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A SEMI-SUPERVISED MAP SEGMENTATION OF BRAIN TISSUES 

SITACS, University of Wollongong 
email : wanqing@uow.edu. au 

GBSTRACT 

This paper presents a method for senu-supenised MAP 
(masinium a-posterior probablity) segmentation of brain tis- 
sues where labelled data are available for either all tyvpes of 
tissues or only a few types of tissues possibly at different 
levels of quaIity. The proposed MAP segmentation takes 
supervised and unsupervised segmentation as its WO spe- 
cial cases where, respectively? quality labelled data is avail- 
able or there is no labelled data at all. Experiments on 
real MR images have shown that the proposed method im- 
proved the segmentation accuracy substantially with only a 
feu labelled data in comparison with both fully supervised 
inethod with the same labelled data set and unsupervised 
niethod. 

1. INTRODUCTION 

Segmentation of Magnetic Resonance (MR) images is a pro- 
cess of delineation of regions representing diffemt types of 
tissues andor lesions. After more than a decade research 
techniques for segmenting MR images are gradually con- 
verging to MAP (maximuin a-posterior probabliity) segmen- 
tation based on Gibbs Random Field (GRF) and Markov 
RandoinField(MRF)[8,11,13,10,14,12]andFCM(Fuzq 
C-means) based classification [4, 15, I]* Nuinenom al- 
goritlm based on either MAP or FCM have been devel- 
oped [6. 3. 51 and most of them were employed in a Eully 
unsupervised manner. 

The advantages of unsupervised (or automatic) segmen- 
tation over supervised segmentation have been well recog- 
nised: less user interaction and high reproductivity. Because 
almost all automatic techniques are virtually an optimisa- 
tion process which is governed by an objective function 
such as total log likelihood in normal mixture modelling 
and sunis of the squared errors in FCM. t l ~  techniques in- 
evitably suffer from the problem of local traps (minima or 
maxima). In consequence. they need to be tuned properly in 
order to produce satifactory results in a specific application, 

On the other hand. supervised techniques usually do not 
suffer the problem of local traps and often produce accurate 
results, but they require reliable traifing data available for 
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every type of tissues. their results will depend entirely on 
the quality of the training data sets. . 

Bensaid et. d [Z, 91 introduced semi-supervised FCM 
(ssFCM) which inco'wrates labelled data into the unsu- 
pervised FCM algorithm. The ssFCM relaxes the require- 
ment on the labelled data in comparison with supervised ap- 
proaches and assumes that 

e high quality labelled data are available for evely class, 

e the labelled data captures the shapes of the clusters. 

In flus paper, we further relax the requirement and intro- 
duce a semi-supervised MAP segmentation (ssMAP) method 
that is able to utilize any available labelled data. The la- 
belled data, if my, is assumed to have the following chmc-  
teristics: 

they are available for every type of tissues or for some 
types of tissues if the number of tissues is known. 

e they may capture neither the centers nor the shapes of 
the clusters. 

The paper is organized as follows. Section 2 describes 
the semi-supervised MAP segmentation of M R  images that 
consists of prior and data models. Section 3 presents the 
ML (maximum likelihood) estimation of the model param- 
eters that is subject to any labelled data. Some experiments 
on real dual echo MR images are presented in Section 4. 
Discussion and conclusions m given in Section 5 .  

. 
. 

2. SEMI-SUPERVISED MAP SEGMENTATION 

Let {gt}$ be unlabelled pixels in a h4R dice to be seg- 
mented and they are considered as a realisation of a ran- 
dom field defined on a lattice L ,  where t E 13. (y; : t = 
1,2,. . . , n,; c = 1 , 2 , .  . . , If} denotes all labelled pixels 
for K types of tissues. The labelled pixels for the i'th tis- 
sue are denoted as {y;}y&, where T Z ~  > 0, the number of 
labelled pixels for the i'th tissue, and E, ni = N .  

The true but unknown tissue labels of all pixels are as- 
sumed to be a realisation of the random field X = (S, : 
t E C}, denoted by Z* = {xt : t E 13). where xt labels the 
tissue type at site t. 
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Assume S is ii local Markov Random Field (bLRF) de- 
fined in a neiglibciuliood system and the labelled pixels do 
iioi stipply any spatial knolvledge of their labelled tissues. 
Using Bayes rule. A rnasiinuin a posteriori (MAP) estima- 
Lion of the pisel la bells. k is , 

wlicrc ,f(grl:c,) is the conditional density of randoin vari- 
ables { L; : 1 I: t 5 A$) dependent on x. usually lrnown as 
dala model. ~ J ( : C ~ ~ : I : ~ ~ )  i- is the prior probability 
or prior model of :ct given its neighbours. n:a, is defined in 
a neighbourhood system r l t ,  where Zt is a partition function 
and I![.) is usuall!, referred as a energy function. 

- v ( = t h c )  . 
Zt 

3. MODEL ESTIMATION 

MAP scgnientalion requires both prior and data models. The 
cominon way is to parameterise both models and then esti- 
inate tlie parameters fmm the observations. 

I 

3.1 Prior model 

The prior model. or specifically tlie energy function PI(.). 
iiiust be defined over cliques in a neighbourhood system. 
Taking the simple second-order neighbourhood stnicture con- 
taiiuiig eight n e "  neighbours to tlie corresponding pixel 
position t .  we define the energy function.over the posterior 
probabilities (sofi labelling) rather than over discrete (hard) 
labelling 

L'( :Ct  = bjr];) = - a ( k )  - /3Gs*(k) (2) 

G & ( k )  = Irk. (3) 
re31 

\\.here CL( k )  represents global infonnation about the proba- 
bility of tissue A.. 0 is a parameter to be set and , i ,k is the 
posterior probabilip of pixel I' belonging to tissue I;. 

The value of ( j  controls the degree of spatial clustering 
obsenable in the underlying state process. Nomilly, prior 
niodel is \.en. tolerant of sinal1 variations of its parameters. 
Einpirical study cm siniulated M R  images having various 
degrces of noise. partial T:olumne effects and non-uniformity 
suggests tint .@ = 2.5 is a good choice [GI. 

3.2. Data model 

According to the statistical properties of M R  images [ l l ] ,  
1 : r : ' )  can be reasonably approximated as a multivariate 

G;iussian. i.e. 

where PI;  and C k  are the m a n  vector and covariance ma- 
tris respectively of [lie Gaussian describing the probability 
density ofhssue k .  

by fitting the parameters to the image data with ML or least 
squares. However, the estimation must be subject to the 
labelled data. Assume the independence of the potential la- 
belling over pixels and use a finite normal mixture as the 
likelihood of  realising the multispectral M R  images given 
the underlying tissue types 

It is appropriate to estimate the tissue parameters ( p ~ ,  Ck. l i  

t = l  k = l  c=l t = l  

where ~ u k  is tlie ratio of the number of pixels within class 
k to the total number of pisels hi. and Eh iuk  = 1. @ = 
($I,&: . . . &) and & = (w, PI; :  Ck) is the parameter 
vector for the b'th nonnd conzponent f( .), 

The ML estimation of Equation.5 using the EM algor 
rithni will lead to the (T + 1)'t.h. iteration of the parameter 

In the case where the labelled pixels provide no infor- 
ination on the mixing proportions. 

I It is quite natural in practice that the number of labelled 
data, N .  is quite small compared to the number of unla- 
belled pixels, M .  i.e. AT << h1. In addition the quality of 
training data may vary from case to case. .To control the con- 
tribution of training data to the final estinlation. we modify 
the iteration equations for the mean and covariance (Equa- 
tions 7 and 8) by weighting the few labelled pixels more 
heavily than their unlabelled counterparts. Tlis is done by 
introducing weights .U:, i = 1,2. .  : .  ,nC; c = I ,  2 . .  . . ! Ii 
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Table 1. Number of labelled pis& used for the senu- 
supenised segnientation of slice 9 of patient 3. 

in Equations 7 and 8 as follows: 

Tissues 1 SKIN FAT 1 SKULL 1 GM I WM I CSF 
Labelled Pnels I 16 1 IG I 16 I 36 I 24 I 20 

wlare tc; is tlie weight of tlie i'i.k labelled pisel for the 
~ ' / h  tissue. In t h  iiiost general formulation ,U: is simply 
;I positive rcal number. If .tt.,k is an integer, .U; copies of the 
corresponding labelled pixel 9; are effectively used. The 
largcr tlie .U;. tlie niore the g;" contributes to the final pa- 
mincter estimation. The weight ailow us to tailor the es- 
liination fo iIgEe with any espert knowledge that might be 
available about the quality or importapce of each 9; as a 
trtiiuing pisel. In the absence of such knowledge, the most 
rational approach is to take U: = .IL for all i and c. where PI 

is i I  COrIStant. 

4. EXPERlMENTAL RESULTS 

Slices from the 12 real MRI data sets were used to test the 
capacity and stability of separating iionnal brain tissues. All 
12 data sets were scanned with a spin echo pulse sequence 
at rcpctition times from 1800 insec to 3000 nisec. Eachdata 
sec consisted of about 20 slices covering almost the whole 
brain and each slice lud dual spin echoes: PWD and T2W 
images. PDW and T2W images werc scanned at TE = 1 (i 
insec and I'E = !JH insec respectively. 

Figure I(a) shows the dual spin echo MR images of slice 
Y. patient 5. with PDW echo on left and T2W on right. 128 
pixels were labelled manually as training data for the six 
normil tissues: SKIN. FAT. SKULL. GM, Whf and CSF. 
Tlic iiuiiibcr of labelled pi?;FIs for each tissue is listed in 
Table 1 .  

As the tabelIedpixelsocciipied only about 0.5%to 1.0% 
of th'true size of the corresponding tissues. it was not p s -  
siblc for those labelled pixels to catch eitlw tlie cluster ten- 
ters or tlic cluster shapes. Therefore. the selection of the 
confidence weiglus )vould influence the segmentation accu- 
r x y .  For simplicity or in cases without prior knowledge 
h o u i  [lie espected sizes of tissues. all weights were set 
equal. A comparison study [GI demonstrated U = 50.1) 

(a) Slice 9 of patient 3 

Fig. 1. Semi-supervised segmentation of slice 9. patient 1. 
(a), at t~ = 50.0 given labelled data for vanous tissues (a) 
Labelled data only for WM (b) Labelled data for WM and 
GM (c) Labelled data for WM. GM and CSF (d) Labelled 
data for WM. GM, CSF and SKTN (e )  labelled data for all 
tissues except FAT (f) Labelled data for all tissues 

gave the most accurate segineiitation in coinparion to nian- 
ual segmentation. 

Noticeably there were few differences in the intracra- 
nial region separation from the slice aiiiong the supenised. 
semi-automatic and automatic approaches. However. there 
was significant iiiprovement in tlie separation of CSE WM. 
and GM. Tlie segiicntation errors were reduced froin L%o. 
31%. arid 22% in supervised segmentation to 3%. 2.6% and 
4% in semi-supervised segmentation for these three brain 
lissues respectiwly. I n  coinparison with the unsupervised 
approach. thc scgiiienlation errors are also reduced by about 
5% on average Cor CSF. U44 and GM. 

Figure I (b) ~hrough (6) sliow tlie segmentations when 
labelled pisek werc available for various tissues. Tlie seg- 
nicntations were obtained by setting IA = 50.0.  From (b) to 
(g). the nuniber or tissues having labelled pixels was grad- 
ually increased. where (b) is the case when only WM had 
training pisels n;ldle (g) corresponds to the case when all 
tissues lad  labclled pisels. As expected. the segnientation 
inproved gradually as inore and iiiore tissues had labelled 
pixels. 

5. DISCUSSION 

As an unification of fully unsupervised (automatic) and su- 
pervised approaches. the proposed semi-supervised MAP 
segmentation shares their advantages. being less dependent 
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OII ilie quality of tlie training data ttm supervised segrnenta- 
lion and inore reliable and accurate tlm autolnatic segmen- 
intion. It does not require that-training data be available for 
ever? lissue type. In  other words, it makes use of any quan- 
tity of [raining data aviulable to improve the segnientation. 
Our csainples have indicated that the scmi-supelvised seg- 
nicritation is superior to both unsupervised (autonutic) and 
supenised ones when a sinall quantity of reliable training 
data is available Tor sonie iniportant tissues, such as GM, 
whl. and CSF. When there are no mining pixels. the algo- 
riiluin is the same as the autoinatic one. I f  there are inany 
relisbl!. labeIled pixels for evey tissue, the dgorithm can 
perfonii like a supewised approach by setting a vety large 
valuc for the weight l~,. 

i n  tlie semi-autoinatic approacli tlie selection ofthe con- 
Gdeiice weights seems crucial to the final results. In princi- 
ple. the weights are expected to be set individually ac:cord- 
iiig to the ratio of the number of  labelled pixels to tlie to- 
tal pixel number o l  l l ~  tissues. Choosing same value for 
all rveights is the simplest. but in such a case, it is rc:com- 
mended that number of labelled pixels .be roughly pmpor- 
tional to the total pixel number of each tissue. Moreover, 
caution should be exercised when manually labelling pixels. 
Since we nonnally labelled pixels in a 72 x 72 window simul- 
taneouslyz it is easy to include some noisy pixels. Wlumthe 
weights are set large. the effect ofthe noise will be automat- 
icall!. magnified. So we would suggest the use of small TI, 

sa!' 2 or 3. and discarding tlie pixels 'in the window which 
have tlie largest intensity or smallest intensity. In this way. 
the quality of the labelled pixels might be iniproved. (It 
sliodd be pointed oui tlut we neither'proportionally select 
tlie training data nor consider the noise effect on the data in 
our previously presented esamples). 
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