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Abstract 

Small holder farmers in rainfed agriculture believe that soil tillage is needed to maximize crop yields. 

However, as cropping intensity, and hence tillage intensity, increases there may be a decline in 

particular physical, chemical and biological properties of the soil which limit crop yield. This is 

primarily caused by declining soil organic matter, its oxidation being accelerated by tillage, 

particularly in warmer climates, and exacerbated by the limited return of above-ground biomass to the 

soil due to its competing use for other purposes. In large-scale commercial agriculture declining soil 

quality has been effectively addressed by conservation agriculture—cropping systems based on 

minimum tillage, crop residue retention and appropriate crop rotations and associations, preferably 

including legumes. This has required development of minimum tillage planting equipment along with 

herbicide technology to achieve weed control that is traditionally achieved through tillage. However, a 



shortage of mechanized options suitable for small holder farmers is creating an impediment to the 

adoption of conservation agriculture practices that would arrest the decline in soil quality in their 

fields. In South Asia, two-wheel tractors are replacing animal-drawn ploughing in small holder plots. 

This speeds the tillage operation and hence the turnaround time between crops, which may increase 

opportunities for crop intensification, but the problems associated with full tillage remain. Over the 

previous decade planter attachments to two-wheel tractors have been developed which permit seed 

and fertilizer placement with minimum to zero tillage in a single-pass. Recent tests have demonstrated 

that use of these implements can produce crop yields equal to or better than conventional tillage 

involving hand broadcasting of seed and fertilizer. Further, fuel and labour costs, seed and fertilizer 

inputs and turnaround time between crops can be reduced. In Africa, the introduction of animal-drawn 

rippers and direct seeders, originally developed for small-scale farmers in Brazil, is considered as a 

major breakthrough to small-scale farmer mechanization. It significantly reduces labour required for 

planting and benefits may be even greater if herbicides can be effectively used for weed control. 

Nevertheless, movement towards minimum tillage with two-wheel tractor mounted planters and 

animal-drawn direct seeding equipment is constrained by weed management issues. There are 

problems of availability and of safe and effective use of herbicides by resource-poor farmers and there 

is a need to develop more integrated weed management strategies that can be combined with small-

scale planters. There is also a need to optimize the performance of small-scale planters to suit farmers’ 

needs in different agro-ecological environments. Tools and concepts are now available to implement 

conservation agriculture for small holders and thereby increase profitability of their cropping practices 

and at the same time improve soil quality and sustainability of their livelihoods. However, much more 

adaptive research and on-farm evaluation is needed across a diverse range of soils, cropping systems 

and agro-ecological regions to bring conservation agriculture to more small holders. 
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Introduction 

Most crop production in Asia, Africa and Latin America is based on subsistence agriculture 

implemented by resource-poor small holder farmers. This form of agriculture is characterized by 

limited application of inputs, distorted markets, deteriorating soil conditions, and now increasingly 

uncertain weather patterns (Christensen et al., 2007). The factors leading to soil degradation over time 

include limited organic matter returns to the soils, minimal and unbalanced fertilizer addition, limited 

options for crop rotation and the perceived need for regular tillage. Small holder farmers generally try 

to maximize tillage, within their constraints of time, labour and available implements, primarily for 

the purpose of weed management and to create a seed bed with a fine soil tilth suitable for 

germination and seedling establishment. Additional reasons for small holder farmers to practice 

conventional tillage, by manual, animal powered or mechanized means, include mineralization of 

nutrients, incorporation of fertilizers, crop residues and soil amendments, temporary alleviation of 

compaction, and management of some soil-borne diseases and insects (Hobbs et al., 2008 and Kassam 

et al., 2009). However, regular tillage breaks down soil organic matter through mineralization, more 

so in warmer climates (Kirschbaum, 1995), thus contributing to deteriorating soil physical, chemical 

and biological properties (Wall, 2007). The physical effects of tillage also adversely affect soil 

structure, with consequences for water infiltration and soil erosion through runoff, and create 

hardpans below the plough layer (Thierfelder and Wall, 2009). These adverse effects of tillage have 

been addressed over recent decades by the development of conservation agriculture (CA) (Garcia-

Torres et al., 2003). CA is defined as cropping systems based on minimal soil disturbance, permanent 

surface cover through crop residue retention and diverse crop rotations and associations (Hobbs et al., 

2008 and Kassam et al., 2009). Most progress in CA has been made in large-scale commercial 

agriculture where powerful tractors are available to pull minimum tillage seeding equipment and 

herbicides are routinely used for weed control. Derpsch et al. (2010) estimated that 111 million ha 

would be cropped using the principles of CA but that this was mainly under commercial farming 

systems in the Americas and Australia. CA has received increasing attention by the commercial 

farming sector as it drastically reduces fuel costs, reduces the drudgery and labour requirement of 



multiple tillage operations, and minimizes machinery wear and tear (Raper et al., 1994 and Thomas et 

al., 2007). 

Small holder farmers primarily reliant on rainfall rather than irrigated systems have generally not 

adopted CA practices yet, for various reasons—lack of knowledge about CA and how it could 

potentially improve their own agriculture, the perceived complexity of this new cropping system, 

unavailability of appropriate minimum tillage implements, limited access to herbicides, and the 

change of mind set required to shift from the habits of multiple tillage to minimum tillage (Wall, 

2007). However, opportunities are opening up to make it easier for small holder farmers to change 

from excessive tillage to various forms of minimum tillage. There are options using hand or animal-

drawn implements (Thierfelder and Wall, 2010) and increasingly for planters mounted on two-wheel 

tractors. In the last two decades numbers of two-wheel tractors (Haque et al., 2004) and shallow-

tillage single-pass planters have rapidly expanded in Asia (Miah Monayem et al., 2010). These were 

primarily designed for rotary tillage, which can even exacerbate the problems of soil tillage. Over the 

recent decade, however, there have been innovations made to both two-wheel tractor as well as 

animal-drawn direct seeding implements that do permit adequate seeding into minimally disturbed 

soil. This provides a window of opportunity to introduce CA among small holder farmers, not only in 

terms of reduced soil disturbance but also with respect to biomass cover and crop rotation. Effective 

CA practices for small holders would also enable them to capture the economic benefits already 

enjoyed by the large-scale users of CA, reduced fuel and labour costs and improved timeliness of 

operations. 

However, there are many biophysical and socio-economic constraints to small holder farmers in 

adopting CA (Giller et al., 2009) and it will be necessary to develop effective strategies to transfer the 

emerging technologies to them. It is noted that CA in many areas evolved through innovation 

networks linking farmers, extension personnel, researchers, engineers/mechanics, input suppliers, and 

credit providers (Ekboir, 2002, Pieri et al., 2002, Thomas et al., 2007 and Hobbs et al., 2008). Such a 

collaborative approach would also seem necessary in bringing CA to small holder farmers, but with 

modifications tailored to the limited resources available to them. This review examines recent 



innovations in minimum tillage implements suitable and adaptable for small holder agriculture. It also 

discusses how these could catalyze widespread adoption of CA practices in resource-poor 

environments, and suggests possible pathways to adoption. 

 

Tillage and small holder farming 

Characteristics of small holder agriculture in Asia and Africa 

This review focusses on small holder agriculture in South and South-East Asia, China and southern 

Africa drawing from the authors’ particular experience in these regions. It is recognized that many 

innovations in CA, in both commercialized and small holder farming, have occurred in South 

America, but we only draw on that information as it relates to our focus area. We define small holder 

agriculture as that conducted by farmers using predominantly family labour and for whom the farm 

provides their main source of income and livelihood. Small holder farm size is considered to be that 

less than 3 ha, even though fields farmed by a household may be dispersed around a village. In many 

cases in Asia and Sub-Saharan Africa small holder farmers are also subsistence farmers, in that they 

use few if any purchased inputs, the main output of their farming activities is consumed directly, and 

only a minor proportion of their farm output is marketed. As for farming everywhere, small holders 

have to manage risks associated with their environment and socioeconomics, but have less room to 

manoeuvre than in well-endowed farming systems. The soils they farm are often marginal and 

degrading (Lal, 2000) and they face predictable and unpredictable pest and disease problems about 

which they can do little. Most small holder farms are exposed to erratic rainfall patterns. However, in 

some regions, such as the Indo-Gangetic Plains (IGP) of South Asia, many small holders do have 

access to irrigation. Nevertheless, this often does not solve their soil moisture constraints due to 

difficulties of timely access to the irrigation water needed (e.g. erratic availability of electricity or fuel 

for pumping) and sub-optimal irrigation practices. This review mainly addresses CA for rainfed small 

holder agriculture, where sub-optimal soil moisture is a common constraint to crop performance, but 

also covers situations where irrigation is available. Small holder farmers are also characterized by 



limited state-of-the-art knowledge on technical aspects of their farming enterprise, minimal capital or 

credit to purchase inputs, and distorted markets. To supplement income for basic household needs 

various family members sometimes need to undertake off-farm employment or hunting and gathering 

in nearby areas of natural vegetation. These circumstances in themselves pose challenges to the 

introduction of CA practices, particularly if it is to rely on mechanization. 

Tillage effects on soil quality 

While thorough tillage of the soil has immediate advantages for controlling weeds and creation of a 

fine soil tilth for sowing seed and for seedling emergence, there are adverse consequences of regular 

tillage on soil quality which become more apparent over the longer term. Soil quality is largely 

determined by soil organic matter (SOM) status and there is much accumulated evidence in temperate 

and tropical soils of declining SOM with tillage as compared to relatively undisturbed soil (Ogle et 

al., 2005). There is a range of soil physical, chemical and biological consequences to declining SOM 

caused by tillage. A decline in SOM reduces soil particle aggregation (Chaney and Swift, 1984), 

which slows water infiltration (Thierfelder and Wall, 2010), reduces aeration and increases bulk 

density, thereby restricting root distribution and function. With reduced SOM, soil water holding 

capacity is decreased and susceptibility to water erosion increased through increased runoff 

(Thierfelder and Wall, 2010). Declining SOM also diminishes the ability of the soil to release 

nutrients in approximate synchrony with crop demand (Drinkwater and Snapp, 2007). SOM provides 

exchange sites for nutrient ions, minimizing their leaching or sorption on clay minerals, but increases 

their availability for plant uptake through slow release to the soil solution. SOM also hosts the 

microorganisms which facilitate nutrient cycling, as well as encouraging soil fauna such as 

earthworms, which further improve soil physical properties such as water infiltration through the 

channels they form. A decline in SOM results in an inevitable decline in soil biological activity (Soon 

and Arshad, 2005). 

 

 



Tillage and economic efficiency 

To achieve a net increase in economic efficiency with minimum tillage or zero tillage compared to 

conventional tillage the perceived benefits of traditional tillage practices have to be offset. To induce 

a change from conventional to minimum or zero tillage, clear economic benefits must be apparent, for 

small holder as well as better endowed farmers. A first requirement is that there is no substantial 

reduction in crop yield or increased risk of growing that crop. As a consequence of reduced input 

requirement for minimum tillage there are opportunities for reduced fuel costs, lower labour 

requirements, and improved timeliness of farm operations, factors that could considerably enhance 

profitability of the cropping operation. These are discussed more fully in Section 3. 

Depending on soil type, frequent tillage may cause the development of a hardpan at the bottom of the 

ploughed or hoe cultivated layer which can impede water infiltration and root penetration (Thierfelder 

and Wall, 2009). Irrespective of SOM, tillage damages soil structure, and hence soil water holding 

and release characteristics, through physical disruption of soil aggregates (Beare et al., 1994). 

Furthermore, when there is limited soil surface moisture at seeding, tillage may increase evaporation 

from the soil surface, exposing seedlings to water stress. 

 

Evolution of conservation agriculture 

Large-scale commercial farming 

Although the universally accepted practice of tillage was queried in the 1940s (Faulkner, 1943), the 

practical application of minimum tillage on a large scale did not occur until two decades later. This 

was prompted by increasing concerns of soil erosion exacerbated by traditional practices of regular 

and thorough tillage (Thomas et al., 2007). It became feasible by the development of low-cost 

herbicides such as Roundup® containing the active ingredient glyphosate (N-(phosphono-methyl) 

glycine) manufactured by Monsanto in 1974 ( Baker and Saxton, 2007b). With the advent of chemical 

weed management one of the reasons for tillage became redundant. Experimentation with minimum 



tillage began in North America and the UK because this is where herbicides first became widely 

available. It then spread to commercial farming in South America and Australia, particularly targeted 

to large land holdings offering economies of scale in reducing tillage requirements. If tillage was to be 

minimized or foregone it became necessary to develop implements for effective placement of seed 

and fertilizer into undisturbed soils; these required more robust tine and disc systems. This was done 

for the increasingly powerful tractors becoming available from the 1960s, especially considering the 

additional traction requirements necessitated by seed and fertilizer delivery into undisturbed soil. The 

research and development process encouraged, and indeed resulted in, close interaction between 

researchers, engineers, mechanics and farmers due to the multiplicity of differing requirements of 

soils and cropping systems and the need for ongoing trial and error modification of delivery systems. 

With development of techniques of chemical weed management and effective seed and fertilizer 

delivery systems with minimal soil disturbance, the other aspects of CA, increased soil coverage with 

crop residue or cover crops and more diverse crop rotations, became more feasible. 

In southern Africa, no-tillage direct seeding systems appeared in the mid-1980s when specific 

machinery design and manufacturing started for the commercial farming sector. The main trigger for 

increased interest in direct seeding technologies in the region was large-scale soil degradation and fuel 

shortages, which increased the need for planting systems with a lower energy requirement. By 1998, it 

was estimated that about 30% of the commercial farmers in Zimbabwe had adopted CA (Nyagumbo, 

1998). However, the spread of CA in large-scale commercial farming was based on high power 

traction, well beyond the means of most small holder farmers. Thus alternative pathways for 

introduction of CA among small holder farmers were required. Interestingly some of the Zimbabwean 

prototypes were later exported to India and Bangladesh were local manufacturers adapted them to 

small-scale farmer's conditions. 

Benefits of minimum tillage based on experience in large-scale commercial agriculture, irrespective 

of the degree of crop residue retention and extent of crop rotation, are summarized in Table 1. Full 

implementation of the principles of CA involves a radical change in many farm operations. A new 

knowledge base is needed by farmers to establish crops, manage weeds, manage crop residues, 



respond to newly emerging diseases and insect pests, and manage diverse crops. Clearly, farmers who 

make the change are driven by an expectation of substantial benefits. These generally are the promise 

of cost or labour savings or productivity increases (Pieri et al., 2002). 

Adjusting conservation agriculture for small holders 

Conservation agriculture machinery design and development for small holder farmers was initially 

driven by Brazilian farmers, who have witnessed a revolution in CA equipment development and 

manufacture over the past 50 years. The major drivers for change in Brazil since the 1960s were the 

damaging side effects of conventional tillage-based agriculture leading to widespread soil erosion and 

degradation. It was estimated that 10 t of soil was being lost for every tonne of grain produced 

(Derpsch et al., 1991). Although many efforts initially focussed on the large-scale commercial farms 

there have also been initiatives to develop machinery for small-scale farmers interested in practicing 

CA especially in the States of Parana, Santa Catarina and Rio Grande do Sul. Currently, there is an 

estimated 200,000 ha managed by small-scale farmers under CA in Brazil (Wall, 2007). Machinery 

systems for small-scale farmers were mainly focussed on manual and animal traction seeding systems 

such as the manual jab-planter and animal traction direct planters. The Brazilian machines had 

spillover effects to southern Africa where new machinery is now developed and tested. 

By contrast with development in Brazil, in southern Africa farmers were not the main driver for 

change to CA but donor-driven initiatives. In Zimbabwe, a GTZ/BMZ funded project on 

“conservation tillage” (CONTILL) operated from 1988 to 1998 (Hagmann, 1998). The major focus of 

this project was developing and extending small-scale farmer CA systems like mulch ripping and 

other resource-conserving seeding systems. However, the approaches were mainly developed on 

research stations with little farmer interaction. Therefore the adoption of new CA systems was 

generally limited. In Zambia, a World Bank funded project initiated the large-scale extension of CA in 

1996 based on manually dug planting basins and later rip-line seeding systems (Haggblade and 

Tembo, 2003). However, CA started to really expand in southern Africa only in 2004, through several 

parallel developments. Various donors including DFID, GTZ/BMZ, FAO, SIDA, NORAD started 



initiatives in Zambia, Malawi, Mozambique and Zimbabwe promoting manual planting basins, jab-

planters, ripper tine and animal traction seeding systems. Although these initiatives were donor-driven 

projects they involved more farmers after lessons had been learned from previous projects. In some 

areas, local innovation with CA strengthened interaction between farmers, researchers, machinery 

manufacturers, input suppliers, credit providers and many other players. The following sections 

examine recent developments on manual and animal-drawn CA planting systems, mainly from 

experience in southern Africa, and tractor-powered systems, mainly developed in South Asia. 

Manual CA planting systems 

There are basically three different manual CA systems being used in southern Africa. 

Dibble stick 

Farmers in Malawi practice CA with a dibble stick, a pointed stick that opens a small hole for planting 

(Fig. 1). If both seed and fertilizer is used the operator can create two holes for placement of each 

input. Farmers in Malawi currently prefer this technique over more sophisticated implements like the 

jab-planter because it follows traditional planting methods (i.e. planting the seed on ridges). 

Planting basins 

The second widely promoted CA system is based on manual dug planting basins (Fig. 2), a system 

originally developed by the Zimbabwean commercial farmer Brian Oldrieve. The basins are dug 

throughout the winter period with hoes to spread the labour for digging. At the onset of the rainy 

season they can be planted without time delays. There are various basin sizes promoted; in Zambia 

they are slightly bigger (40 cm × 15 cm × 18 cm) than in Zimbabwe (15 cm × 15 cm × 15 cm). Basins 

are excellent precision planting systems, which support many other good agricultural management 

practices like timely planting or precision application of manure and fertilizers. However, the creation 

of planting basins is still fairly labour intensive so that the system is mainly targeted towards manual, 

resource-constrained farmers without animal traction. 

 



Jab-planters 

The third seeding system is based on mechanical jab-planters (Fig. 3) originally developed by 

Brazilian manufacturers such as Fitarelli Machinas.1 They were first imported to Zimbabwe and 

Mozambique in the early 2000s and various attempts were made to produce them locally. The jab-

planter has two compartments, one for fertilizer and one for seed, and both are mounted on a wooden 

frame with two tips. Once the tips are pushed into the soil and opened by the operator seed and 

fertilizers drop into the planting hole. The machine can seed very effectively into mulch-covered no-

tilled soil but has disadvantages, such as clogging of the tips if the soil is too sticky. 

Animal traction systems 

Ripper tine systems 

The first ripper tine systems emerged in the late 1990s in Zambia and Zimbabwe and were mainly 

developed at the Magoye and Palabana Research Stations in Zambia. The Magoye ripper is a simple 

ripper attachment to the plough beam, which can be easily mounted after removing the shear blade of 

the animal traction mouldboard plough (Fig. 4). The operator creates about 10 cm deep rip-lines with 

the tool, which is pulled by a pair of oxen. The width can be adjusted with the type of wings attached. 

The Palabana subsoiler works down to 25 cm soil depth and can remove hardpans formed by previous 

cultivation and create a rip-line at the same time. Both systems are ideal transitional steps from 

plough-based systems towards animal traction direct seeding. The ripper attachment costs about US$ 

25, a price that a small-scale farmer in possession of a pair of oxen can afford. The disadvantage of 

Rip-line seeding systems is seeding into residue-covered soils because the implement does not have a 

cutting disc (coulter) that can cut through residue. Another disadvantage is that seeding, fertilization 

and covering has to be done manually, which increases the overall labour requirements. 

Direct seeding systems 

In 2004, the first animal traction direct planters were brought into Zimbabwe by CIMMYT 

(International Maize and Wheat Improvement Center), which marked a milestone in small holder 



mechanization in southern Africa. The equipment originally developed by Brazilians (i.e. Fitarelli 

Machinas) was tested in the region in various target communities under different physiographic and 

agro-ecological conditions. The direct planter has a coulter, which cuts into mulch, a ripper tine that 

opens a small rip-line, a seed and fertilizer hopper and finally a drive wheel that activates seed and 

fertilizer release and covers the seed at the same time (Fig. 5). Fitarelli planters have seed plates for 

maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench) and beans (Phaseolus vulgarisL.), but 

other crops such as sunflower (Helianthus annuus L.) and cowpeas (Vigna unguiculata (L.) Walp.) 

can also be sown. 

Although local machinery manufacturers were initially skeptical about these new machines local 

production has started and advanced prototypes with inclined seed plates are now available. Grownet 

Investments, a small machinery manufacturer from Zimbabwe, has developed an animal traction 

direct planter that is able to seed groundnuts (Arachis hypogaea L.), a crop that cannot be seeded even 

with the Fitarelli direct planter. The animal traction direct planter is a precision instrument and 

farmers are enthusiastic about operating this new equipment. It can seed 2 ha or more in one day 

depending on the availability of trained oxen. The main disadvantage at present is the price for the 

implement, which ranges between US$ 500 and 600 depending on the types of seed plates a farmer 

needs. It is expected that increased local production and farmer demand will reduce the price of these 

implements over time. 

CA planters for two-wheel tractors 

Although two-wheel tractors are popular with small holder farmers worldwide, the research 

community has until recently largely neglected them as traction units for CA cultural operations. This 

is mainly because of their limited tractive ability and thus the necessity that they be fitted with simple 

lightweight implements. 

Single-pass shallow-tillage planter 

Reduced tillage planting of crops using two-wheel tractors in Bangladesh was started in 1995 with the 

importation of the Chinese-made 2BG-6A seeder, which was subsequently named Power Tiller 



Operated Seeder (PTOS), and, more recently, single-pass shallow-tillage planter (SPSTP). This seeder 

accomplished three operations in a single-pass—shallow tillage (to 60 mm), placement of seed in a 

furrow and levelling (Miah Monayem et al., 2010). The SPSTP is 1200 mm wide allowing it to plant 

up to six rows of a crop at 200 mm row spacing. It provides full rotary tillage and covers 0.14–

0.20 ha h−1. It uses a fluted-type seed metering system, but has no fertilizer application system. 

Initially, the SPSTP was demonstrated to farmers through service providers in many areas of 

Bangladesh under a loan programme of CIMMYT (Roy et al., 2004). Compared with traditional 

broadcast sowing with tillage by a two-wheel tractor, Wohab et al. (2007)reported that the SPSTP 

required only about half as much time and fuel for sowing of wheat (Triticum aestivum L.) and jute 

(Corchorus capsularis L.). At an initial stage efforts were taken to fabricate the SPSTP locally, but 

the manufacturers are unable to maintain quality of the product at a standard comparable with the 

imported one. However, due to demand and increasing capacity of the local manufactures, several 

have started commercial manufacturing and marketing. At present, more than 1000 units of SPSTP 

are being used in Bangladesh (Fig. 6). The current (mid 2011) market price of the SPSTP imported 

from China is US$ 650 per unit. 

The SPSTP should be considered a reduced tillage planter rather than a minimum tillage planter, as 

the one pass does involve considerable disturbance of surface soil. This, together with shallow 

placement of seed, renders germinating seed and emerging seedlings prone to moisture deficit when 

surface soil moisture is marginal or rapidly evaporating. Thus the SPSTP is better suited to irrigated 

than rainfed situations, where optimum surface soil moisture can be assured. Subsequent 

developments of planters for two-wheel tractors have concentrated on planting into soils with sub-

optimal soil moisture involving minimal soil disturbance and greater depth control of seed and 

fertilizer placement. 

Strip tillage 

By setting rotary blades only directly in front of the furrow openers the SPSTP could be reconfigured 

as a strip tillage planter (Justice et al., 2003, Justice et al., 2004, Roy et al., 2004 and Roy et al., 2009). 



The rotating blades also displace the stubble in front of the furrow openers. Although original strip 

tillage units cultivate up to 50% of the soil surface (Justice et al., 2003), the angle of the rotary blades 

and furrow openers can be reduced to minimize the width of the strip tillage slit. CIMMYT initiated 

development of a two-wheel tractor based strip tillage planter in 2001 using a Chinese 2BG-6A seeder 

to plant seed on new beds and permanent beds with strip tillage. A research team comprising 

Bangladesh Agricultural Research Institute (BARI), CIMMYT Bangladesh, and Agricultural 

Implements Research Centre (AIRC) of Nepal adapted the strip tillage configuration to South Asian 

conditions (Hossain et al., 2005). 

Zero tillage 

In Bangladesh, a Bolivian animal-drawn drill was converted for operation on a two-wheel tractor, by 

mounting it on a toolbar frame (Fig. 7). The development and testing of the prototype of this zero 

tillage planter was carried out in 180 farmers’ fields during 1999–2004 (Haque et al., 2004). The 

effective field coverage of the planter was 0.18 ha h−1, reducing planting cost of wheat by up to 83%. 

Turnaround time between harvest of rainy season rice and sowing of the winter season crop was 

reduced by 10–15 days compared to traditional crop establishment systems. 

Bed planter 

Minimum tillage planting can also be accomplished on permanent beds. While the initial bed forming 

involves major soil disturbance, once established the regular reshaping of beds involves only minimal 

soil disturbance. A two-wheel tractor operated and toolbar-mounted bed planter was developed at 

CIMMYT, Mexico in 2002 for making new beds and reshaping permanent beds to establish crops (K. 

Sayre, personal communication). This was modified for Bangladesh conditions (Hossain et al., 2004) 

to eventually evolve a unit that could make and shape beds and place seed and fertilizer in furrows on 

the bed in one pass (Wohab et al., 2009). Beds 60 cm wide are produced which can accommodate two 

rows of most of the commonly grown crops in Bangladesh. 

 



Recent developments with two-wheel tractor seed drills 

Since 2006, improved configurations for both zero and strip tillage were made in Bangladesh 

(Hossain et al., 2009a and Hossain et al., 2009b). Innovations in design include replacement of the 

roller with adjustable press wheels, placement of separate seed and fertilizer boxes above the handle 

bars, more robust and effectively designed furrow openers and an adjustable tool bar frame for 

attaching tines (Fig. 8). Various soil engaging options are available including tines, single disc 

openers, double disc openers and cutting coulters (Fig. 9). The zero tillage planter, with all rotor 

blades removed, could pull up to four tines in soft soils, but in drying clay soils, a 12 HP two-wheel 

tractor could pull only two tines but with excessive wheel slippage and variable seed placement 

(Hossain et al., 2009a). Use of press wheels with this planter enabled increased plant stand by 22, 17, 

and 25%, respectively, for wheat, maize and mung bean (Vigna radiata(L.) R. Wilczek) crops 

( Hossain et al., 2009a). For strip tillage, rotor blades are only left in front of the tines, which can be 

constructed from light weight materials (Fig. 10). 

Despite these promising developments, none of these planters for two-wheel tractors are capable of 

readily changing between all modes of tillage—single-pass shallow tillage, strip tillage, zero tillage, 

bed planting and conventional rotary tillage. In South Asia, cropping intensity is high—for example, 

in Bangladesh each field on average grows 1.85 crops per year (BBS, 2005) and many fields grow 

three different crops in a year. Over a five-year cycle, due mainly to changing profitability of crops, 

4–6 different crops with diverse seed sizes, seed rate, row spacing, fertilizer rates, seed depth, etc. 

may be cultivated. Hence a planter suited to such diverse cropping systems needs to have multi-

functional capabilities. In these intensive cropping systems it is considered that potential purchasers of 

a minimum tillage planter for two-wheel tractors would require it to be: capable of successfully 

sowing many crops and operating year-round; cheap enough for service providers to purchase [of the 

order of Tk 40,000 (approximately US$ 570) in Bangladesh] or repay a loan within a few years; 

flexible for set up in the field with capability to quickly interchange between different tillage methods, 

seed rates, fertilizer rates, row spacings, seed size, planting depth; durable through use of good quality 

products and metals, and; light weight with minimal vibration. The Versatile Multi-crop Planter 



(VMP) has been developed with this in mind (Fig. 11; Haque et al., 2010, Haque et al., 2011 and 

Islam et al., 2010). It is capable of applying seed and fertilizer in rows for: (a) single-pass shallow 

tillage; (b) strip tillage of varying width and depth of strips; (c) zero tillage; (d) bed planting for 

single-pass new bed making or reshaping of permanent beds with simultaneous planting and fertilizer 

application, and; (e) traditional full tillage following broadcast seeding. 

The VMP permits seeding and fertilizing in four adjustable lines if row spacing is 200 mm while in 

the case of maize sown in 600–700 mm beds only one row per pass is sown. Unlike any other two-

wheel tractor based planter, the VMP has a square rotary shaft and attachable brackets to clamp onto 

the shaft by two bolts. This permits rapid adjustment between tillage modes and row spacings in the 

field, using an Allen key, within 15–20 min. With the VMP, either a fluted roller for continuous 

seeding or vertical plate seed meters can be fitted depending on the precision required for seed 

placement. Seed sizes ranging from 2 to 160 g per 1000 seeds can be sown with the VMP. Significant 

improvements were observed with the VMP for emergence of chickpea (Cicer arietinumL.), lentil 

(Lens culinaris Medik.), mung bean, wheat, jute, black gram (Vigna mungo (L.) Hepper), rice (Oryza 

sativa L.), mustard (Brassica campestris L. var. toria.), etc. compared to conventional tillage with 

broadcast sowing. 

Some Brazilian and Argentinean farm implement companies also manufacture two-wheel tractor seed 

drills. These units typically plant either one or two rows of crop. The soil engaging components 

consist of a coulter/tine combination, with an additional double disc opener to place the fertilizer. 

Seed metering is by a horizontal plate metering system, and a fertilizer attachment is available. 

Enterprising farmers and researchers have also adapted Brazilian made animal-drawn seed drills for 

use behind two-wheel tractors. The drills used to date have generally been of a double disc 

configuration for the soil engaging components. Although these South American seed drills are 

agronomically suitable for many conservation farming systems, use of disc drills is problematic for 

small holder farmers due to high initial capital cost and high maintenance factors. Disc openers are 

also unsuitable for hard setting and/or wet soils. 



Research and development is continuing with the prospect of developing other implements for two-

wheel tractors. Experimental coulter/tine combinations and double disc openers for the tine type 

toolbar mounted seed drill have been fabricated but are yet to be thoroughly field tested. Other 

implements being considered include: inter-row cultivator, boom spray, lister/furrower, grader blade, 

laser land leveller, mechanical implement lift system, and angled single disc opener (Thomas, 2009). 

Commercial production of these seed drills for two-wheel tractors has begun in Bangladesh and 

China, and other Asian manufacturers are showing interest. 

Evaluation and uptake of recent models 

Strip tillage with a two-wheel tractor in Bangladesh has been shown to decrease fuel costs by up to 

82% and the land preparation costs by the equivalent of US$ 31 ha−1 (Tk 2120 ha−1), compared to 

conventional, multiple-pass tillage (Haque et al., 2011). This value is comparable to or even better 

than other studies on fuel saving using the SPSTP (Hossain et al., 2005). These savings assume ever 

increasing importance in view of the continually increasing costs of fuel in Asia, and globally. The 

field coverage of 0.07 ha h−1for strip tillage with VMP was comparable to rates obtained with the 

SPSTP (Hossain et al., 2005). Hence in a single day's operation about 1–1.5 ha can be planted by the 

VMP in either strip tillage or SPSTP modes. In Bangladesh, where typical field sizes are 0.1–0.2 ha, 

this is equivalent to 10–15 fields. The decrease in fuel cost lowers costs of crop production and 

increases profitability for farmers by 6 to 100%, depending on the grain price and yield. Based on 

adoption of minimum tillage planters by 10% of the 350,000 two-wheel tractor operators in 

Bangladesh, and planting of 20 ha per machine per annum, savings in fuel consumption could total 

US$ 21.8 million annum−1. 

A 30% labour savings was also achieved in strip tillage by a VMP mounted on a two-wheel tractor 

compared to conventional tillage with a two-wheel tractor, which could substantially increase crop 

profit (Haque et al., 2011). The decrease in labour requirements is particularly significant at critical 

times such as harvesting of rice when the opportunity cost of labour is high. Overcoming labour 



constraints at critical times enables small holder farmers to carry out timely crop operations, which 

leads to increased yield. 

Experience in Punjab, India of mechanizing tillage (with four-wheel tractors) has shown that the 

labour saved moves from laborious to more sophisticated rural jobs as well as to new jobs and 

opportunities created. One of the spin-offs from mechanization and the development of planters for 

two-wheel tractors in Bangladesh has been the emergence of small agricultural contractors who hire 

out the two-wheel tractors and planters for tillage and crop establishment on a fee-for-service basis. 

The average rate of return on investment by hiring out Chinese 2BG-6A planters in SPSTP mode, 

mounted on 12 HP two-wheel tractors was 2.6 implying that the planter operations at farm level were 

highly profitable (Miah Monayem et al., 2010). Similar profitability can be expected from the VMP, 

given its similar purchase price and field coverage capacity to the 2BG-6A planter (Haque et al., 

2011) 

Timeliness of crop operations can be critical to successful crop establishment, crop growth and 

ultimately to achieving the season's yield potential, especially in rainfed environments. Minimum 

tillage, which involves simultaneous seed and fertilizer placement in a small band of disturbed soil in 

a single operation can greatly accelerate the process of crop establishment. Minimum tillage and other 

one-pass planting operations are particularly effective in reducing turnaround time (Haque et al., 

2004,Justice et al., 2004, Miah Monayem et al., 2009 and Islam et al., 2010), which is critically 

important in cropping systems producing 2–3 crops per year. 

Timely operations under minimum tillage create opportunities for diversified crop rotations especially 

in double or triple cropping. Under such intensive cropping systems, there are often critical periods 

when labour is in short supply and the one-pass planting operations in CA enable that labour to be 

more productively and strategically employed. Even delays of a few days may be crucial for the 

success of sowing and for crop yield. For example, monsoon rice is commonly harvested from early 

November to late December in Bangladesh but failure to sow wheat on time reduces wheat yields by 

1.3% per day of delay in planting after 1 December (Waddington et al., 2008). Lentil and chickpea 



also have relatively narrow sowing windows that overlap with the period of rice harvest. Late planting 

of these legumes results in decreased yield (Jeswani and Baldev, 1990). 

Additional benefits may be achieved from increased soil carbon (C) sequestration and decreased 

greenhouse gas emissions, but more extensive research is needed to quantify this benefit across a 

broader range of soils and cropping systems. The amounts of C sequestered depend on crop residue 

retention. If, as discussed below, planters for two-wheel tractors can only operate effectively with 

light residue loads compared to planters for four-wheel tractors, there may be diminished C 

sequestration in soils. However, this remains to be tested. Conservation agriculture generally lowers 

greenhouse gas emissions by conserving soil carbon and decreasing fuel consumption. Decreases in 

CO2 are equivalent to 2.6 kg of CO2-equivalent L−1 of diesel fuel (Grace, 2003). Hence for a 

27.2 L ha−1 saving in diesel, which is achievable with strip tillage (Haque et al., 2011b), there is an 

estimated decrease in CO2-e emissions by 70.8 kg ha−1 crop−1. The use of the planters mounted on 

10% of the 350,000 power tillers in Bangladesh would be equivalent to a saving of 49.6 kt CO2-e yr−1. 

Since development of the VMP in late 2009, 45 units of VMP has been commercially manufactured 

and marketed by the private companies in Bangladesh. Since November 2010, four VMPs were 

commercially used by small agricultural contractors for establishing a total of 87 ha of rice (mostly 

direct-seeded and un-puddled transplanted), wheat, mung bean, lentil, maize, black gram, chickpea in 

different tillage options; bed preparation for hand planting of potato (Solanum tuberosum L.); and 

single-pass shallow tillage for onion planting (Fig. 12). Four contractors provided services to 656 

farmers at charges of US$ 26–38 per ha, depending on tillage mode and crop. The grain yield of 

wheat in the farmers VMP adaptation plots was 3.62 t ha−1 (n = 97); and the lentil grain yield 

0.76 t ha−1 (n = 31). National average wheat yield is close to 2 t ha−1 (Waddington et al., 2008) and 

lentil yield 0.8–1.0 t ha−1. The service providers have reported few technical or manufacturing defects 

of the VMP during operation. The VMP has created a demand for direct seeded rice (pre-monsoon 

season aus rice and monsoon season aman rice), however, due to severe weed infestation in the direct 

seeded rice plots farmers are reluctant to proceed until a suitable weed control option (either chemical 

or mechanical) has been demonstrated. 



CA planters for four-wheel tractors 

In developing countries where small four-wheeled tractors are used, simplified, low-cost versions of 

minimum tillage planters have been developed and adopted. An example is in the Indo-Gangetic Plain 

(IGP), comprising parts of India, Pakistan, Bangladesh and Nepal, where the area sown to no-till 

wheat increased from 12,800 ha in 1999–2000 to 2.4 million ha in 2005–2006 (Hobbs et al., 2008). 

This area comprises both small holder (<3 ha) and larger land holdings, although zero tillage with 

four-wheel tractors has mostly occurred on larger land holdings. Hobbs et al. (2008) attribute this 

rapid adoption to the use of farmer participatory approaches that encouraged farmers to experiment 

with the technology in their own fields and promotion of the local machinery manufacturers in the 

region to be partners in the programme. Local manufactures were able to develop affordable, effective 

drills based primarily on inverted-“T” coulter technology introduced from New Zealand. There was 

no direct reliance on imported equipment from areas already practicing CA but rather adaptation of 

the concepts used in those areas to prevailing tractor types, soil types, farming systems, and economic 

circumstances of the farming community. A major prerequisite to widespread adoption was low-cost 

and local manufacturing, repair, and servicing capability. This process is being trialled for wheat, 

barley, chickpea and lentil in northern Iraq and Syria where, based on low-cost Indian designs, 

minimum tillage planters are now being locally manufactured and increasingly used (Piggin, 2009). 

Erenstein and Laxmi (2008) reported the net benefit of zero tillage over conventional tillage averaged 

US$ 97 ha−1 across studies of the rice–wheat cropping system of the IGP. The cost saving component 

of the net benefit (53%) was slightly higher than the yield increase component (47%). The average 

yield increase attributed to zero tillage of wheat across the IGP was estimated to be worth US$ 

45 ha−1 (Erenstein and Laxmi, 2008). In India, minimum tillage by four-wheel tractors was estimated 

to increase profit to farmers by US$ 55–75 ha−1. 

 

 

 



A new agronomy 

As has happened in large-scale commercial agriculture, a change to CA in small holder farms requires 

substantial adjustment of traditional agronomic practice (Baker and Saxton, 2007a), starting with 

fundamental changes in the ways in which farmers perceive the crop production process. This process 

is just beginning for small holder farmers reliant on hand, animal-drawn or two-wheel tractor mounted 

minimum tillage implements. Thus we can suggest some of the areas where major changes in 

agronomy are needed but it is only supported by limited data so far. 

Mind set 

One of the biggest impediments for widespread adoption of CA systems in southern Africa is the 

mind set (Wall, 2007). While farmers tend to accept more easily that crop production is possible 

without ploughing, it apparently is more difficult for people more removed from actual crop 

production (i.e. extensionists, researchers or university professors). To change the mind of a research 

director or even minister is even more difficult, however once change has been achieved they can be 

powerful movers and catalysts of CA. This could be observed in Zambia, when the Minister of 

Agriculture changed agriculture policies towards CA in 1999, and can be presently observed in 

Zimbabwe where CA is now very high on the political agenda. Once there is support from the 

Government there is scope for large scale adoption of CA technologies. Machinery manufacturers in 

southern Africa were initially very skeptical about moving away from the mouldboard ploughing 

system, a system they have used and managed since the early 1920s. However donor interest and a 

consistent push by various stakeholders towards ripper tine and animal traction systems has led to 

experimentation and design of new machinery and finally a change in mind set among the 

manufacturers towards equipment for sustainable agriculture. 

The best way to change mind set towards minimum tillage is through technology demonstration and 

evaluation on-farm carried out in a multi-disciplinary mode, with farmers, extensionists, researchers, 

manufacturers, input and credit suppliers, etc. Traditional linear technology extension through 

knowledge pathways from on-station research to the farmer will not work with complex technologies 



such as CA and therefore new ways of extension are needed (Ekboir, 2002). In southern Africa best 

success has been achieved in extension of complex CA systems through multi-agent innovation 

networks (Rycroft and Kash, 1994 and Thierfelder and Wall, 2011). However this also involves 

changes in the behaviour of participants and modus operandi of technology transfer. Participatory 

research methods should be a central part of these multidisciplinary approaches, which need creation 

of a common language and open dissemination of information among diverse stakeholders. Continued 

interaction, testing and adaptation may eventually lead to new equipment and locally adapted CA 

cropping systems ( Thierfelder and Wall, 2011). 

Cropping pattern 

Ability to sow a crop immediately following harvest of a preceding crop and without a pre-sowing 

tillage presents opportunities for changing cropping patterns and increasing cropping intensity. In 

rice–wheat cropping systems of the IGP, introduction of minimum tillage has shortened the 

turnaround time between rainy season rice and wheat—from 2 to 45 days with 2–12 passes to only 

one day with zero tillage (Hobbs et al., 2008). The immediate effect of this is higher wheat yields, as 

wheat can be planted closer to its optimum sowing time of early to mid-November. Also, earlier 

maturity of wheat increases opportunities for growing another crop, such as maize or mung bean, in 

the spring-summer period before the next rainy season rice crop. In Bangladesh, the rapid turnaround 

made possible with two-wheel tractor minimum tillage planters, along with use of shorter duration 

varieties, makes three-crop rotations more feasible. Examples of such rotations are rainy season rice–

lentil/potato/rapeseed mustard–mung bean/maize (where “/”=or). With changes in cropping patterns 

and other changes to agronomy facilitated by CA, it will probably be found that different varietal 

characteristics than traditionally available will be required. That is, introduction of CA will increase 

demand for breeding of varieties better adapted to CA. 

Another option for ensuring timely sowing of post-rice crops in the IGP is direct seeding, rather than 

transplanting, of the rainy season rice crop. In Haryana, India, direct seeding of rice in the rainy 

season with a zero till drill mounted on a four-wheel tractor can be more profitable than conventional 



transplanted rice (Saharawat et al., 2010). In Bangladesh, direct seeding of rainy season rice has also 

proven effective, giving yields of the same order or higher than conventional transplanted rice and 7–

10 days earlier maturity (Mazid et al., 2008). Indian-type four-wheel tractor zero till drills are rare in 

Bangladesh, due to small field sizes, but Islam et al. (2011) have demonstrated direct seeding of rice 

by strip tillage with a VMP on a two-wheel tractor. This provides an option for moving to minimum 

tillage seeding of rice in Bangladesh, with its benefits of labour efficiency, saving water and ensuring 

early maturity of rice for optimum sowing of post-rice crops. 

The appropriate planters for CA will vary with soil type, climate and cropping system (Baker and 

Saxton, 2007a). Where cropping is dominated by a single crop grown each year, a limited range of 

planter options may satisfy farmer needs. Where the cropping pattern involves 2–3 crops per year and 

a choice of a number of crops in each season, as in Bangladesh, the challenge to provide appropriate 

planters is greater. Clearly under such conditions flexibility and capacity to quickly change tillage 

mode and tillage settings (seed rate, row spacing) for the requirements of specific fields and farmers’ 

preferences are critical (Haque et al., 2011). The VMP achieves a level of flexibility and versatility in 

planting operations far exceeding that of alternative planters. The ability of such devices as this to 

permit a rapid turnaround time between crops, and handle a wide variety of seed characteristics and 

planting configurations, increases options for another of the pillars of CA—diversity of crop rotations. 

Residue management 

Livestock play a crucial role in many small holder farming systems where animals contribute to food 

security, provide draft power and add to capital. They reduce the risk involved in such farming and 

are likely to remain integral to small holder farming into the future. Therefore, it is necessary to 

establish a compromise between crop residues used for retention on the field and for feed (Mueller et 

al., 2001 and Giller et al., 2011). Crop residues are also in demand as fuel and building material 

particularly in South Asia. Residue retention on CA fields in Asia and Africa is therefore insufficient 

in many cases. Various strategies have to be used to overcome this limitation: education and 

awareness creation, demonstration of benefits of residues, community agreements on grazing land and 



reinforcement of local by-laws on cattle roaming. Fencing with barbed wire or live fences could be 

another option although this can create tension within communities especially where communal 

grazing rights exist. 

If residue retention is adequate, planters selected for implementation of CA need to be capable of 

handling the retained crop residue without compromising the accuracy of seed and fertilizer 

placement. Crop residue levels will vary widely among crop species, and between dryland and 

irrigated cropping systems. A key constraint to reliable sowing with two-wheel tractor planters will be 

residue length, particularly if the residue is unattached and not weakened by decomposition or 

weathering. Residue that is too tall can lead to blockages in seed and fertilizer dropping and loss of 

control in seed and fertilizer placement depth, particularly with zero tillage. The rotary blades ahead 

of the tines in strip tillage clear the standing stubble, reducing the risk of blockage by standing residue 

but loose heavy residue may still cause a problem. For four-wheel tractor minimum tillage planters, 

residue height should be adjusted relative to the minimum clearance height of tool bars and spacing 

between tines (Baker et al., 2007). With the VMP in strip tillage mode, stubble heights of wheat and 

rice of up to 50 cm have been managed. The optimal height of residue may also vary among crop 

species and between strip tillage, zero tillage and bed planting operations. Hence it is probable, but 

still untested, that zero tillage planters for two-wheel tractors will be less capable of handling heavy 

crop residue levels. 

The level of crop residue is likely to affect field capacity of minimum tillage planters for two-wheel 

tractors. Complete residue retention would leave 5–7 t ha−1 of stubble after rice. In tests to date the 

VMP has been capable of satisfactory seed and fertilizer placement in fields with rice residue levels 

up to 3.3 t ha−1 (Haque et al., 2011). The field capacity of planters for two-wheel tractors such as 

VMP with heavy crop residue has not been tested. Further study is needed to determine the amounts 

of residues that can be handled in the case of a range of crop types such as wheat, maize, mung bean, 

and chickpea, and under different single-pass tillage modes. The ability of the planter to handle crop 

residue will depend in part on the row width and whether following crops in the rotation are planted in 

the inter-row space or along the row. 



Levels of residue influence the effectiveness of herbicides by affecting the distribution of the 

herbicide and its contact with either the weeds or the soil surface. Hence the optimal level of residue 

for soil organic matter accumulation may differ from the optimum level for control of weeds using 

herbicides. 

Planting pattern 

A higher seed rate would be expected to be needed for broadcast sowing than line sowing because of 

uneven distribution and depth of placement when seed is broadcast. Thus it would be necessary to re-

determine optimum seed rates for mechanized row sowing of crops traditionally sown by broadcasting 

and with full tillage. Attempts have been made to calibrate seed rates for lentil and chickpea sown at 

40 cm row spacing by VMP with strip tillage in the 2009–2010 season in Bangladesh (Table 2). 

Aerial biomass and grain yield do decline with decreasing seed rate, but not significantly due to the 

variability inherent in this experimentation. Low yields and high plot-to-plot variability were obtained 

due to excess soil moisture at sowing in both crops and seedling damage by collar rot (Sclerotium 

rolfsii) and infestation by Botrytis grey mould (Botrytis cinerea) and pod borer (Helicoverpa 

armigera) in chickpea. However, there is an indication that moderate reductions in seed rate can be 

achieved without significantly reducing yield of lentil and chickpea but many further such studies are 

needed to be able to decide on optimum seed rates for particular situations. A range of both within-

row seed rates and row spacings need to be examined. For grain legumes at least, optimum seed rate 

depends on a delicate balance between seedling death by fungal pathogens, extent of infestation by 

foliar disease ( Allen and Lenné, 1998) and insect pests, soil moisture status through the crop cycle 

(Beech and Leach, 1989) and producing sufficient vegetative growth to support yield formation. 

Fertilizer 

Full tillage results in rapid mineralization of organic matter and it homogenizes the distribution of 

nutrients to the depth of tillage. Tillage depth may vary from 7 to 20 cm depending on the form of 

tillage and whether it is mechanized or animal drawn. Rotary tillage with 12 HP two-wheel tractors in 

Bangladesh is relatively shallow (6 cm). However, within this tilled zone roots have relatively 



unrestricted access to nutrients whether from mineralized SOM, from other soil reserves, or from 

fertilizer residues, so long as the soil remains moist enough for active root exploration. When topsoil 

dries, root access to the nutrients in the tilled zone diminishes. Minimum soil disturbance under CA 

generally results in stratification of nutrients with highest concentrations, particularly phosphorus (P) 

and potassium (K), either close to the surface or in planting rows (Howard et al., 1999). Minimum 

tillage increases fertilizer nitrogen (N) requirements at least in the initial years after transition to CA 

due to N immobilization by crop residues. Hence in those areas where farmers are unable to afford 

increased N fertilizer, the conversion to CA may decrease crop yields during the transitional period 

(Giller et al., 2009). 

Minimum soil disturbance with CA generally involves fertilizer placement with seed, under seed or 

beside the seed. Hence there is a risk of fertilizer toxicity, especially with soluble fertilizers on sandy 

or silty soils (Kabir et al., 2010), but this depends on the rate of application, plant species and the soil 

moisture levels at sowing. Nitrogen, P or K fertilizers are most likely to lead to toxicity. Consequently 

it is common to topdress N and K fertilizer after crop establishment provided there is sufficient post-

sowing soil moisture to allow root uptake of the supplied nutrients. 

Provided placement of fertilizer in furrows adjacent to the seed does not cause toxicity, fertilizer use 

efficiency should be increased as compared with broadcasting (Bullen et al., 1983). In soils in 

Bangladesh where the recommended rate of P application for lentil and chickpea for broadcast 

application is 20 kg P ha−1, preliminary studies by the authors at the locations of seed rate trials (Table 

2) indicated a marginal yield reduction of these crops sown by VMP with strip tillage when the P rate 

was halved. Seed and P fertilizer were delivered together in the slot and no toxicity was observed. 

However, other constraints as mentioned for seed rate trials contributed to low and variable yields in 

the P rate studies and much more experimentation is needed to adequately quantify these effects. A 

decrease in fertilizer rate with minimum tillage would be expected due not only to fertilizer placement 

in the crop row but also, over a longer period of practicing CA, to improved nutrient supplying 

capacity of the soil due to SOM build-up and increased surface soil moisture retention extending the 

period of availability of near-surface nutrients. Requirements for N fertilizer are likely to be highly 



variable and site specific depending on the amount of crop residue retention and its extent of 

decomposition, which determines the balance between immobilization and mineralization of soil N 

(Giller et al., 2009). 

Weed management 

Changing from full tillage to minimum or zero tillage necessarily changes the nature of weed 

infestation in crops. While full tillage can kill most growing weeds to produce a clean seedbed for 

sowing of the crop it also stimulates germination of seeds of weeds that can compete with crop plants 

during the growing season. With minimum tillage this stimulation of weed seed germination is 

diminished but the crop still faces competition from weeds already growing at sowing time as well as 

those emerging after crop sowing. Such a change in tillage method would also change the suite of 

weed species emerging and weed ecology generally. 

If small holder farmers adopted minimum tillage and residue retention then continued reliance on 

traditional manual weed control measures would be difficult (Wall, 2007 and Steiner and Twomlow, 

2003). Although row sowing may permit inter-row cultivation with manual implements, crop residue 

would interfere with this process and in any case careful hand weeding would still be required near 

crop rows. Further, topsoil would be disturbed, thus negating CA advantages. In large-scale 

commercial agriculture there is heavy reliance on herbicides to control weeds that would otherwise be 

killed by thorough tillage. In small holder agriculture relevant herbicides are generally not available or 

affordable, and local knowledge on their most effective and safe use is usually inadequate. 

If minimum tillage is to be adopted by small holder farmers then it is imperative that integrated weed 

management strategies be simultaneously adopted. This would likely require use of herbicides but if 

they are introduced it would be essential to educate suppliers and farmers as to their effective and safe 

use (Vogel, 1994). A particular concern is development of herbicide resistance among major weed 

species, if not used at appropriate rates or herbicide chemicals are not used in rotation (Powles and 

Yu, 2010). Other non-chemical options for integrated weed management in small holder cropping 

systems rely on a holistic understanding of crop and weed ecology. They include using crop rotations 



unfavourable to major weed species, use of cover crops, adjusting sowing time and procedure, use of 

competitive crop genotypes, arranging planting pattern, minimizing contamination of crop seed with 

weed seeds, and adjusting fertilizer strategy to minimize weed competition (Vogel, 1995 and Bàrberi, 

2002). 

Pests and diseases 

Changing from broadcast sowing to line sowing is particularly advantageous for legume crops as a 

result of their susceptibility to various diseases (Allen and Lenné, 1998) and insect pests (Edwards 

and Singh, 2006). In the case of foliar diseases, such as ascochyta blight (Ascochyta rabiei) and 

botrytis grey mould in chickpea, disease development is impeded by open and well-aerated canopies 

( Reddy et al., 1993 and Gan et al., 2006). This situation can be obtained with row planting, as 

compared with random distribution of plants in broadcast planting, while maintaining a plant 

population adequate for maximum yield. Use of an easily adjustable planter such as the VMP permits 

ready adjustment of row width according to expected disease severity. It has been similarly shown 

that insect damage is less severe with row rather than broadcast planting, such as for the case 

of Helicoverpa armigera pod borer on chickpea (Sithanantham and Reed, 1979). 

However, a shift to CA involving an increase in crop residue left on the soil surface can increase 

severity of particular diseases (Bockus and Shroyer, 1998). Both foliar infecting and root infecting 

fungi can benefit from the carryover of crop residue through mechanisms such as survival of spores 

on host plant residue, the residue providing substrate for a saprophytic phase, and the mulching 

providing favourable soil moisture, temperature and nutritional conditions for fungal survival, growth 

and reproduction. An example is the carryover of Sclerotium rolfsii, an important pathogen of 

seedlings of many legume crops, on crop debris as a saprophyte, and thus increasing the pathogen 

load on subsequent crops ( Allen and Lenné, 1998). An increase in a particular plant pathogen as a 

result of introduction of CA is best countered by ensuring that diverse crop rotation is included in the 

CA strategy, to break disease cycles. Nevertheless, CA practices such as minimum tillage and 

mulching may reduce severity of some soil pathogens, by creating soil conditions unfavourable to 



them (e.g. increased soil moisture under CA discouraging dry root rots which are favoured by drier 

soils) or more favourable to their microbial antagonists (Bockus and Shroyer, 1998). 

It is likely that, in a particular environment, a change to CA practices will substantially change the 

microbial ecological balance, thereby causing previously minor or new pests and diseases to assume 

importance and once major diseases to subside in prevalence or severity. Thus such changes after 

implementation of CA will require judicious monitoring of pest and disease status so as to be able to 

take timely remedial action. 

 

Future Directions 

Quantification of effects of CA on crops and soils 

The effects of CA on crops and soils evolve over time. There are short term effects on nutrient 

availability that require alterations in fertilizer recommendations for the transitional phase. There are 

longer term changes in mineralization of organic matter, the spectrum of weeds, and prevalent 

diseases and insects. Hence there is a strong case for long term trials strategically placed in regions 

that are implementing CA. It is preferable that they be placed on-farm, despite the lesser control 

possible than in fenced-off research stations, to ensure that the results obtained are indeed relevant to 

the extrapolation area. Such trials need to take temporal and spatial measurements of parameters 

determining soil quality, the relevant beneficial and pathogenic soil organisms, aerial pests and 

diseases, as well as crop characteristics of growth, phenology, yield and quality. In view of often sub-

optimal soil moisture levels in rainfed environments, it would be particularly instructive to quantify 

the effect of CA components on soil moisture availability to crops. 

Giller et al., 2009 and Giller et al., 2011 have questioned the universal suitability of CA practices. 

Reviewing results from Sub-Saharan Africa, they point out that CA has not produced the generalized 

benefits reported above, indeed decreases in yield are common. They argue that lack of herbicides 

may increase the labour requirements for weeding in CA, and shift the burden of weed control to 



women in the household. If herbicides are unavailable or too costly for small holder farmers to use, 

the extra labour required for weed control may result in greater labour requirements in CA than 

conventional cropping. The lack of key inputs in local markets, as is common in SSA, may limit the 

yield benefits from CA. In addition, under low crop productivity, crop residue levels may be too low 

to achieve the benefits of soil cover. Alternatively, the competing requirements for crop residues, as 

animal feed, or as domestic fuel for cooking, may leave so little organic matter input to soils that 

limited change in SOM can be expected. Hence it is important to define the domains where CA will 

produce benefits on smallholder farms and importantly to identify situations where it will not. 

Moreover, it is necessary to better understand the benefits from each of the core components of CA: 

minimum soil disturbance; maintaining soil cover and; diverse rotation (Giller et al., 2009). A better 

understanding of the role of each component may help to explain why CA produces benefits in most 

situations but not in others. 

Facilitating continued innovation 

The development of CA for small holder farmers, whether with animal draft power or tractors needs 

to be pursued as a partnership between farmers, service providers and machinery manufacturers, 

researchers and extensionists. Experience elsewhere in the world suggests that such partnerships are 

conducive to innovation, adaptation of technology to farmer needs and adoption on farms (e.g. 

Brazil—Pieri et al., 2002). Adoption of CA is facilitated by: on-going machinery modifications to 

allow more flexibility in seeding; development of cost-effective spray technology for weed control 

using herbicides; improved crop resistance to stubble-borne diseases; more diverse crop and rotation 

options; breeding herbicide resistant crops and; the use of broad spectrum herbicides (Thomas et al., 

2007). Value chain analysis of the farm machinery and planter market systems will need to be mapped 

to identify key bottlenecks to adoption. Such studies should probably include the crop residue value 

chain as a possible impediment to the retention of residues in CA systems on small holder farms. 

The average land holding in Bangladesh is less than 1 ha, which does not justify purchase of planters 

for two-wheel tractors by individual farmers. Similar constraints will exist in the eastern IGP and 



many other areas where small holder farming is prevalent. Currently, more than 400,000 two-wheel 

tractors are being used in Bangladesh mostly on a contract hire basis. There are more than 1000 CA 

machinery custom hire contractors providing planting and other services to 60–90 neighbouring 

farmers each. Networks have been built among the farmers and service providers, several small farm 

machinery marketing companies, some very small local machinery manufacturers, and research and 

extension organizations in 25 districts of Bangladesh. Access to interest-free loans has been 

facilitated, along with training and advice to farmers on how to access machinery and CA. In the last 

2–3 years, at least two importers, five farm machinery manufacturers and distributors of the new CA 

machinery including the VMP have started business. Thus the components for the sustainable 

implementation of CA including farm machinery on a commercial basis have been put in place in 

Bangladesh. Stakeholder partnerships and networks need further strengthening to further advance 

concepts of CA service provision. 

Monitoring adoption and impact 

In introducing minimum tillage and the other components of CA, residue retention and diverse 

rotations, it is recommended that a formal procedure for measuring adoption and impact on 

livelihoods of small holder farming families be implemented. Annual tracking of adoption permits 

early identification of adoption constraints, and thus prompts early action to address them. At the 

beginning of the adoption process, as is the present situation for minimum tillage planters for two-

wheel tractors, it is particularly recommended to conduct an ex ante analysis of economic return. For 

a given region this involves estimation of the time lag of adaptive research before significant adoption 

begins, the expected ceiling level of adoption, the shape of the adoption curve and the time to reach 

that ceiling, and the net present value (NPV, expected financial return less investment cost). Such an 

analysis done for introduction of zero tillage of wheat with four-wheel tractors in the IGP of India 

calculated conservative scenario NPV of US$ 96 million, benefit cost ratio of 39 and internal rate of 

return of 57% (Laxmi et al., 2007). Based on actual data from where zero tillage had been adopted 

they assumed that zero tillage produced yield gains of 6% and reduced input costs by 5%, and that 

ceiling level of adoption would be 33% to be reached about 10 years after the beginning of adoption. 



Actual adoption figures for zero tillage wheat in the Indo-Gangetic Plain of India appear to be 

following this scenario (Hobbs et al., 2008). Although many assumptions are involved it is suggested 

that an ex ante analysis be conducted for the adoption of minimum tillage with two-wheel tractors in 

Bangladesh; adoption parameters found for zero tillage wheat in the IGP of India could at least guide 

parameters to use in Bangladesh. Such an analysis will help establish the potential for minimum 

tillage planters on two-wheel tractors in Bangladesh and the likely returns for pursuing this 

innovation. Once such an analysis is available, and if it is similarly favourable to the zero tillage 

wheat in India example, it would be easier to attract the necessary investments to fund the required 

research, adaptation, coordination and extension. 

To obtain the data necessary for both ex ante and ex post impact analyses procedures need to be 

embedded to permit annual measurement of sales of planter units, their mean area coverage, and net 

benefits in terms of yield increases and cost savings on inputs. If and when introduction of minimum 

tillage planters also encourages increased residue retention and diverse crop rotation then benefits of 

these factors will also need to be captured and incorporated. 

Calculation of benefits associated with environmental improvements, such as improvements in soil 

quality and increased water and nutrient use efficiency, will depend on outcomes of long term trials 

and observations referred to in Section 5.1. An important component of the adoption and impact data 

set would be that collected directly from farm families, in surveys, interviews, focus discussion 

groups and case studies, to be able to understand how introduction of CA or its components is actually 

affecting livelihoods of small holder families. 

 

Conclusion 

The key to furthering CA among small holders is development and deployment of affordable and 

effective minimum tillage implements. In Sub-Saharan Africa several manual CA seeding systems 

such as dibble sticks, planting basins and jab-planters are promoted along with mechanized animal 



traction systems such as different types of tine rippers and direct planters. Minimum tillage 

implements compatible with two-wheel tractors are now reaching early stages of adoption, mainly in 

South Asia. These developments provide an opening for the other two main pillars of CA—more 

ground cover and more diverse crop rotations. Where two-wheel tractors have become ubiquitous, 

there has been a consequent decline in draft animals thereby rendering more crop residue available for 

ground cover. 

However, for small holder, resource-constrained farmers various bottlenecks to adoption of CA 

remain, as elaborated by Giller et al., 2009 and Giller et al., 2011, despite the recent emergence of 

suitable minimum tillage implements. A particular challenge is development of integrated weed 

management strategies that will at least compensate the weed control afforded by conventional tillage. 

Although herbicide chemicals exist for most weed situations, access of small holders to them and the 

knowledge required for their effective and safe use is limited. Priority is thus required in establishing 

integrated weed management strategies for particular cropping situations, drawing upon the entire 

toolkit of options available—herbicides, mechanical, rotations, weed seed bank management, etc. 

Introduction of minimum tillage also demands radical changes to other aspects of conventional 

agronomy, such as planting pattern, fertilizer use and pest and disease management. There is 

obviously a need for re-writing of the research originally targeted at conventional agriculture (e.g. full 

tillage and broadcast systems), but it is urged that in this case the research be done in full participatory 

mode with farmers on their fields. Indeed, introduction of CA in the Americas, Australia and the IGP 

of India has pioneered methods of participatory on-farm research, development and extension, and 

this mode needs to be further pursued for CA for small holders. A major compulsion for this is that, 

although the principles of CA have wide applicability across many agro-ecological and 

physiographical environments, they need to be adjusted to a farmer's particular conditions to make 

them valid and applicable. 
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Table 1.  

Summary of advantages of minimum tillage over conventional, full tillage in large-scale commercial 

agriculture. 

 

 

Input economics Soil quality Environment 

Fuel conservation Increased soil organic matter Reduced soil erosion 

Less labour cost Increased stored soil nitrogen Less irrigation 
requirement 

Time saving and flexibility Improved nutrient dynamics Less pollution of 
waterways 

Longer machinery life Improved soil structure Lower net CO2 emissions 

Less fertilizer required More earthworms, soil fauna   

  Improved aeration   

  Improved infiltration   

  Soil water conservation   

  Moderated soil temperatures   

  Reduced weed germination   

  Improved trafficability 
  

 

 

Source: Adapted from Baker and Saxton (2007b) and Reicosky and Saxton (2007). 

 

 

 

 

 



Table 2. Effect of seed rate on grain and straw yield of lentil and chickpea sown by VMP in farmers’ 

fields, Thakurgaon Sadar, Bangladesh, 2009–2010 (n = 4). 

 

 

Lentil 

 

Chickpea 

 

Seed rate 

(kg ha−1) 

Grain yield 

(kg ha−1) 

Straw yield 

(kg ha−1) 

Seed rate 

(kg ha−1) 

Grain yield 

(kg ha−1) 

Straw yield 

(kg ha−1) 

34 402 566 37.5 328 1239 

25.5 (75%)a 358 514 31 (87%) 292 1189 

17 (50%) 278 372 25 (63%) 215 941 

SEb 95 110 SE 33 130 

 

 

 

aPercentage of recommended broadcast seed rate, in first row. 

bStandard error of difference between any two means; there were no significant differences between 

any treatments at P < 0.05. 

Source: Data from ACIAR project LWR/2005/001. 

 



Fig. 1. Dibble stick (Photograph: P. Wall). 

 

 

 

 

 

 



Fig. 2. Manual dug planting basins (Photograph: C. Thierfelder). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 3. Jab-planter (Photograph: C. Thierfelder). 

 

 

 

 

 

 

 

 

 



Fig. 4. Ripper tine (Photograph: C. Thierfelder). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 5. Animal traction direct planter (Photograph: C. Thierfelder). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 6. Status of SPSTP use in Bangladesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 7. The original BARI/CIMMYT tined zero till seed drill (Photograph: M.E. Haque). 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 8.  The improved ACIAR-Rogro tined zero till seed drill (Photograph: R.J. Esdaile). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 9. Some optional soil engaging tools to fit the two-wheel tractor seed drills (Photograph: R.J. 

Esdaile). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 10. A Bangladesh-made two-wheel tractor seed drill in strip tillage mode (Photograph: R.J. 

Esdaile). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 11. The versatile multi-crop planter (VMP) (Photograph: M.E. Haque). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 12. Area sown to different crops and numbers of farmers serviced by four VMPs in northern 

Bangladesh during November 2010–April 2011. 
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