ik2·r2cz2

* sk2,r2dfnsr2d, s28d

Iz1,z2

s2d sk1,k2;Rd ~E dr1e
−ik1·r1cz1

* sk1,r1dfmsr1d, s29d
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ensuring that these terms would disappear if we were to
choosez1=z2=1 in violation of the Peterkop condition(15),
which we shall now show not to be necessary.

Consider the third integral. As a result of the differential
operators for asymptotically largeR we write

Iz1,z2

scd sk1,k2;Rd =
i

2
R5E dr̂1dr̂2E

0

p/2

da sin2

3cos2 ask + cosa k1 · r̂1 + sina k2 · r̂2d

3Fc
+sRcosa r̂1,Rsina r̂2d

3exps− iR cosa k1 · r̂1− iR sina k2 · r̂2d

3 cz1

* sk1,Rcosa r̂1dcz2

* sk2,Rsina r̂2d.

s30d

Then using the asymptotic form of the plane wave(see, e.g.,
[29])

eik·r ,
r→`2p

ikr
fdsk̂ − r̂deikr − dsk̂ + r̂de−ikrg s31d

we have, in the leading order,

Iz1,z2

scd sk1,k2;Rd =
2p2

ik1k2
R3E

0

p/2

da sina cosafsk + k1 cosa + k2 sinadFc
+sRcosa k̂1,Rsina k̂2dexps− iRk1 cosa − iRk2 sinad

3cz1

* sk1,Rcosa k̂1dcz2

* sk2,Rsina k̂2d + sk − k1 cosa − k2 sinadFc
+s− Rcosa k̂1,− Rsina k̂2d

3expsiRk1 cosa + iRk2 sinadcz1

* sk1,− Rcosa k̂1dcz2

* sk2,− Rsina k̂2d − sk + k1 cosa − k2 sinad

3Fc
+sRcosa k̂1,− Rsina k̂2dexps− iRk1 cosa + iRk2 sinadcz1

* sk1,Rcosa k̂1dcz2

* sk2,− Rsina k̂2d

− sk − k1 cosa + k2 sinadFc
+s− Rcosa k̂1,Rsina k̂2dexpsiRk1 cosa − iRk2 sinadcz1

* sk1,− Rcosa k̂1d

3 cz2

* sk2,Rsina k̂2dg. s32d

This is an extremely oscillatory integral and therefore only
points of stationary phase ina will contribute in the large-R
limit. The first two terms within the square brackets have a
common stationary-phase point atk1 sina=k2 cosa, where
cosa=k1/k and sina=k2/k. Moreover, the second term is
identically zero at the stationary point. The third and fourth
terms of the integrand have no stationary points and, there-
fore, do not contribute to the integral. Using Eq.(22) and
calculating the remaining integral by means of the
stationary-phase method[34] we arrive at

Iz1,z2

scd sk1,k2;Rd = Tsk1,k2dtz1,z2
sk1,k2;Rd, s33d

where

tz1,z2
sk1,k2;Rd = cz1

* sk1,Rk1/kdcz2

* sk2,Rk2/kdc1sk1,Rk1/kd

3c1sk2,Rk2/kdc−1/2sk3,2Rk3/kd, s34d

with k3=sk1−k2d /2.
Thus the hyperradius-independent physical ionization am-

plitude factors out. Therefore, one indeed can represent the
ionization amplitude in terms of the trial integral(11) but
starting from the full specification of the asymptotic form of
the scattering wave function through Eqs.(19)–(22) leads to
the following form:

Tsk1,k2d

= lim
R→`

Iz1,z2
sk1,k2;Rd − Iz1,z2

s1d sk1,k2;Rd − Iz1,z2

s2d sk1,k2;Rd

tz1,z2
sk1,k2;Rd

.

s35d

Furthermore,tz1,z2
is well behaved for arbitraryz1 and z2.

Consequently, there is no necessity forz1 andz2 to satisfy a
particular condition in contrast to condition(15) required for
the Peterkop amplitude(14). Therefore, one may choosez1
andz2 such that they maximally simplify the practical calcu-
lation of Iz1,z2

, Iz1,z2

s1d , and Iz1,z2

s2d . The resulting ionization am-
plitude (35) does not depend on this choice as thet factor is
adjusted accordingly. Therefore the natural choice is to take
z1=z2=1. Then, sinceI1,1

s1d = I1,1
s2d =0 we have

Tsk1,k2d = lim
R→`

I1,1sk1,k2;Rd
t1,1sk1,k2;Rd

. s36d

Note that for practical calculations one would compute
Tsk1,k2;Rd; I1,1sk1,k2;Rd /t1,1sk1,k2;Rd at largeR and es-
tablish the limit by extrapolation toR→`. This extrapola-
tion procedure is used routinely in the ECS method.

The choice ofz1=z2=1 was used in the ECS calculations
of McCurdy et al. [33]. They experienced serious numerical
problems in calculatingIz1,z2

with the use of effective poten-
tials other than 1, due to nonorthogonality of the Coulomb
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wave of a nonunit effective charge to bound states of hydro-
gen. They concluded from their numerical simulations that
the optimal choice forz1 andz2 must be 1, although such a
choice did not follow as a logical consequence of the
Peterkop-Rudge formalism they utilized. Our derivation
gives a complete theoretical justification of their approach.

Finally, we note some simplifications of Eq.(36) in vari-
ous kinematic regimes. Providedk1 andk2 are not too small,
which corresponds to the case whenRPV0 or V3, we can
use the asymptotic form of the hypergeometric functions
contained inc1. Then we have

Tsk1,k2d = lim
R→`

I1,1sk1,k2;Rd
c−1/2sk3,2Rk3/kd

. s37d

When neitherk1, k2, nor k3 is too small, which corresponds
to the case whenRPV0, we have

Tsk1,k2d = lim
R→`

expF i

2k3
lnS4Rk3

2

k
DGI1,1sk1,k2;Rd.

s38d

Now this resembles Peterkop’s integral representation(14)
but has no additional condition and contains only unambigu-
ously defined quantities. Thus Eq.(38) is the exact integral
representation of the physical ionization amplitude in the
asymptotic domain where all the interparticle distances are
large. This provides proper theoretical justification of the
procedure used in direct methods to calculate cross sections,
namely,

uTsk1,k2du = lim
R→`

uI1,1sk1,k2;Rdu. s39d

Finally, Eqs.(36)–(38) can be used not only to get the correct
magnitude of the ionization amplitude but also its ambiguity-
free phase part.

IV. ALTERNATIVE FORMS OF THE IONIZATION
AND SCATTERING AMPLITUDES

In the preceding section we showed that the ionization
amplitude can be represented in terms of a trial integral
which has a structure well suited for practical calculations.
However, we can go even further and ask the question: Is it
possible to extract the ionization amplitude without recourse
to external trial quantities which is the requirement of a for-
mally complete scattering theory? The answer is yes, as we
demonstrate in this section.

First we note that Eq.(7) can be written as

sE − HdFi
sscd+sr1,r2d = V̄iF

sidsr1,r2d, s40d

where we separated the scattered-wave part ofFi
+ according

to Fi
sscd+=Fi

+−Fsid. Combining this with Eq.(3) it follows
that

Tsk1,k2d ; kC f
−uV̄iuFsidl = kC f

−uE − HW uFi
sscd+l

= kC f
−uHQ − EuFi

sscd+l + kC f
−uE − HW uFi

sscd+l

= kC f
−uHQ 0 − HW 0uFi

sscd+l, s41d

where a left(right) arrow on the differential Hamiltonian
operator indicates that it acts on the bra(ket) state. This
allows us to introduce a new surface-integral form for the
ionization amplitude which we denote asTsad:

Tsadsk1,k2d =
1

2
lim
R→`

R5E dr̂1dr̂2E
0

p/2

da sin2 a

3cos2 aSC f
−p]Fi

sscd+

]R
− Fi

sscd+]C f
−p

]R
D .

s42d

It is not difficult to verify that due to the asymptotic forms of
C f

− andFi
sscd+ no other surface integrals contribute.

Next we show that other forms are also possible. To see
this we note that Eq.(3) can be written in the form

sE − H0dC f
−sr1,r2d = VC f

−sr1,r2d. s43d

In addition, we write Eq.(5) as

sE − H0dFsidsr1,r2d = ViF
sidsr1,r2d. s44d

Taking into account Eqs.(43) and (44) we get

Tsk1,k2d ; kC f
−uV − ViuFsidl = kC f

−uE − HQ 0 − sE − HW 0duFsidl

= − kC f
−uHQ 0 − HW 0uFsidl. s45d

This allows us to introduce a second surface-integral form
for the ionization amplitude:

Tsbdsk1,k2d = −
1

2
lim

r1→`
r1

2E dr̂1dr2SC f
−p]Fsid

]r1
− Fsid]C f

−p

]r1
D .

s46d

Note that the formsTsad and Tsbd are simply different(but
equivalent) ways to represent the ionization amplitudeT.

Subtracting Eq.(45) from Eq. (41) we can observe that

Tsadsk1,k2d − Tsbdsk1,k2d = kC f
−uHQ 0 − HW 0uFi

+l. s47d

Equation (47) serves as a bridge to the post form of the
ionization amplitude. In order to see this, let us separate the
unscattered and scattered parts of wave functionC f

− accord-
ing to C f

−=Csfd−+C f
sscd−. Hence Eq.(47) can also be written

as

Tsadsk1,k2d − Tsbdsk1,k2d = kCsfd−uHQ 0 − HW 0uFi
+l

+ kC f
sscd−uHQ 0 − HW 0uFi

+l. s48d

In other words, the right-hand side of Eq.(48) is presumably
the difference between two(different) post forms of the ion-
ization amplitude(this is shown to be true presently). Ac-
cordingly, we introduce
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Tscdsk1,k2d = kCsfd−uHQ 0 − HW 0uFi
+l

=
1

2
lim
R→`

R5E dr̂1dr̂2E
0

p/2

da sin2 a

3cos2 aSCsfd−p
]Fi

+

]R
− Fi

+]Csfd−p

]R
D s49d

and

Tsddsk1,k2d = − kC f
sscd−uHQ 0 − HW 0uFi

+l = −
1

2
lim

r1→`
r1

2

3E dr̂1dr2SC f
sscd−p]Fi

+

]r1
− Fi

+]C f
sscd−p

]r1
D .

s50d

Equations(42), (46), (49), and (50) are convenient for nu-
merical calculations as the result depends only on the
asymptotic behavior of the scattered wave functions. The
way we obtainedTsad, Tsbd, Tscd, andTsdd, however, may seem
to the reader to be based on operator algebra with insufficient
theoretical support. Therefore we independently show that
Eqs. (42), (46), (49), and(50) are indeed different forms of
the ionization amplitude originally defined in Eq.(1). In or-
der to do this, we need the asymptotic forms of bothFi

+ and
C f

−.
The asymptotic form ofFi

+ is given by Eqs.(19)–(22). At
the same time we note that following Ref.[17] we also can
derive an analogous form of the wave functionC f

−:

C f
−sr1,r2d ,

R→`

C1
−sr1,r2d + C2

−sr1,r2d + Cc
−sr1,r2d, s51d

with

C1
−sr1,r2d = −

1

2p
o
n

F̃sknr̂1;k1,k2d
e−iknr1

r1
fnsr2d, s52d

C2
−sr1,r2d = −

1

2p
o
m

G̃skmr̂2;k1,k2d
e−ikmr2

r2
fmsr1d, s53d

Cc
−sr1,r2d = Ck1,k2

sfd− sr1,r2d +
1

s2pd5/2T̃Sk

R
r1,

k

R
r2Dk3/2

R5/2e−ikR+ip/4

3 c1sk1,r1dc1sk2,r2dc−1/2sk3,r3d, s54d

whereF̃ andG̃ [35] are amplitudes of the 3→2 recombina-
tion to two-fragment channelsn (where electrone2 is bound)
andm (where electrone1 is bound), respectively. In Eq.(54)
T̃ is the amplitude of the 3→3 process. The wave function
Csfd− which belongs to the continuum partCc

− is the unscat-
tered part of the asymptotic wave functionC f

−.
The general form of the unscattered asymptotic wave

function Csfd− has been derived in[36,37]. This form takes
into account the three-body correlation effects. As we men-
tioned earlier, in electron-impact ionization of hydrogen
atom, due to the small charge of the particles, these effects
contribute in the second order, and are therefore negligibly
small. However, this is not the case when the charges of the
particles are high. When the three-body correlations are ne-

glected the Alt-Mukhamedzhanov form is equivalent to
Garibotti-Miraglia wave function[18] [often called the three
Coulomb (3C) wave function]. Thus, in this work, the
asymptotic wave functionCsfd− is taken in the form

Ck1,k2

sfd− sr1,r2d = eik1·r1+ik2·r2c1sk1,r1dc1sk2,r2dc−1/2sk3,r3d.

s55d

ConsiderTsad of Eq. (42) andTscd of Eq. (49). Calculating
the surface integrals making use of the correct asymptotic
behavior forC f

−, Fi
sscd+, Csfd−, andFi

+, all given above, for
both Tsad andTscd we get, after some algebra,

Tsa,cdsk1,k2d = Tsk1,k2d lim
R→`

uc1sk1,Rk1/kdu2

3 uc1sk2,Rk2/kdu2uc−1/2sk3,2Rk3/kdu2.

s56d

From Eqs.(19)–(22) and(51)–(54) one can easily see that all
other terms do not contribute to the result. Taking the re-
maining limit the Coulomb waves reduce to phase factors so
we obtain

Tsa,cdsk1,k2d = Tsk1,k2d. s57d

Now we considerTsbd of Eq. (46) andTsdd of Eq. (50). They
both can be reduced to

Tsb,ddsk1,k2d = −
1

2
lim

r1→`
r1

2E dr̂1dr2SC1
−p]Fsid

]r1
− Fsid]C1

−p

]r1
D .

s58d

Calculating this integral using Eqs.(52) and (4) we get

Tsb,ddsk1,k2d = F̃ * ski ;k1,k2d. s59d

Note that F̃* ski ;k1,k2d=Tsk1,k2d (see [35]). Thus, as we
promised to show, Eqs.(42), (46), (49), and (50) are just
alternative surface-integral forms of the exact ionization am-
plitude in the sense of Eq.(1).

Next we prove that the new forms obtained for the ion-
ization amplitudes can be extended to the amplitudes of all
other processes taking place in the collisional system. If in
the final channel we have a two-fragment state instead of a
three-body state then the total wave function developed from
the final state(we denote itF f

−) will be similar to Fi
+ [see

Eqs. (19)–(22)]. However, all the scattered parts(two-
fragment and three-particle ones) of this wave function
would have to satisfy the incoming-wave boundary condi-
tion. Clearly, the unscattered partFsfd of F f

− would be given
in this case by a product of a plane wave and a bound-state
wave function similar toFsid:

Fsfdsr1,r2d = eikf·r2f fsr1d. s60d

Below we first introduce, in analogy with the four forms of
the ionization amplitude, surface-integral forms for the am-
plitude of the rearrangement scattering, and then verify their
validity. Thus
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Gsadsk f,kid = kF f
−uHQ 0 − HW 0uFi

sscd+l s61d

=
1

2
lim

r2→`
r2

2E dr1dr̂2SF f
−p]Fi

sscd+

]r2
− Fi

sscd+]F f
−p

]r2
D ,

s62d

Gsbdsk f,kid = − kF f
−uHQ 0 − HW 0uFsidl s63d

=−
1

2
lim

r1→`
r1

2E dr̂1dr2SF f
−p]Fsid

]r1
− Fsid]F f

−p

]r1
D ,

s64d

Gscdsk f,kid = kFsfduHQ 0 − HW 0uFi
+l s65d

=
1

2
lim

r2→`
r2

2E dr1dr̂2SFsfdp]Fi
+

]r2
− Fi

+]Fsfdp

]r2
D , s66d

Gsddsk f,kid = − kF f
sscd−uHQ 0 − HW 0uFi

+l s67d

=−
1

2
lim

r1→`
r1

2E dr̂1dr2SF f
sscd−p]Fi

+

]r1
− Fi

+]F f
sscd−p

]r1
D .

s68d

Corresponding forms for the direct scattering amplitudeF in
the bra-ket notation can be obtained from Eqs.(61), (63),
(65), and(67) simply by replacing the labelf by i8. However,
their surface-integral forms will be somewhat different, so
we write them down explicitly:

Fsadski8,kid =
1

2
lim

r1→`
r1

2E dr̂1dr2SFi8
−p]Fi

sscd+

]r1
− Fi

sscd+
]Fi8

−p

]r1
D ,

s69d

Fsbdski8,kid = −
1

2
lim

r1→`
r1

2E dr̂1dr2SFi8
−p]Fsid

]r1
− Fsid

]Fi8
−p

]r1
D ,

s70d

Fscdski8,kid =
1

2
lim

r1→`
r1

2E dr̂1dr2SFsi8dp]Fi
+

]r1
− Fi

+]Fsi8dp

]r1
D ,

s71d

Fsddski8,kid = −
1

2
lim

r1→`
r1

2E dr̂1dr2SFi8
sscd−p]Fi

+

]r1

− Fi
+
]Fi8

sscd−p

]r1
D . s72d

Equations(69)–(72) are also valid for the elastic scattering,
when i8= i andki8=ki.

The new forms for the scattering(both direct and ex-
change) amplitudes can be verified as follows. Consider, for
example,Gsad. Using the asymptotic form of the wave func-

tions F f
− andFi

sscd+ we can write Eq.(62) in the form

kF f
−uHQ 0 − HW 0uFi

sscd+l =
1

2
lim

r2→`
r2

2E dr1dr̂2SFsfdp]F2
sscd+

]r2

− F2
sscd+]Fsfdp

]r2
D . s73d

Taking into account Eqs.(21) and (60) and calculating the
integrals we have

kF f
−uHQ 0 − HW 0uFi

sscd+l = Gsk f,kid. s74d

Similarly, we can verify the other forms. In addition, note
that

Gsbdsk f,kid = − kF f
−uHQ 0 − HW 0uFsidl = − kF f

−uE − V − HW 0uFsidl

= kF f
−uV̄iuFsidl ; Gspriordsk f,kid s75d

and

Gscdsk f,kid = kFsfduHQ 0 − HW 0uFi
+l = kFsfduHQ 0 + V − EuFi

+l

= kFsfduV̄fuFi
+l ; Gspostdsk f,kid. s76d

In other words, the forms we introduced are easily trans-
formed to the usual prior and post forms of the scattering
amplitude.

We also emphasize the importance of the new forms of
the ionization amplitude, especially the formTscd given by
Eq. (49), from the point of view of general scattering theory.
Equation(49) leads to a well-defined conventional volume-
integral form of the ionization amplitude in terms of the total
three-body scattering wave functionFi

+, being developed
from the initial two-fragment channelFsid. In the stationary-
state scattering theory the post form of the breakup ampli-
tude is defined by

Tspostdsk1,k2d = kk1,k2uVuFi
+l, s77d

wherekr1,r2uk1k2l=eik1·r1+ik2·r2 is the undistorted three-body
plane wave. However, this form is valid only when the inter-
action between particles is short ranged. The commonly ac-
cepted stationary theory of scattering fails to define the same
for long-range interactions unless it refers to some screening
technique. However, this brings additional problems into
play since convergence of the screening procedure when the
screening radius is extended to infinity still remains to be
proven in the stationary theory of scattering of three charged
particles. From thec form of the ionization amplitude we get

Tscdsk1,k2d = kCsfd−uHQ 0 + V − E − HW 0 − V + EuFi
+l s78d

=kCsfd−uHQ 0 + V − EuFi
+l. s79d

This allows us to introduce

Tspostdsk1,k2d = kCsfd−uHQ − EuFi
+l. s80d

Equation(80) takes the form of Eq.(77) when the full inter-
action is short ranged. Thus, Eq.(80) extends the definition
of the post form of the breakup amplitude to long-range po-
tentials including the Coulomb interaction.

KADYROV et al. PHYSICAL REVIEW A 70, 062703(2004)

062703-8



Finally, we want to make some observations on the impli-
cations of our results in this section. First, comparison of the
Peterkop integralI1,1, obtained from Eq.(11) with z1=z2=1,
andTscd, given by Eq.(49), reveals that the former is equiva-
lent to extracting the ionization amplitude without the use of
the electron-electron correlation. Thus the introduction of the
effective charges in the Peterkop formalism is nothing else
but an attempt to compensate for the absence of these corre-
lation effects.

Second, in the surface-integral sense thea andc forms of
the ionization and scattering amplitudes are identical. The
same is true for theb and d forms. This can be seen if we
neglect in the appropriate wave functions those parts which
do not contribute at all or contribute in higher orders. Thus,
the surface-integral forms of Eqs.(42) and (49) can be re-
duced to(we label this form asac to distinguish it from the
a andc forms)

Tsacdsk1,k2d =
1

2
lim
R→`

R5E dr̂1dr̂2E
0

p/2

da sin2 a

3cos2 aSCsfd−p
]Fi

sscd+

]R
− Fi

sscd+]Csfd−p

]R
D .

s81d

Similarly, from Eqs.(46) and (50) we get(we label this as
the bd form)

Tsbddsk1,k2d = −
1

2
lim

r1→`
r1

2E dr̂1dr2SC f
sscd−p]Fsid

]r1

− Fsid]C f
sscd−p

]r1
D . s82d

Accordingly, for the rearrangement scattering amplitudes we
obtain

Gsacdsk f,kid =
1

2
lim

r2→`
r2

2E dr1dr̂2SFsfdp]Fi
sscd+

]r2

− Fi
sscd+]Fsfdp

]r2
D , s83d

Gsbddsk f,kid = −
1

2
lim

r1→`
r1

2E dr̂1dr2SF f
sscd−p]Fsid

]r1

− Fsid]F f
sscd−p

]r1
D , s84d

and completely analogously for the direct scattering ampli-
tudes we have

Fsacdski8,kid =
1

2
lim

r1→`
r1

2E dr̂1dr2SFsi8dp]Fi
sscd+

]r1

− Fi
sscd+]Fsi8dp

]r1
D , s85d

Fsbddski8,kid = −
1

2
lim

r1→`
r1

2E dr̂1dr2SFi8
sscd−p]Fsid

]r1

− Fsid
]Fi8

sscd−p

]r1
D . s86d

These forms are recommended for practical calculations
since they have a simpler structure. Which form(eitherac or
bd) to use in a particular case depends on which form of the
scattered wave function, eitherFi

sscd+ or C f
sscd−, is chosen to

be calculated numerically. So far, most approaches to the
problem are based on calculations ofFi

+. Therefore, to give
an illustration of the use of the formalism, assume that we
were able to solve the Schrödinger equation and findFi

sscd+ at
asymptotically large distances. Then the ionization amplitude
is extracted usingTsacd [Eq. (81)]. For all that, the asymptotic
value of the other participating wave functionCsfd− is taken
from Eq.(55). The exchange amplitudes are calculated using
Gsacd [Eq. (83)]. The asymptotic value ofFsf is calculated
from Eq. (60). Similarly, the direct scattering amplitudes are
calculated usingFsacd [Eq. (85)]. The asymptotic valueFsid is
taken from Eq.(4). The remainingbd forms are reserved for
extracting the corresponding amplitudes when the
Schrödinger equation is solved for the total scattering wave
function being developed from the final state.

Third, calculations using the prior form of the ionization
amplitude in the Born approximationTBornsk1,k2d
=kCsfd−uV̄iuFsidl became popular using the influential work of
Brauneret al. [19]. They helped in our understanding of the
dynamics of the electron-impact ionization process at inter-
mediate to high energies. In the light of the usefulness of the
prior form of the ionization Born amplitude it would be in-
teresting to see what is the capacity of the Born approxima-
tion based on the post form of the amplitudeTBorn

spostdsk1,k2d
=kCsfd−uHQ −EuFsidl which we obtain from Eq.(80).

In concluding this section we emphasize that the results
given here demonstrate the self-consistency of the theory
when it is formulated in a correct fashion. Furthermore, in
the formalism described above we have not been required to
reference the masses of the particles or the explicit forms of
the interactions between them. This makes it obvious that the
amplitudes of all processes(elastic scattering, direct excita-
tion, rearrangement, and breakup) in an arbitrary three-body
system can be directly written in the surface-integral formal-
ism developed here. The fact that we assumed that within the
two-fragment channels there is no residual Coulomb interac-
tion is not an essential factor. If there is such an interaction in
these channels, one needs to replace the respective plane
waves in the asymptotic wave functions with the correspond-
ing Coulomb-modified ones; however, this does not change
the results given above or their proof.

V. THE PARTIAL-WAVE ANALYSIS OF THE INITIAL
AND FINAL STATE THREE-BODY WAVE FUNCTIONS

The process of solving the electron-impact ionization
problem is twofold. First, one has to find the total scattering
wave function, and, second, to extract from it the necessary
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ionization information. Generally speaking, the direct nu-
merical integration of the Schrödinger equation(7) for
electron-hydrogen ionization is carried out for the partial-
wave form of the equation. In order to derive the equation
we require the total three-body wave functionFi

+ to be ex-
panded in bipolar spherical harmonics of a pair of unit vec-
tors r̂1 and r̂2:

Fi
+sr1,r2d = o

l1,l2,L,M
Rl1,l2,L,M

+ sr1,r2dYl1,l2,L,Msr̂1, r̂2d, s87d

with the bipolar spherical harmonics defined as[38]

Yl1,l2,L,Msr̂1, r̂2d = o
m1,m2

Cl1m1l2m2

LM Yl1,m1
sr̂1dYl2,m2

sr̂2d, s88d

where Cl1m1l2m2

LM are the Clebsch-Gordan coefficients,
Yl1,m1

sr̂1d are the spherical harmonics,l1 and l2 are the angu-
lar momenta of electrons, whileL is the total angular mo-
mentum andm1, m2, andM are the projections ofl1, l2, and
L, respectively. Here the triad of angular momentahl1, l2,Lj
satisfies the well-known triangular conditions. Below, when
we introduce more angular momenta, similar conditions are
implicitly assumed for appropriate triads. The radial coeffi-
cients are defined as

Rl1,l2,L,M
+ sr1,r2d =E dr̂1dr̂2Fi

+sr1,r2dYl1,l2,L,M
* sr̂1, r̂2d.

s89d

Expansion(87) transforms Eq.(7) into an infinite set of two-
dimensional second-order partial differential equations for
radial wavesRl1,l2,L,M

+ sr1,r2d. Then the infinite set is trun-
cated and solved in a two-dimensionalsr1,r2d lattice, e.g.,
using standard numerical techniques like finite-element or
finite-difference methods, imposing proper boundary condi-
tions. However, in this work we will not discuss the ways of
solving the aforementioned set of equations. Rather, we as-
sume that we are able to obtain reliable numerical solutions
for the radial wavesRl1,l2,L,M

+ sr1,r2d. Here we are interested
in the second phase of the solution process; namely, we will
answer the question of how to extract the partial ionization
amplitudes from the wave functionsRl1,l2,L,M

+ sr1,r2d. This
requires a knowledge of the analytic form of the partial
waves in the asymptotic domains relevant to ionization. In
this section we will derive the asymptotic form of the expan-
sion coefficientsRl1,l2,L,M

+ sr1,r2d. Further, we will generalize
the results of Sec. III given for the full physical ionization
amplitude to individual partial ionization amplitudes and es-
tablish an integral representation for them.

The partial-wave expansion of the asymptotic three-body
wave function is a long-standing problem. In the first attempt
made by Peterkop and Rabik[39] a Fourier-like expansion
was used. Later Altick[40] found the monopole term of the
partial asymptotic wave function using a multipole-
expansion approach, where the electron-electron interaction

potential is first expanded in terms of the Legendre polyno-
mials. In subsequent publications[41,42] he showed how to
extend the monopole-term solution to the dipole term. Later
Peterkop and Liepinsh[43–45] and Peterkop and Gailitis
[46] also tried to utilize a somewhat similar technique. In the
end, neither Altick, nor Peterkop and co-workers could go
beyond theL=0 partial wave, although they argued that their
procedures in principle could be generalized to the higher
partial waves. Even for theL=0 partial wave, the aforemen-
tioned works were not able to provide clear-cut, practically
useful wave functions for the simplest cases, like the
Temkin-Poet or collinearS-wave models. For instance,
Altick [41,42] suggested that the centrifugal forces corre-
sponding to the orbital motion of the electrons do not con-
tribute and neglected them. This is equivalent to settingl1
= l2=0. This fact alone is enough to understand that his re-
sults are approximate even for theL=0 partial wave where
otherl1= l2Þ0 also contribute. We shall demonstrate that his
results are not exact even for the Temkin-Poet model, where
all angular momenta are zero. The only exact result was
given by Merkuriev and Faddeev[47], but for theS-wave
asymptotic wave function and only for the case of three iden-
tical particles(i.e., repulsive potentials). In atomic physics
where attractive potentials are present it is not clear whether
the Merkuriev-Faddeev derivation is valid. The reason for
this is that, as pointed out by Merkuriev and Faddeev[47], if
one of the particles has a charge of the opposite sign then at
some points the asymptotic forms of the Faddeev compo-
nents diverge. On the whole, these attempts to derive the
partial-wave expansions have not succeeded.

The difficulty of the situation was encapsulated by Gailitis
[48,49], who came to a very general conclusion that a state
of any system of three or more free particles with long-range
interactions in the final(or initial) state “cannot be described
by the angular momenta of the particles.” Hence, the partial-
wave expansion of the total wave function “becomes mean-
ingless.” According to Gailitis this was a consequence of the
long range of the Coulomb interaction.

The analytic form of Eq.(22) suggests that indeed it is not
possible to expand it in partial waves in a straightforward
manner. This is due to the dependence of both the ionization
amplitudeT and the electron-electron correlation termc−1/2
in Eq. (22) on the vectorsr1 andr2. Any direct expansion of
Fc

+ as a consequence will lead to a result where each partial
wave function depends on an infinite set of all possible par-
tial ionization amplitudes. The same conclusion is applicable
to the Peterkop form(12). It is in this formal difficulty that
the Gailitis conclusion is founded. These problems do not
arise provided the interaction between the particles is short
ranged.

However, this is where our agreement with Gailitis ends.
One must recognize and proceed from the fact that all known
direct integration approaches to the ionization problem as-
sume the possibility of a partial-wave expansion of the three-
body wave function. Even though they use one or another
approximation where necessary, they solve the problem for
individual partial waves. The reasonably fast convergence of
the partial-wave summation and the generally good results
they give indicate that their implicit assumption of the viabil-
ity of a partial-wave method is not groundless. With the body
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of computational evidence of the efficacy and convergence
of partial-wave expansions providing motivation we show
that the partial-wave expansion does make sense. We dem-
onstrate that the asymptotic three-body wave functions can
be expanded in partial waves. Moreover, the final results we
get are exact in the leading order. They have simple and clear
analytical forms especially for the model cases mentioned in
the preceding paragraph. In the process of derivation we also
identify the reason why the final asymptotic form of the scat-
tered wave was not expandable in partial waves.

Our method of attack is based on using the fundamental
asymptotic relationship between the unscattered and scat-
tered three-body wave functions, which has been established
recently[16,17]. To be specific, we first expandCsfd−, then
using the relationship betweenFc

+ andCsfd− calculate partial
waves ofFc

+.

A. Asymptotic wave function Ck1,k2

„f…−
„r1,r2… in partial waves

Let us separate all the angular information contained in
the wave functionCk1,k2

sfd− sr1,r2d according to the expansion in
a complete set of bispherical harmonics:

Ck1,k2

sfd− sr1,r2d = o
ll8

Rl,l8
− sk1,k2;r1,r2dYl8

* sk̂1,k̂2dYlsr̂1, r̂2d,

s90d

wherel=hl1, l2,L ,Mj and l8=hl18 , l28 ,L8 ,M8j. We are inter-
ested in the radial coefficientsRl,l8

− sr1,r2d, which are de-
fined by

Rl,l8
− sk1,k2;r1,r2d

=E dk̂1dk̂2dr̂1dr̂2Fk1,k2

sfd− sr1,r2dYl8sk̂1,k̂2dYl
* sr̂1, r̂2d.

s91d

To begin the derivation, let us expand the Coulomb wave
function eik·rc1sk ,rd according to

eik·rc1sk,rd = o
l,m

ile−islskdwlsk,rdYl,m
* sk̂dYl,msr̂d, s92d

where

slskd = argGsl + 1 − i/kd s93d

is the Coulomb phase shift. The radial Coulomb functions
wlsk,rd are given by

wlsk,rd =
4p

e−p/2k

uGsl + 1 − i/kdu
Gs2l + 2d

eikrs2krdl

31F1sl + 1 − i/k;2l + 2;− 2ikrd. s94d

We emphasize that our Coulomb wave function satisfies the
incoming-wave boundary condition. The phase factore−islskd

in Eq. (92) reflects this fact. In case of the outgoing-wave
boundary condition this factor would change toeislskd.

The distortion factorc−1/2sk ,rd is expanded as

c−1/2sk,rd = o
l,m

xlsk,rdYl,m
* sk̂dYl,msr̂d. s95d

For the expansion coefficientsxlsk,rd, after some algebra,
we derive

xlsk,rd = lim
e→0

4p

ep/4k

Gs1 − i/2kd
Gs2l + 2d

Gse + l + i/2kd
Gse + i/2kd

s− 2ikrdl
1F1se

+ l + i/2k;2l + 2;− 2ikrd. s96d

Note that the limiting procedure in the above equation has
been introduced simply to show that the expansion also holds
for the case when there is no electron-electron interaction. In
this case setting the Coulomb charge to 0, due to theGse
+ ld /Gsed factor, we havexlsk,rd=4pdl0. Having noted this
we implicitly assume the limiting procedure in the following
and simply sete=0 in Eq. (96).

Then we have

Ck1,k2

sfd− sr1,r2d = o
l3,l4,l5,

m3,m4,m5

i l3+l4e−isl3
sk1d−isl4

sk2dwl3
sk1,r1dwl4

sk2,r2d

3xl5
sk3,r3dYl3,m3

* sk̂1dYl4,m4

* sk̂2dYl5,m5

* sk̂3d

3Yl3,m3
sr̂1dYl4,m4

sr̂2dYl5,m5
sr̂3d. s97d

ExpandingYl5,m5
sr̂3d andYl5,m5

sk̂3d in terms of the spherical

harmonics of vectorsr̂1, r̂2, and k̂1, k̂2, respectively, we get

Ck1,k2

sfd− sr1,r2d = o
l3,l4,l5,

m3,m4,m5

l̂3
2l̂4

2i l3+l4e−isl3
sk1d−isl4

sk2dwl3
sk1,r1dwl4

sk2,r2d
xl5

sk3,r3d

sk3r3dl5

s2l5 + 1d!
4p

3 o
l6,l8,

m6,m8

s− 1dl7+l9

2l8+l9

r1
l6r2

l7k1
l8k2

l9

fs2l6d ! s2l7d ! s2l8d ! s2l9d ! g1/2Cl6m6l7m7

l5m5 Cl8m8l9m9

l5m5 o
l10,l11,l12,l13,

m10,m11,m12,m13

1

l̂10l̂11l̂12l̂13

3 Cl3m3l6m6

l10m10 Cl30l60
l100 Cl4m4l7m7

l11m11 Cl40l70
l110 Cl3m3l8m8

l12m12 Cl30l80
l120 Cl4m4l9m9

l13m13 Cl40l90
l130 Yl10,m10

sr̂1dYl11,m11
sr̂2dYl12,m12

* sk̂1dYl13,m13

* sk̂2d,

s98d
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wherel7= l5− l6 and l9= l5− l8 and l̂ =Î2l +1.
Now we have to consider

xl5
sk3,r3d

sk3r3dl5
~ 1F1sl5 + i/2k3;2l5 + 2;− 2ik3r3d, s99d

which contains information on the directions ofr1 andr2. We
expand the hypergeometric function according to

1F1sl5 + i/2k3;2l5 + 2;− 2ik3r3d

= o
l14,m14

gl5,l14
sk3;r1,r2dYl14,m14

* sr̂1dYl14,m14
sr̂2d,

s100d

with

gl5,l14
sk3;r1,r2d = 2pE

−1

1

dx 1F1sl5 + i/2k3;2l5 + 2;− 2ik3r3d

3Pl14
sxd, s101d

wherex= r̂1·r̂2. Then the final expansion, which helps couple

all of the introduced orbital angular momenta, is

s− 2idl5
Gs1 − i/2k3d

ep/4k3

Gsl5 + i/2k3d
Gsi/2k3d

gl5,l14
sk3;r1,r2d

= o
l15,m15

dl5,l14,l15
sk1,k2;r1,r2dYl15,m15

* sk̂1dYl15,m15
sk̂2d,

s102d

with

dl5,l14,l15
sk1,k2;r1,r2d = 2ps− 2idl5E

−1

1

dy
Gs1 − i/2k3d

ep/4k3

3
Gsl5 + i/2k3d

Gsi/2k3d
gl5,l14

sk3;r1,r2dPl15
syd,

s103d

where y= k̂1·k̂2. We will return to further consid-
eration of the expressions forgl5,l14

sk3; r1,r2d and
dl5,l14,l15

sk1,k2; r1,r2d later. Meanwhile, collecting our results
we have

Ck1,k2

sfd− sr1,r2d = o
l3,l4,l5,l14,l15,

m3,m4,m5,m14,m15

l̂3
2l̂4

2i l3+l4e−isl3
sk1d−isl4

sk2dwl3
sk1,r1dwl4

sk2,r2ddl5,l14,l15
sk1,k2;r1,r2d

3 o
l6,l8,

m6,m8

s− 1dl7+l9

2l8+l9

r1
l6r2

l7k1
l8k2

l9

fs2l6d ! s2l7d ! s2l8d ! s2l9d ! g1/2Cl6m6l7m7

l5m5 Cl8m8l9m9

l5m5 o
l10,l11,l12,l13,

m10,m11,m12,m13

1

l̂10l̂11l̂12l̂13

3 Cl3m3l6m6

l10m10 Cl30l60
l100 Cl4m4l7m7

l11m11 Cl40l70
l110 Cl3m3l8m8

l12m12 Cl30l80
l120 Cl4m4l9m9

l13m13 Cl40l90
l130 Yl10,m10

sr̂1dYl14,−m14
sr̂1d

3s− 1dm14Yl11,m11
sr̂2dYl14,m14

sr̂2dYl12,m12

* sk̂1dYl15,m15

* sk̂1dYl13,m13

* sk̂2dYl15,−m15

* sk̂2ds− 1dm15. s104d

After some momentum algebra we get

Ck1,k2

sfd− sr1,r2d =
1

s4pd2 o
l3,l4,l5,l14,l15,

m3,m4,m5,m14,m15

l̂3
2l̂4

2i l3+l4e−isl3
sk1d−isl4

sk2dwl3
sk1,r1dwl4

sk2,r2ddl5,l14,l15
sk1,k2;r1,r2d

3 o
l6,l8,

m6,m8

s− 1dl7+l9

2l8+l9

r1
l6r2

l7k1
l8k2

l9

fs2l6d ! s2l7d ! s2l8d ! s2l9d ! g1/2 o
l10,l11,l12,l13,

m10,m11,m12,m13

1

l̂10l̂11l̂12l̂13

Cl6m6l7m7

l5m5 Cl8m8l9m9

l5m5

3 Cl3m3l6m6

l10m10 Cl30l60
l100 Cl4m4l7m7

l11m11 Cl40l70
l110 Cl3m3l8m8

l12m12 Cl30l80
l120 Cl4m4l9m9

l13m13 Cl40l90
l130 o

l16,l17,l18,l19,

m16,m17,m18,m19

s− 1dm14+m15
l̂10l̂14

l̂16

l̂11l̂14

l̂17

l̂12l̂15

l̂18

l̂13l̂15

l̂19

3 Cl10m10l14−m14

l16m16 Cl100l140
l160 Cl11m11l14m14

l17m17 Cl140l140
l170 Cl12m12l15m15

l18m18 Cl120l150
l180 Cl13m13l15−m15

l19m19 Cl130l150
l190

3 o
L,M

Cl16m16l17m17

LM Yl16,l17,L,Msr̂1, r̂2d o
L8,M8

Cl18m18l19m19

L8M8 Yl18,l19,L8,M8
* sk̂1,k̂2d, s105d

where we introduced bipolar harmonics according to
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Yl1,m1
sr̂1dYl2,m2

sr̂2d = o
L,M

Cl1m1l2m2

LM Yl1,l2,L,Msr̂1, r̂2d, s106d

which is easily obtained from definition(88). Performing the summation over projections of the angular momenta we get

Ck1,k2

sfd− sr1,r2d =
1

s4pd2 o
l3,l4,l5,l14,l15

l̂3
2l̂4

2l̂5
2l̂14

2 l̂15
2 i l3+l4e−isl3

sk1d−isl4
sk2dwl3

sk1,r1dwl4
sk2,r2ddl5,l14,l15

sk1,k2;r1,r2d

3 o
l6,l8

1

2l8+l9

r1
l6r2

l7k1
l8k2

l9

fs2l6d ! s2l7d ! s2l8d ! s2l9d ! g1/2 o
l10,l11,l12,l13

l̂10l̂11l̂12l̂13Cl30l60
l100 Cl40l70

l110 Cl30l80
l120 Cl40l90

l130

3 o
l16,l17,l18,l19

Cl100l140
l160 Cl110l140

l170 Cl120l150
l180 Cl130l150

l190 o
L,M

s− 1dl17−l19Hl14 l16 l10

L l11 l17
J5

− l5 l6 l7
L − l10 l11

l13 l9 − l4
l12 l8 l3 −

6Hl15 l18 l12

L l13 l19
J

3 Yl16,l17,L,Msr̂1, r̂2dYl18,l19,L,M
* sk̂1,k̂2d, s107d

where the braces denote a 6j symbol and a 12j symbol of the
second kind, respectively. Inserting Eq.(107) into Eq. (91)
we arrive at the final result for the radial components of the
asymptotic wave function we are interested in:

Rl,l8
− sk1,k2;r1,r2d = R̃l1,l2,l18,l28,L

− sk1,k2;r1,r2ddLL8dMM8,

s108d

with the covariant part given as

R̃l1,l2,l18,l28,L
− sk1,k2;r1,r2d = o

l3,l4

i l3+l4e−isl3
sk1d−isl4

sk2d

3wl3
sk1,r1dwl4

sk2,r2d

3f l1,l2,l18,l28,L
l3,l4 sk1,k2;r1,r2d.

s109d

For convenience, in the equation above we introduced the
shorthand notation

f l1,l2,l18,l28,L
l3,l4 sk1,k2;r1,r2d =

1

s4pd2 o
l5,l14,l15

l̂3
2l̂4

2l̂5
2l̂14

2 l̂15
2 dl5,l14,l15

sk1,k2;r1,r2do
l6,l8

1

2l8+l9

r1
l6r2

l7k1
l8k2

l9

fs2l6d ! s2l7d ! s2l8d ! s2l9d ! g1/2

3 o
l10,l11,l12,l13

l̂10l̂11l̂12l̂13Cl30l60
l100 Cl40l70

l110 Cl30l80
l120 Cl40l90

l130 Cl100l140
l10 Cl110l140

l20 Cl120l150
l180 Cl130l150

l280 Hl14 l1 l10

L l11 l2
J

35
− l5 l6 l7
L − l10 l11

l13 l9 − l4
l12 l8 l3 −

6Hl15 l18 l12

L l13 l28
J . s110d

We draw the reader’s attention to the fact that we did not
assume in our derivation the property that the expansion co-
efficients were diagonal inL and M. It is a test of the cor-
rectness of our angular momentum algebra that this antici-
pated result emerges.

We finally return to giving useful expressions for calcu-
lating the gl5,l14

sk3; r1,r2d and dl5,l14,l15
sk1,k2; r1,r2d. After

some algebra we get

gl5,l14
sk3;r1,r2d = 2p o

n=0

fl14/2g

an o
N=0

l14−2n

bN

sr1
2 + r2

2dl14−2n−N

s2r1r2dl14−2n+1

3 fDl5,Nsk3,r1 + r2d − Dl5,Nsk3,ur1 − r2udg,

s111d

where
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an =
s− 1dn

2l14

s2l14 − 2nd!
n ! sl14 − nd!

, s112d

bN =
s− 1dN

sN + 1d!
1

sl14 − 2n − Nd!
, s113d

and fl14/2g is the integer part ofl14/2. The function
Dl5,Nsk3,rd is given by

Dl5,Nsk3,rd

= r2N+2
2F2s2N + 2,l5 + i/2k3;2N + 3,2l5 + 2;− 2ik3rd.

s114d

With this result the remaining integral can be transformed to

dl5,l14,l15
sk1,k2;r1,r2d = s2pd2s− 2idl5 o

n=0

fl14/2g

an o
N=0

l14−2n

bN

sr1
2 + r2

2dl14−2n−N

s2r1r2dl14−2n+1

1

k1k2
E

uk1−k2u

k1+k2

dk k
Gs1 − i/2kd

ep/4k

Gsl5 + i/2kd
Gsi/2kd

Pl15
Sk1

2 + k2
2 − k2

2k1k2
D

3fDl5,Nsk,r1 + r2d − Dl5,Nsk,ur1 − r2udg. s115d

Thus we established that for our particular physical sys-
tem the general expansion(90) can be written as

Ck1,k2

sfd− sr1,r2d = o
l1,l2,l18,l28,L,M

R̃l1,l2,l18,l28,L
− sk1,k2;r1,r2d

3Yl18,l28,L,M
* sk̂1,k̂2dYl1,l2,L,Msr̂1, r̂2d, s116d

with the expansion coefficients given by Eq.(109) being
rotationally invariant.

B. Partial waves of Fc
+
„r1,r2…

We next turn to the critical task of finding the asymptotic
form of the expansion coefficientsRl1,l2,L,M

+ sr1,r2d defined by
Eq. (89). As mentioned earlier, for this we use a fundamental
asymptotic relationship established recently[16,17], which
for the continuum part of the scattered wave function reads
as

Fc
+sr1,r2d =E dk18

s2pd3

dk28

s2pd3

Tsk18,k28dCk18,k28
sfd− sr1,r2d

E − k18
2/2 − k82

2/2 + i0
.

s117d

In Refs.[16,17] this relationship was used to obtainFc
+ from

the asymptotic form ofCsfd−. Here we first expand Eq.(117)
in partial waves and then calculate the resulting integrals by
means of asymptotic methods.

Before proceeding further we want to make the following
remark. Sincer1, r2→`, the integral in Eq.(117) is ex-
tremely oscillatory with the strongest oscillations coming
from the termeik1·r1+ik2·r2 of the wave functionCk1,k2

sfd− sr1,r2d.
When we calculated Eq.(117) without partial-wave expan-
sion (see[16,17]) we observed that the dominant contribu-
tion came from a small neighborhood of a stationary-phase
point of the termeik1·r1+ik2·r2. The only contribution to the
integral came from the following directions[recall Eq.(31)]:

eik1·r1+ik2·r2 ~
r1,r2→`

dsk̂1 − r̂1ddsk̂2 − r̂2d, s118d

which can be written in partial waves as

dsk̂1 − r̂1ddsk̂2 − r̂2d

= o
l1,m1

Yl1,m1

* sk̂1dYl1,m1
sr̂1d o

l2,m2

Yl2,m2

* sk̂2dYl2,m2
sr̂2d

= o
l1,l2,

m1,m2

o
L8,M8

Cl1m1l2m2

L8M8 Yl1,l2,L8,M8
* sk̂1,k̂2d

3o
L,M

Cl1m1l2m2

LM Yl1,l2,L,Msr̂1, r̂2d

= o
l1,l2,L,M

Yl1,l2,L,M
* sk̂1,k̂2dYl1,l2,L,Msr̂1, r̂2d. s119d

This leads to the conclusion that whenever we are calculating
the partial-wave expansion of Eq.(117) for r1, r2→` utiliz-
ing Eq. (116) we should only consider contributions forl18
= l1 and l28= l2. Other values ofl18 and l28 do not contribute to
the integral in the regions where the stationary-phase meth-
ods apply.

Let us now expand the ionization amplitude as usual in
the standard manner:

Tsk1,k2d = o
l1,l2,L,M

Tl1,l2,L,Msk1,k2dYl1,l2,L,M
* sk̂1,k̂2d,

s120d

whereTl1,l2,L,M are the partial ionization amplitudes defined
as

Tl1,l2,L,Msk1,k2d =E dk̂1dk̂2Tsk1,k2dYl1,l2,L,M
* sk̂1,k̂2d.

s121d
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Then using expansions(116) and(120) in (117) and keeping
only the terms capable of contributing to the result we get

Fc
+sr1,r2d = o

l1,l2,L,M
E dk18k81

2

s2pd3

dk28k82
2

s2pd3

3
Tl1,l2,L,Msk18,k28dR̃l1,l2,l1,l2,L

− sk18,k28;r1,r2d

E − k81
2/2 − k82

2/2 + i0

3Yl1,l2,L,Msr̂1, r̂2d. s122d

From this equation, by direct comparison with the definition
(87) of the partial-wave expansion, we see that the
asymptotic form in the ionization sector(in the following,
Rl1,l2,L,M

+ will refer only to the Vc part of the radial wave
function as we are not interested in its two-fragment parts) is

Rl1,l2,L,M
+ sr1,r2d =E dk18k81

2

s2pd3

dk28k82
2

s2pd3

3
Tl1,l2,L,Msk18,k28dR̃l1,l2,l1,l2,L

− sk18,k28;r1,r2d

E − k81
2/2 − k82

2/2 + i0
.

s123d

To obtain a useful result we still need to evaluate the integral.
The explicit form ofR̃l1,l2,l1,l2,L

− in Vc has been given above
in Eq. (109). The functionwlsk,rd has the asymptotic behav-
ior

wlsk,rd ,
r→`4p

kr
sinfkr + s1/kdln s2krd − lp/2 + slskdg.

s124d

Therefore, substituting Eq.(109) in Eq. (123) and evaluating
the integral overk18 taking advantage of the simple pole sin-
gularity (ps) of the integrand we get, in the leading order,

Rl1,l2,L,M
+ sr1,r2d = o

l3,l4

E dk18k81
2

s2pd3

dk28k82
2

s2pd3

Tl1,l2,L,Msk18,k28di
l3e−isl3

sk18dwl3
sk18,r1d

E − k81
2/2 − k82

2/2 + i0
i l4e−isl4

sk28dwl4
sk28,r2df l1,l2,l1,l2,L

l3,l4 sk18,k28;r1,r2d

=
1

ir 1
o
l3,l4

E dk18k81

s2pd2

dk28k82
2

s2pd3

Tl1,l2,L,Msk18,k28d

E − k81
2/2 − k82

2/2 + i0
i l3e−isl3

sk18dseik18r1+i/k18 lns2k18r1d−il 3p/2+isl3
sk18d

− e−ik18r1−i/k18 lns2k18r1d+il 3p/2−isl3
sk18ddi l4e−isl4

sk28dwl4
sk28,r2df l1,l2,l1,l2,L

l3,l4 sk18,k28;r1,r2d

= −
1

s2pd4

1

r1
o
l3,l4

E
0

k

dk28k82
2Tl1,l2,L,Msk1

spsd,k28de
ik1

spsdr1+i/k1
spsd lns2k1

spsdr1di l4e−isl4
sk28dwl4

sk28,r2df l1,l2,l1,l2,L
l3,l4 sk1

spsd,k28;r1,r2d,

s125d

wherek1
spsd=sk2−k82

2d1/2. Then using Eq.(124) leads to

Rl1,l2,L,M
+ sr1,r2d = −

1

s2pd3

1

ir 1r2
o
l3,l4

E
0

k

dk28k82Tl1,l2,L,Msk1
spsd,k28de

ik1
spsdr1+i/k1

spsd lns2k1
spsdr1di l4e−isl4

sk28dseik28r2+i/k28 lns2k28r2d−il 4p/2+isl4
sk28d

− e−ik28r2−i/k28 lns2k28r2d+il 4p/2−isl4
sk28ddf l1,l2,l1,l2,L

l3,l4 sk1
spsd,k28;r1,r2d. s126d

The first term of this highly oscillatory integral has a single stationary point atk28=kr2/R;k sina, where nowk1
spsd=kr1/R

=k cosa. The second term does not have any stationary points; therefore it does not contribute. Thus evaluating the remaining
integral we finally have

Rl1,l2,L,M
+ sr1,r2d =

1

s2pd5/2Tl1,l2,L,Msk cosa,k sinad
k3/2

R5/2expSikR+
i lns2kRcos2 ad

k cosa
+

i lns2kRsin2 ad
k sina

+
ip

4
D

3 tl1,l2,Lsk cosa,k sina;Rcosa,Rsinad, s127d
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where

tl1,l2,Lsk cosa,k sina;Rcosa,Rsinad

= o
l3,l4

f l1,l2,l1,l2,L
l3,l4 sk cosa,k sina;Rcosa,Rsinad.

s128d

A crucial feature of these asymptotic wave functions is
that they have a form where the partial ionization amplitudes
are factorized. In the following section we will demonstrate
how to obtain the partial-wave ionization amplitudes from
the partial-wave radial functions derived here.

VI. INTEGRAL REPRESENTATION FOR THE PARTIAL
IONIZATION AMPLITUDES

In order to establish an integral representation for the par-
tial ionization amplitudes we need, in addition to the partial-
wave expansion of the scattered wave, a similar expansion
for our auxiliary wave functionCs2Cd−. Therefore we expand
it according to

Ck1,k2

s2Cd−sr1,r2d = o
l1,l2,L,M

Rl1,l2
s2Cd−sk1,k2;r1,r2d

3Yl1,l2,L,M
* sk̂1,k̂2dYl1,l2,L,Msr̂1, r̂2d,

s129d

where the radial coefficientsRl1,l2

s2Cd−sr1,r2d of this expansion
are given by

Rl1,l2
s2Cd−sr1,r2d = i l1+l2e−isl1

sk1d−isl2
sk2dwl1

sk1,r1dwl2
sk2,r2d.

s130d

The expansion(129) with radial coefficients(130) is easily
derived by means of expanding the Coulomb wave functions
in terms of the ordinary spherical harmonics and coupling
the corresponding pair of spherical harmonics into bipolar
harmonics. Alternatively, it is also not difficult to obtain it
from our general expansion(90) and (91) and (108) and
(109)when the electron-electron interaction is turned off.

Now we can write the integral(11) for asymptotically
largeR as

Isk1,k2;Rd = o
l1,l2,L,M

Il1,l2,L,Msk1,k2;RdYl1,l2,L,M
* sk̂1,k̂2d,

s131d

where

Il1,l2,L,Msk1,k2;Rd =
1

2
R5E

0

p/2

da sin2 a

3cos2 aSRl1,l2
s2Cd−p

]Rl1,l2,L,M
+

]R

− Rl1,l2,L,M
+

]Rl1,l2
s2Cd−p

]R
D s132d

are the partial-wave components of our trial integral. All in-
formation about the partial ionization amplitudes is con-
tained in the radial partsRl1,l2,L,M

+ of the wave functionFi
+.

Let us now calculate integral(132).
Since the functionwlsk,rd asymptotically behaves accord-

ing to Eq.(124), for the integral(132) we get

Il1,l2,L,Msk1,k2;Rd =
1

2

1

s2pd1/2

k3/2

ik1k2
R1/2E

0

p/2

da sina cosaTl1,l2,L,Msk cosa,k sinadexpfisl1
sk1d + isl2

sk2d − ipl1/2 − ipl2/2g

3 expSikR+
i lns2kRcos2 ad

k cosa
+

i lns2kRsin2 ad
k sina

+
ip

4
Dhsk + k1 cosa + k2 sinadexpf− ik1Rcosa

− si/k1d lns2k1Rcosad + il 1p/2 − isl1
sk1dgexpf− ik2Rsina − si/k2d lns2k2Rsinad + il 2p/2 − isl2

sk2dg

+ sk − k1 cosa − k2 sinadexpfik1Rcosa + si/k1d lns2k1Rcosad − il 1p/2 + isl1
sk1dgexpfik2Rsina

+ si/k2d lns2k2Rsinad − il 2p/2 + isl2
sk2dg − sk + k1 cosa − k2 sinadexpf− ik1Rcosa

− si/k1d lns2k1Rcosad + il 1p/2 − isl1
sk1dgexpfik2Rsina + si/k2d lns2k2Rsinad − il 2p/2 + isl2

sk2dg

− sk − k1 cosa + k2 sinadexpfik1Rcosa + si/k1d lns2k1Rcosad − il 1p/2 + isl1
sk1dgexpf− ik2Rsina

− si/k2d lns2k2Rsinad + il 2p/2 − isl2
sk2dgjtl1,l2,Lsk cosa,k sina;Rcosa,Rsinad. s133d
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The first two terms of this high-oscillatory integral have a
stationary point ata=arctansk2/k1d, where

k cosa = k1 and k sina = k2. s134d

However, the second term is identically zero at this point.
The other two terms do not have any stationary points and
therefore they do not contribute to the result. Calculating the
remaining term we finally have

Il1,l2,L,Msk1,k2;Rd = Tl1,l2,L,Msk1,k2dtl1,l2,Lsk1,k2;k1R/k,k2R/kd

s135d

or

Tl1,l2,L,Msk1,k2d = lim
R→`

Il1,l2,L,Msk1,k2;Rd

tl1,l2,L,Msk1,k2;k1R/k,k2R/kd
.

s136d

Thus the knowledge of the radial part of the scattering wave
function allows us to represent the partial ionization ampli-
tudes in terms of the partial wavesIl1,l2,L,M of Peterkop’s trial
integral (6). Note that for practical calculations one would
compute

Tl1,l2,L,Msk1,k2;Rd ; Il1,l2,L,Msk1,k2;Rd/

tl1,l2,L,Msk1,k2;k1R/k,k2R/kd

at largeR and establish the limit by extrapolation toR→`.
In doing soIl1,l2,L,Msk1,k2;Rd is calculated from Eq.(132)
with Rl1,l2,L,M

+ coming from the solution of the partial-wave
Schrödinger equation.

The use of the integral representation(136) is one way of
calculating the partial ionization amplitudes. Alternatively
one can use the surface-integral forms derived in Sec. IV.
Expanding, for instance, theac form of the ionization ampli-
tude [Eq. (81)] according to Eqs.(120) and (121) we obtain

Tl1,l2,L,Msk1,k2d =
1

2
lim
R→`

R5E
0

p/2

da sin2 a cos2 a

3 SR̃l1,l2,l1,l2,L
−p

]Rl1,l2,L,M
+

]R

− Rl1,l2,L,M
+

]R̃l1,l2,l1,l2,L
−p

]R
D . s137d

This is how the partial ionization amplitudes are given in
their natural form, without the use of an auxiliary function.
Numerical calculation of the integral in Eq.(137) directly
gives us the partial ionization amplitudes. Again, the wave
functions Rl1,l2,L,M

+ come from the solution of the
Schrödinger equation.

On the other hand analytical evaluation of the integral in
Eq. (137) allows us to establish a very important practical
result. To calculate the integral we use Eqs.(109) and (127)
and follow the procedure we applied above. Then we arrive
at

Tl1,l2,L,Msk1,k2d

= Tl1,l2,L,Msk1,k2d lim
R→`

utl1,l2,L,Msk1,k2;k1R/k,k2R/kdu2.

s138d

From this we conclude that

lim
R→`

utl1,l2,L,Msk1,k2;k1R/k,k2R/kdu → 1. s139d

Consequently, from Eq.(136) we get

uTl1,l2,L,Msk1,k2du = lim
R→`

uIl1,l2,L,Msk1,k2;Rdu, s140d

an important relationship, which rigorously proves the valid-
ity of the partial-wave-based calculations of the ionization
cross sections in the full electron-hydrogen ionization prob-
lem using ECS techniques[8–10] (when R is sufficiently
large).

VII. APPLICATION TO MODEL PROBLEMS

In this section we consider some well-known model prob-
lems. We present results obtained in our approach for the
wave functions and ionization amplitudes readily applicable
for practical calculations.

A. Screening model

Consider a model electron-hydrogen ionization problem
where electrone1 is completely shielded from the proton by
electrone2 which is closer to the proton. We call this a “one
Coulomb” (1C) model. The asymptotic form of the unscat-
tered wave functionCsfd− for this model is given by

Ck1,k2

s1Cd−sr1,r2d = eik1·r1+ik2·r2c1sk2,r2d. s141d

The partial waves of this function are

Rl1,l2
s1Cd−sr1,r2d = 4pi l1+l2e−isl2

sk2d j l1sk1r1dfl2
sk2,r2d,

s142d

where j lskrd is the spherical Bessel function.
Then using Eqs.(141) and(117) according to[16,17] we

get the corresponding scattered wave for ionization to be

Fc
s1Cd+sr1,r2d =

1

s2pd5/2Ts1Cdsk cosa r̂1,k sina r̂2d
k3/2

R5/2n

3 expSikR+
i lns2kRsin2 ad

k sina
+

ip

4
D ,

s143d

whereTs1Cd is the ionization amplitude in the 1C model. This
allows us to write the asymptotic form of the partial waves of
Fc

+ for this model:
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Rl1,l2,L,M
s1Cd+ sr1,r2d =

1

s2pd5/2Tl1,l2,L,M
s1Cd sk cosa,k sinad

k3/2

R5/2

3 expSikR+
i lns2kRsin2 ad

k sina
+

ip

4
D ,

s144d

where Tl1,l2,L,M
s1Cd are the partial ionization amplitudes in the

screening model we are interested in. Instead of the integral
(132) we now get, for asymptotically largeR,

Il1,l2,L,M
s1Cd sk1,k2;Rd =

1

2
R5E

0

p/2

da sin2 a cos2 a

3 SRl1,l2
s2Cd−p

]Rl1,l2,L,M
s1Cd+

]R

− Rl1,l2,L,M
s1Cd+

]Rl1,l2
s2Cd−p

]R
D . s145d

Evaluating this integral following the procedure used in Sec.
VI we have

Tl1,l2,L,M
s1Cd sk1,k2d = lim

R→`
Il1,l2,L,M

s1Cd sk1,k2;RdexpF i

k1
lnS2k1

2R

k
DG .

s146d

The first partial wave of the screening model corresponds
to the Temkin-Poet model:T0,0,0,0

s1Cd sk1,k2d;TsTPdsk1,k2d. The
exact Temkin-Poet model for ionization has been numeri-
cally solved in[7]. The agreement between the correspond-
ing benchmark ionization amplitude andT0,0,0,0

s1Cd sk1,k2d from
Eq. (146) has been communicated recently[50] (see below
for more discussion).

Finally, from the ac form of the ionization amplitude
given by Eq. (81) we get the direct integral form of the
partial ionization amplitudes

Tl1,l2,L,M
s1Cd sk1,k2d =

1

2
lim
R→`

R5E
0

p/2

da sin2 a cos2 a

3 SRl1,l2
s1Cd−p

]Rl1,l2,L,M
s1Cd+

]R

− Rl1,l2,L,M
s1Cd+

]Rl1,l2
s1Cd−p

]R
D . s147d

We recommend it for practical calculations of the screening
model.

B. Model with no electron-electron interaction

Consider a model electron-hydrogen ionization problem
where there is no electron-electron interaction; we call it a
2C model. The asymptotic form of the unscattered wave
function Csfd− for this model is given by Eq.(9) with z1
=z2=1. The partial waves of this function have also been
given earlier in Eq.(130). Using Eqs.(9) (with z1=z2=1)
and(117) we get for the asymptotic form of the correspond-
ing continuum scattered wave

Fc
s2Cd+sr1,r2d =

1

s2pd5/2Ts2Cdsk cosa r̂1,k sina r̂2d
k3/2

R5/2

3 expSikR+
i lns2kRsin2 ad

k sina

+
i lns2kRcos2 ad

k cosa
+

ip

4
D , s148d

whereTs2Cd is the ionization amplitude in this model. This
allows us to write the asymptotic form of the partial waves of
the scattered wave function for our model:

Rl1,l2,L,M
s2Cd+ sr1,r2d =

1

s2pd5/2Tl1,l2,L,M
s2Cd sk cosa,k sinad

k3/2

R5/2

3 expSikR+
i lns2kRsin2 ad

k sina

+
i lns2kRcos2 ad

k cosa
+

ip

4
D , s149d

whereTl1,l2,L,M
s2Cd are the corresponding partial ionization am-

plitudes. Now the integral(132) reads as, for largeR,

Il1,l2,L,M
s2Cd sk1,k2;Rd =

1

2
R5E

0

p/2

da sin2 a cos2 a

3 SRl1,l2
s2Cd−p

]Rl1,l2,L,M
s2Cd+

]R

− Rl1,l2,L,M
s2Cd+

]Rl1,l2
s2Cd−p

]R
D . s150d

Calculating this integral, after some algebra, we get an inte-
gral representation for the ionization amplitude for the model
with no electron-electron interaction

Tl1,l2,L,M
s2Cd sk1,k2d = lim

R→`
Il1,l2,L,M

s2Cd sk1,k2;Rd. s151d

In other words, for this model the partial-wave Peterkop in-
tegral and the integral form of the partial ionization ampli-
tudes, which we would get from Eq.(81), coincide. The Pe-
terkop approach to extracting the amplitude is therefore best
suited for this model.

C. Collinear model

Finally, we consider a model electron-hydrogen ionization
problem where all three particles are in line, the so-called
collinear (CL) model, relevant to the threshold region. The
asymptotic form of the unscattered waveCsfd− for this model
is given by

Ck1,k2

sCLd−sr1,r2d = eik1·r1−ik2·r̂1r2c1sk1,r1dc1sk2,− r2r̂1d

3c−1/2fk3,sr1 + r2dr̂1g. s152d

Then using Eqs.(152) and (117) we get for the scattered
wave
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Fc
sCLd+sr1,r2d =

1

s2pd5/2TsCLdsk cosa r̂1,− k sina r̂1d
k3/2

R5/2

3expSikR+
i lns2kRsin2 ad

k sina

+
i lns2kRcos2 ad

k cosa
−

i lnfkRscosa + sinadg
kscosa + sinad

+
ip

4
D , s153d

whereTsCLd is the ionization amplitude corresponding to this
model. This allows us to write the asymptotic form of the
partial waves of the scattered wave function for the collinear
model:

Rl1,l2,L,M
sCLd+ sr1,r2d =

1

s2pd5/2Tl1,l2,L,M
sCLd sk cosa,k sinad

k3/2

R5/2

3expSikR+
i lns2kRsin2 ad

k sina

+
i lns2kRcos2 ad

k cosa

−
i lnfkRscosa + sinadg

kscosa + sinad
+

ip

4
D , s154d

whereTl1,l2,L,M
sCLd are the partial ionization amplitudes in the CL

model. Now for largeR the integral(132) takes the form

Il1,l2,L,M
sCLd sk1,k2;Rd =

1

2
R5E

0

p/2

da sin2 a cos2 a

3 SRl1,l2
s2Cd−p

]Rl1,l2,L,M
sCLd+

]R

− Rl1,l2,L,M
sCLd+

]Rl1,l2
s2Cd−p

]R
D . s155d

Calculating this integral, after some algebra, we get an inte-
gral representation for the ionization amplitude for the col-
linear model:

Tl1,l2,L,M
sCLd sk1,k2d = lim

R→`
Il1,l2,L,M

sCLd sk1,k2;Rd

3expS i lnfsk1 + k2dRg
sk1 + k2d D . s156d

The amplitude magnitudes, via the cross sections, and the
phases corresponding to Eqs.(146) and (156) (after taking
into account the indistinguishability of the electrons) have
been published recently[50] for the Temkin-Poet and so-
called collinearS-wave models. They are in agreement with
similar calculations carried out in[51], where integral repre-
sentations for Temkin-Poet and collinearS-wave models
have been obtained. We point out, however, that ourS-wave
amplitudes obtained from Eqs.(146) and (156) are slightly
different from those used in[51]. This is because of the
ambiguity of the Peterkop wave function used in[51]. As a
result in [51] one has to further add some hyperradius-

dependent phase[namely,Qsk. ,1d of [51]] to reproduce the
phase obtained in the exact numerical integration[7] and
other calculations[50] of the Temkin-Poet model. Apart from
this, the agreement between our ionization amplitudes in the
Temkin-Poet and collinearS-wave models and results of[51]
indicates that the simple and transparent approach to calcu-
lating the partial waves and amplitudes presented in this
work leads to the correct answer.

It may be worthwhile to point out that Eqs.(146) and
(156) do not display the factor expfis0sk1d+ is0sk2dg (for
comparison, when all angular momenta are set to zero) as
opposed to the results of[51]. The reason for this is that in
the present work the partial-wave Peterkop integralIl1,l2,L,M

has already a factor expf−ipsl1+ l2d /2+isl1
sk1d+ isl2

sk2dg,
which was dropped in[51] [see Eqs.(132) and (130)].

VIII. DISCUSSION

In this section we make a few important remarks based on
the results presented in this work. First, as is the case in
two-particle scattering, the knowledge of the asymptotic
wave function is key to calculating the amplitudes of various
processes taking place in a three-body system. For breakup,
it is particularly important to clearly understand the differ-
ences in the continuum parts of the asymptotic forms of the
total scattering wave functionsFi

+ andC f
−. In this paper we

denoted them asFc
+ and Csfd−, respectively. Often in the

literatureFc
+ and Csfd− are referred to as two versions(the

plane wave and spherical wave) of “one asymptotic wave
function” as if they were equivalent or represented the same
function. Peterkop[44] even says that asymptotically they
should coincide. This is a misunderstanding. The function
Csfd− represents the initial unscattered state of the three
“free” Coulomb particles[the left-hand side of Eq.(2)], i.e.,
the Coulomb-modified three-body plane wave. Apart from
the modification of the plane wave due to the long-range
Coulomb interaction between the three pairs, there is no scat-
tering information in this wave function. It is a state from
which the total scattering wave functionC f

− starts to develop
[see Eq.(2)]; on the other hand,Fc

+ is the continuum part of
Fi

+, the wave function which starts from the two-fragment
channel[see Eq.(8)]. The wave functionFc

+ is formed when
the scattering takes place and describes the breakup event.
Therefore, by definition, it should carry information about
the breakup of an initial bound state of hydrogen which took
place and has the form of the outgoing spherical scattered
wave. From Eqs.(51)–(54) we see thatC f

− also has a spheri-
cal scattered part(containing information about the 3→3
process) of the same order asFc

+; however, it is suppressed
by the stronger continuum termCsfd−. In other words,Csfd−

and Fc
+ are completely different functions. Any comparison

between the(three-body) plane wave and spherical scattered
wave carrying away the information about what happened
during the collision is not appropriate. In this sense the idea
of using two distinct notations for two different forms of the
total wave function suggested in[16] and extended to this
work is helpful.

Second, the asymptotic form of the total scattering wave
Fi

+ in the domain where all interparticle distances are large
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sV0d is sometimes called semiclassical. In this regard we
emphasize that the form obtained in[17] for all possible
asymptotic regionsVi, i =0–3 [see Eqs.(19)–(22)], is fully
quantum mechanical. InV0 the semiclassical approach does
give the same result as the quantum-mechanical one. How-
ever, the semiclassical approach is not applicable in all
asymptotic domains other thanV0. We also note that the
similar asymptotic form of the total scattering waveC f

− pre-
sented in this work[see Eqs.(51)–(54)] is also fully quantum
mechanical.

Third, from Eq.(127) we could write

Tl1,l2,L,Msk1,k2d = lim
R→`

s2pRd5/2

k3/2

Rl1,l2,L,M
+ sr1,r2d

tl1,l2,Lsk1,k2;Rk1/k,Rk2/kd

3 expS− ikR−
i

k1
lns2Rk1

2/kd

−
i

k2
lns2Rk2

2/kd −
ip

4
D . s157d

Then, taking into account Eq.(139) we get

uTl1,l2,L,Msk1,k2du = lim
R→`

s2pRd5/2

k3/2 uRl1,l2,L,M
+ sr1,r2du.

s158d

Similarly, for often used models we have

Tl1,l2,L,M
s1Cd sk1,k2d = lim

R→`

s2pRd5/2

k3/2 Rl1,l2,L,M
s1Cd+ sr1,r2d

3expS− ikR−
i

k2
lns2Rk2

2/kd −
ip

4
D ,

s159d

Tl1,l2,L,M
sCLd sk1,k2d = lim

R→`

s2pRd5/2

k3/2 Rl1,l2,L,M
sCLd+ sr1,r2d

3expS− ikR−
i

k1
lns2Rk1

2/kd

−
i

k2
lns2Rk2

2/kd +
i

k1 + k2

3lnf2Rsk1
2 + k2

2d/kg −
ip

4
D . s160d

The wave functionsRl1,l2,L,M
+ , Rl1,l2,L,M

s1Cd+ , and Rl1,l2,L,M
sCLd+ in

these equations all come from the solution of the correspond-
ing Schrödinger equations. In principle, these relationships
[and relationships similar to Eq.(158) for uTl1,l2,L,M

s1Cd u and

uTl1,l2,L,M
sCLd u] can be used to obtain the corresponding partial

ionization amplitudes or their magnitudes. Due to their sim-
plicity they may even prove to be an easier choice than the
integral forms. However, this procedure is prone to certain
errors associated with the premature use of the stationary-
phase relations(134) and numerically sensitive. Neverthe-
less, they can be used for simple estimates.

Finally, having calculated the asymptotic form of the scat-
tered wave in partial waves we have got a clue to an original
method of solving the Schrödinger equation for ionization.
Usually, this equation is solved for the total scattering wave
functionFi

+ or its scattered partFi
sscd+, which is increasingly

oscillatory with increasing radius and has a divergent phase.
If one uses our results, Eq.(127) for the full problem and
Eqs.(144) and(154) for the Temkin-Poet and collinear mod-
els, in the original Schrödinger equation for the radial wave
function, then one gets(as a result of the variable transfor-
mation) a new equation for the corresponding ionization am-
plitude. As we extend the radius of integration of the new
differential equation, its solution reaches a constant which is
in fact the ionization amplitude of interest. We suppose that it
is easier to propagate to large distances a constant solution
rather than an oscillatory one.

IX. CONCLUSION

A general formulation of the theory of ionization of atoms
by electron impact has been given. A divergence-free repre-
sentation for the ionization amplitude of atomic hydrogen by
electron impact has been presented. In the formulation, the
ionization amplitude takes four alternative surface-integral
forms ideal for practical calculations. The formulation has
also been extended to amplitudes for all possible reactions
taking place in the scattering system. This was done in a
general way for arbitrary three-body systems. The present
formulation was then shown to lead to a well-defined post
form of the breakup amplitude valid for arbitrary potentials
including the long-range Coulomb interaction.

Furthermore, another fundamental problem has been ad-
dressed. The partial-wave expansion for the asymptotic
forms of the total scattering wave function, developed from
both the initial and the final states, was derived. These ex-
pansions are necessary for calculating electron-impact ion-
ization in methods based on direct integration of the
Schrödinger equation on a two-dimensional radial lattice.
The integral representation was then extended to partial ion-
ization amplitudes. A rigorous proof was given of the rela-
tionship used in ECS-based calculations of the cross sections
for the full electron-hydrogen ionization problem.

The utility of the presented analysis was demonstrated
using two well-known model problems. Exact asymptotic
forms of the scattered wave functions have been given.

The formalism presented is readily applicable to extrac-
tion of the exact amplitudes in direct calculations of other
atomic and molecular breakup processes including the
double photoionization of helium or breakup and photodis-
integration calculations in nuclear physics. It may also be
useful in further developing the effective-charge perturbation
approaches. The partial-wave forms of the three-body wave
functions presented are capable of reducing the six-
dimensional integrals used in the distorted-wave Born ap-
proximations to two-dimensional ones.
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