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The existing formulations of electron-impact ionization of a hydrogenic target suffer from a number of
formal problems including an ambiguous and phase-divergent definition of the ionization amplitude. An alter-
native formulation of the theory is given. An integral representation for the ionization amplitude which is free
of ambiguity and divergence problems is derived and is shown to have four alternative, but equivalent, forms
well suited for practical calculations. The extension to amplitudes of all possible scattering processes taking
place in an arbitrary three-body system follows. A well-defined conventipostiform of the breakup ampli-
tude valid for arbitrary potentials including the long-range Coulomb interaction is given. Practical approaches
are based on partial-wave expansions, so the formulation is also recast in terms of partial waves and partial-
wave expansions of the asymptotic wave functions are presented. In particular, expansions of the asymptotic
forms of the total scattering wave function, developed from both the initial and the final state, for electron-
impact ionization of hydrogen are given. Finally, the utility of the present formulation is demonstrated on some
well-known model problems.
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[. INTRODUCTION remain open. Considerable progress in numerical computa-
) o ) ) tions based on the Scrddinger equation mentioned above has
Electron-impact ionization of hydrogenic targets is theheen made in spite of such formal problems. To be more
simplest three-body Coulomb problem, and, therefore, ofpecific, we emphasize, for example, that all of the sophisti-
fundamental importance. In particular over the last decadeated approaches to the ionization problem mentioned above
the study of this process through direct numerical solution ofely on some form of approximation when it comes to ex-
the relevant Schrodinger equation has emerged as a powerfuthcting the ionization amplitude from the calculated total
approach to the problem. The direct method comprising thecattering wave function. In fact, the ionization cross sec-
solution of a set of coupled partial differential equations in ations are calculated from a formally incomplete definition of
two-dimensional radial lattice was first applied by Temkinthe ionization amplitude as we pointed dua#]. Thus, de-
[1] to a simplified model of the electron-hydrogen scatteringspite the success of the computational methods, the formal
problem which retained only states with zero orbital angulatheory of ionization has not been able to show how to calcu-
momenta. Later, Pog?] suggested an efficient numerical late the ionization amplitude unambiguously. One reason
approach to this model problem which essentially made ipreventing the dlrect_ integration methods from extracting
exactly solvable below the first excitation threshold of hy-ionization cross sections rigorously has been a lack of an

drogen. This model has since been referred to as the Temki@MPiguity-free form of the asymptotic wave function for

Poet(TP) model and has served as a testing ground for otheP0Sitive energies. The well-known Peterkop asymptotic wave
theoretical approaches. Subsequently, numerical methoddnction[15]is not valid in all asymptotic domains relevant
were extended to include more partial waves and applied t ° :Pgetc):r:ubsl,grgfa':ﬂids 'If r?argbggez?]uiiqwggﬁ)lg ;i ;g‘% tlr?e ion-
the full problem at energies between the first and the secon P

I Ization amplitude in a divergence-free manner. The full and
excitation threshold{§3—6]. More re_cently, Jones and Stelbo- unambiguous asymptotic forms of the three-body scattered
vics [7] used a direct integration method to calculate

| . S thin the f K of the TP wave function has been given recenihy6,17. This allowed
electron-impact lonization within the framework of the TP ¢ 14 optain an integral representation for the ionization am-
model. A major advance in the direct solution of the

Schrodi . d ing th : | litude which is free of ambiguity and divergence problems
chrodinger equation was made using the exterior comple 4]. In part, our analysis has provided a formal justification

scaling (ECS t.ech.nique[8—1q .when calculation; reached of the cross sectionsobtained in the ECS-based method
the stage of yielding quantitative agreement with measure, 8-10

ments of e-H fully differential ionization cross sections.
Close-coupling-based methods, such as the convergent cquﬁ-
coupling[11], R matrix [12], T matrix [13], and other meth-
ods, have also yielded excellent agreement with experimen
However, from the theory point of view several issues
relating to a complete formal understanding of the proces

In this work we give details of the results outlined[i¥].
addition, we present four alternative forms of the ioniza-
tion amplitude. These forms designed for ionization are then
beneralized to all possible scattering processes which may
take place in the system. Our formulation is also shown to
Pesolve another long-standing formal problem, the extension
of the conventionalpost form of the breakup amplitude,
valid for short-range potentials, to long-range potentials. We
*Electronic address: A.Kadyrov@murdoch.edu.au develop a well-defined post form of the breakup amplitude
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valid for arbitrary potentials including the long-range Cou- —

lomb interaction. We then generalize the results for the full T(ky, ko) = f drydr Wi (ry, ) Vi@V (r,rp). (1)
amplitudes to the individual partial amplitudes as these are

extracted in practical calculations and combined to make upiere ¥; is the total scattering wave function developing
the physical ionization amplitude. This naturally requiresfrom an initial state of three particles in the continuum with
knowledge of the partial waves of the asymptotic wave funcincoming scattered-wave boundary condition and describes
tions. The partial-wave expansion of the asymptotic wavehe

function is developed for both the incidenfi8,19 and

scattered-wavg16,17 asymptotic forms of the three-body e +e+p,

wave functions. Though we deal here with ¢l system, e te,+p—ie +(p,e), (2)

the formalism presented is general. The results given below e, +(p,ey)

are readily applicable to extraction of amplitudes in direct 2 e
calculations of other atomic and molecular breakup proprocesse$we call them 3- 3 scattering and 32 (recom-
cesses including the double photoionization of helif28]  bination) processds The wave functionV; satisfies the
and similar problems in nuclear physics. They may also beschradinger equation

useful in further developing the effective-charge perturbation

approacheg21-23. The partial-wave forms of the three- (E-H)Wi(ry,ry) =0, 3)
body wave functions presented in this work have other uses, _ . R _
For instance, they are capable of immediately reducing thgvhereH—Ho+V is the total three-body Hamiltoniarki,=

six-dimensional integrals used in the distorted-wave Born 2r,/2~Ar,/2 s the free three-body Hamiltoniak, is the

approximation[19,24.2% to two-dimensional ones. full interaction, andE=k’/2+E;=kj/2+k3/2 is the total en-
The plan of the paper is as follows. In Sec. Il we first ergy of the systemy;=V-V, in Eq. (1) is the interaction of

discuss the formal and consequent practical problems of thée incident electron with the target particleg,andr, are

existing theory of ionization. In Sec. Ill we derive a formally the coordinates of the electrons relative to the proton,kand

correct, unambiguous, and divergence-free representation f@nd k, are their momenta. The wave function representing

the ionization amplitude. In Sec. IV we show that the ioniza-the initial two-fragment channel is given by a product of the

tion amplitude in the present formulation directly takesincident plane wave and the initial bound-state wave func-

forms also ideally suited for practical calculations. We dem-tion

onstrate that there are four alternative forms of the ionization - -

amplitude in addition to the two forms known in the litera- DU(ry,rp) = eh(ry). (4)

ture as the post and prior forms. These forms are then eX=or further reference we note, however, that, in general, the

tended beyond the ionization amplitude to cover also ampliiitial-channel wave function satisfies

tudes of all other possible scattering processes. A partial- _

wave analysis of the initial- and final-state three-body wave (E-Ho- V)@V (ry,ry) =0, (5)

functions is performed in Sec. V. Then in Sec. VI we extend

the results of Sec. I1l to the partial ionization amplitudes. TheVNereé Vi is the potential responsible for the bound state in

utility of the present formulation of the theory of electron- _th.e. initial channel_. According to our partigular choice of the
impact ionization will be demonstrated in Sec. VII for well- iNitidl channel,V; is the Coulomb interaction of electraz

known model problems. The so-called screening and coll'nif’lnd the proton.
W p ing I The ionization amplitude given by the for¢h) is difficult

ear models of electron-hydrogen ionization will be ) X .
considered. In Secs. VIIl and IX we discuss and summariz%0 calculate because it requires the total scattering wave
unction ¥;, which evolves from a free three-particle initial

the results of the present work. o LT .
Atomic units are used throughout this work: we also as-State. In addition, for the ionization amplitude to be calcu-

sume that the proton is infinitely heavy compared to the eleci2t€d from this definition, a knowledge df; in the entire
trons and remains at the origin of the coordinate system. TGPaCe€ is necessary. Therefore, this form of the ionization am-

avoid inessential complications we assume the electrons @/itude has often been used in distorted-wave Born-type cal-
culations(see, e.9.[19,24,25,27 and references thergin

be distinguishable. The generalization to the case of indistin= .
guishable electrongand to arbitrary masses as wWelbk Instead, Peterkof28,29 and Rudge{30] considered the

straightforward. integral
Il. THE PETERKOP FORMALISM |z1,zz(k1:k2) :f drlerCDf(rl,rz)(H _ E)‘I’(ziz_*(%b%
Consider scattering of electray with incident momen-
tum k; off a hydrogen atonip,e,) in initial state ¢(r,) of (6)

energyE;. Assume that the energy of the projectit®/2 is here®d” i uti fth hrodi .
enough to break up the target. The ionization amplitude inW ered; is a solution of the Schrodinger equation

the prior form is well defined and given according [26] (E-H)®D](ry,r,) =0, 7)
(for brevity we omit the index prior in the notation; other

forms of the amplitude which we introduce later will have awith outgoing scattered-wave boundary conditi@i]. The
corresponding labgl wave function®; describes
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3/2

el+e2+p, AA K : f
AKy, Ky, ') = PRI (Ky,ky), 14
ert(p.e) — e+ (pey), (8) ko= oy aelakd (19
&+ (p,ey) wherea’ =arctartk,/k;). However, the phase fact@(R) di-

processegwe call them 23 (ionizatior) and 22 scatter- verges afR— oo unless the so-called Peterkop condition

ing processgs The function‘l’(ziz' is a product of the two z1 2, 1 1 1 15
Coulomb(2C) wave functions with effective charges and ki ko ki kp [ky—ky (15
Zy:

is satisfied. In this casg(R) vanishes for larg&k. The rela-
lIf%%‘(rl,rz) =ehniketzy, (ky,r) i (ko) (9)  tion (14) is known as the Peterkop integral representation for
the ionization amplitude.
with incoming-wave boundary condition. The Coulomb part Thus, in Peterkop’s effective-charge approaghand z,
is given by depend on vectors, andk,. For this reason this method was
not very useful in practice for it was not clear how to imple-
,(k,r) =1 +ivikexp(mv/2K) 1F,(-iv/k,1;-i(kr+k-r)),  ment condition(15) in realistic calculations. The problems
(100  associated in numerical work with the effective-charge ap-
proach were discussed recently by McCurely al. [33].

where,F, is the confluent hypergeometric function. Their calculations showed that use of effective charges
Using Eg.(7) and the Green’s theoreii32] the volume and z, leads to severe numerical problems due to nonor-
integral in Eq.(6) can be written as a surface integral thogonality of the Coulomb wave of a nonunit effective
charge to the bound states of hydrogen. From a formal point
R S 2 2 of view, even if the Peterkop condition were satisfied, one
Izlvé(kl’kZ)_EétnmR dr,dr . darsir could not establish the ionization amplitude in full. This is
because, as mentioned by Peterkd®], an arbitrary part of
N U the complex amplituded in asymptotic form(12) can be
xcos a ‘I’(zf?z_*a_r\,l —®?# . moved to the phase factor and the resulting wave function

would still be a solution to the original Eg7) transformed
(11 into the six-dimensional hyperspace. Thus, the remaining
_ . S . , part of A can equally well be called an ionization amplitude
Where R_(r§+r§)1’2 IS a hyperradms,(rl,rz,a) is a five- and there is no way of choosing between the different phase
dimensional hyperangle, with=arctarr,/ry). possibilities, which is clearly unsatisfactory.

The advantage of+the integral for(dl) is that here the Other formal problems with the scattering theory will be
total wave function®;” develops from the exact initial state pighjighted later. To explain the origin of the problems, we
@© given by the product of a plane wave and a hydrogen,gnsider the Peterkop formulation summarized by i
bound-state wave function. Additionally, ECLY) is readily 454 (14), and show that it is incomplete. For further discus-
expanded in partial waves leading to a sum of onexjgn we need to distinguish all possible geometries where the
dimensional integrals. On the other hand Eg.reduces to a  yndition R— o is satisfied. In addition to th€, domain
two-dimensional integral upon partial-wave expansion. Mos{yefined earlier, we identify the domain wherg—c, r,
importantly, the integrall, ,, depends only on the asymptotic _, .; \yith limited r3 asQ; and wherr, (or r1) goes to infinity
behavior of the wave function®; and \If(zf(;;‘ on an infi-  butr, (r,) remains limited a€), (Q,):

nitely large hypersphere and, therefore, knowledge of the

wave functiond; over the entire space is not required. g 13—, 11 =0, (16)
Let us define the domaif), to correspond to the space

where all interparticle distances are large, irg,,r,, r3 (rs Qp: 13—, 14/r;—0, (17

=r,—r,)—, in @ manner that,/r,— const# 0. In this do-

main the asymptotic behavior @, was found by Peterkop Qg rq,ry— 0, r3fry,rafro— 0. (18)

[15] and is written, in the leading order & as For brevity of notation, when, andr, belong to(); we write

Q this asR e ();. The domaind}4, ,, and 5 correspond to
D] (r1,1,)—A(f, o, a) R2 RV INGR) (12 a—m/2, a—0, anda— /4 in the surface integralll),
respectively.
wherex=(2E)'?, The problems with Peterkop’s integral representation for

the ionization amplitude originate from the fact that the
y= E( 1 + .1 -— 1 ) (13) _Peter_kop asymptotic _form used to calculate the integdrdl
k\COSa sina 1-f,-T,sin2a is valid only in Q. It is clearly seen from Eq.13) that the
Peterkop form cannot be used when-0 and a— /2.
and A is Peterkop’s ionization amplitude. Peterkop showedThis wave function is singular also when— 7/4 if t;-f,
that the integrall, ,, exists and differs from amplitudd  =1. At the same time integration over runs through all
only by a phase factor: these points. Thus, in the integral representation suggested
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by Peterkop the contributions frof,, (1,, and{); domains I, , (Ky, ko) = lim I, zz(klka;R)- (23
are either missing, or taken into account incorrectly. In the v Row 1
next section we show how to generalize the Peterkop formu-

lation to all domaind;, i=0—3, ofcoordinate space. Therefore, in the general case, extra care must be exercised
when dealing with such integrals. In this section we first
ll. INTEGRAL REPRESENTATION FOR THE work with finite, but sufficiently largeR, so that the
IONIZATION AMPLITUDE asymptotic formg19)<22) are valid(we call this “asymp-

totically largeR"), until we reach a point where taking the
R— o0 limit is no longer problematic.
We also note that we can partition the full scattering func-

valid in all asymptotic domains aB— has been given tion ®; into a sum of three components whose form is left
recently[16,17. In the present paper we ignore the three- i . ;
Y 1 P pap g unspecified in the internal region of tiig,r,) space but has

body correlation effects. In electron-impact ionization, due to : . .
the unit charge of the electrons and the proton, they contribt-he asymptotic behaviq20)~(22). Then the volume integral

ute in the next-to-the-leading order, and are therefore negli(—G) can _be rﬁplaced _by a dsum of three voNIum(_a integralsl, each
gible. However, the importance of these effects may increasgontaining the mentioned components. Now in an analogous
with the charge of the particles. Referendel] shows, in Wa to the standard Peterkop approach we convert each of
particular, that in the general formulation of the theory for (N€ integrals into surface integrals for asymptotically laRge

arbitrary particles, three-body correlation effects can easil);rhe full surface integral form then reads
be incorporated. Without these correlations the full

We begin by noting that the full ambiguity-free
asymptotic form of the total scattering wave functidr

oy = (@ . 2 :
asymptotic wave function may be expressed in the form |2, (K1, K2s R) =157, (kg KaiR) + 187, (kg ki R)
R 19, (ke ko R), (24)
O (1) ~ D(ry,r) + D(ro,r) + DY(rory), (19) e
where with
_ 1 eiknl’l
+ =p i fok)—— 1
D1(ry,rp) =@W(ry,ry) 271_% F(kqf1,ki) o $n(ra), |(zi)zz(k1:k2;R):Eszdfldrz
0 o P TV
) X\ ¥y 2 (?— —@1(9— ,
1 R eIkmr2 1) r r _
D3(r1,r) == 5= 2 Glknf k) —— 1), (21) ' b
27 ro (25)
with the summations restricted to discrete target states and
S SR Ve 12 kk'Rlezjdrd?
(b;(rl,rz):(ZT)E;,zT(Erl,Erz) R5,2e' Rtiw/4 zl,zz( 1. K2, ) 2 142
(20)—+
b z
K K x 20-+222 _ g At
X lﬂl( errr1)¢l( Rr21r2>$—1/2<2Rr3-r3)- X(\le,zz o @, o, )rz:R,
(22) (26)

The last factor in Eq22) corresponds to the Coulomb inter-

actions between the two electrons. It is defined by @) 1 al2

with index v referring to the charge-mass factor of the inter- I(Z?ZZ(kl,kz;R) = —Rsf d?ldfzf da sir’ «
acting particles. In this case=-1/2. The ionization ampli- 2 0

tudeT is as defin_ed according to Eq1)_ (see[16,17) and bt ﬂ\lf(f?’*
therefore unambiguous. We emphasize tHgt the con- xcog a| WO —C _ g —12
tinuum part of the asymptotic wave function, is valid in all 12 IR R
asymptotic domains specified above. In E@Q) and(21) F (27)

and G are amplitudes describing the direct and rearrange-
ment scattering. The relative momenta in two-fragment chanThe different surfaces follow as a consequence of the differ-

nels are given bk, =[2(E-E,)]"2 ent asymptotic form$20)—(22). It is not difficult to see that
As our starting point we return to Peterkop’s integral form

I2,.2,(K1, ko) defined by Eq(6). We note that for any large but _ X

finite R Peterkop’s integral iR dependent even in the case 15, (K kaiR) o f droe™ 2 2y, (Ko, To)dnlra),  (28)
whenz; andz, satisfy the Peterkop conditiqi5). We make

this dependence explicit by the notatidg , (k;.kz;R).

Then, only if z; and z, satisfy the Peterkop condition does @ I
the following limit exist: 172, (K KoiR) o | dr €711y (Ky, 1) dm(re),  (29)
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ensuring that thesg terms would disappear if we were to xXexp(—iRcosaky -T;—iRsinak,-f,)

choosez;=z,=1 in violation of the Peterkop conditiafi5), . s o

which we shall now show not to be necessary. X i, (ky,Rcosaty) i, (kaRsinaty).
Consider the third integral. As a result of the differential (30)

operators for asymptotically large we write
Then using the asymptotic form of the plane wasee, e.g.,

. 2
[ N .
|;?22(k1,k2, R) = ERSJ drldr2J da S|n2 [29])
0 r—oo
) 27 A . ~ .
ikr _ =% _ "\ alkr _ 2\ ~-ikr
X oS alk+cosaky - +sinak,-f,) € ikr[é(k D - alk+e™] (3D
XD (Rcosafy,Rsinafy) we have, in the leading order,
|
© 27 (™% _ . A A _ . .
Izl,zz(kl! ky;R) = WR3 da sina cosal(k + k; cosa +k; sina)® (R cosa ki, R sin a ky)exp(— iRk, cosa — iRk, sin a)
172 0

X w;l(klv Rcosa |21) zﬂ;(kz, Rsina IA<2) + (k= kq cosa — k; sin @)@ (- Rcosa IA<1, -Rsina I22)

X exp(iRky cosa +iRk, sin @)y (ky, - Rcosa ky) U (Ko, ~Rsina ko) — (k + K, COSa — ky Sin )

X *(Rcosa ki, ~ Rsina kyexp— iRk, cosa + iRk, sin a) 1,//;1(k1, Rcosa k) 1//;2(k2, ~Rsinaky)

— (k= kq cosa + k, sina)® (- Rcosa IA<1, Rsina IA<2)exp(iRk1 cosa - iRk, sin @) ap;l(kl, -Rcosa IA<1)

X i (kp,Rsinarky)]. (32)

This is an extremely oscillatory integral and therefore only T(k,,k,)
points of stationary phase i will contribute in the largeR _ W _ @ _
limit. The first two terms within the square brackets have a 2,2, (K1 ka1 R) — 17 7 (Ku ko R) — 17 (ke kai R)
common stationary-phase point latsin e=k, cose, Where_ Rosoo Tzl,zz(klrkZ;R) '
cosa=Kk;/k and sina=k,/ k. Moreover, the second term is

identically zero at the stationary point. The third and fourth (39
terms of the integrand have no stationary points and, therg-
fore, do not contribute to the integral. Using E&2) and
calculating the remaining integral by means of the
stationary-phase methd84] we arrive at

urthermore,rzr22 is well behaved for arbitrary;, and z,.
Consequently, there is no necessity fprandz, to satisfy a
particular condition in contrast to conditigh5) required for
the Peterkop amplitudél4). Therefore, one may choogg
andz, such that they maximally simplify the practical calcu-

I(Z‘ﬁzz(kl,kz;R) = T(ky, k)75, 2 (Ke, k23 R), (33 lation of I, ,, Ig)zz andlii) . The resulting ionization am-
plitude (35) does not depend on this choice as tfactor is
adjusted accordingly. Therefore the natural choice is to take

where ined@ =12
z,=2,=1. Then, sincé ;=1,",=0 we have
Tzl,zz(klykZ;R) = 'zbzl(klyRkllK) ‘//zz(kZaRkZ/K)‘/’l(klkallK) T(ky,ky) = lim |1,1(|;1,E2;.E) . (36)
X (kg Rk ) g ka, 2Rk/K), (34) Roe Ttk kaiR)
Note that for practical calculations one would compute
with ky=(k,—k,)/2. T(ky, ko; R =17 1(ky,Ko; R/ 71 4(K1, ko R) at largeR and es-

Thus the hyperradius-independent physical ionization amtablish the limit by extrapolation t®R— . This extrapola-
plitude factors out. Therefore, one indeed can represent thén procedure is used routinely in the ECS method.
ionization amplitude in terms of the trial integréll) but The choice ofz;=z,=1 was used in the ECS calculations
starting from the full specification of the asymptotic form of of McCurdy et al. [33]. They experienced serious numerical
the scattering wave function through E¢89)—22) leads to  problems in calculating, , with the use of effective poten-
the following form: tials other than 1, due to nonorthogonality of the Coulomb

062703-5



KADYROV et al. PHYSICAL REVIEW A 70, 062703(2004)

wave of a nonunit effective charge to bound states of hydrowhere a left(right) arrow on the differential Hamiltonian
gen. They concluded from their numerical simulations thatoperator indicates that it acts on the kikeet) state. This
the optimal choice for; andz, must be 1, although such a allows us to introduce a new surface-integral form for the
choice did not follow as a logical consequence of theionization amplitude which we denote @5
Peterkop-Rudge formalism they utilized. Our derivation
gives a complete theoretical justification of their approach. 1 w2

Finally, we note some simplifications of E¢®6) in vari- T@(ky,ky) =3 lim Rsf dfldfzf dasirf «

. . . . R—o0 0

ous kinematic regimes. Providég andk, are not too small,

which corresponds to the case wher (), or ()5, we can » 0';q>i(50>+ s C)+(7\pf—*
use the asymptotic form of the hypergeometric functions xcos a| Wi ——— - o5 ——|.
. . R dR
contained iny;. Then we have 2
I 1(kq, ko R
Tlkyky) = lim —2aKake:R (37)

It is not difficult to verify that due to the asymptotic forms of
W and <I>i(5°)+ no other surface integrals contribute.

Next we show that other forms are also possible. To see
this we note that Eq.3) can be written in the form

R Y1/o(Kz, 2RKg/K)

When neitherk;, k,, nor ks is too small, which corresponds
to the case wheR e )y, we have

, i (4R
T(ky, ko) = lim exp{i In(%éﬂll,l(kl,kz:R). (E=Ho)Wr(ry,rp) = VW(ry,r,). (43

R— 3

(39 In addition, we write Eq(5) as

Now this resembles Peterkop’s integral representatich _ _

but has no additional condition and contains only unambigu- (E=Hp)®V(r1,r) =Vid(ry,rp). (44)

ously defined quantities. Thus E8) is the exact integral o

representation of the physical ionization amplitude in theTaking into account Eqg43) and(44) we get

asymptotic domain where all the interparticle distances are

large. This provides proper theoretical justification of the 1y, k,) = (WEV = V| @Dy = (W} |E - Hy - (E - Ho)| @)

procedure used in direct methods to calculate cross sections, oL

namely, = = (Wi|Hg — Ho|@1). (45)
[T(ky ko) :éﬂ“l,l(kl-kZ;R)L (39 This allows us to introduce a second surface-integral form

) for the ionization amplitude:
Finally, Eqs.(36)—(38) can be used not only to get the correct

magnitude of the ionization amplitude but also its ambiguity- i) —x
) P _. 0D (i)o’r\Iff
free phase part. TPk, kp) === lim r7 | drydry| ¥ —— -V ——
21— arqy arqy
IV. ALTERNATIVE FORMS OF THE IONIZATION (46)

AND SCATTERING AMPLITUDES ) )
Note that the formsT® and T® are simply different(but

In the preceding section we showed that the ionizationequivalen} ways to represent the ionization amplitugie

amplitude can be represented in terms of a trial integral Subtracting Eq(45) from Eq.(41) we can observe that
which has a structure well suited for practical calculations.

However, we can go even further and ask the question: Is it
possible to extract the ionization amplitude without recourse

to external trial quantities which is the requirement of a for-

mally complete scattering theory? The answer is yes, as wgdualion(47) serves as a bridge to the post form of the
demonstrate in this section. ionization amplitude. In order to see this, let us separate the

First we note that Eq(7) can be written as unscattered and scattered parts of wave funcifgraccord-
_ ing to W;=w"~+Ww*°" Hence Eq(47) can also be written
(E- H)q)i(S(:)Jr(rl,rz) =Vi®V(ry,ry), (40) as

T@(Ky,kp) = TO(ky k) = (W5 Ho = Hol®)).  (47)

where we separated the scattered-wave padit/oficcording
to ®**=d;-®0. Combining this with Eq(3) it follows
that +(WETHo = Hol)). (48)

T(ky ko) = (W7 V@) = (WT|E - H|®)

T@(ky, ko) = TO Ky, k) = (WO |Ho = Hold))

In other words, the right-hand side of E¢8) is presumably

= <\Iif_||:| - E|q>i(SC>+> +(V;|E- |f||q)i(sc)+> the difference between twalifferent) post forms of the ion-
o ization amplitude(this is shown to be true presentlyAc-
= (W;|Hg = Ho| D59, (41)  cordingly, we introduce
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TO(ky, ko) = <w<f>-|ﬁo ~ Hol®)
:— lim R® Jdrldrzf da sir? a
R*)oo
b g
X cog a(\lf(f) — - (49)
JR JR

and

- - 1
T(d)(kl,kz) == <’\P(fsc)_|H0 - H0|®T> == E I|m I’i

r{—o

J df ,dr ( — —‘I)*—N%sq_*)
! arq Yoo, )

(50)
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glected the Alt-Mukhamedzhanov form is equivalent to
Garibotti-Miraglia wave functiorj18] [often called the three
Coulomb (3C) wave functiol. Thus, in this work, the
asymptotic wave functiot?"~ is taken in the form

W (r1,r2) = ke mags (kg 1) g (Ko, 1) g oK Ta)
(55

ConsiderT® of Eq. (42) and T of Eq. (49). Calculating
the surface mtegrals making use of the correct asymptotic
behawor forwy, ®°, W~ and @/, all given above, for
both T@ andTC) we get after some algebra,

T (ky, k) = T(ky, ko) lim [y (ky, Rky/ )|
R—

X |ih1(Ka, RKof K) 7] 115 K3, 2Rkl ) |2

Equations(42), (46), (49), and (50) are convenient for nu-
merical calculations as the result depends only on the
asymptotic behavior of the scattered wave functions. Thdrom Eqs(19—22) and(51)—«54) one can easily see that all
way we obtained@, T® T andT@ however, may seem other terms do not contribute to the result. Taking the re-
to the reader to be based on operator algebra with insufficienaining limit the Coulomb waves reduce to phase factors so
theoretical support. Therefore we independently show thatve obtain
Egs.(42), (46), (49), and(50) are indeed different forms of

the ionization amplitude originally defined in E(). In or-

(56)

T@9(ky,kp) = T(Ky, ko). (57)

der to do this, we need the asymptotic forms of bé&hand
v

The asymptotic form ofb;" is given by Eqs(19—(22). At
the same time we note that following R¢1L7] we also can
derive an analogous form of the wave functidn:

R

Wi(r,ry) ~ Wiry,rp) + Wo(ry,ry) +Welry,ry), (51)
with
e—ik
Wi(ry,ry) =- _E F(Kal 1;Kq, ko) —— ¢n(r2) (52
ikl
Wo(ry,rp) =— _2 G(Knf2: K1, ko) ——p(ry), (53
- - 1 ~(k & \&¥? _ i
Wo(ry,ry) :\If(kfl),kz(rl’rz) + (27)5/21-<§r1a§r2) RT/ze Rl
X Ky, T ) (Ko, 1) 12K, 113), (54

whereF andG [35] are amplitudes of the-3-2 recombina-
tion to two-fragment channels(where electrore, is bound
andm (where electrore, is bound, respectively. In Eq(54)

Now we conside® of Eq. (46) and T of Eq. (50). They
both can be reduced to

1 N LodD o
= lim r? J drldr2<\1r1*——q><'>—1).
21— arq ary

(58)

TOD(ky ko) = =

Calculating this integral using Eq&2) and(4) we get

TOD(ky ko) = F * (iikg ko). (59
Note thatF* (ki;kq,ky)=T(kq,ks) (see[35]). Thus, as we
promised to show, Eq942), (46), (49), and (50) are just
alternative surface-integral forms of the exact ionization am-
plitude in the sense of Eq@l).

Next we prove that the new forms obtained for the ion-
ization amplitudes can be extended to the amplitudes of all
other processes taking place in the collisional system. If in
the final channel we have a two-fragment state instead of a
three-body state then the total wave function developed from
the final statgqwe denote it®;) will be similar to ®; [see
Egs. (19+22)]. However, all the scattered par{gwo-
fragment and three-particle onesf this wave function

T is the amplitude of the 3:3 process. The wave function would have to satisfy the incoming-wave boundary condi-

W= which belongs to the continuum pal is the unscat-
tered part of the asymptotic wave functidfy.

tion. Clearly, the unscattered pabt” of ®; would be given
in this case by a product of a plane wave and a bound-state

The general form of the unscattered asymptotic waveyave function similar tab®:

function ¥V~ has been derived if86,37. This form takes

into account the three-body correlation effects. As we men- DOD(ry,r,) = X 2¢he(ry).

tioned earlier, in electron-impact ionization of hydrogen

atom, due to the small charge of the particles, these effectelow we first introduce, in analogy with the four forms of
contribute in the second order, and are therefore negligiblghe ionization amplitude, surface-integral forms for the am-
small. However, this is not the case when the charges of thelitude of the rearrangement scattering, and then verify their
particles are high. When the three-body correlations are nevalidity. Thus

(60)
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G@(ky ki) = @f—“_]o_ |j|0|q)(sc)+> (61)  tions®y anddDi(s‘"')+ we can write Eq(62) in the form
’ i
TG 1 IS
1 d(sor PN (®7|Ho = Hol®{*") = = lim 13 f drdf | 0 —2—
== limr3 f drldfz(cb;* ' —¢>§S°>+—f), 21y dra
(62) - cb(;“—) : (73
ar,
GO (ky, ki) = _<(D—|ﬁo_ ﬁo|¢(i)> (63) Taking into account Eqg21) and (60) and calculating the
o f integrals we have
(i) - GG '
= Liim 2 f dfldrz(cp;*@ _q)@&), (@7Fo — Hol®{***) = Gk k). (74

Similarly, we can verify the other forms. In addition, note
(64)  that

- - (b) V= —(DTIH = Hol DY = = (DIE =V = H.lpD
G(C)(kf:ki)=<¢'(f)|HO_H0|q)i+> (65) G (kf1k|) <CDf|HO HO|(I) > <(I)f|E \4 HO|(D >
. = (@7 |V @) = Pk k) (75)
1 N oM
==1limr3 f drldfz(QD(f)* L - ) (66) and
ro—00 arz 07r2 _ . _
GO(ky, ki) = (@V|Ho = Hol ) = (@17 Ho + V - E|®7)
(d) N = — (DSOS — bt _
k) = = (P Ho = Hol®7) 67 = (@) =GPk, k). (76)
1. R © C)_*aq>i+ +,9q>§5°>‘* In other words, the forms we introduced are easily trans-
==3 “mwr1f dr,dr,| @ P A formed to the usual prior and post forms of the scattering
e ! ! amplitude.
(68) We also emphasize the importance of the new forms of

Corresponding forms for the direct scattering amplitédie  the ionization amplitude, especially the forfif’ given by

the bra-ket notation can be obtained from E¢gl), (63), Eq.(49), from the point of view of general scattering theory.
(65), and(67) simply by replacing the labdlby i’. However, _Equatlon(49) leads toa vv_eII—defm(_ed convennonal volume-
their surface-integral forms will be somewhat different, sointegral form of the ionization amplitude in terms of the total

we write them down explicitly: three—body_ :'scattering wave functicbg, being de\{eloped
from the initial two-fragment chann&). In the stationary-

1 oDt oD,/ state scattering theory the post form of the breakup ampli-
F@(ki k) = = lim r f dfydro| @ ——-®*—— |,  tude is defined by

2r) o arqy oary

(69) TP (ky, ko) = (ky, Ko VIDT), (77)
) where(r,,r,|k.k,)=€*171*k212 j5 the undistorted three-body
® N _. o0 (i)&CDi,* plane wave. However, this form is valid only when the inter-
FP(kir ki) == Er“m ry | drgdro{ @;, R P o, ) action between particles is short ranged. The commonly ac-
1—®

cepted stationary theory of scattering fails to define the same
(70) for long-range interactions unless it refers to some screening
technique. However, this brings additional problems into
1. ) 0, 0D ol play since convergence of the screening procedure when the
FO(kir, ki) =5 “moﬁf drler(cD(l ) arl —<I>TT>, screening radius is extended to infinity still remains to be
E ! ! proven in the stationary theory of scattering of three charged
(71) particles. From the form of the ionization amplitude we get

. ) = prH-1H —E-H.- +
" T s 0P Ty, ko) = (P |Ho+ V- E-Ho - V+E[®]) (78)
F (ki"ki)__ér“m ry | drydrp| @5 ?1
1—® S +
DO~ =(V7|Hy + V- E[®). (79
- F i ) (72) This allows us to introduce
arq -
TPO(ky, ko) =(¥7|H - E[@]). (80)

Equations(69)—(72) are also valid for the elastic scattering,
wheni’ =i andk;,=k;. Equation(80) takes the form of Eq(77) when the full inter-

The new forms for the scatterin@oth direct and ex- action is short ranged. Thus, E@O) extends the definition
changé amplitudes can be verified as follows. Consider, forof the post form of the breakup amplitude to long-range po-
example,G®@. Using the asymptotic form of the wave func- tentials including the Coulomb interaction.
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Finally, we want to make some observations on the impli-
cations of our results in this section. First, comparison of the

Peterkop integral, ;, obtained from Eq(11) with z;=2,=1,
andT©, given by Eq.(49), reveals that the former is equiva-

lent to extracting the ionization amplitude without the use of
the electron-electron correlation. Thus the introduction of the

PHYSICAL REVIEW A70, 062703(2004

f dfldr2<c1>§?°>‘

ary

LoD

1.
FOI (k. k) = -5 lim r2 P

r{—o

-0 (86)

effective charges in the Peterkop formalism is nothing elsérhese forms are recommended for practical calculations
but an attempt to compensate for the absence of these corrg o they have a simpler structure. Which fogeitherac or

lation effects.

Second, in the surface-integral sensedrandc forms of
the ionization and scattering amplitudes are identical. Th
same is true for théd andd forms. This can be seen if we

neglect in the appropriate wave functions those parts whicﬁ

do not contribute at all or contribute in higher orders. Thus
the surface-integral forms of Eqe42) and (49) can be re-
duced to(we label this form agc to distinguish it from the

a andc formg)

1 /2
T@®(ky,kp) = = limR® | df,df, f da sir? a
2R*>oc 0
(s9+ ()=
X cog a(\I’(f)_*& g > .
IR : R

(81)

Similarly, from Eqgs.(46) and (50) we get(we label this as
the bd form)
f dfldrz(xp?@‘

)

oW

*_

1
TP (K, k) === lim r?
( 1 2) 2 1 19f1

r1*>00
(sQ—*
(i) ad
ar,

(82)

Accordingly, for the rearrangement scattering amplitudes we.

obtain

(so+
f drldf2<(13(f)* &(ii

1
G@(k, k) = = lim r3
(f |) 2 2 r2

r2~>00

o
- QST —— || (83)
oy
1 g
G (ks k) = - = lim r? | dfdr,| &9 —
20y © toa
rq{—o I’l
_&(I)(sc)—*
- o0 af ) (84)
Iy

and completely analogously for the direct scattering ampli
tudes we have
1, 9D
f dfdr,| @ —
ory

)

1
F@)(k;/,k;) = 5 fim rf

r{—o

oD

_ q)i(SC)+
ary

(85)

bd) to use in a particular case depends on which form of the
scattered wave function, eithdr®®* or w!*°~ is chosen to

%e calculated numerically. So far, most approaches to the

roblem are based on calculationsd®f. Therefore, to give

n illustration of the use of the formalism, assume that we
‘were able to solve the Schrédinger equation and®ﬁ8+ at
asymptotically large distances. Then the ionization amplitude
is extracted usind@ [Eq.(81)]. For all that, the asymptotic
value of the other participating wave functidr”~ is taken
from Eq.(55). The exchange amplitudes are calculated using
G@9 [Eq. (83)]. The asymptotic value of'f is calculated
from Eg.(60). Similarly, the direct scattering amplitudes are
calculated using @ [Eq.(85)]. The asymptotic valué®( is
taken from Eq(4). The remainingod forms are reserved for
extracting the corresponding amplitudes when the
Schrddinger equation is solved for the total scattering wave
function being developed from the final state.

Third, calculations using the prior form of the ionization
amplitude in the Born approximation Tgym(ki,ks)
=(¥0-|v;|®dDy became popular using the influential work of
Brauneret al. [19]. They helped in our understanding of the
dynamics of the electron-impact ionization process at inter-
mediate to high energies. In the light of the usefulness of the
prior form of the ionization Born amplitude it would be in-
teresting to see what is the capacity of the Born approxima-

tion based on the post form of the amplitu@°* (k; ,k,)

WO~ |H-E|®D) which we obtain from Eq(80).

In concluding this section we emphasize that the results
given here demonstrate the self-consistency of the theory
when it is formulated in a correct fashion. Furthermore, in
the formalism described above we have not been required to
reference the masses of the particles or the explicit forms of
the interactions between them. This makes it obvious that the
amplitudes of all processé&slastic scattering, direct excita-
tion, rearrangement, and breakup an arbitrary three-body
system can be directly written in the surface-integral formal-
ism developed here. The fact that we assumed that within the
two-fragment channels there is no residual Coulomb interac-
tion is not an essential factor. If there is such an interaction in
these channels, one needs to replace the respective plane
waves in the asymptotic wave functions with the correspond-

ing Coulomb-modified ones; however, this does not change

the results given above or their proof.

V. THE PARTIAL-WAVE ANALYSIS OF THE INITIAL
AND FINAL STATE THREE-BODY WAVE FUNCTIONS

The process of solving the electron-impact ionization
problem is twofold. First, one has to find the total scattering
wave function, and, second, to extract from it the necessary
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ionization information. Generally speaking, the direct nu-potential is first expanded in terms of the Legendre polyno-
merical integration of the Schrodinger equatigi) for ~ mials. In subsequent publicatiof$l,42 he showed how to
electron-hydrogen ionization is carried out for the partial-extend the monopole-term solution to the dipole term. Later
wave form of the equation. In order to derive the equationPeterkop and Liepinsii43-43 and Peterkop and Gailitis
we require the total three-body wave functidd to be ex- [46] also tried to utilize a somewhat similar technique. In the

panded in bipolar spherical harmonics of a pair of unit vec-end, neither Altick, nor Peterkop and co-workers could go
torst; andfy: beyond the_=0 partial wave, although they argued that their

procedures in principle could be generalized to the higher
. . L partial waves. Even for the=0 partial wave, the aforemen-
D (rpr)= X RiLem(Tr2N 1, emfafa), (87)  tioned works were not able to provide clear-cut, practically

lplo LM useful wave functions for the simplest cases, like the
Temkin-Poet or collinearSwave models. For instance,
with the bipolar spherical harmonics defined[a8] Altick [41,42 suggested that the centrifugal forces corre-

sponding to the orbital motion of the electrons do not con-
N . R tribute and neglected them. This is equivalent to settin
Vipm(Fafz) = > CllellzmzYllvml(rl)le,mz(rZ)’ 88  =|,=0. This fagt alone is enough to u?}derstand that h!lisgre-
MM sults are approximate even for the=0 partial wave where
o otherl;=1,+ 0 also contribute. We shall demonstrate that his
where Cii ., are the Clebsch-Gordan coefficients, results are not exact even for the Temkin-Poet model, where
Y|1,m1(f1) are the spherical harmonids,andl, are the angu- all angular momenta are zero. The only exact result was
lar momenta of electrons, while is the total angular mo- given by Merkuriev and Faddegw7], but for the Swave
mentum andn;, m,, andM are the projections df, |,, and  asymptotic wave function and only for the case of three iden-
L, respectively. Here the triad of angular momefltal,,L}  tical particles(i.e., repulsive potentialsIn atomic physics
satisfies the well-known triangular conditions. Below, whenwhere attractive potentials are present it is not clear whether
we introduce more angular momenta, similar conditions aréhe Merkuriev-Faddeev derivation is valid. The reason for
implicitly assumed for appropriate triads. The radial coeffi-this is that, as pointed out by Merkuriev and Faddp&r], if
cients are defined as one of the particles has a charge of the opposite sign then at
some points the asymptotic forms of the Faddeev compo-
nents diverge. On the whole, these attempts to derive the
R[;’,Z’L’M(rl,rz) = f dfldf2<1>i+(rl,rz)yflJz’L]M(Fl,fz), partial-wave expansions have not succeeded.
The difficulty of the situation was encapsulated by Gailitis
(89 [48,49, who came to a very general conclusion that a state
of any system of three or more free particles with long-range

dimensional second-order partial differential equations foi?Y the angular momenta of the particles.” Hence, the partial-
radial wavesR; L,um(T1,12). Then the infinite set is trun- wave expansion of the total wave function “becomes mean-
12

cated and solved in a two-dimensioral,r,) lattice, e.g., ingless.” According to Gailitis this was a consequence of the

using standard numerical techniques like finite-element Olong range of the Coulomb interaction.

finite-difference methods, imposing proper boundary condi- The analytic form lof_Eq(22)'suggests t.hat mdegd Itis not
tions. However, in this work we will not discuss the ways of possible to expand it in partial waves in a straightforward

solving the aforementioned set of equations. Rather, we adnanner. This is due to the dependence of both the ionization

sume that we are able to obtain reliable numerical squtiongmp“tUdeT and the electron-electron cprrelatlon ter_ml,z
in EqQ. (22) on the vectors; andr,. Any direct expansion of

for the radial wavesR, | | u(r1,r2). Here we are interested . . .
. L2 ; @ as a consequence will lead to a result where each partial
in the second phase of the solution process; namely, we wi

h . th h a1 ionizati ave function depends on an infinite set of all possible par-
answer the question of how to extract the partial lonization;y| jonization amplitudes. The same conclusion is applicable

amplitudes from the wave functior®; | u(rs.r2). This 15 e Peterkop forni12). It is in this formal difficulty that
requires a knowledge of the analytic form of the partialthe Gailitis conclusion is founded. These problems do not
waves in the asymptotic domains relevant to ionization. Ingrise provided the interaction between the particles is short
this section we will derive the asymptotic form of the expan-ranged.
sion coefficientsR{ | | w(r1,r2). Further, we will generalize However, this is where our agreement with Gailitis ends.
the results of Sec. Il given for the full physical ionization One must recognize and proceed from the fact that all known
amplitude to individual partial ionization amplitudes and es-direct integration approaches to the ionization problem as-
tablish an integral representation for them. sume the possibility of a partial-wave expansion of the three-
The partial-wave expansion of the asymptotic three-bodyhody wave function. Even though they use one or another
wave function is a long-standing problem. In the first attemptapproximation where necessary, they solve the problem for
made by Peterkop and RabjB9] a Fourier-like expansion individual partial waves. The reasonably fast convergence of
was used. Later Altick40] found the monopole term of the the partial-wave summation and the generally good results
partial asymptotic wave function using a multipole- they give indicate that their implicit assumption of the viabil-
expansion approach, where the electron-electron interactioity of a partial-wave method is not groundless. With the body
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of computational evidence of the efficacy and convergence o(k)=argl'(l + 1 —i/k) (93
of partial-wave expansions providing motivation we show.

that the partial-wave expansion does make sense. We derfs- the Coulomb phase shift. The radial Coulomb functions
onstrate that the asymptotic three-body wave functions caffi(k.) are given by

be expanded in partial waves. Moreover, the final results we Ar [T(1+1-i/K)|

get are exact in the leading order. They have simple and clear k)= —7 ek (2kr)'

analytical forms especially for the model cases mentioned in e™ T@+2

Fhe preceding paragraph. In .the process qf derivation we also X Fy(1+ 1 —ilk;2l +2;- 2ikr). (94)
identify the reason why the final asymptotic form of the scat-

tered wave was not expandable in partial waves. We emphasize that our Coulomb wave function satisfies the

Our method of attack is based on using the fundamenta:hcoming-wave boundary condition. The phase fa(?f(‘)‘f“k)
asymptotic relationship between the unscattered and scap Eq. (92) reflects this fact. In case of the outgoing-wave
tered three-body wave functions, which has been establishdebundary condition this factor would changed®.

recently[16,17. To be specific, we first expardl"~, then The distortion factory_1/5(k,r) is expanded as
using the relationship betweeab;, and V"~ calculate partial R i
waves ofd?. Yoo(kr) = 2 xi(K DY m(K)Y)m(P). (95)
I,m
A. Asymptotic wave function lIf(kfl);z(rl,rz) in partial waves FZFJQ? gxpansion coefficientg(k,r), after some algebra,
* w iv
Let us separate all the angular information contained in

ionpH- i ion i A7 T'(A-i/2k) T'(e+1 +i/2k
the wave functlonlfk'lvkz(rl,'rz) accordmg to the expansion in (k) = lim ka ( ) I'(e ! )(_ 2ikr) F (e
a complete set of bispherical harmonics: e-0€ I'2l+2) T'(e+il2k)

+1+i/2k; 2l + 2;- 2ikr). (96)

‘I’f(fl),_kz(rlyrz) = Ry ar (K Ko, 12) Yy (K, k) Wy (Fa,T2),
A Note that the limiting procedure in the above equation has
(90)  been introduced simply to show that the expansion also holds
S e _ for the case when there is no electron-electron interaction. In
wherex={ly,I5,L,M} and\"={l;,15,L",M"}. We are inter-  is case setting the Coulomb charge to 0, due tolthe
ested in the radial coefficien®, ,,(r1,r,), which are de- +1)/T(e) factor, we havey(k,r)=4md,. Having noted this
fined by we implicitly assume the limiting procedure in the following
- and simply se&=0 in Eqg.(96).
Ry kukeiryra) Thenl?/v):a have 0

= f dk k0P 1P, (11, 1)V (ke k) VL (FP). W)= 3 iktetakintdg (o) e (kero)
Izl s,
(91) Mg, My, M5
To begin the derivation, let us expand the Coulomb wave X )(|5(k3,r3)stlms(IA<1)Y|*4’m4(IA<2)Y|*5’m5(IA<3)

function €y (k,r) according to

. . ~ ><YI3,m3(i:1)YI4,m4(F2)YI5,m5(’r\:«’,)- (97)
¥y (k,r) = X i'e Wk, Y] ((K)Y of), (92
I,m

ExpandingY|5,m5(F3) and Y|5,m5(IA<3) in terms of the spherical
where harmonics of vectorg,, f», andIA<1, IA<2, respectively, we get

x1,(Ka,T3) (215 + 1)

V)= Y Eleinaio g ik, r)e (k)

13145 (k3r3)|5 47
Mg,My, Mg
lg, 171151
% E (= 1)|7+|9 r16r27k:l?k29 CI5m5 CI5m5 E 1
e 280 [(2g) 1 (217) 1 (21g) ! (21g) ! UMM M L T i is
Mg, Mg MyoMy1,M2 M3

| | My (0 oy 0 ~ligms N B
x C|§%2%§m60|§8?60 |L11r1n4|171m7c|16|70C|;ﬁw3|1§mgc|;0|80C|iﬁw4|193nbc|18?90Yl o T Y1 m (Y] (KDY (Ka),

(98)
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wherel,=1s—Ig andlg=Is—Ig andi=y2+1.
Now we have to consider
Xls(k31r3)
(kara)'s

which contains information on the directionsrgfandr,. We
expand the hypergeometric function according to

ochl(|5+i/2k3;2|5+ 2;_Zk3r3), (99)

1Fl(|5 + |/2k3,2|5 + 2,_ Zk3l’3)

= 2 O ket )Y m (DY) m (o),
l14My4
(100
with
1
RHEN P 27Tf dx F,(I5+i/2Ks; 215+ 2;— 2iKar 3)

-1

xPy (X, (101

PHYSICAL REVIEW A 70, 062703(2004)

all of the introduced orbital angular momenta, is
(L —i/2kg) T'(ls +i/2ks)
( 2) 71'/4k
3 I'(i/2ks)

Edll

sl14l15
l15my5

I CHENPY;

(k,),

(102

(klykz,fl,rz)Y| ('A<1)Y|15

5Mis M5

with

I'(1-i/2ky)
dir (K ko, rp) = 2a(= 2|)|5f Tk:gs
-1

5714715

I'(ls+i/2k
(Fs(i-'/-—ZIkg)a) I5'14(k:’3"’1-r2)P| (y),

(103

where y:IA<1-IA<2. We will return to further consid-
eration of the expressions forg,  (ks;ri,rp) and

le |14 15(k1,k2,r1,r2) later. Meanwhile, collectlng our results

wherex=F, -f,. Then the final expansion, which helps couple we have

k1 kz(rler) = I3,I4,I§14,I15, 1gi5ilsagrionkuion o) g, Jkur)e, (ko ra)dy ) (Ko, ro)
M3, My, M5, My 4 My 5
1)17+ 'Gr'7k'8k' 1
% 2, (2'8)“9 [(2l5) ! (2 )1 12(2| g ! (2 )']1’2(::626'7”“7(::828'9”’9 |10,|E2,|13, Tiddid1s
o.M My MMy Mg
X Clgmo. Cg (G, ClgY otz gy (e, G oY1 o myoPD Vi, o (F)
X(= D™, o FDY i (DY m (KDY (KDY (KoY (R) (= D)™, (104)

After some momentum algebra we get

1
V) =—— X
1Ko (4’77) 131405114115
Mg3,My, M5, My 4,My 5

lerl7lgLlo
rer7Kkeks

|2|2I|3+|4e_'”I (ky-ion, (ko) g (k1,|’1)€0| (kz,rz)d| I

1|7+|9
> )

lg:lg,
Mg, Mg

| 0
X CI ;%Ilgnhcl 301 6OCI amyl 7m7CI i(%l 7OCI 3Mal 8m8CI 0l 8OCI Amyl 9rngCI 4010 E

| 1160 -m
X C16Ms C 160 l17my7
lyoMigl 14 Mg 711001140 119My gl 144 14OI

cen
1401

- L'’
X 2 Citnd i Vgl m(F1f2) > G

18Md1dMg

L' M’

where we introduced bipolar harmonics according to

2579 [(2)1(27)! (2lg) ! (2g) 1 ]2

(K, Koirg,rp)

slial1s
; Ismg Isms
hohuhahs  ligglid ol el
1011112013 10|11 12113
MyoM 1Mo M3

( 1)m14+m1=|10| 4|11I 4|12|15|13|15

lhiel17l18l10: l16 |17 |18 |19
MieM17MgMig
I

Cliom 10
12m12|15m15 I120|150 '13”‘13'15 My 513300350

y L, M'(klvk2)! (105)

liglio
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Yim (FDY1,m(F2) = L% Chmgm A, m(frf2), (106)
which is easily obtained from definitiof88). Performing the summation over projections of the angular momenta we get

] 1 .
W (rars) = (4m)? > EfE g et JKur)e, (ke ra)d 1 (K koira,ro)

|3,|4,|5,|14,|15 5'14'15
1 |6r k|8k| o
x 110 18C (Cl10 Gl ladd
.g; 2'8”9[(2'6)!(2|7)!(2I8)!(2Ig)!]1’2.10|1§12,.13 1018712/13+150160°1,0170™150150°1,0150
- s ls Iy
lig le | L = Iy | lie lig |
X ched  chit ched  chd — q)lirhe] 114 16 110 10 11 ()15 lig l12
'1@'1%21&'19 "1l |130|150L§J\:/|( : L oIy i)l lo = 14 L I3l
|12 |8 |3 -
X y'le"uv'-”\"(fl'FZ)yl*lS,llg,L,M(kl,kz), (107)

where the braces denote pgymbol and a 1Rsymbol of the
second kind, respectively. Inserting Ed.07) into Eq. (91)
we arrive at the final result for the radial components of the

=- . _ N il gmrion (k)i (k
Rll,lz,li,lé,L(klukarlur2) = |§|: ilstlagrion (k)i (i)
3la

asymptotic wave function we are interested in: X (k) e, (ko)
I3l
- ~_ xf® ki, Kojrq,r
R)\)\r(klakZ;rlyrz):,Rq | |r|rL(kl,kz;rlyfz)(SLL'&MM', o121t L( vkeifyrz).
) 11 2v 11 21
(108 (109
For convenience, in the equation above we introduced the
with the covariant part given as shorthand notation
|
lerl 71 el
£l (kg kit 1422120, | (kkoirat 11727417
fnigkeinr) = (477)2,5,%'15 hstyokeiry 2)2 2'8*'9[(2| o)1 (217)1 (2lg) ! (219) 1 ]2
lia 1y |
0 150 10 14 11 1o
X 2 TidulidiaCl o] oqi(l)l?oq30|80C|40|gocl100|140C|110|140C|120|150C|130|150{ Lol | }
liol12l12113 11 2
- |5 |6 |7
(N li5 17 |
10 11 { 15 1 1/2} (110)
liz lo = l4 | LL Iz I3
lip g 13 -
[
We draw the reader’s attention to the fact that we did not [1142] 11420 (r2 + r2)la 2N
assume in our derivation the property that the expansion co- 9, (k3,rl,r2) 27 >, ay >, bNﬁ
efficients were diagonal i and M. It is a test of the cor- n=0  N=0 (2ryrp)a
rectness of our angular momentum algebra that this antici- _ _
pated result emerges. X [Dign(kara+r2) = Dignlka,|ra = 2],
We finally return to giving useful expressions for calcu- (111
lating the g, |, [Ksirq,rp) and d|5|14|15(k1,k2,r1,r2) After
some algebra we get where
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_ (= 1)" (234 2n)! 1z Dsntken)
n— | _ ’
24 nt(lyg=n! = P22 E (ON+ 2,15 +i/2kgi 2N + 3, 25 + 2 2kar).
= , 113

(N + 1)' (|14_ 2n - N)I
and [l,4/2] is the integer part ofl;,/2. The function _ _ S
D, n(ks,r) is given by With this result the remaining integral can be transformed to

5 ’

[142] lyg2n

Oyt gips(KekaiTLr2) = @mA-2)'s 3 2y X by

(rf+rphaanN g rlate (1 -i/2k) T(ls +i/2K) <k§+k§—k2>
“(or r V120 |y I15

slialis 0 NeO (2rqry)'14 2L Kk, lky—ko Toem ['(i/2k) 2kqk;
X[Dy n(ki Ty +15) = Dy (K, [rp = r2])]. (119
[
Thus we established that for our particular physical sys- R L PPN
tem the general expansig@0) can be written as gfirtiet2 o §(ky =Ty dky = To), (118
- - . which can be written in partial waves as
\I’(kfl),kz(rler) = X R|1y|2,|1,|é,|_(k1:k21 ry,ro) P
I3.020105,LM

5(|A<1 =T 5(|A<2 )

XV (K Ko) Y f1,fy), (116 o o
|1,|2,L,M( 1.k2) Il,lg,L,M( 1f2), (116 _ E Y|l,ml(k1)Y|l,ml(F1) E Y|2,mz(k2)Y|2,mz(f2)
l2my

with the expansion coefficients given by EQ.09 being '™y o
rotationally invariant. => > Ch;n“i;zmzyrl,lz,L',M/(klykz)
lulo LM
B. Partial waves of ®7(r,r,) My My
We next turn to the critical task of finding the asymptotic X 2 Chintom Vo Lm(Ff2)
form of the expansion coefficient; | | \(r1,r2) defined by LM
Eg. (89). As mentioned earlier, for this we use a fundamental = : K, k 7.5, 119
asymptotic relationship established receritlys,17, which |1,|22,£,M Hptptulkn kN m(f 1) (119
for the continuum part of the scattered wave function reads
as This leads to the conclusion that whenever we are calculating
the partial-wave expansion of EL17) for rq, r,— o utiliz-
dk! dk! T(k’,ké)\lfl((f,)_k,(rl,rz) ing Eq. (116) we should only consider contributions ftf
+ 1 2 172 — ’— ’ J H
D(rq,rp) :J 3 3 > . =l, andl5=l,. Other values of; andl;, do not contribute to
(2m)° (2m)°E- k12 -K'5/2 +i0 the integral in the regions where the stationary-phase meth-

(117 ods apply.
Let us now expand the ionization amplitude as usual in

In Refs.[16,17 this relationship was used to obtalff from  the standard manner:
the asymptotic form oft(V~. Here we first expand E¢117)
in partial waves and then calculate the resulting integrals by Tkpkp) = > T|l,|2,|.,M(k1,kz)yr I ,L,M(Izl!RZ)!
means of asymptotic methods. LM vz

Before proceeding further we want to make the following (120
remark. Sincer,, r,—oe, the integral in Eq.(117) is ex-
tremely oscillatory with the strongest oscillations comingwhere
from the termek11*k2"2 of the wave functionP(kfl)"kz(rl, ro).
When we calculated Eq117) without partial-wave expan-
sion (see[16,17) we observed that the dominant contribu- o o
tion came from a small neighborhood of a stationary-phase 7Tl,|2,L,M(k1,kz) :Jdkldsz(kl,kz)y,*lJz’L]M(kl,kz).
point of the termg 1122, The only contribution to the
integral came from the following directiorjgecall Eq.(31)]: (121

7i,1,Lm are the partial ionization amplitudes defined
as
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Then using expansior(d16) and(120) in (117) and keeping . dkik'2 dkok'3
only the terms capable of contributing to the result we get Rll,IZ,L,M(rler) :f —(277')3 —(277')3

! ’.
N 2,|1,|2’L(k1,k2,r1,r2)

XTll,|2,L,M<k1,k;>7”zr,|

"2 AL 1 2
Di(ry,r)= > digks dik’5 E-k'2/2-k'32+i0
o (2m)? (2m)°
I35 LM ™ ™ (123
T,lJZ,L,M(ki,k§)7~€|‘1’,2,|1’|2,L(k3,k§; ry,ro) To obtain a useful result we still need to evaluate the integral.
E-K22-Kk'32+i0 The explicit form ofR[lle’,lyI L in Q¢ has been givgn above
L in EQ.(109. The funct|on<p,(2k,r) has the asymptotic behav-
XY ,Lm(fria). (122 jor

r—oo
ok 1) ~ —sin{kr + (1/K)In (2kr) - 1712 + a,(K)].
From this equation, by direct comparison with the definition kr
(87) of the partial-wave expansion, we see that the (124
as+ymptotiq form in the ionization sectqin the following,  Therefore, substituting E¢L09) in Eq.(123) and evaluating
Ry 1, Will refer only to the (). part of the radial wave the integral ovek] taking advantage of the simple pole sin-
function as we are not interested in its two-fragment pasts gularity (ps) of the integrand we get, in the leading order,

dkk'2 digk'2 77 1, (ke Ki'se M gy (g, 1)
2m)° (27)° E-K'Y2-K32+i0

O ' I3l .
et g (K5, rfRe | | (K kgirsro)

R|+1,|2,L,M(r1:r2) =>

I3)g

1t 1,2 "kl
_1 dkik'y digk's T, miky ko) ilagrion, () gkira#ilky In(2Kjry)-il gmi2+io (k)

Ting ] em? eaPE-KE2-KF2+i0

Ly Sy ’ . f ne. s ’
- et n@artlametab)ile 002 o (kG r) fi2id 1, (kg KsiTeTo)

1 1 “ 2 (B (P9 | o1 (P9 -
__ .+t -+ "2 (P9 KPIr 1 +i/kPY In(2kPIr )il g (K I3l ) 17
__(277)4V1I3I4f0 Ak 371 1, (K kg &l T e D (1 r )i (R K Tara),
(1295
Wherek(lps):(;cz—k’i)l’z. Then using Eq(124) leads to
. 11 A 09 17 kP 1#iKPY In(2KPIr )il g iy (D) ik o+l (2Kt )il g 240 (K)
Rll‘IZ’L'M(rl’rz)___(277)3_ir ] 2 dkok ZIZTlJZ,L,M(kl k) el Ttk 1 rjlagion (ko) (glkaratilk; oro)=ily 1,2
12150, 0
_ eikpramifky In(2Kr )+l 4w/2—i0,4(k§))f:i:g’|1’|2’L KPS KDiry,ry). (126)

The first term of this highly oscillatory integral has a single stationary poiiktakr,/R= « sin @, where n0\/\/k(1p‘°‘)::<r1/R
=k cosa. The second term does not have any stationary points; therefore it does not contribute. Thus evaluating the remaining
integral we finally have

. 1 K32 _ iIn2kRcoga) iIn(2kRsifa) im
R|1,|2,L,M(r1,rz)—Wﬁl,|2,L,M(KCOSa,Ksma)RS—,zex ikR+ —cosa T ssna 2

X T|11|2'L(K cosa, k Ssina;Rcosa,Rsina), (127
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where Rl(ilcz)_(rla rp) = iIl+|ze_iU'l(kl)_io'z(kz)@l(kl, e (Ko o).
. . 130
7'|1,|2’|_(K cosa, k Sina;Rcosa,Rsina) (130
o _ _ The expansior{129) with radial coefficientg130) is easily
=2 f|fj|‘2‘,|l,|2,L(K cosa,k sina;Rcosa,Rsina). derived by means of expanding the Coulomb wave functions
314 in terms of the ordinary spherical harmonics and coupling

(128 the corresponding pair of spherical harmonics into bipolar
harmonics. Alternatively, it is also not difficult to obtain it

A crucial feature of these asymptotic wave functions isfrom our general expansiof®0) and (91) and (108 and
that they have a form where the partial ionization amp”tUde?lOQ)when the electron-electron interaction is turned off.

are factorized. In the following section we will demonstrate Now we can write the integralll) for asymptotically
how to obtain the partial-wave ionization amplitudes fromlargeR as

the partial-wave radial functions derived here.
IkpkoiR = 2 T m(Ke ks R ke ko),
I35l M
VI. INTEGRAL REPRESENTATION FOR THE PARTIAL (131

IONIZATION AMPLITUDES where

In order to establish an integral representation for the par- 1 l2
tial ionization amplitudes we need, in addition to the partial- T Lmky, ki R) = -R5f da sir?
wave expansion of the scattered wave, a similar expansion vz 2 Jo

for our auxiliary wave functiont?©-, Therefore we expand IR}
it according to (20)-+__wlatbM
XCO§ a(Rll'|2 (9R
(20) S RO 0
WY (rg,rp) = R (kqykoirq,To) _ ot vl
kpky (1272 it IISTL NE TP Ri LM R (132
><yf1,|2'L,M(lA<1,|A<z)y|1,|2,|_,M(f1,?2). are the partial-wave components of our trial integral. Al in-
formation about the partial ionization amplitudes is con-
(129 tained in the radial part®; | | of the wave functiord;".
_ o (20 _ _ Let us now calculate integrall 32).
where the radial coefficient®, "~ (r;,r2) of this expansion Since the functionp(k,r) asymptotically behaves accord-
are given by ing to Eq.(124), for the integral(132) we get

11 P I : . . : ,
T,k ko R) = E(ZT)”ZERMJO da sina cosaT; |, m(k cosa, k sina)exfioy (ky) +ioy (k) =il /2 —iml /2]

p(, iIn(2kRcog @) iln(2kRsirfa) iw
X exp| ikR+ + - +—
K COSa KSina 4

){(K + Kk, cosa + k; sin a)exd - ik;R cosa

= (i/ky) In(2k;R cosa) +ilym/2 —iay (ky) Jexp ~ ik;R sina = (ilky) IN(2kRsin @) +il /2 ~iay (ko) ]
+(k —k; cosa —k; sina)exdik;Rcosa + (i/ky) IN(2k;R cosa) —ilym/2 +ioy (k) Jexplik R sina
+(i/kg) In(2kR sina) =il /2 +i07 (ko) ] = (k + ky cOse — k; sina)exf - ik;R cosa

= (i/ky) In(2k;R cosa) +ilym/2 —iay (ky) JexplikoRsina + (i/ky) IN(2k R sina) =il y7/2 +ioy (Ky) ]

= (k= kg cosa +k; sina)exdik;R cosa + (i/ky) In(2k;R cosa) il m/2 +iay (ky) Jexp - kR sina

= (ilky) In(2ky,R sin @) + il y77/2 =i a-lz(kz)]}ﬂlvlva(K cosa, k Sina;Rcosa,Rsina). (133

062703-16



THEORY OF ELECTRON-IMPACT IONIZATION OF ATOMS PHYSICAL REVIEW A70, 062703(2004

The first two terms of this high-oscillatory integral have a 7, | | (ky,kp)

stationary point atv=arctarik,/k;), where vz . ,
) =T ,LmKy ko) lim |7'I1,I2,L,M(k11k2;klR/KaKZR/K)| :
kcosa=k; and ksina=k,. (139 R

. : . . 138
However, the second term is identically zero at this point. (138

The other two terms do not have any stationary points ang,, this we conclude that
therefore they do not contribute to the result. Calculating the

remaining term we finally have lim |T|1’|2,|_'M(k1,k2;klR/K,sz/K)| 1. (139
R—x
Ly, mK ks R =7y L m(Ke, Ko) 711 1 (K, Ko kR KoRY k)
(135) Consequently, from Eq136) we get

or 71,1,k ko) | = Iiim 1 ,emke ks R, (140

T kuky) = lim ——wleem b ieiR)
.0, M (K1, Ko _Rﬂxﬂl,lz,L,M(kl,kz;klR/K’kZR/K)_

an important relationship, which rigorously proves the valid-
ity of the partial-wave-based calculations of the ionization
(136) cross sections in the full electron-hydrogen ionization prob-

) , lem using ECS techniqueg8-1Q (when R is sufficiently
Thus the knowledge of the radial part of the scattering Wavgarge).

function allows us to represent the partial ionization ampli-
tudes in terms of the partial waves |, | m of Peterkop’s trial

integral (6). Note that for practical calculations one would VII. APPLICATION TO MODEL PROBLEMS
compute , . .
P In this section we consider some well-known model prob-
Tk ko R =7 mky ko R/ lems. We present results obtained in our approach for the
v v wave functions and ionization amplitudes readily applicable
711, M (K, Ko; KRV, KR ) for practical calculations.
at largeR and establish the limit by extrapolation R— . .
In doing s0Z; |, m(ky,kp;R) is calculated from Eq(132 A. Screening model
with R|+_1,|2,L,M coming from the solution of the partial-wave  Consider a model electron-hydrogen ionization problem
Schrddinger equation. where electrore; is completely shielded from the proton by

The use of the integral representatid36) is one way of  electrone, which is closer to the proton. We call this a “one
calculating the partial ionization amplitudes. Alternatively Coulomb” (1C) model. The asymptotic form of the unscat-
one can use the surface-integral forms derived in Sec. IMered wave function?"~ for this model is given by
Expanding, for instance, trec form of the ionization ampli-

tude[Eq. (81)] according to Eqs(120) and(121) we obtain ‘I’(kllf:k)z_(fl,fz) = gkurrvikeTay, (ko ry). (141)

1 w2
T 1,k ko) = 5 lim R® da sir? a co< a The partial waves of this function are
R—x 0
o R (ry,r0) = 4mi't2e 002, (kyrp) ¢y (KaT2),
~_, 0o LM
XA\ Rty ot R (142
,ﬁgl—*l L wherej(kr) is the spherical Bessel function.

_er,lz,L,M$ (137) Then using Eqs(141) and(117) according tq[16,17 we

get the corresponding scattered wave for ionization to be

This is how the partial ionization amplitudes are given in 1
their natural form, without the use of an auxiliary function. PO+ _ (10) P s K
; . . : . r{,ro) = T KCOSa Ty, kSinaf n
Numerical calculation of the integral in E¢137) directly MUREY (2m)57? ( ! 2 RS2
gives us the partial ionization amplitudes. Again, the wave
X exp(iKR+

3/2

functions erylva,M come from the solution of the
Schrddinger equation.

On the other hand analytical evaluation of the integral in (143
Eq. (137 allows us to establish a very important practical
result. To calculate the integral we use EG99 and(127)  whereT9 is the ionization amplitude in the 1C model. This
and follow the procedure we applied above. Then we arrivallows us to write the asymptotic form of the partial waves of
at @ for this model:

i In(2«Rsir @) ij)
KSina 4)
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1 3/2 1 K3/2
(10) - 10) o (20) - 2C 2 iny i) E
Rizoim(rra) = (277)5/27fly,2,L’M(K cosa, k sina) g7 DY (ry,rp) = (277)5,2T( )(k cosafy,ksinaty) 572
p(_ i IN(2kRsir? @) m) p( i IN(2«kRsir? @)
X exp ikRt ———+— |, X explikRt —————
KkSina 4 KkSina
(144 , 1In@2kRcog @) ij) (149
where Tflllcz)LM are the partial ionization amplitudes in the K COSa 4/
screening model we are interested in. Instead of the integrglnere T29 is the ionization amplitude in this model. This
(132 we now get, for asymptotically large, allows us to write the asymptotic form of the partial waves of
1 al2 the scattered wave function for our model:
|11,?:2),L,M(k1,k22 R) = ERSL da sir? a cos . "
2C — 20) i -
8R<1C)+ R|(1'|2),+|_,M(I’1,I’2) = (277)5,27|<1,|2’|_,M(K COS«, k SIN a) 52
« | (20~ I1pLM . .
|1'|2 &R X ex%l R+ M
(20)-+ “ Kk Sina
14,1
- R(]-C)"' $) . 14 . .
LM R (145 N In(2«R cog «) . E) ' (149
) o ] ) K COS« 4
Evaluating this integral following the procedure used in Sec.
VI we have WhereTfifz)‘LyM are the corresponding partial ionization am-
i 2k§R plitudes. Now the integrall32) reads as, for larg®,
Timkuko) = lim ZUP, (ko Riex e 'n(—K ) e
(146 Ifi‘fz)'L’M(kl,kz;R):ERf’fo da sir? a cog «
The first partial wave of the screening model corresponds |(297_ "
to the Temkin-Poet modelf§ sy fki, k) =7 (k;  ky). The x | RPO—L2——
exact Temkin-Poet model for ionization has been numeri- e IR
cally solved in[7]. The agreement between the correspond- (9R|(2|C)"*
ing benchmark ionization amplitude affy, fki,k,) from _R'(f'a't"\"a;l: (150

Eqg. (146) has been communicated receniB0] (see below

for more discussion Calculating this integral, after some algebra, we get an inte-

_Finally, from the ac form of the ionization amplitude g5 representation for the ionization amplitude for the model
given t_)y _Eq._(81) we _get the direct integral form of the with no electron-electron interaction
partial ionization amplitudes

1
ﬁi,ICZ),L,M(klakz) == lim R da sir a cog a

2 720 Ky ko) = lim 7270 (ki kR (15D)
2 Row J

0 In other words, for this model the partial-wave Peterkop in-

TR v tegral and the integral form of the partial ionization ampli-
X Rl(ll?z)_*l—é tudes, which we would get from E¢81), coincide. The Pe-
J terkop approach to extracting the amplitude is therefore best
(1C)— suited for this model.

RO ) - (147)
1k &R
C. Collinear model

We recommend it for practical calculations of the screening

model Finally, we consider a model electron-hydrogen ionization

problem where all three particles are in line, the so-called
B. Model with no electron-electron interaction collinear (CL) model, relevant to the threshold region. The
asymptotic form of the unscattered wa¥&)~ for this model

Consider a model electron-hydrogen ionization problen\S given by
a

where there is no electron-electron interaction; we call it
2C model. The asymptotic form of the unscattered wave (CL)- — aikqTy-ikyfary -
function ¥~ for this model is given by Eq(9) with z Vil (Tur2) =@ valkaryalke, = raf)
=z,=1. The partial waves of this function have also been Xy Ks, (ry +1o)f4]. (152
given earlier in Eq.(130. Using Egs.(9) (with z;=2z,=1)

and(117) we get for the asymptotic form of the correspond- Then using Eqs(152) and (117) we get for the scattered
ing continuum scattered wave wave

062703-18



THEORY OF ELECTRON-IMPACT IONIZATION OF ATOMS

3/2

(cL) - cL 2 o oK
O +(r1,r2)—(277)5,2T( )(KCOSarl,—KSInarl)R5/2
p(_ i IN(2«R sir? a)
xXexp ikR+ ————
ksina

. i In(2kRcos a) i In[xR(cosa +sina)]
K COS« k(cosa + sina)

iw)
+_ t
4

(153

PHYSICAL REVIEW A70, 062703(2004

dependent phagmamely,Q(k-, 1) of [51]] to reproduce the
phase obtained in the exact numerical integrafiéh and
other calculation$50] of the Temkin-Poet model. Apart from
this, the agreement between our ionization amplitudes in the
Temkin-Poet and collineé@wave models and results [51]
indicates that the simple and transparent approach to calcu-
lating the partial waves and amplitudes presented in this
work leads to the correct answer.

It may be worthwhile to point out that Eq$146) and
(156) do not display the factor ekjry(ky)+iog(ky)] (for
comparison, when all angular momenta are set to)zaso

whereT(“Y is the ionization amplitude corresponding to this OPposed to the results ¢51]. The reason for this is that in
model. This allows us to write the asymptotic form of the the present work the partial-wave Peterkop inte@¥aj, | w
partial waves of the scattered wave function for the collineahas already a factor eppi(l 1+|2)/2+i0|1(k1)+i0'|2(k2)],

model:

3/2

R w(ryro) = 7 m(k cosa, ke sin @) o

ol

1

p(_ i In(2kR sir? )

Xexp ikR+ ————
K SIN«
. i IN(2xR cos «)
K COSa

~ i In[kR(cosx + sina)] N i

k(cosa + sina) 4

), (154)

which was dropped ifi51] [see Eqs(132 and(130)].

VIIl. DISCUSSION

In this section we make a few important remarks based on
the results presented in this work. First, as is the case in
two-particle scattering, the knowledge of the asymptotic
wave function is key to calculating the amplitudes of various
processes taking place in a three-body system. For breakup,
it is particularly important to clearly understand the differ-
ences in the continuum parts of the asymptotic forms of the
total scattering wave function®; and ¥;. In this paper we
denoted them a$! and ¥V~ respectively. Often in the

Whereﬁl,b),L,M are the partial ionization amplitudes in the CL jiterature ®} and W~ are referred to as two versiofithe

model. Now for largeR the integral(132) takes the form

1 72
ZI(EII;),L,M(kl.kzi R) = ERSI da sir? @ cog
0

(CL)+
% | 2O IRiipm
Il IR

(20)-
— R(CL* &)

LM p

(159

Calculating this integral, after some algebra, we get an int
gral representation for the ionization amplitude for the col-

linear model:
T ko) = Im Tl kiR

X[{i In[(ky + kz)R]

(ke + ko) ) (158

e

plane wave and spherical wgvef “one asymptotic wave
function” as if they were equivalent or represented the same
function. Peterkog44] even says that asymptotically they
should coincide. This is a misunderstanding. The function
v~ represents the initial unscattered state of the three
“free” Coulomb particleqthe left-hand side of Eq2)], i.e.,

the Coulomb-modified three-body plane wave. Apart from
the modification of the plane wave due to the long-range
Coulomb interaction between the three pairs, there is no scat-
tering information in this wave function. It is a state from
which the total scattering wave functioly; starts to develop
[see Eq(2)]; on the other handp; is the continuum part of
@/, the wave function which starts from the two-fragment
channel[see Eq(8)]. The wave functiorb; is formed when

the scattering takes place and describes the breakup event.
Therefore, by definition, it should carry information about
the breakup of an initial bound state of hydrogen which took
place and has the form of the outgoing spherical scattered
wave. From Egs(51)—«54) we see tha¥'; also has a spheri-

The amplitude magnitudes, via the cross sections, and theal scattered parfcontaining information about the-33

phases corresponding to Eq446) and (156) (after taking
into account the indistinguishability of the electrprigve

procesg of the same order a®_; however, it is suppressed
by the stronger continuum terti)~. In other words ("~

been published recentlj50] for the Temkin-Poet and so- and®; are completely different functions. Any comparison
called collinearS-wave models. They are in agreement with between théthree-body plane wave and spherical scattered
similar calculations carried out ifb1], where integral repre- wave carrying away the information about what happened
sentations for Temkin-Poet and colline&wave models during the collision is not appropriate. In this sense the idea

have been obtained. We point out, however, that®uwave
amplitudes obtained from Eqgl46) and (156) are slightly

different from those used ifi51]. This is because of the

ambiguity of the Peterkop wave function used#i]. As a

of using two distinct notations for two different forms of the
total wave function suggested [i16] and extended to this
work is helpful.

Second, the asymptotic form of the total scattering wave

result in [51] one has to further add some hyperradius-®; in the domain where all interparticle distances are large
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(Qg) is sometimes called semiclassical. In this regard we Finally, having calculated the asymptotic form of the scat-
emphasize that the form obtained [ih7] for all possible tered wave in partial waves we have got a clue to an original
asymptotic regiong);, i=0-3 [see Eqs(19)—22)], is fully = method of solving the Schrodinger equation for ionization.
guantum mechanical. 18, the semiclassical approach does Usually, this equation is solved for the total scattering wave
give the same result as the quantum-mechanical one. Hoviunction ®; or its scattered parbi(5°)+, which is increasingly
ever, the semiclassical approach is not applicable in albscillatory with increasing radius and has a divergent phase.
asymptotic domains other thafly. We also note that the If one uses our results, E¢127) for the full problem and
similar asymptotic form of the total scattering wawg pre-  Egs.(144) and(154) for the Temkin-Poet and collinear mod-
sented in this worksee Eqs(51)—(54)] is also fully quantum els, in the original Schrédinger equation for the radial wave

mechanical. function, then one get@s a result of the variable transfor-
Third, from Eq.(127) we could write mation) a new equation for the corresponding ionization am-
. plitude. As we extend the radius of integration of the new
o (2mR)*2 R|1,|2,L,M(r1,r2) differential equation, its solution reaches a constant which is
Tk ko) = .LIEL K32 71,1, (K1, ko; Rke/ ik, Rk ) in fact the ionization amplitude of interest. We suppose that it

is easier to propagate to large distances a constant solution

, i [ :
% ex;{— i«R— - In(2RIC/ ) rather than an oscillatory one
! IX. CONCLUSION

L In(2Rk§/K) - E), (157 A general formulation of the theory of ionization of atoms
ko 4 by electron impact has been given. A divergence-free repre-

sentation for the ionization amplitude of atomic hydrogen by
electron impact has been presented. In the formulation, the
. (2mR)%? . ionization amplitude takes four alternative surface-integral

1T, 1, mke ko) = lim —=5— R | w(rera)]. forms ideal for practical calculations. The formulation has
Rom K also been extended to amplitudes for all possible reactions
(158  taking place in the scattering system. This was done in a
general way for arbitrary three-body systems. The present
formulation was then shown to lead to a well-defined post

27R)%/2 form of the breakup amplitude valid for arbitrary potentials

/ﬁi‘,aL,M(klka) = lim %Rl(ilc;t,M(rl,rz) including the long-range Coulomb interaction.

Row K Furthermore, another fundamental problem has been ad-

Then, taking into account E@139) we get

Similarly, for often used models we have

_ [ i dressed. The partial-wave expansion for the asymptotic
><exp<— IkR= k_2 In(2RIG/ ) - Z) forms of the total scattering wave function, developed from
both the initial and the final states, was derived. These ex-
(159 pansions are necessary for calculating electron-impact ion-
ization in methods based on direct integration of the
Schrodinger equation on a two-dimensional radial lattice.
,1Y|2’L,M(r1,r2) The integral representation was then extended to partial ion-
_ ization amplitudes. A rigorous proof was given of the rela-
Xexp(— ikR - i In(2Rk§/;<) tionship used in ECS-based calculations of the cross sections
ky for the full electron-hydrogen ionization problem.

The utility of the presented analysis was demonstrated
using two well-known model problems. Exact asymptotic
Ky +ko forms of the scattered wave functions have been given.

i The formalism presented is readily applicable to extrac-

XIn[2R(KS + K3)/x] = Z) (1600 tion of the exact amplitudes in direct calculations of other

atomic and molecular breakup processes including the

The wave functionsR; |, | u. RI<1F>+LM, and RI(CIL)EM in  double photoionization of helium or breakup and photodis-
vas 2 2 Jntegration calculations in nuclear physics. It may also be

these equations all come from the solution of the correspon ful in further develoning the effecti h turbati
ing Schrodinger equations. In principle, these relationshipéjse ul In furthér developing the eriective-charge perturbation

. . - 10) approaches. The partial-wave forms of the three-body wave
[ar;?) relationships  similar to E_q158) for |7'41v'2’L,'V_'| and _ functions presented are capable of reducing the six-
|7f1,|2,L,M|] can be used to obtain the corresponding partiajimensional integrals used in the distorted-wave Born ap-
ionization amplitudes or their magnitudes. Due to their sim-proximations to two-dimensional ones.
plicity they may even prove to be an easier choice than the
integral forms. However, this procedure is prone to certain ACKNOWLEDGMENTS
errors associated with the premature use of the stationary- The work was supported by the Australian Research
phase relation§134) and numerically sensitive. Neverthe- Council, U.S. DOE Grant No. DE-FG03-93ER40773, and

less, they can be used for simple estimates. NSF Grant No. PHY-0140343.

_ (2mR)%?
TFE:_Z),L,M(klrkz) = li[r:l)o TR(CL)‘*‘

_ b In(2RI&/ k) +
ko
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