
School of Information Technology

A Frequent Max Substring Technique for

Thai Text Indexing

Todsanai Chumwatana

This thesis is presented for the Degree of

Doctor of Philosophy of

Murdoch University

May 2011

 i

Declaration

I declare that this thesis is my own account of my research and contains as its

main content work which has not previously been submitted for a degree at any tertiary

education institution.

Todsanai Chumwatana

May, 2011

 ii

Acknowledgments

I would like to take this opportunity to acknowledge and thank the following people and

organizations that helped me to complete this thesis.

First of all I would like to thank my principal supervisor, Associate Professor Dr Kevin

Wong, for his support, guidance, comments and encouragement throughout the period

of my PhD research. From the first day of my study, Professor Kevin Wong always

offered me opportunities and taught me how to do good research. Throughout my study,

Professor Kevin Wong always walked beside me and supported me. I am very grateful

for his helpful advice and his efforts to explain things to me.

I would also like to thank my associate supervisor, Dr Hong Xie, for his suggestions.

Besides my principal supervisor and associate supervisor, I wish to express my

gratitude to Associate Professor Dr Lance Chun Che Fung. Professor Fung has always

offered me and his students support, opportunities and mental stimulation. Many thanks

to my PhD colleagues and Thai students who have supported me and given me

wonderful friendships. Thanks to all of them for a memorable time.

My research would not have become a reality without the financial support of my

family during the period of my study. I cannot forget to thank my lovely family: my

father Ponlasak Chumwatana, my mother Tassanee Kaewbavon and my two older

sisters Nattaya Mohjhaw and Chalakod Chumwatana for everything. They have always

supported and encouraged me and lifted my spirits since I opened my eyes to see the

world.

 iii

Finally, I would like to thank the School of Information Technology, Murdoch

University, for providing me with all the necessary facilities for my research.

 iv

Abstract

This research details the development of a novel methodology, called the frequent max

substring technique, for extracting indexing terms and constructing an index for Thai

text documents.

With the rapidly increasing number of Thai digital documents available in digital media

and websites, it is important to find an efficient Thai text indexing technique to

facilitate search and retrieval. An efficient index would speed up the response time and

improve the accessibility of the documents. Up to now, not much research in Thai text

indexing has been conducted as compared to more commonly used languages like

English. The more commonly used Thai text indexing technique is the word inverted

index, which is language-dependent (i.e. requires linguistic knowledge). This technique

creates word document indices on document collection to enable an efficient keyword

based search. However, when using the word inverted index technique, Thai text

documents need to be parsed and tokenized into individual words first. Therefore, one

of the main issues is how to automatically identify the indexing terms from the Thai

text documents before constructing the index. This is because the syntax of Thai

language is highly ambiguous and Thai language is non-segmented (i.e. a text document

is written continuously as a sequence of characters without explicit word boundary

delimiters). To index Thai text documents, most language-dependent indexing

techniques have to rely on the performance of a word segmentation approach in order to

extract the indexing terms before constructing the index. However, word segmentation

is time consuming and segmentation accuracy is heavily dependent either on the

linguistic knowledge used in the underlying segmentation algorithms, or on the

 v

dictionary or corpus used in the segmentation. It is for this reason that most language-

dependent indexing techniques are time consuming and require additional storage space

for storing dictionary or corpus or manually crafted rules resource.

Apart from the language dependant indexing techniques, some language-independent

techniques have been proposed as an alternative indexing technique for Thai language

such as the n-gram inverted index and suffix array approaches. These approaches are

simple and fast as they are language-independent, and do not require linguistic

knowledge of the language, or the use of a dictionary or a corpus. However, the

limitation of these techniques is that they require more storage space for extracting the

indexing terms and constructing the index.

To address the above limitations, this thesis has developed a frequent max substring

technique that uses language-independent text representation, which is computationally

efficient and requires small storage place. The frequent max substring technique

improves the performance in terms of construction time over the language-dependent

techniques (i.e. the word inverted index) as this technique does not require text pre-

processing tasks (i.e. word segmentation) in extracting the indexing terms before

indexing can be performed. This technique also improves space efficiency compared to

some existing language-independent techniques. This is achieved by retaining only the

frequent max substrings, which are strings that are both long and frequently occurring,

in order to reduce the number of insignificant indexing terms from an index.

To demonstrate that the frequent max substring technique could deliver its performance,

experimental studies and comparison results on indexing Thai text documents are

presented in this thesis. The technique was evaluated and compared in term of indexing

 vi

efficiency and retrieval performance. The results show that the frequent max substring

technique is more computationally efficient when compared to the word inverted index,

and also that it requires less space for indexing when compared to some language-

independent techniques.

Additionally, this thesis shows that the frequent max substring technique has an

advantage in terms of versatility, as it can also be combined with other Thai language-

dependent techniques to become a novel hybrid language-dependent technique, in order

to further improve the indexing quality. This technique can also be used with a neural

network to enhance non-segmented document clustering. The frequent max substring

technique also has the flexibility to be applied to other non-segmented texts like the

Chinese language and genome sequences in bioinformatics due to its language-

independency feature.

 vii

List of Publications Related to this Thesis

P1. T. Chumwatana, K. W. Wong and H. Xie, ‘Using Frequent Max Substring
Technique for Thai Text Indexing’, accepted for publication in the Australian
Journal of Intelligent Information Processing Systems (AJIIPS).

P2. T. Chumwatana, K. W. Wong and H. Xie, ‘A SOM-Based Document Clustering

Using Frequent Max Substrings for Non-Segmented Texts’, In the Journal of
Intelligent Learning Systems and Applications (JILSA), 2010.

P3. T. Chumwatana, K. W. Wong and H. Xie, ‘Using Frequent Max Substring

Technique for Thai Keyword Extraction used in Thai Text Mining’, In
Proceedings of the 2nd International Conference on Soft Computing, Intelligent
System and Information Technology (ICSIIT 2010), Bali, Indonesia, 1-2 July
2010.

P4. T. Chumwatana, K. W. Wong and H. Xie, ‘Non-segmented Document Clustering

Using Self-organizing map and Frequent Max Substring Technique’, Lecture
Notes in Computer Science, Springer Berlin/Heidelberg, LNCS 5864, 2009, pp.
691–698.

P5. T. Chumwatana, K. W. Wong and H. Xie, ‘Non-segmented Document Clustering

Using Self-organizing map and Frequent Max Substring Technique’, In16th
International Conference on Neural Information Processing (ICONIP 2009),
Bangkok, Thailand, 2009.

P6. T. Chumwatana, K. W. Wong and H. Xie, ‘Indexing Non-Segmented Texts using

n-Gram Inverted Index and Frequent Max Substring: A Comparison of Two
Techniques,’ In 10th Postgraduate Electrical Engineering & Computing
Symposium (PEECS2009), Perth, Australia, 2009.

P7. T. Chumwatana, K. W. Wong and H. Xie, ‘An Automatic Indexing Technique for

Thai Texts using Frequent Max Substring,’ In The 8th International Symposium
on Natural Language Processing, 2009 (SNLP '09), Bangkok, Thailand, 2009.

P8. T. Chumwatana, K. W. Wong and H. Xie, ‘An Efficient Text Mining Technique’,

In 9th Postgraduate Electrical Engineering & Computing Symposium
(PEECS2008), Perth, Australia, 2008.

P9. T. Chumwatana, K. W. Wong and H. Xie, ‘Thai Text Mining to Support Web

Search for E-commerce’, In The 7th International Conference on e-Business
2008 (INCEB2008), Bangkok, Thailand, 2008.

P10. T. Chumwatana, K. W. Wong and H. Xie, ‘Frequent Max Substring Mining for

Indexing’, International Journal of Computer Science and System Analysis
(IJCSSA), India, 2008.

P11. T. Chumwatana, K. W. Wong and H. Xie, ‘Frequent Max Substring Mining’, In

8th Postgraduate Electrical Engineering & Computing Symposium
(PEECS2007), Perth, Australia, 2007.

 viii

Contributions of this Thesis

The contributions in this thesis which have already been published and reported are

described below and summarized in Table 1.

A survey and review of various techniques in the Thai text indexing area has been

completed. This work forms the basis of Chapter 2. Parts of this work have been

published in conference papers P3, P7, P9 and journal paper P1.

The development of the novel indexing technique, called the frequent max substring

technique, forms a part of Chapter 3. Results from this work are reported in conference

papers P3, P7, P8, P9, P11 and journal papers P1 and P10. Some of these publications

also include the experimental studies, comparison results and discussion on indexing

Thai text documents. Another contribution documented in Chapter 3 is the

establishment of a methodology for evaluating the frequent max substring technique by

comparing it to other indexing techniques such as the word inverted index, n-gram

inverted index, Vilo’s technique and suffix array. The comparison was based on

indexing efficiency and retrieval performance.

The contribution in Chapter 4 is the establishment of the integration of the frequent max

substring technique with other Thai language-dependent techniques to create a novel

language-dependent technique. The hybrid method is used for extracting and indexing

meaningful indexing terms from Thai text documents. Parts of this chapter have been

published in journal paper P1.

 ix

The work on an integrated method using the frequent max substring technique with

self-organizing map (SOM) for non-segmented document clustering is published in

conference paper P5 and lecture notes in computer science paper P4. Conference paper

P5 was later extended to journal paper P2, which has been described in Chapter 5.

Journal paper P2 was published in Journal of Intelligent Learning Systems and

Applications and it showed that the frequent max substring technique can be used with

self-organizing map to enhance non-segmented document clustering in order to improve

the efficiency of Thai information retrieval.

Chapter 6 discussed the application of the frequent max substring technique to other

non-segmented texts such as non-segmented languages (the Chinese language) and

genome sequences. This demonstrated that the frequent max substring technique is

versatile as it can be used not only for Thai text indexing but also for indexing other

non-segmented texts. This work is reported in conference paper P6. The paper also

presents some comparison results and discussion on indexing non-segmented texts.

 x

Table 1 Summary of the Contribution of the Thesis

Chapter Contributions Paper No

Chapter 2: Thai Text
Indexing

Presents a literature survey on previous
research in the Thai text indexing area and
identifies the limitations of existing Thai
text indexing techniques.

P1, P3, P7, P9

Chapter 3: Frequent
Max Substring
Technique

Successfully developed the frequent max
substring technique to perform Thai text
indexing for language-independent
technique.

P1, P3, P7, P8,
P9, P10, P11

Chapter 4: Hybrid
Method: Integration
of the Frequent Max
Substring Technique
and Thai Language-
Dependent Technique

Successfully developed a hybrid method by
combining the frequent max substring
technique and language-dependent
technique to perform Thai text indexing
using linguistic knowledge.

P1

Chapter 5: Non-
Segmented Document
Clustering Using Self-
Organizing Map and
the Frequent Max
Substring Technique

Developed an integrated method using the
frequent max substring technique with self-
organizing map (SOM) to enhance the non-
segmented document clustering.

P2, P4, P5

Chapter 6: Non-
Segmented Text
Problems

Successfully implemented the proposed
technique with some other non-segmented
texts like Chinese and genome sequence.

P6

 xi

Contents

Declaration i

Acknowledgments ii

Abstract iv

List of Publications Related to this Thesis vii

Contributions of this Thesis viii

List of Figures xv

List of Tables xx

Chapter 1: Introduction and Overview 1

1.1 Overview 1

1.2 Objectives 8

1.3 Contributions 9

1.4 Thesis outline 11

Chapter 2: Thai Text Indexing 14

2.1 Introduction 14

2.2 Overview of Thai text indexing 16

2.3 Linguistic characteristics of the Thai language 18

2.4 Thai text indexing techniques 22

2.4.1 Using language-dependent method for Thai text indexing 23

2.4.1.1 Inverted index construction 26

2.4.1.2 Thai word segmentation 28

2.4.1.3 Thai stopword removal 48

2.4.2 Using language-independent method for Thai text indexing 50

2.4.2.1 An n-gram inverted index 50

2.4.2.2 Suffix array approach 56

2.5 The retrieval process 60

2.5.1 A query 61

 xii

2.5.2 Query processing 65

2.5.3 Searching 65

 2.5.3.1 Search using inverted index 66

2.6 Limitations of Thai text indexing techniques 67

2.7 Conclusion 72

Chapter 3: Frequent Max Substring Technique 74

3.1 Introduction 74

3.2 Substring indexing based on suffixes 77

3.2.1 Suffix trie 81

3.2.2 Suffix tree 85

3.2.3 Suffix array 88

3.2.4 The comparison of suffix trie, suffix tree and suffix array 91

3.3 Frequent substring indexing with Vilo’s method 93

3.3.1 Frequent substring indexing based on Vilo’s technique 95

3.4 Frequent max substring technique 103

3.4.1 Frequent suffix trie structure or FST structure 106

3.4.1.1 The frequent suffix trie construction 108

3.4.2 Algorithms 109

3.5 Experimental studies 124

3.5.1 Text collection 125

3.5.2 Evaluation of indexing 126

 3.5.2.1 Space efficiency 127

 3.5.2.2 Time efficiency 134

3.5.3 Evaluation of retrieval performance 138

3.6 Conclusion 150

Chapter 4: Hybrid Method: Integration of the Frequent Max

Substring Technique and Thai Language-Dependent Technique 154

4.1 Introduction 154

4.2 Related works 154

4.3 Hybrid method 156

4.4 Experimental studies 163

4.5 Conclusion 170

 xiii

Chapter 5: Non-Segmented Document Clustering Using Self-Organizing

Map and the Frequent Max Substring Technique 172

5.1 Introduction 172

5.2 Document clustering 173

5.3 Keyword extraction 174

5.4 Document clustering algorithms and related works 176

5.5 SOM based clustering using the frequent max substring technique for

 non-segmented texts 179

5.6 Experimental studies and comparison results 184

5.7 Conclusion 190

Chapter 6: Non-Segmented Text Problems 191

6.1 Introduction 191

6.2 Non-segmented language problems 191

6.2.1 Characteristics of the Chinese language 192

6.2.2 Related works 194

6.2.3 Applying the frequent max substring technique to the Chinese

 language 196

6.2.4 Experimental results 197

6.3 Genome sequencing 203

6.3.1 Characteristics of the genome sequence 204

6.3.2 Related works 206

6.3.3 Applying the frequent max substring technique to genome

 sequencing 208

6.3.4 Experimental studies and comparison results 213

6.4 Conclusion 221

Chapter 7: Conclusions 222

7.1 Contribution and outcomes 222

7.2 Future work and directions 228

Appendixes 229

Appendix A: Addresses of Thai text collection 229

 xiv

Appendix B: Details of Thai text collection 232

Appendix C: Comparison of number of indexing terms extracted

 from five indexing techniques 234

Appendix D: Comparison of index sizes used by five indexing

 techniques 236

Appendix E: Comparison of indexing times used by

five indexing techniques 238

Appendix F: Comparison of number of indexing terms extracted

from Vilo’s method (contracted form ‘Vilo’) and

the frequent max substring technique (contracted form ‘FM’)

at given frequency threshold values between 2 and 10 240

List of References 243

 xv

List of Figures

Figure 1.1. Some drawbacks of existing Thai text indexing techniques 7

Figure 2.1. A general indexing and retrieval system (numbers beside

each dash-line box indicate sections that cover

corresponding topic) 14

Figure 2.2. Example of the Thai language 18

Figure 2.3. Thai character set 19

Figure 2.4. Four levels of appearance of Thai characters 20

Figure 2.5. Existing Thai text indexing techniques (numbers beside

each box indicate sections that cover corresponding topic) 22

Figure 2.6. General process of indexing Thai text documents using

word inverted index (numbers beside each box indicate

sections that describe corresponding topic) 24

Figure 2.7. Example of the word inverted index 25

Figure 2.8. Example of vocabulary and posting file of

document containing the string s ‘ก�����ก��ก��’ 26

Figure 2.9. Illustration of building word inverted index for

documents containing the string s ‘ก�����ก��ก��’ 28

Figure 2.10. Different ways to insert word separators in Thai texts 30

Figure 2.11. BNF of Thai word formation rules 32

Figure 2.12. Types of Thai characters 35

Figure 2.13. All rules for TCC Segmentation 36

Figure 2.14. Example of Thai character cluster compared with

correct segmentation 37

Figure 2.15. Result of longest match for string s

‘ �	
��������ก��ก�
�������ก�������������� 38

Figure 2.16. Segmentation of:

‘ก������ �!�"���ก��ก�"#�$����%��$����%ก&���!'��"(��)�*��� 40

Figure 2.17. Illustration of maximum matching algorithm procedure 41

Figure 2.18. Example of string of characters tagged as word-beginning (B)

 or intra-word (I) characters 46

 xvi

Figure 2.19. Character types for building a feature set used by

 machine learning approach 47

Figure 2.20. General process of indexing Thai text documents using

n-gram inverted index 51

Figure 2.21. Sets of 1-gram, 2-gram, 3-gram, …, N-gram overlap sequence

of document d containing the string s ‘ก�����ก��ก��’ 53

Figure 2.22. Example of building n-gram inverted index for

documents containing the string s ‘ก�����ก��ก��’ 55

Figure 2.23. Illustration of suffix array from string s = ‘ก�����ก��ก��’ 57

Figure 2.24. Illustration of a suffix array from Figure 2.23, which has been

sorted in alphabetical order 58

Figure 2.25. All longest common prefixes with their length and

 term frequency from suffix array 59

Figure 2.26. General retrieval system (numbers beside each box

indicate sections that cover corresponding topic) 60

Figure 3.1. All suffixes of string s ‘positivelives$’ 81
Figure 3.2. Suffix trie of string s = ‘positivelives$’ 83

Figure 3.3. Example of suffix tree of string s ‘positivelives$’ 86
Figure 3.4. Suffix tree of string s ‘positivelives$’ represented

by a pair of integers denoting starting and ending positions 87

Figure 3.5. Illustration of suffix array from string s = ‘positivelives$’ 89

Figure 3.6. Illustration of suffix array from Figure 3.5,

sorted in alphabetical order 90

Figure 3.7. Discovering frequent substrings of string s = ‘positivelives$’

having at least two occurrences in string s. Nodes generated

into trie represent substrings λ, e, i ,s, v, iv, ve and ive 99

Figure 3.8. Frequent suffix trie structure for string s = ‘positivelives$’ 109

Figure 3.9. Frequent suffix trie structure using proposed algorithm 115

Figure 3.10. Frequent suffix trie structure for string s = ‘ก�����ก��ก��$	 117

Figure 3.11. Frequent suffix trie structure using proposed algorithm

for string s = ‘ก�����ก��ก��$	 120

 xvii

Figure 3.12. Example of indexing multiple documents using

frequent max substring technique 122

Figure 3.13. Graph showing number of indexing terms extracted from two

 techniques: suffix array and proposed frequent max substring

 technique 127

Figure 3.14. Graph showing number of indexing terms extracted from two

 techniques: Vilo’s technique and proposed frequent max

 substring technique 128

Figure 3.15. Graph showing number of indexing terms extracted from

three techniques: word inverted index, 3-gram inverted index

and proposed frequent max substring technique 129

Figure 3.16. Comparison of index size from two techniques: suffix array

and proposed frequent max substring technique 131

Figure 3.17. Comparison of index size from two techniques: Vilo’s technique

and proposed frequent max substring technique 132

Figure 3.18. Comparison of index size from three techniques:

word inverted index, 3-gram inverted index and proposed

frequent max substring technique 132

Figure 3.19. Comparison of indexing time of two techniques: word inverted

index and proposed frequent max substring technique 134

Figure 3.20. Comparison of indexing time of two techniques: 3-gram inverted

index and proposed frequent max substring technique 134

Figure 3.21. Comparison of indexing time of two techniques: suffix array

and proposed frequent max substring technique 135

Figure 3.22. Comparison of indexing time of two techniques: Vilo’s technique

and proposed frequent max substring technique 135

Figure 3.23. Precision and recall for given example information request 139

Figure 3.24. Example of querying text collection by using a phrase

query in word inverted index technique 147

Figure 3.25. Example of querying text collection in 3-gram

inverted index technique 148

Figure 3.26. Example of querying text collection using exact phrase

query in frequent max substring technique 149

 xviii

Figure 3.27. Example of querying text collection using a segmented

query in frequent max substring technique 150

Figure 4.1. A system architecture 157

Figure 4.2. Sample of training corpus which is POS tagged text 161

Figure 4.3. Example of POS tagging of frequent max substrings 162

Figure 4.4. Number of indexing terms extracted from two language-

dependent techniques 167

Figure 5.1. Example of document vectors in 3-dimension 175

Figure 5.2. Example of document matrix at given frequency

threshold value θ is equal to 2 181

Figure 5.3. Document cluster map 182

Figure 5.4. Neuron network architecture 183

Figure 5.5. Self-organizing map 184

Figure 5.6. SOM contains nine neurons and a group of similar documents

from collection of 50 Thai documents 185

Figure 6.1. Example of Chinese texts 193

Figure 6.2. FST structure using frequent max substring technique

on Chinese text documents 197

Figure 6.3. Example of bi-gram terms from document d 199

Figure 6.4. Comparison of number of indexing terms extracted from

bi-gram based indexing and frequent max substring technique 201

Figure 6.5. Example of nucleotide structure of some species’ genes 204

Figure 6.6. Relationships of genome 205

Figure 6.7. Frequent suffix trie structure of string s = ‘ATGATGT’ 210

Figure 6.8. Frequent suffix trie structure using proposed

frequent max substring technique 212

Figure 6.9. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 2 215

Figure 6.10. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 3 215

Figure 6.11. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 4 216

Figure 6.12. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 5 216

 xix

Figure 6.13. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 6 217

Figure 6.14. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 7 217

Figure 6.15. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 8 218

Figure 6.16. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 9 218

Figure 6.17. Comparison of number of indexing terms extracted

from two approaches at given frequency threshold value = 10 219

Figure 6.18. Reduction rate of number of indexing term enumerations

using frequent max substring technique and Vilo’s technique

when compared with conventional suffix trie algorithm 220

 xx

List of Tables

Table 2.1. Types of Thai characters 33

Table 2.2. Thai stopwords list from morphology 48

Table 2.3. Advantages and disadvantages of Thai text indexing

techniques 68

Table 3.1. Comparison of suffix trie, suffix tree and suffix array 92

Table 3.2. All frequent substrings with number of occurrences 99

Table 3.3. Basic statistics for Thai text collection 126

Table 3.4. All test queries consisting of four phrase queries and four single

word queries 141

Table 3.5. Precision and recall values of word inverted index technique 142

Table 3.6. Precision and recall values of 3-gram inverted index technique 142

Table 3.7. Precision and recall values of Vilo’s technique 143

Table 3.8. Precision and recall values of suffix array technique 143

Table 3.9. Precision and recall values of frequent max substring technique 144

Table 3.10. Average precision and recall values of five indexing techniques 144

Table 4.1. Thai part-of-speech as tagset for ORCHID 159

Table 4.2. Number of insignificant indexing terms and meaningful

indexing terms extracted with hybrid method 163

Table 4.3. Comparison of number of indexing terms extracted from

hybrid method and word inverted index technique 165

Table 4.4. Precision and recall values of word inverted index technique 169

Table 4.5. Precision and recall values of hybrid method 169

Table 4.6. Average precision and recall values of two indexing techniques 170

Table 5.1. Clustering results of using SOM and frequent max substring

technique 186

Table 5.2. Clustering results of using hierarchical clustering approach 187

Table 6.1. Number of indexing terms extracted from

frequent max substring technique 198

Table 6.2. Number of indexing terms extracted from bi-gram based

indexing 200

 xxi

Table 6.3. Comparison of retrieval time used by bi-gram based

indexing and frequent max substring technique 203

Table 6.4. Number of frequent max substrings and frequent

substrings 213

1

Chapter 1

Introduction and Overview

1.1 Overview

In recent years, there has been a rapid growth in the number of online documents in the

Thai language. In order to facilitate search and retrieval of these online documents, it is

necessary to build an efficient index for these documents first. Indexing Thai text

documents is one of the essential processes in Thai information retrieval [1], [2], [3].

An efficient index would speed up the response time of the search engine and improve

the accessibility of online documents. However, the syntax of the Thai language is

highly ambiguous and there has not been much research into Thai text indexing when

compared to more commonly used languages like English. Thus, building an efficient

index for Thai text documents remains a challenging task.

A Thai text document consists of a string of symbols without explicit word boundary

delimiters. To some extent, this lack of explicit word delimiters is a feature that also

exists in many other Asian languages, including Chinese, Japanese and Korean (CJK)

[4], [5] [6]. These languages are known as non-segmented languages. They are very

different from English and other European languages, the words of which are explicitly

delimited by space or other symbols [2]. English and other European languages are

often referred to as segmented languages [7]. While it is relatively easy for a native user

of a non-segmented language to determine these word boundaries, it is extremely hard

for a computer to detect the boundaries. In the case of the Thai language, there are a

number of additional problems due to the ambiguity of the structure of the language [8].

2

For instance, there is no word inflection or change in the word form as an expression of

case, tense and gender [4]. In Thai, the same form of a word in different positions

contains different syntactic properties and therefore has different meanings [4]. In

addition, there are no special characters to separate words, phrases and sentences in the

Thai writing system (i.e. Thai words are not delimited by spaces or other special

symbols like the comma and full stop). The spaces are only used to break the ideas into

a format that can gain readers’ attention, but they are not used to split words, phrases or

sentences. Furthermore, unlike English, the Thai language has no capital letters to

identify a proper noun or the beginning of a sentence [9]. Consequently, indexing Thai

text documents is much harder than indexing English text documents. One of the main

issues here is how to automatically identify the indexing terms from a Thai text

document when constructing an index. In prior work, Thai indexing terms were

manually identified by experts but this process can be very time consuming and labor-

intensive [10]. Meanwhile, most of the indexing techniques used in information

retrieval systems are designed for English and other European languages, where the

word boundary and characteristic are clearly defined [7]. For these segmented

languages, there are many successful techniques used to identify the indexing terms

from the text document. However, these methods are usually not applicable to the Thai

language which is a non-segmented language. Although some techniques have been

developed for extracting the indexing terms from non-segmented languages such as

Chinese, Japanese, Korean, Thai or genome sequence, many challenging tasks for these

non-segmented languages still remain. To gain a better understanding, those challenges

will be discussed as follows.

The majority of indexing term extraction techniques for the Thai language are based on

word segmentation, sometimes called word based approach (i.e. requires understanding

3

of the language) which is one of the most widely used information extraction

techniques in Natural Language Processing (NLP) [4]. However, the preparation of

these approaches is time consuming, as well-defined linguistic knowledge is required

for these techniques. In addition, there are also many disadvantages for these

approaches due to the limitations of the segmentation ability [5], [11], [2], [10].

Currently the methods for extracting indexing terms from Thai text documents can be

classified into the following three types: dictionary based, Thai grammar rule based and

machine learning based [2], [12].

The dictionary based approach uses a set of possible words in a dictionary for matching

and segmenting an input text document into words. The input text documents are parsed

and segmented into indexing terms for constructing an inverted index. An indexing

term extracted by using the dictionary based approach is a complete linguistic unit from

the input text documents, rather than a fraction of words, because every segmented

indexing term has a meaning. However, the performance of the dictionary based

approach depends heavily on the quality, domain and size of the dictionary [13], [14].

This means that by using a different dictionary, this method could produce different

results. Firstly, the size of the dictionary (i.e. the amount of vocabulary in the

dictionary) can impact on the performance of word segmentation. A bigger dictionary

could generate more positive matches thus giving a better result for word segmentation.

Secondly, the performance also depends on the quality and domain of the dictionary.

For instance, using a dictionary of computer technology on the input text documents

from business domains will be unlikely to provide a good result. Furthermore, the

dictionary based approach would not perform well if the input text documents contain

too many new words or proper nouns, as these words are unlikely to be found in the

dictionary. It must be noted that, unlike many European languages, word capitalization

4

for identifying proper nouns is not utilized in Thai and many Asian languages [9].

Hence, with the dictionary based approach, it is even harder to identify a word if that

word is not in the dictionary. Additionally, segmentation ambiguity can happen when

the same text can be segmented in many different ways (especially true for Thai),

leading to different meanings or pronunciation, as will be described in Chapter 2 [4].

The Thai grammar rule based method uses basic Thai word formation rules to analyse

the input texts in order to segment and identify words from the text documents [15],

[16]. This technique has been used for syllable segmentation, using the rule of syllable

combination for segmentation, rather than word segmentation. In the Thai language,

grammar has many exceptions but the majority of the word usages still follow basic

word formation rules. The regular expression for the monosyllable will be formed and

used in segmentation. These basic monosyllabic words may or may not be meaningful.

The weakness of the Thai grammar rule based approach is that it has low segmentation

accuracy, as this technique usually extracts a fraction of a word rather than a complete

word [17], [5], [10]. Another disadvantage is that this approach requires manually

crafted rules for segmentation [5].

The machine learning based approach uses some learning algorithms to realise the

model [12], [2], [18], [19]. This approach uses the machine learning based technique to

learn from text collections. This approach requires an appropriate word-segmented Thai

text corpus to provide enough information to train the system. The machine learning

based approach aims to address the drawbacks of dictionary based approaches. Using a

tagged corpus in which word boundaries are explicitly marked with special annotations,

machine learning based algorithms build statistical models based on the features of the

characters surrounding the boundaries. The common features for Thai word

5

segmentation models are the identities and categories of characters within an n-gram of

characters surrounding a candidate word boundary [2]. The machine learning based

technique therefore does not require word patterns or dictionaries. However, the main

disadvantage of the machine learning based approach is that its performance depends

critically on the characteristics of the document domain and the size of the training

corpus. Besides, the construction of the corpus is very time consuming and requires

more storage space. For example, if a model is constructed based on a corpus from one

specific domain, it might not perform well on documents from another domain [19]. In

addition, the problem of segmentation in the Thai language is difficult for machine

learning. This is due to the complexity in the linguistic structure and the variety of

context cues to determine the correct segmentation.

The three approaches discussed above are all language-dependent. They rely on the use

of a dictionary, a corpus, or linguistic knowledge of the Thai language in order to

extract indexing terms before constructing an index. These methods can also be applied

to other Asian languages such as Chinese, Japanese and Korean (CJK) but well-defined

linguistic knowledge for each particular language is required to perform word

segmentation. The effectiveness of these three approaches can be measured by

comparing the segmented words with the hand segmentation corpus that is manually

prepared by Thai experts. Although techniques for word segmentation have been widely

studied in natural language processing, there are still many challenges due to the

ambiguity in Thai language usage [10], [20].

For Thai information retrieval, it has been shown that word segmentation may not be

necessary for identifying indexing terms in some cases, as long as users are able to find

the relevant documents related to their query [10]. The main issue for information

6

retrieval is to automatically identify the indexing terms from a large collection of text

documents or text database, and use these indexing terms to retrieve documents that are

likely to be relevant to the user’s query for efficient retrieval.

As a result, an alternative indexing technique, known as n-gram based approach, was

proposed. The n-gram based approach is acknowledged as a workable solution to

information retrieval problems [21], [22], [10]. This approach is language-independent

as it does not require linguistic knowledge of the language, or the use of a dictionary or

a corpus. This approach is not concerned with the meaning of indexing terms.

Currently, this technique has been one of the most often used indexing techniques for

Asian language documents (Chinese, Japanese and Korean) and it has also been applied

to many related information retrieval fields such as document similarity comparison and

language classification [23], [24]. It has even been used in analyzing genome sequences

in bioinformatics [25]. However, the n-gram based approach has never been used for

indexing Thai text documents, although this technique has often been applied for

indexing many non-segmented languages.

While the n-gram based approach outperformed other methods in terms of retrieval

effectiveness for many Asian languages and other sequence patterns [10], its

disadvantage is that it requires query processing and text pre-processing to extract n-

gram terms before retrieval and indexing can be performed. This technique also

requires a larger space for storing indexing terms and uses more retrieval time in

looking up the relevant documents when compared to a word based approach [10], [26].

Additionally, the suffix array approach is one of the language-independent techniques

used for indexing Thai text documents [1]. The suffix array approach identifies

7

substring indexing based on suffixes, which does not require text pre-processing and

query processing. This technique is used to construct a substring index, in order to

allow for finding the relevant documents containing the user’s query. However, the

drawback in terms of index size of the suffix array technique seems very critical. Since

the size of electronically stored information in the Thai language has grown

exponentially, the method of suffix array is not practical to use in some applications,

especially for the large collection of text documents, as this technique constructs the

complete set of substrings as will be described in Chapters 2 and 3.

In order to gain a better understanding of the problems of Thai text indexing techniques,

the drawbacks of Thai text indexing techniques are summarized in Figure 1.1.

Figure 1.1. Some drawbacks of existing Thai text indexing techniques

Thai text indexing techniques

Language-dependent
techniques

Language-independent
techniques

N-gram based
approach

Suffix array
approach

Word based
approach

The drawbacks

• Requires word segmentation
to perform text pre-processing
before indexing

• Requires word segmentation
to perform query processing
before retrieval

• Requires much construction
time for indexing

• Requires additional storage
space for storing dictionary or
corpus or manually crafted
rules resource

The drawbacks

• Requires much
storage space
for indexing

The drawbacks

• Requires n-gram extraction
to perform text pre-
processing before indexing

• Requires n-gram extraction
to perform query processing
before retrieval

• Requires more storage
space for indexing when
compared to the word based
approach

8

1.2 Objectives

In order to address the drawbacks of the existing techniques for Thai text indexing, this

research hence focuses on the following objectives:

� Developing an efficient Thai text indexing technique:

The primary objective of this research in the domain of Thai information

retrieval is to develop a new indexing technique that does not rely on linguistic

knowledge of the Thai language and requires less memory space for extracting

indexing terms and constructing an index for Thai text documents. In order to be

a fast and simple approach, this technique should be language-independent (i.e.

does not require the use of a dictionary or corpus or grammatical knowledge of a

language). Hence it would not rely on the availability and quality of dictionaries

and corpuses, or grammatical knowledge of a language. This is intended to

address one of the main weaknesses of the most often used Thai text indexing

technique, which is heavily dependent on in-depth linguistic knowledge or the

use of a dictionary or a corpus in order to extract indexing terms before

constructing an index.

� Developing an efficient algorithm to improve the space and time

complexity:

The other aim of the research is to improve the space efficiency in text indexing

to overcome the drawbacks of some of the existing language-independent

techniques. It is the intention of this research to extract only strings that are both

long and frequently occurring, rather than individual words, from Thai text

documents as the indexing terms. It is hoped that by doing so the storage size of

the index would be reduced without affecting the functionality of the index.

9

� The ability to integrate with language-dependent techniques:

The developed technique should also be able to integrate with existing Thai

language-dependent techniques, to become a novel language-dependent

technique for indexing Thai text documents.

� The ability to integrate with document clustering techniques:

To increase efficiency further, it should be possible to integrate the developed

technique in this research with document clustering techniques. This indexing

technique should be able to work with other document clustering techniques to

enhance the performance of non-segmented document clustering.

1.3 Contributions

The key contribution of this thesis is the successful development of a novel text

indexing technique suitable for Thai information retrieval. In particular, this thesis

provides several contributions as follows:

.

� Successfully developed a novel indexing technique, called the frequent max

substring technique, to perform Thai text indexing for language-dependent

and language-independent techniques:

The frequent max substring technique is a novel indexing technique proposed

for extracting indexing terms and constructing an index for Thai text documents.

The set of indexing terms extracted from the frequent max substring technique

contains all substrings occurring frequently in Thai text documents. Only one

pass is required to obtain this set of indexing terms. One of the strengths of this

proposed technique is that it retains a relatively smaller number of indexing

terms without sacrificing its effectiveness in information retrieval, when

10

compared to most language-independent techniques. This is because each

frequent max substring extracted can represent multiple frequent substrings that

occur in the text documents. As a result, applying the frequent max substring

technique to indexing Thai text documents leads to a saving in storage space for

storing the index. This technique also improves the retrieval performance in

order to prospectively support the continuous growth of Thai electronic

documents.

� Developed an integrated method using the proposed frequent max

substring technique with self-organizing map (SOM) to enhance non-

segmented document clustering:

The proposed frequent max substring technique is also versatile, as it can be

used with other techniques to enhance non-segmented document clustering.

Improvement has been achieved when the frequent max substring technique is

integrated with self-organizing map (SOM) for document clustering. This new

method improves the efficiency of information retrieval, as the document cluster

map generated from the proposed method can successfully be used to find the

relevant documents more efficiently, when compared to the hierarchical based

document clustering using single words.

� Successfully applied the proposed technique with some other non-

segmented texts like Chinese and genome sequence:

Apart from its application to indexing problem for Thai text documents, the

proposed technique is also successfully applied to the following areas: indexing

genome sequences in bioinformatics and indexing text documents for other non-

segmented languages like Chinese. The main strength of the proposed technique

11

is that it was proposed as a language-independent technique, which does not rely

on the use of any dictionary or corpus or grammatical knowledge of language.

Because of this, the proposed technique is not limited to just indexing Thai text

documents. It could also be applied for many non-segmented languages such as

Chinese and genome sequences, which are regarded as non-segmented texts.

This shows that the proposed technique can be applied to other similar

applications.

1.4 Thesis outline

This chapter has presented the introduction and overview of the research. It also

includes the objective and contribution of this thesis. The rest of this thesis is organized

as follows.

Chapter 2 gives a brief overview of Thai text indexing, and the linguistic characteristics

of the Thai language. Thai text indexing techniques and related past research works are

reviewed. This review also discusses the drawbacks of Thai text indexing techniques

and Thai segmentation problems, which were the motivation behind this research into

the understanding and design of the frequent max substring technique for indexing Thai

text documents.

Chapter 3 introduces the frequent max substring technique and the frequent max

substring terminologies. The algorithm and procedure of constructing the frequent

suffix trie structure for indexing Thai text documents is described. Substring indexing

and frequent substring indexing, which are used as a basic concept to design the

frequent max substring technique, are also examined in this chapter. The experimental

12

studies, comparison results and discussion on indexing Thai text documents are finally

presented in Chapter 3.

Chapter 4 presents the use of a hybrid method as a language-dependent technique. The

hybrid method that combines the proposed frequent max substring technique and a Thai

language-dependent technique is described to process Thai text documents into

meaningful indexing terms. Some experimental results are also presented to show the

performance of the hybrid method when compared to other language-dependent

techniques.

In Chapter 5, the application of the frequent max substring technique together with the

self-organizing map for non-segmented document clustering is presented. An overview

of document clustering and keyword extraction is given in this chapter. This chapter is

also included with the presentation of experimental studies and comparison results on

clustering the Thai text documents to substantiate the discussion.

Chapter 6 investigates non-segmented text problems and understands the characteristic

of non-segmented texts like non-segmented languages (i.e. the Chinese language) and

genome sequences. The related research works on the Chinese language and genome

sequences are reviewed. Applying the frequent max substring technique to the Chinese

language and genome sequences are demonstrated. The presentation of experimental

studies, comparison results and the discussion on indexing Chinese text documents and

genome sequences is finally presented in this chapter.

13

Finally, Chapter 7 presents the thesis conclusion, which summarizes the major

contribution and outcomes of this research. The limitations and possible directions of

future work are also discussed.

14

Chapter 2

Thai Text Indexing

2.1 Introduction

There is an ongoing challenge to develop more efficient text indexing techniques for

Thai text documents, in order to enhance the performance of Thai information retrieval.

To meet the challenges, a number of indexing techniques have been proposed for the

Thai language. These techniques were designed to be used in information retrieval

systems, to find required information from the huge amount of text documents. Figure

2.1 provides an overview of a general indexing and retrieval system, before the detail of

the Thai text indexing will be described.

Figure 2.1. A general indexing and retrieval system (numbers beside each dash-

line box indicate sections that cover corresponding topic)

2.4 2.5

The user

Query
processing

Searching

Query
Document
collection

Indexing techniques

Executable
query

Document
index

Indexing process Retrieval process

Retrieved
documents

Text
documents

15

From Figure 2.1 it can be seen that indexing is one of the more important processes for

managing information of text documents in order to facilitate the information retrieval

process. Text documents are by necessity indexed using some indexing techniques for

efficient retrieval and by means of simple indexing lookup algorithms [7], [27]. The

area of the search algorithms is not in the scope of this thesis. The search process

mentioned in this thesis refers to simple indexing lookup algorithms. The lookup

algorithm refers to the process of finding the document index when a query is

presented. However, it has long been known that the advancement of Thai text indexing

is challenging due to its nature of being a non-segmented language.

The Thai language belongs to a class of non-segmented languages, the sentences of

which consist of a string of symbols without explicit word delimiters. Words in the Thai

language are not naturally separated by any word-delimiting symbols. Due to this

characteristic, indexing Thai text documents is a challenging task and has become one

of the research focuses in the area of Thai information retrieval. Many techniques have

been proposed to index Thai text documents, including n-gram inverted index [8], word

inverted index and suffix array approaches [1].

The word inverted index approach, sometimes called word based approach, relies on an

effective word segmentation technique in order to extract the indexing terms from Thai

text documents [12], [2], [5]. However, most word segmentation approaches require

complex language analysis and lengthy computational time. The success of a word

segmentation approach relies very much on the language analysis techniques or on the

use of an appropriate dictionary or corpus.

16

Of all the Thai text indexing techniques, word inverted index approach is the more

prominent and it is language-dependent. There are some other techniques, such as n-

gram inverted index [10], [8] and suffix array [1], [28], which do not rely on language

analysis or on the use of a dictionary or corpus. These techniques are language-

independent and are commonly used to tackle many un-delimited Asian languages.

In the following sections, overviews of Thai text indexing techniques used in the area of

Thai information retrieval systems are presented. These will offer help to understand

the challenges present in Thai text indexing.

2.2 Overview of Thai text indexing

Indexing Thai text documents is an essential process in Thai information retrieval [1],

[2], [3]. Indexing is a process that creates the necessary data structure, known as

indices, for mapping keywords (also called indexing terms) to those text documents

containing the keywords. In an information retrieval system, it is necessary to index a

text document first to enable efficient lookup and retrieval of the text document later. A

number of data structures are used in indexing Thai text documents. They include an

inverted index, also called inverted file, and suffix array. Inverted index is currently

regarded as one of the better index data structures for most applications [7].

However, a challenging task for Thai text indexing is extracting the indexing terms,

because Thai text documents are non-segmented. Most of the semantic indexing terms

are usually carried by nouns, although a sentence in natural language text is composed

of nouns, pronouns, articles, verbs, adjectives, adverbs, and connectives. Based on the

frequency of words in the Thai dictionary, it was found that most Thai words are nouns

[10]. However, it is still a complex task to indicate how frequently these words are used

17

in normal Thai text documents, as the frequency of these words is dependant on the

document size and domain.

In Thai text documents, the extraction of indexing terms becomes a main issue because

they cannot be specified automatically from text documents, due to the nature of Thai

texts being non-segmented. Although indexing terms can be manually specified by

experts, this process is very time consuming and dictionaries can be costly to maintain

[10], [29]. As a result, there are many challenges for indexing Thai text documents.

Thai text indexing techniques can be divided into two main categories: a language-

dependent method and a language-independent method. When indexing Thai text

documents using a language-dependent method, a word segmentation technique [12],

[18], [30], [31] is generally essential during the pre-processing stage for extracting the

indexing terms before an inverted index can be constructed. This technique is known as

the word inverted index. The techniques for Thai word segmentation can be broadly

classified into four approaches: dictionary based [14], [13], rule based [15], [16], [11],

hybrid [32], [33], and machine learning based approaches [2], [19]. These four methods

are usually performed to segment Thai text documents into indexing terms before

constructing an index to allow retrieval.

On the other hand, n-gram inverted index [22], [21] and suffix array [28], [34] were

proposed as the alternative indexing techniques which do not require linguistic

knowledge of a language. These techniques are language-independent and most widely

used to tackle Asian languages, many of which are un-delimited languages. An n-gram

inverted index is the main indexing method that has been widely used in many Asian

language text retrieval systems [35], [36], [37], [38], [39], [40] such as Chinese,

Japanese and Korean (CJK). This is because these Asian languages share similar

18

difficulties in segmenting texts and specifying indexing terms. Therefore, this technique

is acknowledged by many Asian researchers as a workable solution to information

retrieval problems for many Asian languages [40], [22], [35]. Another approach is by

using a data structure called suffix array for indexing Thai text documents [41], [1]. In

the suffix array, a given text document is viewed as a sequence of characters that can be

constructed as an array containing character occurrences without indexing term

extraction requirements.

Before Thai text indexing techniques can be described in more detail, the linguistic

characteristics of the Thai language are first provided in the next section to assist with

understanding of the problem.

2.3 Linguistic characteristics of the Thai language

In the Thai writing system, sentences are formed as a long sequence of characters

without word boundaries or sentence separators to delimit words, phrases or sentences.

The spaces in the Thai language are usually used to interrupt an idea or to help the

reader pay attention to the text, but they do not signify a split between words, phrases or

sentences [29]. Additionally, the Thai language has no capital letters to identify proper

nouns or starting points of sentences like the English language. Figure 2.2 shows an

example of the Thai language.

Figure 2.2. Example of the Thai language

ก��	����)
����!�"�����+����%ก���������
��,-����
�ก���%��'����� !
(�(�����)
�
ก���%�!�ก(��	����ก������%ก&���!'�����	�,-� ��	��"�.�����%ก'� �/0�%��),�%0 !�����
�12ก
�%ก3*ก&��$�"�� �!�"������"/ก���/ก�� ��"ก��4)��%������(�"5 ������"�ก5 ��� ก(�����	�
12ก���ก�������	��"� 6����	���������4)� 6�12ก���ก�������	��"� 6����	���������4)� 6�12ก���12ก
ก���%��,-�
��ก(�� '%-������	4)�12ก������"�)�%ก 7 ���4)��(���,�
����	*�4)�12ก"กก�����4��(�
�)"�"�'����
���)"(�"ก�%�4)���"'*-�	�ก$�-� 	�ก�%-�	*�12ก"กก�����4��(��%��'%��
�8,�$+�

19

In the Thai character set, there are a total of 76 characters, consisting of 44 consonants,

14 vowels, four tone marks, ten Thai digits, and four special characters, as shown in

Figure 2.3.

Type of Thai
Characters

Member

Consonants ก ' 9 � : ; � 	 < + = > 0 ? @ A B C . � � D � 8 � � �
 1 $ E #
 " � � � 3 & �) F � G

Vowels � � , � * � / 6 % H � � � 4 ! I J
Tone Marks (� K L
Thai Digits M N O 7 P Q R S T U
Special Characters � � 5 V

Figure 2.3. Thai character set

Jaruskulchai [42] showed that the Thai language has similar grammatical categories to

the English language in term of the parts of speech. Thai words can be classified into 14

categories: nouns, pronouns, verbs, auxiliary verbs, determiners, adjectives, adverbs,

classifiers, prepositions, conjunctions, interrogatives, prefixes, suffixes, and negative

verbs.

The Thai writing system exhibits SVO (Subject-Verb-Object) word-order [43], and it

reads from left to right and from top to bottom. There are four levels of the appearance

of Thai characters: the tone, upper vowel, middle, and lower vowel as shown in Figure

2.4. These levels can be used to indicate the character types. For instance, the middle

level usually contains the consonants but sometimes contains vowels, Thai digits and

special characters. The tone marks are always located in the tone level and most vowels

20

are usually placed on the upper vowel and lower vowel levels. For other characters,

they also have their specific positions. Figure 2.4 shows the position lines in order from

the top level to lower levels of the phrase ‘���������������’ (meat information).

Figure 2.4. Four levels of appearance of Thai characters

According to W. Aroonmanakun [30], most Thai words are defined as a linguistic unit

that is usually made up of simple words or monosyllables. However, Thai words can

also be a combination of two or more morphemes, these are known as compound

words. Therefore, Thai words can be viewed as a combination of syllables, and they can

be distinguished into two types of words under Thai grammar rules as follows:

• Simple words

A simple word in the Thai language can function as a noun, verb, adjective, etcetera. It

can have one or more syllables. However, in the case of a multisyllabic word, each

syllable may or may not have a meaning on its own, and the meaning of the word may

or may not be related to the meaning of any particular syllable. Instances of these

simple words are ��� (sleep), �(�� (read) which are monosyllabic words, and ��-$��

(bridge), ��-F,-ก� (clock) which are multisyllabic words, etcetera. Here, a character ‘-’

indicates a monosyllabic point.

Lower vowel

Tone
Upper vowel
Middle
 '�
6����-��%��� �

21

• Compound words

A compound word is formed by combining two or more simple words. A compound

word can be created with many structural forms: noun + noun, noun + adjective,

adjective + adjective, noun + verb, verb + verb, and so on. The meaning of the

compound words may or may not be related to the meaning of any particular simple

words contained in the compound word. For example, �
(�-�� (river) is composed of �
(

(mother) and �-�� (water); though the meaning of �
(�-�� (river) is not ‘the mother of

water’, it is related to water. The meaning of some compound words could be different

from the meaning of their parts. As an example, ",��� (glad) is composed of ",� (hear)

and �� (good),)�"4	 (breathe) is composed of)�" (lost) and 4	 (heart). Some compound

words are created by conjoining two simple words that are quite similar in meaning. �6��

(look after) is composed of �6 (look) and �� (see), while ��"��
 (beautiful) is composed

of ��" (pretty) and ��
 (beautiful). Some words are created by conjoining the same

word, such as ��� 5 (red red) or ��� 5 (black black) where 5 is a symbol for duplication.

Although the criteria above seem to be clear, when looking at the real data, it is not

always easy to determine the number of words in a given text. For example,)
��)/�'���

(rice cooker) can be analyzed as one compound word, or three simple words)
�� (pot),

)/� (cook), and '��� (rice). As a result, the problem of defining the word exists because of

compound words that can be formed from the combination of two or more simple

words. Because of these problems, Thai language processing is a challenge due to its

nature of being a non-segmented language. This has called for the need to research and

22

develop effective Thai word segmentation and Thai text indexing techniques. A review

of the research in these areas will be described in following section.

2.4 Thai text indexing techniques

In the area of Thai information retrieval, research into Thai text indexing has been

around for about two decades [20]. Many techniques have been proposed for solving

the problems of extraction of Thai indexing terms and producing Thai text indexing

algorithms. In this section, existing indexing techniques used in Thai information

retrieval are discussed. Thai text indexing techniques can be divided into two main

categories: a language-dependent technique and language-independent technique, and

they are subdivided into three approaches: the word inverted index, the n-gram inverted

index and suffix array approach as shown in Figure 2.5.

Figure 2.5. Existing Thai text indexing techniques (numbers beside each box

indicate sections that cover corresponding topic)

Document
collection

Indexing techniques

Document
index

Language-dependent
techniques

Language-independent
techniques

Word inverted index

N-gram inverted index

Suffix array

Indexing process

2.4.1

2.4.2

2.4.2.1

2.4.2.2

Text
documents 2.4.1

23

2.4.1 Using language-dependent method for Thai text indexing

In using a language-dependent method, the prominent approach is to use the more

widely adopted solution called the word inverted index [1] ,[7], [34], [44]. The word

inverted index can be viewed as a word based approach which has been shown to work

effectively for segmented languages such as English or other European languages. The

word inverted index is a popular and important index data structure used in the area of

information retrieval. It is used to speed up the process of building the indexing

structure and it is efficient at the retrieval of text documents containing a query. This

indexing structure usually collects indexing terms from text documents that describe the

contents of the documents.

Therefore, when using the word inverted index for Thai text indexing, Thai text

documents need to be parsed and tokenized into individual words. The word

segmentation technique is generally an essential part in performing the indexing term

extraction, before the word inverted index can be constructed.

Additionally, stopword removal is another text pre-processing task, which is also

normally performed before constructing the word inverted index, in order to reduce

noisy words. In Figure 2.6, Thai text indexing architecture using the word inverted

index technique is depicted.

24

Figure 2.6. General process of indexing Thai text documents using word inverted

index (numbers beside each box indicate sections that describe corresponding

topic)

To illustrate the word inverted index technique in more detail, a typical process of the

word inverted index approach, which is created on the document d1 containing the

string s ‘ก�����ก��ก��’ that means ‘engage in business’ in English, is shown in Figure

2.7.

Document
collection

Indexing techniques
(Word inverted index)

Document
index

Thai text pre-processing

Stopword removal

Dictionary based approach

Rule based approach

 Machine Learning based
approach

Thai word
segmentation

technique

Hybrid approach

Inverted index

Text documents

Inverted index construction

2.4.1.2

2.4.1.3

2.4.1.1

25

Where df = document frequency and tf = term frequency

Figure 2.7. Example of the word inverted index

For Thai information retrieval, after Thai text documents are segmented into a sequence

of indexing terms using word segmentation and stopwords removal, all tokenized

indexing terms are then stored in alphabetical order in the inverted index for fast

retrieval. The inverted index is composed of two elements: the vocabulary and posting

file. The vocabulary contains the set of all distinct indexing terms that occur in the

documents. The posting file contains a list of pointers or indexing term positions where

they appear in the text documents. The posting file also consists of the identifier of the

document that contains the indexing terms and the list of the offsets where the indexing

terms occur in the text document. For each indexing term t, there is a posting list that

contains postings < d, f, [o1, ..., of] > , where d is a document identifier (document ID),

f is the frequency of the indexing term t in the document d and [o1, ..., of] is a list of

offsets o that can refer to indexing term or character positions. The posting file can be

used to provide faster and more accurate information retrieval. However, the size of the

d1: ก�����ก��ก��

Indexing Terms: ก��/ ���/ ก��/ ก��

Word segmentation / Stopword removal

Inverted index

Indexing Terms df

ก�� 1

ก�� 1

��� 1

… …

d1, 1

d1, 2

d1, 1

Doc list

Doc id, tf

Index file

26

posting file is sometimes larger than the size of the documents since the main space

used by the inverted index is for the storage of document IDs, frequency and offsets of

each indexing term [45]. The storage used by the inverted index can reach up to 300 per

cent of the original file size [46]. The following shows the organization of the indexing

terms into the inverted index.

An example of the vocabulary and posting file of indexing terms, which are created on

the document d1 containing the string s ‘ก�����ก��ก��’, can be shown in Figure 2.8.

d1: ก � � � � � ก � � ก � �

 1 2 3 4 5 6 7 8 9 10 11 12

Word segmentation

Vocabulary Posting file

ก�� <d1, 1, [7]>

ก�� <d1, 2, [1, 10]>

��� <d1, 1, [4]>

Figure 2.8. Example of vocabulary and posting file of document containing the

string s ‘ก�����ก��ก��’

2.4.1.1 Inverted index construction

To build the inverted index efficiently, the trie data structure [47] is employed. The trie

data structure is a tree-based data structure allowing fast string matching. The trie data

structure is used to perform a fast search in a large text collection, such as searching

words in a large text document collection or Oxford English dictionary that contains

many gigabytes of text. All indexing terms in the vocabulary are represented by paths

on the trie data structure. In addition, the posting file is kept in the trie data structure as

27

well, in order to speed up the accessing of the indexing terms. The trie data structure is

built from the given string contained in the documents and the leaf nodes of each path

contain the indexing terms and the lists of their positions. This structure is particularly

useful for information retrieval.

In constructing the trie data structure, all indexing terms are stored by collecting one

letter at a time in lexicographical order in the trie data structure. If two or more terms

have the same prefix, they will be kept in the same subtree before moving to the next

character. Otherwise, if the current character does not match the current nodes in the

trie data structure, a new branch will be made to collect the mismatched character, and

then move to the next character. In addition, at any time when the indexing terms are

kept in a leaf node, the list of term positions is also shown in the leaf node on the trie

data structure. Finally, these processes are repeated until the end of the vocabulary.

The illustration of building the inverted index using this process is shown in Figure 2.9.

Inverted index

Vocabulary Posting file

ก�� <d1, 1, [7]>

ก�� <d1, 2, [1, 10]>

��� <d1, 1, [4]>

d1: ก � � � � � ก � � ก � �
 1 2 3 4 5 6 7 8 9 10 11 12

Thai text pre-processing
(Word segmentation, Stopword removal,

etcetera)

28

A word inverted index construction using the trie data structure

Figure. 2.9. Illustration of building word inverted index for documents containing

the string s ‘ก�����ก��ก��’

Although it is simple to store the inverted index using the trie data structure, which can

be done quickly by using tree traversing techniques, the disadvantages of this method

are the storage overhead and the high cost of updating and reorganizing the index [45],

[7].

2.4.1.2 Thai word segmentation

As mentioned in the previous sections, the Thai language is a string of symbols without

explicit word boundary delimiters. Due to this reason, Thai word segmentation is first

performed to extract the indexing terms from the text documents before these indexing

terms are indexed for retrieval. Thai word segmentation can be easy for Thai people,

who understand the Thai language well, to use their own judgment to analyze the text in

Thai contexts. In contrast, it is complicated for computer systems to perform the word

segmentation successfully in different Thai contexts. In the following section, the

segmentation problems will be described.

29

Segmentation problems

Despite much research, automatic Thai word segmentation still remains an unsolved

problem. Unlike English, Thai does not use explicit symbols for word boundaries (as

discussed in Section 2.3). In addition, the existence of compound words makes the

segmentation task even harder, because there is usually more than one way to insert

word separators, which can lead to segmentation ambiguity. From the literature review,

there are two main problems for segmenting Thai texts: segmentation ambiguity and

unknown words [8], [30].

• Segmentation ambiguity

Although many methods can be employed to segment Thai texts into linguistic units,

the same text can be segmented in many different ways, leading to segmentation

ambiguity. This ambiguity happens when two or more phrases or sentences are spelled

alike but have different meanings or pronunciation.

Many Thai words are also compound words consisting of multi-syllables and two or

more simple words, making it possible to have different segmentations for the same

compound word. Figure 2.10 shows different ways of inserting word separators in terms

of computer systems.

30

Thai and English
texts

Different ways to insert word separators
 Thai English

Y<%�
���ก���$����;��

‘I come to wait to
worship a monk’

<%�|
��|�ก|���|$����;�
<%�|
�|��ก|���|$����;�
<%�|
�|��|ก���|$����;�

I|come|devil|breast|flat|monk

I|come|jack|flat|monk

I|come|wait|worship (Correct

segmentation)

Y���������$������������

‘A boat is rolled
because a cow get
down to the boat’

����|����|�$���|����|����
����|����|�$���|��|��|����
����|��|��|�$���|����|����
����|��|��|�$���|��|��|����

Boat|roll|because|roll|boat

Boat|roll|because|cow|get down|boat

Boat|cow|get down|because|roll|boat

Boat|cow|get down|because|cow|get

down|boat (Correct segmentation)

Y����ก�
�����ก�
�

‘A round eye human
sleep and expose
wind’

��|��ก|�
|���|��ก|�

��|��ก|�
|���|��|ก�

��|��|ก�
|���|��ก|�

��|��|ก�
|���|��|ก�

Human|expose|wind|sleep|expose|wind

Human|expose|wind|sleep|round|eye

Human|eye|round|sleep|expose|wind

Human|eye|round|sleep|round|eye

(Correct segmentation)

Figure 2.10. Different ways to insert word separators in Thai texts

Another problem is that most Thai words have a variety of meanings, which is known

as polysemy. Polysemy refers to a set of words that are spelled alike but each belongs to

a different grammatical category or meaning. For example, the word ‘��’ as shown in

Figure 2.15 can mean ‘eyes’, ‘a grandfather’ or ‘a turn’. Also the word ‘���’, which

occurs frequently in Thai texts, has a variety of meanings such as ‘place’ or ‘that’ and

can belong to different grammatical categories, such as relative pronoun, locative

preposition, quantification marker or partitive. The meanings and grammatical

categories of these words depend on the contexts.

31

• Unknown word problem

Another difficulty of segmentation is the existence of unknown words in the texts. This

is a serious problem that occurs when the dictionary based approach is used to perform

segmentation. Thai texts usually contain unknown words such as person or place

names. This makes Thai word segmentation more complicated because the Thai

language does not use capital letters to indicate proper nouns as mentioned in Section

2.3. The unknown words [9] in the Thai language can be classified into five categories:

proper noun, loan word, acronym, foreign word, mistype and official places. These

words cause mistakes in segmenting Thai texts.

Thai word segmentation techniques

Due to the segmentation problems, passing human knowledge to computers is very

important so that computers can understand the Thai language like humans do. As a

result, there are various Thai word segmentation approaches proposed by numerous

researchers since 1981 [5]. Previously proposed methods for Thai word segmentation

can be classified into four main categories.

The following sections provide several Thai word segmentation approaches for solving

Thai word segmentation problems.

• Rule based approach

Thai words are based on the relationships between the consonants, vowels, tone

markers and symbols that can be formed by using basic Thai word formation rules. As

the rule based system can incorporate Thai word formation rules, a rule based approach

has been used for word segmentation. It also uses the rule of syllable combination for

segmentation. Like many languages, Thai is one language that has basic word formation

32

rules, and these rules can be expressed using the Backus-Naur Form (BNF). Figure 2.11

shows the BNF of Thai word formation rules using a character encoding method. The

character encoding method is a process of using characters to represent the basic word

formation rules and the combination of these characters is used to describe a word

characteristic. In BNF, Thai characters can be classified into the five sets: consonant

(Ci), vowel (Vi), tone marks (T), numeral (N), and special symbol (S). Based on these

character sets and their positions, the syllabic boundary’s rules can be formulated to

extract words from sentences.

Figure 2.11. BNF of Thai word formation rules

Due to having word formation rules for the Thai language, there are a number of

different approaches that have been proposed for segmenting Thai texts based on Thai

word formation rules, such as Thai Character Cluster (TCC) [11] and Thai Syllable

Separation Algorithms [16]. Some of this research still cannot fully resolve the

problems of segmentation, as these approaches segment Thai texts into partial words

rather than whole words. The following sections summarize some approaches with the

problems of segmentation in this area.

w = (Vi) C | Cd (V2) (T) (Cf)

Where C = { ci | ci = consonant, 1≤ | ≤ 44}
V1 = { vi | vi = vowels are often placed at the beginning of syllable, �, �, !, 4, � }
V2 = { vi | vi = vowels which are always placed after consonants}
V2 = { �, �, ,, �, *, �, / , 6}
Cd = { cicj | ci∈C and cj are double consonants, cj = �, 0, ., �,
, ", �, �, �, F}
Cf = { ci | ci = syllable-final consonants}
T = (ti | ti is (, �, K, L and � }

33

The earliest technique for the rule based approach was introduced by Thairatananond in

1981[15]. This technique uses the rule of syllable combination in segmentation. The

characters can be divided into five categories as shown in Table 2.1.

Table 2.1. Types of Thai characters

Tag Types of Thai characters Example
S Character that can be the final consonant in

a word
ก � � � � � � � � ! " # $ % & '
� () * � � � + , - . � � � / 0 �
1 �

V Vowel � � 2 3 4 � 5 � � 6 � 7 8 9 : ;
<

C Character that cannot be the final
consonant in a word

= > ? @ A B C

T Tonal character D � E F
G Symbol � G H

For example:

 �2�� CTVS

 /2��I CVSSG

 ก��� CCVS

The advantage of this technique is simple as the segmentation is easily realized by

applying the rule of syllable combination. However, this technique is not flexible

enough to handle Thai characters because some Thai characters can be both C and S,

which sometimes makes the segmentation inaccurate.

In 1983, Charnyapornpong introduced a Thai Syllable Separation Algorithm [16]. This

method was used in the early development of the Thai word segmentation system. For

this method, the system checks the rules of Thai characters and spaces that can

34

sometimes be used to represent the beginning of new paragraph, to specify the word

boundary, and the word boundary is divided into two groups: front boundary

recognition rule and tail boundary recognition rule. The rule for characters specifies

probability of word segmentation in the position of that character. This method divides

character into five groups as follow:

1. Non-spaced characters such as %, ,, / , �, (and �

2. Leader characters such as �, �, �, ! and 4

3. Follower characters such as �, � and H

4. The mark placed over the final consonant of a word in the Thai language to

indicate that it is mute character, which is

5. Remaining characters

The disadvantage of this rule based approach is that its segmentation accuracy is low

when compared to the segmentation results that are manually done by Thai experts, and

it requires hand-crafted rules. The segmentation accuracy can be evaluated using

measurements in the proportion of corrected segmented words and total segmented

words extracted by segmentation techniques.

Another method for the rule based approach was introduced by Theeramunkong,

Tanhermhong, Chinnan and Sornlertlamvanich [11]. They proposed the method to

segment a text into Thai character clusters (TCCs) which are units smaller than a word

but larger than a character. This is because some contiguous characters tend to be an

inseparable unit in the Thai language, called a Thai character cluster (TCC). Unlike

word segmentation, which is a difficult task, segmenting a text into TCCs is easily

35

realized by applying a set of rules based on the type of character. Therefore, this

method needs no dictionary.

The segmentation ability of this process is 100 percent, in the sense that it is not

possible for these units to be divided into two or more units, which are substrings in two

or more different words [5]. This process can be implemented without a dictionary, but

uses a set of simple linguistic rules based on the types of Thai characters as shown in

Figure 2.12.

Types of Thai
characters

Example

Consonants ก � � � = � � � > � � A ! " # $ % & ' � () * � � � ? @
+ , - . � � � / 0 � B 1 � C

Upper vowel J � � 2 3 4 6
Lower vowel 5 �
Front vowel � 7 8 9 :
Rear vowel � 6 � G H

Figure 2.12. Types of Thai characters

In terms of a set of linguistic rules, the composition of TCC is unambiguous and can be

defined by a set of rules. For example, a front vowel and the next character, a

consonant, have to be grouped into the same unit. A tone mark is always located above

a consonant and cannot be separated from the consonant. A rear vowel and the previous

character have to be grouped into the same unit.

As the first step in the segmentation approach, a set of rules is applied to a group of

close characters in the document to form TCCs. The rules of segmentation into TCCs

can be represented in EBNF form as shown in Figure 2.13.

36

<TCC> � Yก�� | Y�*� | Y)*�
| <Cons> Y��� ,<Cons> Y � �
| <Cons> <BCons> <Cons> Y � �
| <Cons> <TCC1> <Karan>
| <FVowel><Cons> <TCC2> <Karan>

<TCC2> � <Cons> Y �� �
| Y � � <BCons>

| <UVowel>{<Tone>}<BCons> [Y � �|Y � �]
| {<Tone>} [Y � �|Y �� �|Y � �]

<TCC1> � <DVowel> {<Tone>}
| {<Tone>} Y L� �
| [Y * �|Y � �] {<Tone>}<BCons>

| Y % �{<Tone> [Y / �|Y , �]}
| Y � � <BCons>

| <Tone> [<TVowel>|<DVowel>] {Y � �}<BCons>

| Y , � {<Tone>{<BCons>}}

| Y � � <Tone>
| {<Tone>} <BVowel>
| NULL

<Karan> � <Cons>{<Cons>}{[<DVowel> | Y , �]} Y � �

| NULL

Figure 2.13. All rules for TCC Segmentation

Figure 2.13 shows all rules used for TCC segmentation. Here, <FVowel>, <TVowel>,

<UVowel>, and <DVowel> represent a front vowel, a rear vowel, an upper vowel, and

a lower vowel, respectively. <Cons> is a consonant that can be the first consonant of a

word, <BCons> is a consonant that can be the second consonant of a word, <Tone> is a

tone mark, <Karan> is a special character named ‘karan’ that is the mute character.

37

Figure 2.14 shows a fragment of a text segmented into TCCs by the proposed method

and its correct word segmentation. Here, a character ‘-’ indicates a segmentation point.

The corpus where characters are grouped into TCCs is called a TCC corpus.

String ก���ก��#�&������3!�"��������3
Meaning Collecting tax in Thailand and other countries
Correct segmentation ก��-�ก��-#�&�-�����3-!�"-���-�����3
Thai character cluster (TCC) ก�-�-�ก��-#�-&�-�-��-��-3-!�-"-���-�-��-��-3

Figure 2.14. Example of Thai character cluster compared with correct

segmentation

Although, the rule based approach seems to be able to deal with the problems of Thai

texts because it applies the set of Thai grammar rules to split the Thai texts into

linguistic units, there are still many disadvantages to using this method. One of the

disadvantages is that its segmentation accuracy is low when compared to human

segmentation results. Besides this, it requires hand-crafted rules.

• Dictionary based approach

Another approach for Thai word segmentation is the dictionary based approach. This

approach uses a set of all possible words in the dictionary, denoted as Dic, to match an

input text for segmenting process. The input text is parsed and segmented into words

that are appropriate for the indexing process. A number of methods were proposed to

use electronic dictionaries to divide the text into individual words. The first research

that works for Thai word segmentation was presented by Poowarawan in 1986 [13].

This research introduced the ‘longest matching algorithm for the dictionary based

approach’ to perform word segmentation for Thai language. It was reported [13] that

38

this method scans a whole document from left to right, and selects the longest match

with the set of words in a dictionary entry at each point.

For example, in string s = ‘�	
��������ก��ก�
����ก�������������’ (James is the round eye

kid that wants to bring cows down to a ship), the longest matching algorithm searches

string s against the dictionary, based on the longest matching vocabulary. In case the

longest match is found, the words will be identified within word boundaries, otherwise

the right character will be removed one character at a time until the longest match is

found in the dictionary. This process is performed continually until the end of the string

that is shown in Figure 2.15.

Remainder of string s Longest words

������K��'Jก��ก�)3L����ก���M�8������� ��
�����K��'Jก��ก�)3L����ก���M�8������� �
��K��'Jก��ก�)3L����ก���M�8������� ��K�
�'Jก��ก�)3L����ก���M�8������� �'Jก
��ก�)3L����ก���M�8������� ��ก
�)3L����ก���M�8������� �
)3L����ก���M�8�������)3L
����ก���M�8������� ����ก��
�M�8������� �M�
8������� 8���
���� ����

Figure 2.15. Result of longest match for string s ‘ �	
��������ก��ก�
�������ก���������

�����

Obviously, this algorithm will fail to find the correct segmentation in many cases

because it selects the longest match within the dictionary, also called greedy

39

characteristic [17]. For instance, according to the above, string s ‘ �	
��������ก��ก�
���

����ก�������������’ (James is the round eye kid that wants to bring cows down to a ship)

will be incorrectly segmented using the longest matching algorithm as �	 (vegetarian)

	
 (sink) ��� (be) ���ก (kid) ��ก (expose) �
 (wind) ��� (place) ����ก�� (want) ��� (bring)

���� (roll) ���� (ship), while the correct segmentation, which cannot be found by this

algorithm, is �	
�� (James) ��� (be) ���ก (kid) �� (eye) ก�
 (round) ��� (that) ����ก��

(want) ��� (bring) �� (cows) �� (down) ���� (ship). When compared to the correct

segmentation, it can be observed that the longest matching algorithm may not provide

the segmentation of words that reflects the meaning of the context. For example, one

part of the above string: ��ก�
 (round eyes) will be incorrectly segmented as: ��ก

(expose) �
 (wind), while the correct one is �� (eye) ก�
 (round).

Notice that the longest matching algorithm can segment a string of characters into

words correctly in about 80 per cent of all cases [14], [10]. For example, Yก������ �

!�"���ก��ก�"#�$����%��$����%ก&���!'��"(��)�*��� (Thai traditional massage is one kind of

physical therapy for treatment of patients) can be segmented into ‘ก�����-� �-!�"-���-

ก��ก�"#�$-����%�-�$���-�%ก&�-��!'�-�"(��)�*��� as shown in Figure 2.16, but the longest

matching algorithm cannot extract the keywords such as ‘� �!�"� (Thai traditional) or

40

Yก�"#�$����%�� (physical therapy) from the string. Consequently, this algorithm loses the

keywords due to its incorrect segmentation. This is one of the drawbacks that appears

when the longest matching algorithm discriminates this kind of ambiguous text

incorrectly [18].

String ก������ �!�"���ก��ก�"#�$����%��$����%ก&���!'��"(��)�*��

Segmented
string
Using longest
match

ก�����-� �-!�"-���-ก��ก�"#�$-����%�-�$���-�%ก&�-��!'�-�"(��)�*��

Translate
word by word

Massage-plan-Thai-be-physical-assuage-for-treatment-patient-kind of

Correct
segmentation

ก������ �!�"-���-ก��ก�"#�$����%�-�$���-�%ก&�-��!'�-�"(��)�*��

Meaning Thai traditional massage is one kind of physical therapy for treatment
of patients

Figure 2.16. Segmentation of: ‘ก������ �!�"���ก��ก�"#�$����%��$����%ก&���!'��"(��)�*���

In order to solve this problem, the maximum matching algorithm was proposed.

According to Sornlertlamvanich, he presented the maximum matching algorithm in

1993 [14]. This algorithm was proposed to solve the problem of the longest matching

algorithm. This method is sometimes called the backtracking algorithm, which also uses

matching against the dictionary. The maximum matching algorithm is different from the

longest matching algorithm, although both techniques use matching against the

dictionary. The longest matching algorithm maps written text from left to right, and

gives first priority to the longest candidate found in the dictionary, while the maximum

matching algorithm creates all possible word segmentation candidates and selects the

one that contains the fewest words.

41

In the first step of the maximum matching algorithm, this method generates all possible

segmentations for the text based on a word set until there are no more words that can be

segmented. The algorithm will then select the segmentation path with the lowest

number of segmented words [12], [3]. This method can be performed efficiently by

using dynamic programming techniques, because the method actually finds the words

that have maximum matches instead of using heuristics to guess. This method always

outperforms the longest matching method [5]. Figure 2.17 demonstrates the procedure

of the maximum matching algorithm in processing the sentence ‘ก����'7?�:).��K�ก��

ก�.-�+�M���'�+�L���ก0���:���.D��B�4L�’ (Thai traditional massage is one kind of physical

therapy for treatment patients).

 All possible segmentations for the sentence Number of
words

1 ก�����-� �!�"-���-ก��ก�"#�$����%�-�$���-�%ก&�-��!'�-�"(��)�*�� 8

2 ก�����-� �!�"-���ก��-ก�"#�$-����%�-�$���-�%ก&�-��!'�-�"(��)�*�� 9

3 ก�����-� �!�"-���ก��-ก�"#�$-����%�-�$���-�%ก&�-��-!'�-�"(��-)�*�� 11

4 ก�����-� �-!�"-���ก��-ก�"-#�$-����%�-�$����%ก&�-��!'�-�"(��)�*�� 10

5 ก�����-� �-!�"-���ก��-ก�"#�$-����%�-�$����%ก&�-��!'�-�"(��)�*�� 9

6 ก�����-� �-!�"-���ก��-ก�"#�$����%�-�$����%ก&�-��!'�-�"(��-)�*�� 9

7 ก�����-� �-!�"-���ก��-ก�"-#�$-����%�-�$���-�%ก&�-��!'�-�"(��)�*�� 11

8 ก�����-� �-!�"-���ก��-ก�"-#�$-����%�-�$���-�%ก&�-��-!'��"(��-)�*�� 12

9 ก��-���-� �-!�"-���-ก��-ก�"-#�$-����%�-�$���-�%ก&�-��-!'�-�"(��-
)�*��

15

10 ก��-���-� �-!�"-���-ก��ก�"#�$����%�-�$���-�%ก&�-��!'�-�"(��)�*�� 10

Figure 2.17 Illustration of maximum matching algorithm procedure

42

From Figure 2.17, the algorithm can generate ten possible segmentations for the

sentence and the lowest number of words is eight at the first segmentation path. This

path is the result of using the maximum matching algorithm containing keywords such

as ‘� �!�"� (Thai traditional) or Yก�"#�$����%�� (physical therapy).

Nevertheless, when the alternatives have the same number of words, the algorithm

cannot determine which one is the best candidate. In this case, some other heuristics

have to be applied to make the final decision. The heuristic that is often used is the

longest matching pattern-word at each point.

The main advantages of the dictionary based approach are simple and straightforward

[12]. However, the performance of the dictionary based approach depends critically on

the quality and size of word sets in the dictionary used during the segmentation process,

although the success rate of using the dictionary based approach in segmentation is

quite high [2]. This implies that different dictionaries can provide different results. The

most often used Thai dictionary is the Thai Royal Institute word dictionary

[Pochananukorm Chabab Rachabandictayasathan B.E.2525], which was compiled by

Virach and consisted of 32,558 words. The disadvantage of the dictionary based

approach is that this technique may not perform well when handling unknown words

and proper nouns, because these words cannot be found in the dictionary and the Thai

language does not use capital letters for proper nouns. So, success relies on the

dictionary used for segmentation [48], [4]. At present, many new Thai words have been

generated through the transliteration of foreign words. Consequently, the process of the

dictionary based approach has become inefficient, because this approach requires the

manual addition of new words in order to improve its performance [2]. Also, the second

43

problem is parsing ambiguity. Ambiguity occurs when there is more than one way to

segment a given character sequence as described in the segmentation problems section.

• Hybrid approach

As dictionary based and rule based approaches have their own advantages, a number of

problems in Thai word segmentation have been solved by a combination of the two

approaches, known as the Hybrid approach. According to Kawtrakul and his colleagues

[32], they presented the n-gram Markov model with n equal to three. They also included

a solution for spell checking and word filtering. The first step in word segmentation was

based on word formation rules and a dictionary lookup. They follow by using a Markov

model for the word filtering process, which solves word boundary and tagging

ambiguities.

• Machine learning based approach

The recently proposed method is the machine learning based approach [2], [19]. The

machine learning based approach can be divided into four main algorithms: Naïve

Bayes, decision tree, Support Vector Machine, and Conditional Random Field. These

algorithms will be described below.

The Naive Bayes algorithm was first proposed and used for text categorization tasks by

D. Lewis in 1998 [49]. Naive Bayes is based on Bayes’ Theorem in the probabilistic

framework. The basic idea is to use the joint probabilities of words and categories to

estimate probabilities of the categories that best describe the document. The Naïve

Bayes algorithm makes the assumption of word independence, (i.e., the conditional

probability of a word given a category, is assumed to be independent from the

conditional probabilities of other words given that category.)

44

The decision tree algorithm was first proposed by J. R. Quinlan and the well-known

version of the algorithm is called C4.5 [50]. A decision tree is a simple structure where

non-leaf nodes represent the conditional tests of attributes or features and leaf nodes

contain the class label.

Support Vector Machines is the machine learning algorithm introduced by Vapnik [51].

Support Vector Machines was first applied for text categorization tasks by Jaochim

[52]. This algorithm is based on the Structural Risk Minimization principle with the

error-bound analysis. The method is defined over a vector space where the problem is

to find a decision surface.

Recent work was presented by Kruengkrai in 2006 [19]. He used the Conditional

Random Field algorithm (CRF) for building a word segmentation model. The

Conditional Random Field algorithm is a novel approach which has been shown to

perform better than other machine learning algorithms for the task of labeling and

segmenting sequence data [53], [54]. This work focused mainly on solving the problem

of ambiguity in word segmentation. Two path selection schemes based on confidence

estimation and Viterbi were proposed. The feature set used in their model required the

part-of-speech (POS) tagged corpus. The POS tagged corpus is a corpus where texts are

manually segmented into sentences and words, and each word is tagged with its POS

[4], [55]. Therefore, if the POS tagging is inaccurate, the performance of the word

segmentation could be affected.

For the Thai language, the conditional random field algorithm is a recent approach,

which has been shown to perform better than other machine learning algorithms for the

task of labeling and segmenting Thai texts [12], [19]. This technique uses the machine

45

learning technique to learn from a Thai text corpus. As learning is the essential part of

this approach, it is necessary to have an appropriate word-segmented Thai text corpus,

called the ORCHID corpus. The ORCHID corpus in 2009 consisted of 113,404

manually tagged words since 1996 [12], [55]. The machine learning technique aims to

address the drawbacks of the dictionary based approach. Using a tagged corpus in

which word boundaries are explicitly marked with special annotations, the machine

learning algorithm builds statistical models based on the features of the characters

surrounding the boundaries. The most common features used for Thai word

segmentation models are the identities and categories of characters within a defined n-

gram of characters surrounding a word boundary candidate. Character types can be

quite diagnostic when used for word segmentation. For example, certain leading vowels

often appear at the beginning of a word, whereas tone marking characters can never

begin a word. In machine learning approaches, a binary classification task is used to

assign each character in the string. Each character in the Thai language can be tagged

into one of two classes. The first class is the character that is placed at the beginning of

the word, called word-beginning that can be labeled as class ‘B’. The second class is the

character that is placed inside the word, called intra-word character that can be labeled

as class ‘I’. Figure 2.18 shows an example of a string where each character is tagged

with ‘B’ or ‘I’. By using the tagged corpus in which word boundaries are explicitly

marked with a special character, the conditional random fields algorithm can be applied

to train a model based on the features surrounding these boundaries [12], [2], [19]. For

the Thai language, characters can be distinguished for segmentation tasks into ten

different types as shown in Figure 2.19.

46

Figure 2.18. Example of string of characters tagged as word-beginning (B)

or intra-word (I) characters

The set of character types is designed based on Thai linguistic knowledge. Machine

learning algorithms can build classification models by extracting patterns of character

types. For example, the conditional random field algorithm could learn that the

character which is a vowel by type is most likely to begin a word, (i.e. class B). The

final feature set for constructing a model is the n-gram of characters preceding and

following the word boundary with their character types.

) n B

 c I
� c I
� c B
 % t I
ก c I
& c I
 � v I
� c B
� c I
! w I
' c I
 � t I

47

Tag Type Example
c Characters that can be the final

consonant in a word
ก � � � � � � � � ! " # $ % & ' �
() * � � � + , - . � � � / 0 � 1 �

n Characters that cannot be the final
consonant in a word

= > ? @ A B C

w Vowels that can begin a word � 7 8 9 : ; <
v Vowels that cannot begin a word � � 2 3 4 � 5 � � 6
t Tonal characters D � E F
s Symbols � G H
d Digit characters 0-9
q Quote characters Q-Q Q-	
p Space character inside a word _
o Other characters A-Z

Figure 2.19. Character types for building a feature set used by machine learning

approach

The main advantage of the machine learning approach is that it does not require the use

of a dictionary. However, it still requires the use of an appropriate corpus. In this

technique, the unknown word and ambiguity problems are handled in principle by

extracting sufficiently rich contextual information from the n-gram, and by providing a

sufficiently large set of training examples to enable accurate classification. Therefore,

the weakness of the approach is that its performance depends critically on the

characteristics of the document domain and the size of the training corpus. For example,

if a model is constructed based on a corpus from a specific domain, it might not

perform well on documents from other domains. In addition, the learning process is

time consuming. The unknown word and ambiguity problems are handled by the

algorithm which learns various character patterns inside a tagged corpus.

48

2.4.1.3 Thai stopword removal

Stopwords or noise words are those terms that frequently occur in text documents, but

are not significant in representing the main content of the documents, and also they are

generally not searched due to the fact that they are useless terms. Many languages such

as the English language have their own stopwords in order to form grammatical

constructions. In the English language, examples of such words are as follows: ‘a’,

‘about’, ‘an’, ‘are’, ‘as’, ‘at’, ‘be’, ‘by’, ‘for’ , ‘from’, ‘how’, ‘in’, ‘is’, ‘of’, ‘on’, ‘or’,

‘that’, ‘the’, ‘these’, ‘this’, ‘to’, ‘was’, ‘what’, ‘when’, ‘where’, ‘who’, ‘will’, and

‘with’.

Using stopwords to index documents can be viewed as creating noise in the indexing

terms, because these stopwords have no ability to identify the document. It may affect

the document search by retrieving irrelevant documents and generating too much noise

for the retrieval task. Thus, removing stopwords may decrease the noise in the

information retrieval system.

Like the English language, the Thai language also has its own stopwords. The following

table, Table 2.2, shows the list of Thai stopwords [10].

Table 2.2. Thai stopwords list from morphology

Thai Stopwords from Morphology

���
���
�"6(
4)
(

�
	��

4�
ก�(��
��ก
ก(��
!��
ก�

�(�
��"
�%-�
	*�
'��
��(

���
=*��
)���
)�ก
4)�
"%�

	�
����
�
���
�ก(
���
'*-�

49

Thai Stopwords from Morphology

'.�
�+(�
��-
�"(��
!�
$���

���"

��e�
�/ก
!
(
�%-�
ก�(�
4��

�)(�
!��
	�ก
�$���

�ก
�6

�(�

���
!�
�+��
����
��	

�$���
�$�"�

�
����
��ก
)��"

In fact, around 30 percent of the words in Thai text document collections are typically

of little use in information retrieval [10]. Therefore, these stopwords are assumed not to

carry any important information. They are usually ignored and not indexed in order to

save storage space in the inverted index and increase retrieval speed. In stopwords

removal, each word is checked against a pre-defined list of non-semantic bearing, high-

frequency words, and then stopwords are removed from the index during the pre-

processing step. However, the ignored stopwords are replaced by a placeholder so as to

remember the offset at which stopwords occur. This technique enables searching for

phrases that contain stopwords. One of the advantages of eliminating the stopwords is

reducing the size of the inverted index. The size of the indexing structure can be

reduced by up to 33 percent or more from a total index with the elimination of

stopwords [10]. Although stopwords removal is able to improve the efficiency of

indexing, it sometimes reduces the recall ability in cases where users prefer to exactly

match the user’s query with documents. For instance, consider a user who is looking for

documents containing the phrase ‘��"������%�����$�������%+��’ (stopwords removal and

word segmentation for indexing). After performing word segmentation and stopwords

removal, the indexer may keep only the terms ‘��’ (removal), ‘�%�’ (segmentation), ‘���’

50

(word), ‘����%+��’ (indexing) in the inverted index. This makes retrieval and proper

recognition of the documents which contain the phrase ‘��"������%�����$�������%+��’

(stopwords removal and word segmentation for indexing) almost impossible. This is

one important reason that can lead to the adoption of a full text search or other full text

indexing methods in order to support exact matches for Thai texts [56].

Further discussions on the advantages and disadvantages of using language-dependent

methods will be provided in Section 2.6.

2.4.2 Using language-independent method for Thai text indexing

In this section, the details of two approaches for indexing Thai text documents using

language-independent techniques: an n-gram inverted index and suffix array techniques

are reviewed.

2.4.2.1 An n-gram inverted index

Besides the word inverted index as described in Section 2.4.1, an n-gram inverted index

is one of many indexing techniques that uses n-gram terms as an indexing term [22],

[21], [10]. This method can be viewed as an n-gram based approach and was first

introduced and tested as indexed terms by Adams in 1991 [57]. The n-gram inverted

index is a language-independent approach, which does not require the use of language

analysis, or a dictionary or corpus. In information retrieval systems, the n-gram inverted

index is often used for Asian languages where extraction of words is not simple [58].

The n-gram inverted index has been acknowledged as a viable solution for indexing

non-segmented languages such as Chinese, Japanese and Korean (CJK) [22], [21]. It is

also used for other non-segmented text in the area of bioinformatics [25], [59]. This

51

method has been experimented with in many related IR fields [23], [24]. There are a

number of techniques implemented in Chinese, Japanese and Korean information

retrieval systems. It is also used as a possible solution for Thai in the same way as

Chinese, Japanese and Korean.

Although the Thai language is as linear as other Asian languages such as Chinese or

Japanese and the same n-gram inverted index used in Chinese and Japanese can be used

for Thai, the parameters for the n-gram method should be adjusted to be appropriate for

the Thai language. Determining the dimensions of the gram term for using the n-gram

inverted index should be considered so that they are appropriate for each application.

Before the detail of the n-gram inverted index is described, the general process of the n-

gram inverted indexing technique is first provided in Figure 2.20.

Figure 2.20 General process of indexing Thai text documents using n-gram

inverted index

Document
collection

Indexing techniques
(N-gram inverted index)

Document
index

Text pre-processing

An n-gram term
extraction

Inverted index

Text documents

Inverted index construction

52

An n-gram term extraction

In order for the n-gram inverted index to be successful, n-gram term extraction is

essential and it has to be done before indexing can be performed. Selection of the

dimension of the gram term is important for these languages. For instance, it has been

shown that the bi-gram term is effective for indexing Chinese text documents [60], [61],

[62], [63]. Furthermore, most Chinese bi-gram terms do not lose the semantics of

words. In Japanese, the dimension of the gram term had also been found to be equal to

two [64]. In bioinformatics, CAFE [25] is a well known method which uses the n-gram

base approach. It uses 9-gram terms for the genome sequence and 3-gram terms for the

protein sequence as indexing terms.

Meanwhile the n-gram based approach with n equal to three and four characters seems

to have the best parameters to achieve retrieval effectively for the Thai language [8],

[10]. This is because the top 20 of the high frequencies’ 3-gram and 4-gram terms are

complete words in the Thai language, where Thai words have varying lengths. As a

result, three and four are both used as the best parameters in the n-gram inverted index

for the Thai language. In the Thai language, Jaruskulchai [8] showed that the more

probable n for the Thai language should be greater than two. By selecting the n greater

than two, one could increase the possibility of achieving the effective retrieval, since

the minimum number of characters for Thai word appearance is two, with at least one

of them being a consonant. Furthermore, each Thai character cannot represent a word or

a meaning like Chinese or Japanese. In Thai, the smallest unit which can represent a

word or a meaning is a syllable.

53

Due to the above reasons, there is no single parameter for n-gram that is best for all un-

delimited texts and applications. The following paragraphs will describe the process of

n-gram term extraction.

Assume that document d consists of a string of characters a1, a2, ..., aN. An n-gram term

is a substring of n overlap or non-overlap successive characters extracted from the

string. Extracting a set of n-gram terms from the documents d can be done by using the

1-sliding technique [39]. That is, sliding a window of length n from a1 to aN and storing

the characters located in the window. Therefore, the ith n-gram term extracted from

document d is the substring ai, ai+1, ..., ai+n. Figure 2.21 shows 1-gram, 2-gram, 3-gram,

4-gram, …, N-gram overlap sequence of the document d containing the string s ‘ก��

���ก��ก��’.

:

Figure 2.21. Sets of 1-gram, 2-gram, 3-gram, …, N-gram overlap sequence of

document d containing the string s ‘ก�����ก��ก��’ .

Construction of an n-gram inverted index

To construct the n-gram inverted index, the same technique used in the word inverted

index construction (as described in Section 2.4.1.1) is employed. After Thai text

documents are segmented into a series of indexing terms or n-gram terms using the n-

1-gram terms ก, �, �, �, �, �, ก, �, �, ก, �, �
2-gram terms ก�, ��, ��, ��, ��, �ก, ก�, ��, �ก, ก�, ��
3-gram terms ก��, ���, ���, ���, ��ก, �ก�, ก��, ��ก,

�ก�, ก��

N-gram terms ก�����ก��ก��

54

gram term extraction, all tokenized indexing terms are then stored in alphabetical order

in the inverted index.

From Figure 2.21, an example of building the n-gram inverted index—which is created

on the document d1 containing the string s ‘ก�����ก��ก��’—is shown. In this example,

3-gram is used as one of the parameters, depicted in Figure 2.22 as most 3-gram terms

are meaningful in the Thai language.

Inverted Index

3-gram terms
Vocabulary Posting file

ก�� : <d1, 1, [7]>

ก�� : <d1, 2, [1, 10]>

�ก� : <d1, 1, [9]>

��� : <d1, 1, [4]>

��� : <d1, 1, [3]>

��ก : <d1, 1, [5]>

��ก : <d1, 1, [8]>

�ก� : <d1, 1, [6]>

��� : <d1, 1, [2]>

d1: ก � � � � � ก � � ก � �
 1 2 3 4 5 6 7 8 9 10 11 12

The n-gram term
extraction

55

An n-gram inverted index construction using the trie data structure

Figure. 2.22. Example of building n-gram inverted index for documents containing

the string s ‘ก�����ก��ก��’

The advantage of the n-gram inverted index is language-independence [7], [26], [65].

Hence, it was one of the promising alternatives for indexing Thai text documents [10].

This n-gram inverted index can be used to search for the query where dictionary or

language analysis may not be used. There are many applications of the n-gram based

approach such as string searching, approximate string matching, and similar sequence

matching in bioinformatics [66]. However, this technique suffers from a larger index

size and poor retrieval time [26], [10], [39] when compared to the word inverted index.

Like the word inverted index, the n-gram inverted index requires query processing and

text pre-processing to extract n-gram terms before retrieval and indexing can be

performed.

56

2.4.2.2 Suffix array approach

Another indexing approach is by using a data structure called suffix array. Within the

suffix array scheme, Thai texts are viewed as a sequence of characters which can be

structured by using an array. Suffix array approach can be viewed as a full text indexing

technique. This technique does not require indexing term extraction like word inverted

index and n-gram inverted index approaches. Suffix array approach is one of the more

efficient methods for computing terms and document frequency for all substrings (i.e.

keywords) from the text. This technique was proposed in 2001 [28] by Yamamoto and

Church. The algorithm is based on suffix arrays [67] for computing tf (term frequency)

and df (document frequency). Suffix array can also be used to solve substring problems.

Term frequency (tf) is the standard notion of frequency in corpus-based natural

language processing. It counts the number of times that a type (term-word-n-gram)

appears in a text.

Suffix array construction

The suffix array data structure makes it convenient to compute the frequency and

locations of a substring in a text. The lexicographical ordering technique is used to

group all suffixes together in the suffix array, and can be found efficiently with a search

algorithm. This technique constructs a suffix array that contains all suffixes that are

sorted alphabetically. A suffix, also known as a semi-infinite string, is a string that

starts at position i in the text and continues to the end of the text. Therefore, the

constructed suffix array shows all possible substrings [28].

The constructed suffix arrays of a string can be used as an index to locate all

occurrences of a substring within the string. Finding all occurrences of the substring is

equivalent to finding every suffix that begins with the substring. This enables the

57

algorithm to compute the term frequency using overlapping computation. As a result,

suffix array can be used to search substrings efficiently. The following section depicts

constructing the suffix array to compute term frequency and to retrieve the substring.

Figure 2.23 shows an illustration of suffix array from string s = “ก�����ก��ก��”

Let string s = ‘ก�����ก��ก��’

Figure 2.23. Illustration of suffix array from stri ng s = ‘ก�����ก��ก��’

From Figure 2.23 the suffixes are enumerated by using suffix array, but elements in the

suffix array have not been initialized and sorted. For each element in the suffix array,

a[i] is an integer denoting a suffix, starting at position i in the text and extending to the

end of the text. The elements in the suffix array are then sorted in alphabetical order for

the next process as shown in Figure 2.24.

58

 Element positions Sorted suffixes

Figure 2.24. Illustration of suffix array from Figu re 2.23, which has been sorted in

alphabetical order

Additional to using suffix array, LCP (longest common prefixes) [28] was proposed as

an algorithm that makes use of an auxiliary array to store long and repeated substrings

from texts [68]. This algorithm is used to compute the term frequency using

overlapping computation as depicted in Figure 2.25.

59

Element positions Sorted suffixes Lcp Vector

Figure 2.25. All longest common prefixes with their length and term frequency

from suffix array

From Figure 2.25 it can be observed that term frequency can be computed on suffix

array after sorting by using the longest common prefixes. The vertical dash lines

represent the substrings, which appear multiple times in the text and the horizontal

arrow shows the length of substrings. As a result, by using suffix array, the text

60

documents can be indexed in order to support the search of the queries with their

frequency and positions. Note that more detail of the suffix array approach will be

provided in Chapter 3.

2.5 The retrieval process

At this point, the view of the retrieval process is detailed. The retrieval process is a field

of study that helps users to find the required information from a large collection of text

documents. The basic method of retrieval is to use the document index to retrieve

documents that are likely to be relevant to a query. To describe the retrieval process, a

general retrieval system is first illustrated in Figure 2.26.

Figure 2.26. General retrieval system (numbers beside each box indicate sections

that cover corresponding topic)

From Figure 2.26, it can be observed that there are several processes in the retrieval

system. First of all, the user specifies a user need, which is usually called the query.

This query is then parsed and transformed by the query operation. The query operation

is a necessary process that is usually done before the searching process can be initiated.

2.5

The user

Query
processing

Searching

query

Executable
query

Document
index

Retrieval process

Retrieved
documents

2.5.1

2.5.2

2.5.3

61

The query operation transforms the original query to be appropriate and executable for

the searching process. Once the original query is transformed, this executable query will

then be passed forward to the searching process, in order to look up the relevant

documents and obtain the retrieved documents from the document index.

For ease of better comprehension, the following sections provide more detail of each

process including: a query, the query operation and searching.

2.5.1 A query

A query is a process of getting the information that the users need [7], [45], [69]. In the

Thai information retrieval system, different kinds of queries are normally posed to the

search engine [1]. Commonly used queries in the Thai information retrieval system can

be divided into three forms as follows [7], [1], [69]:

• Single word queries

In the information retrieval system, a word is regarded as the most elementary query

that can be formulated in text. Single word queries are normally defined in a simple

way in searches [7], [69]. They generally produce the highest volume of searches, but

the amount of returned results cannot satisfy users’ needs, also called the lowest amount

of targeted traffic. This is because many users always start with single word queries,

only to find that the results produced are not targeted for their specific need or intent.

They then go back to refine their search, often multiple times, using various word

combinations, until they find the best combination of words that gives them the results

they need. For instance, if users are interested in the information about

‘������’ (retrieval), the information retrieval system will treat ‘������’ as a single word

62

query to find the documents that contain this query. Furthermore, users can also use a

set of single word queries to be more specific in finding the information they need. For

example, if users intend to find out the information about ‘ก��������'��
6�’ (information

retrieval), which has to be segmented into ‘ก��������-'��
6�’ using Thai word

segmentation, this ‘ก��������-'��
6�’ query will be treated as ‘ก�������� AND '��
6�’.

The relevant documents that contain both single word queries will be retrieved for the

users, although two single word queries appear to be far apart from each other in the

text documents.

• Phrase queries

Phrase queries are mentioned in terms of using phrases. Phrase queries are queries

consisting of a sequence of characters [7], [69]. In phrase queries, it is necessary for

each returned relevant document to contain at least one instance of the exact phrase.

The phrase queries are always enclosed with double quotes to indicate the characteristic

phrase queries. For instance, it is possible for users to use the following phrase query

including the double quotes, “ก��������'��
6��������,�ก��������” or “information

retrieval and search techniques” to retrieve documents that contain this exact phrase.

The phrase queries are usually searched for by using full text scanning. The full text

scanning method is based on string matching, which can be used as an option to search

for exact phrases from text documents by scanning through all documents sequentially.

The operation for such a method is to search the documents containing a given phrase

query using matching string. These methods provide good accuracy, but have poor

computational performance because the search time can be quite long depending on the

document size [7]. Several approaches are proposed by researchers to develop full text

63

scanning : Knuth, Morris and Pratt [70], Boyer and Moore [71], Sunday [72], Aho and

Corasick [73], Wu and Manber [74], and Hollaar [75].

However, not all systems use phrase queries, even though they are very useful in most

cases. Many information retrieval systems generally employ phrase queries in order to

improve the ability to search for relevant documents. This is because a phrase may be

significant in identifying the relevant documents. For instance, a user might want to

find phrases from text documents with specific information that they need.

• Boolean queries

One standard model of a query developed from a term list is a Boolean query [7], [69].

The Boolean query combines queries using Boolean operators. The most commonly

used Boolean operators are AND, OR, and NOT. The users can use these operators to

construct complex queries. Each operator can be visually described by using Venn

diagrams, as shown below.

o AND: The query (q1 AND q2) retrieves all documents which contain both q1

and q2.

AND

 q1 q2

64

o OR: The query (q1 OR q2) retrieves all documents which contain q1 or q2.

OR

o NOT: The query (NOT q1) retrieves all documents having no q1. For this

operator, a huge amount of text documents is always delivered, but it is

probably not what the user wants.

NOT

Note that the construction of the query can be more complex, for example ((�����.

AND ก��������) OR ก��������) or ((compute AND retrieval) OR mining) in order to

support the complex instructions.

 q1 q2

 q1 q2

65

In this thesis, only single word queries and phrase queries are used to evaluate the

retrieval performance as will be demonstrated in Chapter 3. This is because these two

types of queries are most commonly used to retrieve the relevant documents in the

information retrieval system.

2.5.2 Query processing

Query processing is a module to transform queries to become appropriate for the

retrieval system [7]. The query operations range from the simplest case to the most

complex. In the simplest case, the raw query is just passed directly to the search engine

without performing any processing. For complex cases, the query is processed before it

is sent to the search engine by using some text pre-processing such as stopword

removal, word segmentation or n-gram term extraction etcetera, which was discussed in

the previous sections. In the most complex case, a query is transformed from a natural

language query to an executable query suitable for computation.

2.5.3 Searching

The search process mentioned in this thesis is not referring to search algorithms but

referring to simple indexing lookup algorithms. In the search process, the methodology

used to search the relevant documents is dependent on the form of the document index.

As discussed in the Thai text indexing technique section, the indexing techniques used

for the Thai language can be divided into three approaches: the word inverted index, the

n-gram inverted index and the suffix array approach. Therefore, searches on the

document index can be categorized into two main types: search using the inverted index

and search using the suffix array. In following section, the search using the inverted

index is described. Meanwhile, the search using the suffix array will be described in

Chapter 3.

66

2.5.3.1 Search using inverted index

Among the Thai text indexing techniques, the word inverted index and the n-gram

inverted index are the techniques that use construction of the inverted index as the

document index. In the search using the word inverted index and n-gram inverted index,

it is necessary at all times to perform query processing before the search process can be

initiated. Query processing is one part of query operation. To search on the word

inverted index, it is necessary to apply Thai word segmentation and stopword removal

to the query. The query is usually transformed into a set of single word queries by using

the Thai word segmentation technique, and then stopwords are removed from this set of

single word queries before searching. Meanwhile, it is necessary to apply the n-gram

term extraction to the query before searching on the n-gram inverted index.

Unfortunately, phrase query searches are not applicable for the word inverted index and

n-gram inverted index since these two techniques do not contain phrases as the indexing

terms.

For query searches using the inverted index, there are generally three steps: vocabulary

search, retrieval of occurrences and manipulation of occurrences.

• Vocabulary search: The search first verifies that the query has valid terms by

searching the vocabulary on the inverted index. Notice that phrase queries are

segmented into a set of single word queries for Thai information retrieval. This

set of single words is searched to see whether it is part of the vocabulary on the

inverted index.

67

• Retrieval of occurrences: When the query is found in the vocabulary, the list

of positions of the query found is retrieved from the posting file. Therefore, it is

a good idea to separate the vocabulary and posting file into different places,

because it is possible that the data will not fit in main memory due to large text

collections [45], [7].

• Manipulation of occurrences: Finally, manipulation of occurrences is

processed in order to solve the complex queries using Boolean operation.

2.6 Limitations of Thai text indexing techniques

While a number of indexing techniques have been proposed for the Thai language in

order to enhance the performance of Thai information retrieval (as described in Section

2.4) this review also revealed several underlying limitations of these techniques. Thus,

the motivation of this research is to address those limitations. In this section, the

discussion on advantages and disadvantages of Thai text indexing techniques described

in Section 2.4 is provided. In order to compare the Thai text indexing techniques, Table

2.3 points out the advantages and disadvantages of three indexing techniques: the word

inverted index, the n-gram inverted index and the suffix array approach. For further

information, these three techniques are also compared and discussed in term of indexing

efficiency and retrieval performance in Section 3.5.

68

Table 2.3. Advantages and disadvantages of Thai text indexing techniques

Thai text indexing
techniques

Advantages Disadvantages

The word inverted
index

• Requires less storage
space for indexing when
compared to the n-gram
inverted index and the
suffix array approach

• Requires word segmentation
as text pre-processing before
indexing

• Requires long computation
time for indexing when
compared to the n-gram
inverted index and the suffix
array approach

• Requires additional space
for storing a dictionary or
corpus or manually hand
crafted rules.

• Can only support one
language or application
depending on the dictionary
or corpus or language
knowledge used

• Requires word segmentation
to perform query processing
before searching

The n-gram inverted
index

• Language-independent
technique

• Supports any language
or application

• Requires n-gram term
extraction to perform text
pre-processing before
indexing

• Requires n-gram term
extraction to perform query
processing before searching

• Requires more storage space
for indexing when compared
to the word inverted index
technique

The suffix array
approach

• Language-independent
technique

• Does not require text
pre-processing and
query processing before
indexing and searching

• Supports any language
or application

• Requires more storage space
for indexing when compared
to the word inverted index
and the n-gram inverted
index

69

Table 2.3 gives an overview of the limitations of the different Thai text indexing

techniques. These limitations are discussed in detail in the following sections,

categorized by the type of the technique.

• The word inverted index technique

The word inverted index can be regarded as the more widely used indexing technique in

Thai information retrieval as described in Section 2.4.1. The main advantage of this

technique is that it requires less space for indexing and storing the indexing terms when

compared to the n-gram inverted index and suffix array approaches, as presented in the

experiment in Section 3.5.1. However, indexing Thai text documents using the word

inverted index has shown several limitations. The main limitation of the word inverted

index is that the process of constructing the word inverted index is very time

consuming. This limitation is caused by the need for word segmentation to perform text

pre-processing in extracting the indexing terms before the inverted index can be

constructed (as described in Section 2.4.1.2). Most word segmentation approaches

require complex language analysis and thus require long computation time, and

sometimes require dictionaries or corpora that are costly to maintain (as described in

Section 2.4.1.2). Beside this, the word inverted index also requires additional storage

space for storing a dictionary or corpus or manually hand crafted rules to perform word

segmentation.

Another limitation of the word inverted index is that it is language-dependent. The word

inverted index needs knowledge of the language to extract the indexing terms before

indexing can be performed.

70

From a search point of view, the limitation of the word inverted index is that this

technique requires query processing before the searching process can be performed (as

described in Section 2.5.3.1 and will be shown in Section 3.5.2). To search the word

inverted index, it is necessary to apply Thai word segmentation to the query before it is

sent to the search process to look up the relevant documents. This will be illustrated in

more detail in Section 3.5.2. Note that the word segmentation technique applied to the

query has to be the same word segmentation technique used to extract the indexing

terms from the text documents.

• The n-gram inverted index

According to Table 2.3, the main advantage of the n-gram inverted index is that this

technique supports any language or application due to its being a language-independent

technique. Due to this advantage, the n-gram inverted index has been one of the most

often used indexing techniques for many Asian documents, and it has also been used in

analyzing genome sequences in bioinformatics as described in Section 2.4.2.1.

However, some limitations of the n-gram inverted index still exist. Its first disadvantage

is that the n-gram inverted index requires the indexing term extraction using the n-gram

term extraction method before the inverted index can be constructed (as described in

Section 2.4.2.1). Determining the dimensions of the gram term is essential, so that they

are appropriate for each application as described in Section 2.4.2.1. Additionally, the n-

gram inverted index has limitations in terms of storage space. The n-gram inverted

index requires larger space for storing indexing terms when compared to the word

inverted index, because the number of indexing terms extracted by the n-gram inverted

index is usually more than the number of indexing terms extracted by the word inverted

index. This has been shown in the experiment presented in Section 3.5.1.

71

Furthermore, from a search point of view, a limitation of the n-gram inverted index is

that it requires query processing in extracting the n-gram terms from the query before

searching can be performed (as described in Section 2.5.3.1 and will be shown in

Section 3.5.2).

• The suffix array approach

The suffix array approach is one of the language-independent techniques, which do not

require the use of a dictionary or corpus or grammatical knowledge of a language. Due

to being language-independent, the main advantage of the suffix array approach is that

it is applicable for any language or application, for example many Asian languages or

genome sequences in bioinformatics as highlighted in Section 2.4.2.2. The suffix array

also does not require text pre-processing and query processing before indexing and

searching can be performed. However, the main limitation of this approach is that it

requires more storage space for indexing when compared to the word inverted index

and the n-gram inverted index. This will be shown in the experiment presented in

Section 3.5.1. One of the drawbacks is that storage space, in terms of the index size of

the suffix array technique, could be critical. Since the size of electronically stored

information in the Thai language has grown exponentially, the method of suffix array

may not be practical for use in some applications.

By investigating the above limitations, the motivation of this research is to propose an

efficient indexing technique for extracting indexing terms and constructing an index for

Thai text documents. This proposed technique should address several limitations of

existing Thai text indexing techniques. Firstly, in order to address the limitations of the

word inverted index in terms of construction time, the proposed technique should be

language-independent, which does not require the use of a dictionary or corpus or

72

grammatical knowledge of a language. Thus, the proposed technique could be used to

improve performance in terms of construction time over the word inverted index

techniques, as this proposed technique does not require text pre-processing tasks in

extracting the indexing terms before indexing can be performed. Additionally, the

proposed technique could be applicable for any language or application due to its being

language-independent. That is the main advantage of language-independent techniques.

Secondly, the proposed technique should not require query processing before searching

can be performed. Finally, to address the critical limitations of the suffix array approach

in terms of index size, the proposed technique should focus on improving the space

required in the language-independent technique.

2.7 Conclusion

In conclusion, research relating to Thai text indexing has been surveyed. In Thai text

indexing, the methodologies can be categorized into two main techniques: language-

dependent methods and language-independent methods. For language-dependent

methods, the word inverted index technique was discussed. For language-independent

methods, the n-gram inverted index and suffix array approaches were described. The

disadvantages of the existing indexing techniques were examined. In the word invert

index, word segmentation is required to extract the indexing terms before the inverted

index can be constructed. However, most word segmentation approaches require

complex language analysis and long computation time, and sometimes dictionaries or

corpora that are costly maintain. Success of the word inverted index relies on the

accuracy of word segmentation. Another of the drawbacks of the word inverted index is

that it requires query processing using word segmentation before searching can be

performed. The word inverted index also needs knowledge of an individual language in

terms of extracting indexing terms, due to being language-dependent. While the n-gram

73

inverted index is language-independent, it still requires indexing term extraction using

the n-gram term extraction method before the inverted index can be constructed.

Although the n-gram inverted index can be applied to many Asian languages and other

sequence patterns due to its being language-independent, determining the appropriate

dimensions of the gram term is problematic. This method also requires more space for

storing indexing terms when compared to the word inverted index. Furthermore, like

the word inverted index, the n-gram inverted index also requires query processing and

text pre-processing to extract the n-gram terms before searching and indexing can be

performed. Regarding the suffix array approach, this refers to a language-independent

technique that can be applied to any language and other sequence patterns. However,

one of its drawbacks is that this method obviously requires a large amount of storage

space for indexing because it generates and keeps all suffixes from text documents

during the indexing process. Although the suffix array approach does not require text

pre-processing and query processing in terms of extracting the indexing terms before

the suffix array can be constructed and searched, one of the drawbacks in terms of index

size seems to be very critical. This makes the suffix array approach impractical at times

to be used in the Thai environment, as the amount of the Thai language that is

electronically stored has grown exponentially.

74

Chapter 3

Frequent Max Substring Technique

3.1 Introduction

In text indexing, the primary purpose of an index is to enhance performance in finding

relevant documents which contain a query. As reviewed in Chapter 2, a number of

indexing techniques have been proposed for the Thai language, such as the word

inverted index, the n-gram inverted index or the suffix array method. Despite this, the

search of relevant documents still varies in the way indexing is performed. Besides Thai

text indexing techniques, there have been some alternative indexing methods for

indexing Thai text documents, in order to facilitate fast and accurate searching.

Common approaches are language-independent methods and they are based on string

matching for the query within documents. The advantage of these approaches is that

they do not require language analysis, text pre-processing and query processing.

Of the methods that do not use indexing, the oldest and conceptually simplest way was

to scan through all documents in a collection sequentially to find documents that

contain the query and to determine which documents satisfy the information need. This

method is often referred to as ‘the full text search’ [70]. This is a tried and true method

that is as old as collections of information-bearing items [69]. This technique does not

need additional space for indexing, and it requires minimal effort for insertions and

updates [56], [7], [71]. However, the main disadvantage of the full text search is its

poor computational performance, because the search time may be quite long depending

on the total size of the stored documents. However, if the total size of the documents is

75

small, and is unlikely to be searched very often, the full text search seems to be an

efficient strategy for searching documents which contain the query. Unfortunately, the

number of stored documents in today’s collections is always very large. When the

number of documents is large and is expected to be searched frequently, the full text

search may not be practical. Hence, the problem of full text search can lead to index

based approaches that are divided into two tasks: indexing and searching.

Indexing refers to scanning the text of documents and building a list of indexing terms

via a useful data structure, in order to facilitate search and retrieval of documents. The

searching stage will look up the query in the index rather than the text of the

documents. The index based approaches appear to address the drawbacks of the full text

search and become time and cost effective for query searching. The index based

approaches would speed up searching response and improve the accessibility of the

documents for multiple times.

A number of different index based approaches have been proposed. One of them is a

substring indexing based on suffixes. This technique builds a set of substrings as the

indexing terms. In substring indexing based on suffixes, suffix trie, suffix tree and

suffix array are employed as alternative ways to construct the substring index. Suffix

trie, suffix tree and suffix array are versatile data structures which are fundamental to

string processing [47]. They are usually faster for string searching or substring

enumeration than the full text search, but they are harder to build and maintain than the

full text search [47], [71]. These data structures can be used to index any text as they

see the text as a single string. Despite this, suffix trie, suffix tree and suffix array suffer

from the requirement for larger space to construct the index and to keep pointers as they

are used to enumerate the complete set of substrings from the string. A frequent

76

substring indexing method was proposed to address one of the drawbacks of substring

indexing, in terms of reducing the space requirement. The frequent substring indexing

method was introduced by Vilo in 1998 [76]. This technique is based on suffix trie and

it only indexes frequently occurring substrings in a string to avoid enumerating the

complete set of substrings. Frequent substring indexing builds the index that contains

only the frequent substrings as indexing terms. This is because indexing terms

occurring less frequently in the string could usually be assumed to be insignificant [77],

[69]. Although Vilo’s method has been proposed for indexing only frequent substrings

in order to reduce the space requirement, large storage space is still required for

extracting and storing all frequent substrings that appear in the string. However, it is not

necessary to index all frequent substrings if some technique can retain a smaller number

of indexing terms that can contain all frequent substrings.

One of the motivations of this research discussed in this thesis is to create a space

efficient Thai text indexing technique. This chapter aims to present the proposed

technique, called the frequent max substring technique. The frequent max substring

technique is used to extract indexing terms, known as the frequent max substrings, from

Thai text documents. The set of frequent max substrings are able to contain all frequent

substrings without information loss and further scan of the string. In order to extract the

frequent max substrings, a new data structure is required. The proposed data structure,

called the frequent suffix trie or FST structure, is employed to ensure exhaustive

enumeration of substrings, to support extracting frequent max substrings.

In order to describe the frequent max substring technique clearly, substring indexing

and frequent substring indexing are first examined in the next sections, as they are used

as a basic methodology to design the frequent max substring technique. The remaining

77

sections of this chapter are then organized as follows. Section 3.2 discusses substring

indexing based on suffixes that include suffix trie, suffix tree and suffix array, as well

as string-related common terminology. Section 3.3 describes frequent substring

terminologies and Vilo’s method for indexing frequent substrings. Section 3.4

introduces the concept of the frequent max substring and presents the proposed

technique, the frequent max substring technique. The experimental studies, comparison

results and discussion on indexing Thai text documents in terms of indexing efficiency

and retrieval performance are presented in Section 3.5.

3.2 Substring indexing based on suffixes

The basic approach to substring indexing is based on a trie data structure [47], [78],

[79]. The trie is a tree-based data structure for fast string matching [70], [80], [81]. The

‘trie’ comes from the word ‘retrieval’ and was first introduced by Fredkin in 1960 [82].

The trie is designed for search in a large text or string [83]. The trie structure is built

from an input string and the leaf node of each path containing the symbol ‘$’ which

represents the end of the string. There are five kinds of tries: non-compact trie [84],

compact trie [85], compact Patricia trie [86], suffix trie and suffix tree [47]. These data

structures are particularly useful for any application that requires string matching. Of

these five types of tries, only two types, suffix trie and suffix tree [47], are used for

enumeration of all possible substrings from an input string, because they basically

construct over all suffixes of the string along the paths on the tries. In addition, the

suffix array [67], [28], [81] is another data structure that provides the same functionality

as the suffix trie and the suffix tree. The suffix array is designed for string processing

applications. As a result, the suffix trie, suffix tree and suffix array can be used as an

index to quickly locate every occurrence of a substring within the string. These data

78

structures have also been used in bioinformatics with DNA sequences and some Asian

languages such as the Thai language [1], [47].

In order to understand substring indexing based on suffixes, common terminologies are

firstly provided followed by details of the suffix trie, suffix tree and suffix array.

Common definition:

String: Let ∑ be a finite set of characters. The size of ∑ is the number of unique

characters in ∑, denoted |∑|. A string over ∑ is any finite sequence of characters from

∑. The length of the string s, denoted |s|, is the number of characters in s. If |s| = 0, we

call the string the empty string, denoted byλ . The set of all possible strings over ∑ is

denoted ∑*. For non-empty string s = a1 a2 an, where ai∈∑, individual characters in

s are identified by their positions within s, thus character ai at the position i on string s

is also denoted by s[i].

For example, let string s = ‘positivelives’ over ∑ = {p, o, s, i, t, v, e, l}. It can be seen

that a1 is p, a2 is o, a3 is s, a4 is i, a5 is t, a6 is i, a7 is v, a8 is e, a9 is l, a10 is i, a11 is v, a12 is

e and an is s. The length of the string s, or |s|, is 13.

Substring: Let s and x be two strings, x is called a substring of s if x ≠λ and s = yxz

for some strings y and z. Note that substring x may occur more than once within string

s. For each occurrence of x in s, x is said to occur at position j if the last character of

that occurrence is at position j of string s. A given occurrence of substring x in s is also

denoted by s[i, j] if the first and the last characters of the substring are at positions i and

j of string s respectively.

79

The notation x ⊆ s is used to denote that x is a substring of s. If x ⊆ s and x ≠ s, then x is

said to be a proper substring of s, denoted x ⊂ s.

For example, let string s = ‘positivelives’. String x = ‘i’ is a proper substring of s that

has length 1, and this substring has multiple occurrences in s. The occurrences of the

substring in s are s[4, 4], s[6, 6], and s[10, 10]. If x = ‘ive’, x is a proper substring of s

of length 3 and this substring has multiple occurrences in s, which are s[6, 8], and s[10,

12].

Substring set: Let s be a string. The substring set for s, denoted SS(s), is defined to be

the set of all substrings of the given string s. Note λ ∈ SS(s).

For example, let string s = ‘positivelives’.

SS(s) is { λ , p, o, s, i, t, v, e, l,

po, os, si, it, ti, iv, ve, el, li, es,

pos, osi, sit, iti, tiv, ive, vel, eli, liv, ves,

posi, osit, siti, itiv, tive, ivel, veli, eliv, live, ives,

posit, ositi, sitiv, itive, tivel, iveli, veliv, elive, lives,

positi, ositiv, sitive, itivel, tiveli, iveliv, velive, elives,

positiv, ositive, sitivel, itiveli, tiveliv, ivelive, velives,

positive, ositivel, sitiveli, itiveliv, tivelive, ivelives,

positivel, ositiveli, sitiveliv, itivelive, tivelives,

positiveli, ositiveliv, sitivelive, itivelives,

positiveliv, ositivelive, sitivelives,

positivelive, ositivelives,

positivelives}

80

Superstring: If x and y are two strings over the same ∑ and x is a substring of y, then y

is called a superstring of x, denoted y ⊇ x. Furthermore, if x ≠ y, y is called a proper

superstring of x, denoted y ⊃ x.

Suffix: Let s and z be two strings, z is called a suffix of s if z ≠λ and z is a substring of

string s starting at position i and ending at the last position n of string s, denoted by suffi

Suffix Set: Let s be a string. A suffix set for s, denoted suff(s), is defined to be a set of

all suffixes of the string s [87].

Prefix: Let s and y be two strings, y is called a prefix of s if y ≠λ and y is a substring

of string s starting at the first position and ending at the position i of string s, denoted by

prefi

Prefix Set: Let s be a string. A prefix set for s, denoted pref(s), is defined to be the set

of all prefixes of the string s [87].

Note that, to construct the suffix array, the suffix trie and the suffix tree, $ is normally

added to the end of the string to signal the string termination. Note that the terminating

symbol $ must not be a character of ∑ from which string s was formed. For any string

s, the string s$ is the actual input to the suffix array, the suffix trie and the suffix tree

algorithms. Figure 3.1 shows all suffixes of the resulting string s ‘positivelives$’.

81

Figure 3.1. All suffixes of string s ‘positivelives$’

Figure 3.1. All suffixes of string s ‘positivelives$’

3.2.1 Suffix trie

Suffix trie is regarded as one kind of trie data structure built over all suffixes of the

string. This data structure is a simplified but more resource demanding version of the

well-known data structure suffix tree [78], [88], [89], [47]. The suffix trie is a versatile

data structure for many string processing applications. When the suffix trie for a string

has been constructed, it means all substrings of the string have been indexed and it can

be used to quickly search the query or any substrings of the string using string

matching. The suffix trie has the following properties:

Let s be a string of length n, the suffix trie for s has the following properties:

1. The tree has n leaves, labeled 1 to n, each corresponding to one suffix of string s

2. Each edge in the tree is labeled with a character from a finite set of characters

Let string s = p o s i t i v e l i v e s $

Positions = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Enumerate all suffixes of string s

1. positivelives$
2. ositivelives$
3. sitivelives$
4. itivelives$
5. tivelives$
6. ivelives$
7. velives$
8. elives$
9. lives$
10. ives$
11. ves$
12. es$
13. s$
14. $

82

3. Every edge label has a length of exactly one

4. The concatenation of edge labels from the root to the leaf labeled i is suffi

5. The labels of the edges connecting a node with its children start with different

characters

For string s, the suffix trie contains all its suffixes. Let s be a string of length n

including the termination character $. The processes of constructing suffix trie will start

with an empty tree and iteratively insert suffixes one by one. The resulting tree will

finally be the suffix trie when all suffixes are inserted into the tree as illustrated in

Figure 3.2.

According to McCreight [88], the algorithm inserts suffixes in the order suff1, suff2,

suff3,…. suffn. Let Ti denote the suffix trie after suffi is inserted. T1 is the tree consisting

of a single leaf labeled 1 that is connected to the root node by edges with the label

substring s[1, n]. In iteration i of the algorithm, suffi is inserted into Ti-1 to form Ti. The

way to do this is by starting from the root and following the unique path matching

characters in suffi one by one until no more matches are possible. If the traversal does

not end at an internal node, create an internal node and another branch there. Then,

attach a leaf labeled i to this internal node and use the unmatched portion of suffi for the

edge label. The run time for inserting suffi is proportional to |suffi| = n – i + 1. The total

run time for constructing the suffix trie is therefore ∑ =
+−

n

i
in

1
)1(= O(n2) [47], [88],

[89]. Considering the space issue of the suffix trie, analysis of space usage in

constructing the suffix trie is straightforward. For the string of length n, the suffix trie

has n depth, and at most n – 1 internal nodes at any depth of the suffix trie. Hence,

storage for the nodes in each depth requires O(n) space complexity. As the suffix trie is

83

the tree of n depth, the total space for constructing the suffix trie is therefore O(n2)

space complexity [47], [88].

Figure 3.2. Suffix trie of string s = ‘positivelives$’

To search a query using the suffix trie, a string matching algorithm is used to find a

query (substring) within the string via the suffix trie. The string matching algorithm is

an important class of string algorithms, which are a traditional area of study in

computer science providing the generic implementation of string-related algorithms

[47].

10

Root

7

 6

 4

 5

 3

8

e

t

i

v

e

l

i

v

e

s

$

s

$

i

l

i

v

e

s

$

v

e

l

i

v

e

s

$

s

$

s

i

t

i

v

e

l

i

v

e

s

$

o l

i

v

e

s

$

o

s

i

t

i

v

e

l

i

v

e

s

$

p s

$
i

t

i

v

e

l

i

v

e

s

$

t

i

v

e

l

i

v

e

s

$

v

s

$

e

l

i

v

e

s

$

$

1

 2

 9

11

13

14

12

84

String matching problem: Given a query P and a string s, the string matching

problem is to find all occurrences of P in s. Let |P| = m, is the length of the query

P and |s| = n, is the length of the string s, typically m ≤ n. In the text retrieval

system, the string s could be a text document and P could represent the query.

Thus, it is beneficial to index the string s so that the query can be answered as

quickly as possible.

Considering the string matching problem, it can be shown that the query can be

searched in O(m + k) time using the suffix trie, where k is the number of occurrences of

query P in the string s and m is the length of query P. Suppose query P occurs in the

string s starting from position i, then query P is a prefix of suffi in the string s. It follows

that query P matches the path from root to leaf labeled i in the suffix trie. This

algorithm works by starting from the root of the suffix trie and follow the path matching

characters in query P, until query P is completely matched or a mismatch happens.

When the mismatch occurs, it means that query P is not contained in string s. In

contrast, if query P is completely matched, then each leaf in the subtree below the

matching position represents an occurrence of query P. The positions can be

enumerated by traversing the subtree below. The matching position is k, this takes O(k)

time complexity. If only one occurrence is of interest, the suffix trie can be processed in

O(n) time complexity, so that each internal node contains the label of one of the leaves

in its subtree. Thus, the problem of whether query P occurs in string s, or the problem

of finding one occurrence can be answered in O(m) time complexity [47], [88].

85

3.2.2 Suffix tree

The suffix tree is another kind of trie data structure that can be used to index all

substrings of the string. The suffix tree represents all the suffixes of that string in the

same manner as the suffix trie. The concept of the suffix tree was first introduced as a

position tree by Weiner in 1973 [78] and the paper subsequently characterized it as the

‘Algorithm of the Year 1973’ [70]. The construction was greatly simplified by

McCreight in 1976 [88] and also by Ukkonen in 1995 [89], [90]. Ukkonen provided the

first linear-time online-construction of suffix trees, now known as Ukkonen's algorithm.

Giegerich [91] provided wotd-algorithm or the write-only top-down algorithm in 1999,

which was used for generating the suffix tree and suffix trie in the breadth-first order,

level by level. Based on the suffix trie, the suffix tree provides the same functionality as

the suffix trie but requires less space. The suffix tree differs from the suffix trie in that

every edge label can have a length of more than one and every internal node has to have

at least two children. Therefore, the suffix tree has the same properties as the suffix trie

except Property 3, which is not true for the suffix tree. Because of this, the suffix tree

generally has less internal nodes than the suffix trie, resulting in less space requirement.

As each internal node has at least two children, and n-leaf suffix tree has at most n – 1

internal nodes, where n is the length of string s. Because of Property 5, the maximum

number of children per node is bounded by |∑ | + 1. Except for the edge labels, the size

of the suffix tree can be O(n) space complexity by counting only the number of nodes in

the suffix tree [47], [79], [88]. The number of nodes in the suffix tree for the string s is

linear in |s| or n, because there are n leaves and less than n internal nodes. As there are

exactly n leaves and every internal node is a branching node, there are altogether O(n)

nodes in the suffix tree. However, if the edge labels in the suffix tree are considered, the

suffix tree requires O(n2) space, the same as the suffix trie [47], [88]. This is because

the number of edge labels in the suffix tree and the suffix trie are equivalent. So, the

86

space complexity of the required suffix tree is O(n2) [47], [89], [90]. The suffix tree is

constructed with the same process as used in constructing the suffix trie. Hence the total

run time for constructing the suffix tree is O(n2) [47]. Figure 3.3 shows the constructed

suffix tree from the string s ‘positivelives$’.

Figure 3.3. Example of suffix tree of string s ‘positivelives$’

In order to allow a linear space representation of the suffix tree, each edge label is

represented by a pair of integers denoting the starting and ending positions of the

substring describing the edge label. If the edge label corresponds to a repeat substring,

10

Root

7

 6

 4

 5

 3

8

e

t

i

v

e

l

i

v

e

s

$

s

$

i

l

i

v

e

s

$

v

e

l

i

v

e

s

$

s

$

s

i

t

i

v

e

l

i

v

e

s

$

o l

i

v

e

s

$

o

s

i

t

i

v

e

l

i

v

e

s

$

p s

$
i

t

i

v

e

l

i

v

e

s

$

t

i

v

e

l

i

v

e

s

$

v

s

$

e

l

i

v

e

s

$

$

1

 2

 9

11

13

14

12

87

the indices corresponding to any occurrence of the substring may be used. The suffix

tree of the string s ‘positivelives$’ represented by a pair of integers is shown in Figure

3.4.

Figure 3.4. Suffix tree of string s ‘positivelives$’represented by a pair of integers

denoting starting and ending positions

After building the substring index using the suffix tree, the occurrences of the query on

the string can be found quickly by using the same technique used for finding the

occurrences of the query on the suffix trie. Therefore, the query search can be processed

in O(m + k) time using the suffix tree [83], where k is the number of occurrences of the

query in the string and m is the length of the query.

Root

 6

 4
 5

 3

8

 2

 9 11

13

14

12

(8, 8)
(4, 4)

(9, 14)

(13, 14)

(5, 14)

(9, 14)

(9, 14)

(2, 14)

(1, 14)

(3, 3)

(4, 14)

(14, 14)

(5, 14)

(7, 8)
(14, 14)

(13, 14)

10

7

(7, 8)

(13, 14) (9, 14)

1

88

3.2.3 Suffix array

Suffix array [67] is another versatile data structure in string processing applications that

provides essentially the same functionality as the suffix trie and suffix tree. This data

structure is able to answer complex queries more efficiently. Within the suffix array, the

input string is viewed as a sequence of characters, which can be stored in an array. The

suffix array data structure makes it easy to compute the frequency and locations of a

substring in the string. The lexicographical ordering technique is used to group all

suffixes together in the suffix array. All the suffixes and pointers of the string are stored

in suffix arrays in lexicographical order, so as to speed up retrieval. The pointers are

used as the identifiers of suffixes in the string. Besides this, the position of each suffix

in the string needs to be stored. The memory address of the suffix string needs to be

stored as well. Once the suffix array is constructed, it can be used as an index to locate

all occurrences of a substring within the string. Finding all occurrences of the substring

is equivalent to finding prefixes of suffixes. This enables the algorithm to compute the

term frequency using overlapping computation as described in Chapter 2.

In the process of constructing the suffix array, the character occurrences are first

recorded in an index array, then suffixes in the index array are sorted in alphabetical

order by using sorting algorithms such as Quicksort, bucket sort, selection sort,

insertion sort, and so on [67], [47]. These sorting algorithms perform indexing with

different time complexity. For instance, suffix array construction can be done in O(n2)

time complexity by using the Quicksort algorithm [47]. Quicksort is known as one of

the fastest sorting algorithms that use a recursive ‘divide and conquer’ technique to sort

the data. In the use of the Quicksort algorithm, the suffix array is split into two

partitions: the lower part and the upper part. To do this, a pivot element is chosen as a

median, then the suffixes which are smaller than the pivot are moved to the lower part,

89

and the suffixes which are larger than the pivot are moved to the upper part. Once the

suffix array is partitioned, these partitions will be sorted separately using Quicksort.

Because the Quicksort algorithm is applied on both partitions, both will in turn be split

into partitions of their own. The suffix array will keep splitting in this manner until the

partitions have only one element in them. Once no more partitions can be split, the

partitions are actually sorted and they make up the sorted array. The process of

constructing suffix arrays is illustrated in Figure 3.5 and Figure 3.6. However, the space

required for the suffix array is of significant concern, especially for very large strings.

As the suffix array contains all suffixes of the string, the catch is that constructing and

storing the suffix array in this manner can require O(n2) space complexity since the

average length of the n suffixes is n/2 [28], [47], [67], [81].

Figure 3.5. Illustration of suffix array from strin g s = ‘positivelives$’

90

In Figure 3.5, the suffixes are enumerated by using a suffix array, but elements in the

suffix array have not been initialized and sorted. Each element in the suffix array, a[i],

is an integer denoting a suffix in the suffix array. Suffixes in the suffix array will then

be sorted in alphabetical order by using a sorting algorithm as shown in Figure 3.6.

 a[0] elives

 a[1] es

 a[2] itivelives

 a[3] ivelives

 a[4] ives

 a[5] lives

 a[6] ositivelives

 a[7] positivelives

 a[8] s

 a[9] sitivelives

 a[10] tivelives

 a[11] velives

 a[12] ves

Figure 3.6. Illustration of suffix array from Figur e 3.5, sorted in alphabetical order

After the suffix array has been constructed, the search of a query or a substring can be

performed quickly by using string matching. For string matching, the suffix array

allows a binary search to efficiently search the query in the suffix array. With the binary

8

12

4

6

10

9

2

1

13

3

5

7

11

Elements or Sorted Suffixes Element positions

91

search, the query can be found on the suffix array in O(m log n) [67], which can be

derived in the following way. Consider the problem of string matching when the suffix

array of the string is constructed. As before, it is necessary to find all suffixes that

contain the query P. As the suffix array is a lexicographically sorted order of the

suffixes of string s, all such suffixes will appear in consecutive positions in it. The

sorted order in the suffix array allows easy identification of these suffixes using the

binary search. The binary search works by comparing the query P to the middle element

of the suffix array. The comparison will determine whether the middle element contains

the query P as a prefix. If the query P is contained as the prefix of the middle element in

the suffix array, then the search stops and returns the position of the element. In

contrast, if the query P is not contained in the middle element, the comparison will then

be made to determine whether the query P is less than or greater than the middle

element. Depending whether P is less than or greater than the middle element, the

search will repeat the same process only to the top or bottom subset of the suffix array.

According to the above search operation, the binary search in the suffix array takes

O(log n) comparisons. In each comparison, query P is compared with a suffix to

determine their lexicographic order. This requires comparing at most the length of the

query, |P|, or m characters. Thus, the time complexity of a search operation is

O(m log n) in finding the occurrence of the query [67].

3.2.4 The comparison of suffix trie, suffix tree and suffix array

In order to compare the suffix trie, suffix tree and suffix array, the details of these three

data structures are summarized in Table 3.1 followed by a description below.

92

Table 3.1. Comparison of suffix trie, suffix tree and suffix array

Data
structure

Time complexity
(construction)

Space
complexity

(construction)

Number of
nodes

Searching
time

Suffix trie O(n2) O(n2) O(n2) O(m + k)

Suffix tree O(n2) O(n2) O(n) O(m + k)

Suffix array O(n2) (Case of
quick sort)

O(n2) N/A O(mlogn)

The time and space complexity of constructing the substring index via the above three

data structures are similar. Construction of the suffix trie has O(n2) time and space

complexity where n is the length of the string, and the corresponding tree has O(n2)

nodes, while constructing the suffix tree also takes O(n2) time and space but the

corresponding tree has O(n) nodes as described in Section 3.2.1 and 3.2.2. The suffix

trie and suffix tree require equivalent time and space complexity because both data

structures have equivalent edge labels, which spell out the complete set of substrings on

the string. Depth-first traversal is usually used to enumerate all substrings of the string

over suffix trie and suffix tree data structures. Meanwhile the suffix array requires

construction time depending on the sorting algorithm used as described in Section 3.2.3.

The space complexity of the suffix array construction is O(n2) as this technique works

on sorting all suffixes of the string. The space complexity for storing the sorted suffix

array is also O(n2) because this data structure contains all sorted suffixes of the string.

From a search point of view, the time complexity of a search operation used by the

suffix array is O(mlogn) by using the binary search, where m is the length of the query

and n is the length of the string as described in Section 3.2.3. Meanwhile, the suffix trie

and suffix tree require O(m + k) time complexity of the search operation, where m is the

length of the query and k is the number of occurrences of the query in the string.

93

3.3 Frequent substring indexing with Vilo’s method

In 1998, Jaak Vilo presented an algorithm for discovering frequent substrings in a string

[76]. This algorithm aims at finding substrings that occur frequently in the string (at or

above the given frequency threshold value). This is achieved by constructing a pattern

trie, which is based on the suffix trie, while maintaining information about the

occurrences of each substring. The algorithm constructs only a subtree of the suffix trie

that corresponds to frequent substrings of the string, to avoid enumerating the complete

set of substrings and in order to reduce the space requirement. It builds the pattern trie

for the input string in the breadth-first order, level by level, and creates a list of

occurrences for each frequent substring in the string. Frequent substrings are

constructed incrementally by expanding prefixes of the substrings that occur at least at

the frequency threshold value. Only substrings that occur in the string and occur at least

at the frequency threshold value are generated and analyzed. This algorithm has been

successfully used for analyzing the full genome of yeast and for predicting certain

regulatory elements, and it has also been used for string matching in bioinformatics

where the string is a DNA sequence [76].

However, Vilo’s technique has not been used for Thai text indexing, as this approach

was proposed for string matching in bioinformatics where strings of DNA sequences

are searched and matched. Despite this, DNA sequences can be regarded as long

contiguous strings with a specific alphabet, for example {A,C,G,T} in the genome [92],

which is similar to the Thai language. This suggests that Vilo’s technique may be used

as a language-independent technique for indexing Thai text documents. Therefore,

Vilo’s technique will be applied for indexing Thai text documents, in order to compare

it to the proposed frequent max substring technique in Section 3.5.

94

Before discussing Vilo’s algorithm in detail, frequent substring terminology is firstly

provided as follows, in order to understand the characteristics of the frequent substring.

Frequent substring terminologies:

Substring frequency: Let s and x be two strings and x is a substring of s. The

substring frequency of x in s is defined as the number of different occurrences of x in s.

The notation fs(x) is used to denote the frequency of substring x in string s.

For example, let string s = ‘positivelives’, and x = ‘iv’, then fs(x) = 2.

Substring frequency set: Let s be a string. The substring frequency set for s, denoted

SFS(s), is defined as a set of all substring-frequency pairs, where each substring-

frequency pair consists of a unique substring x of s and the substring frequency of x in s.

Formally,

SFS(s) = { <x, f> | where x ⊆ s and f = fs(x) } (1)

For example, let string s = ‘positivelives’

SFS(s) = {<p, 1>, <o, 1>, <s, 2>, <i, 3>, <t, 1>, <v, 2>, <e, 2>, <l, 1>,<po, 1>,

<os, 1>, <si, 1>, <it, 1>, <ti, 1>, <iv, 2>, <ve, 2>, <el, 1>, <li, 1>,

<es, 1>,<pos, 1>, <osi, 1>, <sit, 1>, <iti, 1>, <tiv, 1>, <ive, 2>, <vel, 1>,

<eli, 1>, <liv, 1>, <ves, 1>, <posi, 1>, <osit, 1>, <siti, 1>, <itiv, 1>,

<tive, 1>, <ivel, 1>, <veli, 1>, <eliv, 1>, <live, 1>, <ives, 1>, <posit, 1>,

<ositi, 1>, <sitiv, 1>, <itive, 1>, <tivel, 1>, <iveli, 1>, <veliv, 1>,

<elive, 1>, <lives, 1>, <positi, 1>, <ositiv, 1>, <sitive, 1>, <itivel, 1>,

<tiveli, 1>, <iveliv, 1>, <velive, 1>, <elives, 1>, <ositiv, 1>,

<ositive, 1>, <sitivel, 1>, <itiveli, 1>, <tiveliv, 1>, <ivelive, 1>,

95

<velives, 1>, <positive, 1>, <ositivel, 1>, <sitiveli, 1>, <itiveliv, 1>,

<tivelive, 1>, <ivelives, 1>, <positivel, 1>, <ositiveli, 1>, <sitiveliv, 1>,

<itivelive, 1>, <tivelives, 1>, <positiveli, 1>, <ositiveliv, 1>, <sitivelive, 1>,

<itivelives, 1>, <positiveliv, 1>, <ositivelive, 1>, <sitivelives, 1>,

<positivelive, 1>, <ositivelives, 1>, <positivelives, 1>}

Frequent substring: Let x and s be two strings and x is a substring of s. For a given

frequency threshold value θ, θ >0, x is called a frequent substring of s at threshold θ if

fs(x) ≥ θ.

As a special case, any substring x of s is a frequent substring of s at θ = 1.

Frequent substring set: Let s be a string and θ is a given threshold value, the frequent

substring set of s at threshold θ, denoted FSS(s, θ), is the set of all frequent substrings of

s at threshold θ, i.e., FSS(s, θ) = { x | x ⊆ s and fs(x) ≥θ }.

For example, from (1),

FSS(s, 1) = SFS(s)

FSS(s, 2) = {<s, 2>, <i, 3>, <v, 2>, <e, 2>, <iv, 2>, <ve, 2>, <ive, 2>}

FSS(s, 3) = {<i, 3>}

3.3.1 Frequent substring indexing based on Vilo’s technique

It is possible to use the suffix trie and suffix tree to enumerate and index frequent

substrings. Firstly, the suffix trie or suffix tree needs to be completely constructed, then

the constructed tree is traversed in the depth-first order to collect the number of

occurrences of each substring. Finally, the substrings that occur at least at the given

frequency threshold value θ on the string are extracted from the suffix trie or suffix tree.

96

The weakness of the above processes is that the space required for storing the full suffix

trie or suffix tree can be large. Even with efficient implementation, the size of the suffix

tree or suffix trie is on average 10 – 15 times the size of the string [76]. To reduce the

space requirement for indexing the frequent substrings, Vilo introduced his algorithm

and data structure, which will be described in the following sections.

Vilo’s technique is interested only in substrings that occur at least at threshold θ times

in the string. It seems that it is not necessary to construct the subtrees with less than

threshold θ leaves. As a result, Vilo’s algorithm only builds the part that contains

frequent substrings. The algorithm is based on the suffix trie data structure. The

construction procedure is inspired by the lazy algorithm [79] for generating a suffix trie.

The algorithm is a generalization of the wotd (write-only top-down) suffix trie

construction algorithm, to find the frequent substrings of a string. The resulting trie

contains all frequent substrings. The nodes of the trie are labeled with the substrings.

Labels on the path from the root to an internal node form the substring associated with

that node. Thus each internal node represents a substring of the string and each terminal

node represents a suffix of the string. The trie is called the pattern trie in Vilo’s

algorithm.

At each node, an occurrence list is maintained that contains the position of each

occurrence of the substring corresponding to the node. The trie is generated starting

from the root. The root corresponds to the empty pattern λ the occurrence list of which

contains all character positions of the string. The trie is extended by generating the

nodes in the trie in a systematic way. At each step, the children of some of the current

leaf nodes are generated and inserted into the trie to make new leaf nodes. For a node N

97

with associated substring ABC, every legal extension ABCD is generated by inserting a

new child with label D under the node N. The occurrence list of ABCD is computed

from the occurrence list of ABC by checking for each occurrence of ABC in the string

to see if it can be extended to an occurrence of ABCD.

Each node N in the trie can be identified by the substring x that is the sequence of labels

along the path from the root to the node N. This node N can be denoted by N(x). Hence,

N(ABC) is the node identified by substring ABC, and N(xD) is the child of N(x) with

character label D that equals N(ABCD). Every node in the trie contains additional

information about its relation to other nodes in the tree. The dot-notation will be used to

represent subfields—for example N.parent, N.child, N.char and N.sibling. The substring

x is formed by the character labels N.char along the path from the root to the node N(x),

N(xD).char = ai that is the character label D where ai∈∑, and N(xD).parent = N(x).

Given the node N, N.child(ai) is used to denote the child P of node N so that P.char =

ai. A sibling of node N can be identified by the shorthand notation N.sibling(ai), where

N.sibling(ai) is actually N.parent.child(ai). Note that N.sibling(ai) is the same as N if

N.char = ai. To keep the information about the occurrences of each substring, the lists

of character positions of the string where the substring occurs are used. The occurrence

list of substring x is stored in the node N(x) and denoted by N(x).pos. In addition, the

frequency of substring x, fs(x), can be calculated from the number of substring positions.

Vilo’s algorithm starts by building the suffix trie for the input string s in a systematic

order, for example in the breadth-first order, level by level. For each node N(x) create

the list of positions N(x).pos containing each location of the string s where x occurs. To

represent the occurrence that ends at character position j of the string s, a pointer is used

to position j+1. To create the children of node N(x), find characters ai∈∑ for which the

98

substring xai occurs in at least at θ different locations of the string s. This corresponds

to counting which characters of ∑ occur at least threshold θ at the positions N(x).pos of

the string s. This can be done by one traversal of the position list N(x).pos and creating

simultaneously all the position lists for every character occurring at these positions in

the string s. Only these nodes N(xai) are inserted into the trie, for which the character ai

occurs at least threshold θ at positions N(x).pos.

Algorithm: Frequent substring generation:

Input: String s of length n, and the frequency threshold θ for occurrences of substrings

Output: Suffix trie containing substrings that occur at least at θ in string s

Method:

1. Root ← new node; Root.char ← λ
2. Root.pos ← (1,2,….., |s|)
3. Enqueue(Q, Root)
4. While N ← dequeue(Q)
5. // Group the positions according to character in s
6. foreach character ai∈∑
7. Set(ai) ← Ǿ
8. foreach character position of ai∈N.pos
9. Add position + 1
10. // Insert new child nodes for substrings that are sufficiently frequent
11. foreach charater ai∈∑ that occur at least at θ in s, such that | Set(ai) ≥ θ
12. N.child(ai) ← new node P with label P.char = ai
13. P.pos← Set(ai)
14. enqueue(Q, P)
15. delete N.pos
16. return Root

The trie is constructed by systematically extending the leaf nodes. Thus, the position

lists are needed only for the leaves during the trie construction. An example of trie

construction, in discovering frequent substrings from the string by using the above

algorithm, is depicted in Figure 3.7.

99

Let string s = ‘positivelives$’ and θ =2

String s = p o s i t i v e l i v e s $

 .pos = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N(λ).pos = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

Figure 3.7. Discovering frequent substrings of string s = ‘positivelives$’ having

at least two occurrences in string s. Nodes generated into trie represent

substrings λ, e, i, s, v, iv, ve and ive

In Vilo’s algorithm, each node in the trie represents a unique substring and contains the

list of positions in the string where the substring occurs. From Figure 3.7, the algorithm

generated six frequent substrings from string s as shown in Table 3.2.

Table 3.2. All frequent substrings with number of occurrences

Substring Number of occurrences

e 2

i 3

s 2

v 2

iv 2

ve 2

ive 2

e i s v

e v

e

N(e), pos=9,13 N(i), pos=5,7,11

N(iv), pos=8,12

N(ive), pos=9,13

N(s), pos=4,14

N(v), pos=8,12

N(ve), pos=9,13

100

The strength of Vilo’s algorithm is that this technique requires less storage space and

construction time than the suffix tree and suffix trie for indexing the frequent substrings

when θ > 1. This is because the algorithm constructs only subtrees of the suffix trie that

correspond to the frequent substrings to avoid enumerating all substrings.

In this part, an analysis of the time and space requirement of Vilo’s algorithm is

pesented. The total time used by Vilo’s algorithm is proportional to the number of all

frequent substrings [93], and for each frequent substring is proportional to the number

occurrences where it traverses the string s. The space used by Vilo’s algorithm is

proportional to the number of all frequent substrings plus the position lists of the leaves

and their parents. In case of θ = 1, the time and space requirements of Vilo’s algorithm

for generating substrings of the n characters string s is O(n2), which is equal to the time

and space requirement of the suffix tree and suffix trie as will be proofed on following.

Proof: At every depth l of the trie, the work is proportional to the total size of

the position lists of all nodes at that depth, i.e. O(n). Hence, if θ = 1, then

Vilo’s algorithm constructs the trie of depth n. Therefore, the time and space

requirement for Vilo’s algorithm is O(n2).

By raising the θ value, Vilo’s algorithm can reduce the space requirement and speed up

the construction time in practice. This is because the number of frequent substrings will

be less when θ increases. When θ > 1, the size of the trie is optimal in the sense that

only the nodes N(α) corresponding to substrings α that occur at least θ, θ > 1, in the

string s, are inserted into the trie. As a result, the total size of all position lists of the

nodes at any depth of the trie is O(n). However, the size of the trie is not known before

101

the trie is built. The worst-case space complexity of the algorithm therefore depends on

the depth of the trie which is O(nd), where d is the depth of the trie. In the case of time

complexity, the working time used for constructing the trie is also O(nd). This is

because the working time is done at any depth l in the trie is O(n). Hence, the overall

time complexity is O(nd), where d is the depth of the trie.

To determine the occurrence of a query, Vilo’s technique uses the same technique that

finds occurrences of the query on the suffix trie. However, Vilo’s technique is faster

than the conventional suffix trie. Once the frequent substring index has been

constructed using Vilo’s algorithm, the problem of whether the query occurs in the

string can be answered in O(m) time, where m is the length of the query. The search can

be done by only one traversing of Vilo’s trie to check whether the query appears on the

trie. If it does, the number of occurrences and positions of the query on the string can be

retrieved from the node corresponding to the query.

The comparison between Vilo’s method and the suffix based method is explored as

follows. As mentioned in previous paragraphs, the overall time and space complexity of

Vilo’s method is O(nd), where d is the depth of the trie. Meanwhile, analysis of

substring indexing based on suffixes is straightforward. The suffix trie and suffix tree

are the tree of n depth, where n is the length of the string. These suffix tries and suffix

trees are used for enumerating and indexing the complete set of substrings. Therefore,

the construction of the suffix tree and suffix trie takes O(n2) time and space as shown in

Table 3.1. Consequently, it is shown that Vilo’s method has lower time and space

complexity than the suffix trie and suffix tree in constructing the index, as Vilo’s

method constructs only the subtrees that correspond to the frequent substrings. In the

case of time complexity for searching, Vilo’s method takes only O(m) time complexity.

102

This is because Vilo’s method makes only one traversing on the trie to find the query

that matches the substring on the trie and derives information about the occurrence of

the substring from the node. Meanwhile, the suffix trie and suffix tree take O(m + k)

time complexity for searching, where k is the number of occurrences of the query in the

string and m is the length of the query. These structures make the depth-first traversal to

collect the number of occurrences of the query that match the substring on the tree. One

traversal can be done in O(m) time. The positions that can be enumerated by traversing

the subtree is k, this takes O(k) time complexity. As a result, the query can be searched

in O(m + k) time complexity on the suffix trie and the suffix tree.

Although Vilo’s method was proposed for indexing only frequent substrings in order to

reduce the space requirement, large storage space is still required for extracting and

storing all frequent substrings. When it is directly applied to Thai text indexing [94], it

tends to extract numerous insignificant or small indexing terms. This is because Vilo’s

technique finds the complete set of frequent substrings. However, it may not be

necessary to extract all frequent substrings from Thai text documents if the frequent

max substrings, which contain all frequent substrings, can be extracted from the text

documents. This is one of the motivations of the proposed frequent max substring

technique. To address the drawbacks of Vilo’s technique, the proposed technique is

used to extract indexing terms, known as frequent max substrings, from Thai text

documents. The set of frequent max substrings are able to contain all frequent

substrings without information loss and further scanning of the string. One of the

strengths of this proposed method is that it retains a relatively smaller number of

indexing terms without sacrificing its effectiveness in information retrieval when

compared to Vilo’s method. This is because each frequent max substring can potentially

represent multiple frequent substrings that occur in the text documents. Thus, using the

103

proposed technique for indexing text documents could provide better searching time as

the search is performed on a smaller number of indexing terms extracted from the

proposed technique. The proposed technique also uses the proposed data structure,

called the frequent suffix trie. The proposed data structure has a more advantageous

function than the conventional suffix trie and the pattern trie introduced by Vilo. Under

the proposed data structure, the indexing terms can be extracted, together with their

occurrence information and frequency, while the conventional suffix trie and the pattern

trie extract only the indexing terms without frequency information [47], [76]. This

means the proposed data structure has successfully been used to support extracting and

containing of the indexing terms. In the next section, details of the proposed technique

and the proposed data structure are described.

3.4 Frequent max substring technique

In this thesis, the frequent max substring technique is proposed to extract indexing

terms from Thai text documents. Due to the rapid growth in the number of Thai

electronic documents, the proposed technique may lead to significant savings in terms

of storage space for storing indexing terms by extracting and indexing only the frequent

max substrings. The proposed technique has also offered beneficial contributions in

more efficient computation than language-dependent techniques. This is because the

frequent max substring technique is proposed as a language-independent technique that

does not rely on the use of a dictionary or corpus or complex language analysis for pre-

processing. Unlike the word inverted index and n-gram inverted index, the proposed

technique does not require query processing before the search can be performed.

The frequent max substring technique uses the analysis of frequent max substring sets

to extract indexing terms as long and frequently-occurring substrings, called frequent

104

max substrings, rather than individual words from Thai text documents. The proposed

technique is different from Vilo’s technique in that it focuses on extracting the frequent

max substring set, thereby requiring less storage space for storing indexing terms than

Vilo’s technique, which extracts all frequent substrings as indexing terms. The frequent

max substrings refer to all substrings which appear frequently at or above a given

frequency threshold value, and have the maximum length of substrings in the given

text. It is assumed that frequent max substrings are likely to be the terms of interest in a

document. In the proposed technique, the length of substrings and term frequency are

applied to reduce the number of substrings, which will be described in the algorithm

section (Section 3.4.2). This technique uses two reduction rules: a) the reduction rule

using a given frequency threshold value, θ, to check extracting termination, and b) the

reduction rule using superstring definition to reduce the number of extracted substrings.

The algorithm also uses a heap data structure to support computation while a queue data

structure was used in Vilo’s method [76]. In the proposed algorithm, the heap data

structure is used to extract frequent max substrings, as this data structure is commonly

used as a priority queue data structure that can satisfy some conditions. It will be

described in more detail in Section 3.4.2.

The proposed method is used to extract the frequent max substring set without context

consideration and is interested in substrings that occur frequently in Thai text

documents, in order to reduce the number of insignificant indexing terms from the

index. This is because indexing terms occurring less frequently in text documents could

usually be assumed to be insignificant in defining subject matter [77], [69]. In this

thesis, the new data structure, called the frequent suffix trie structure, FST structure, is

also proposed to support extracting frequent max substrings as this proposed data

structure can represents substrings, together with their occurrence and frequency

105

information. The FST structure can be used to represent all substrings with their

frequencies and list of positions on the string, meanwhile the suffix trie is the

conventional data structure used to enumerate all substrings without their frequencies

and list of positions. In addition, the proposed data structure is also different from the

pattern trie introduced by Vilo, because the pattern trie enumerates substrings with their

positions, but it does not keep the number of occurrences of substrings. In order to

support the extraction of frequent max substrings, the FST structure is employed to

ensure exhaustive enumeration of substrings. The frequent max substrings are then used

as indexing terms, together with their number of occurrences and positions, to form the

index. In the following sections, frequent max substring definitions are firstly provided,

before details of the frequent suffix trie structure and the algorithm for extracting and

indexing frequent max substrings will be described.

Frequent max substring definitions:

Max substring: Let x and s be two strings and x is a substring of s. The substring x is

said to be a max substring of s if it satisfies the following condition: for any substring y

of s, if y ⊃ x, then fs(y) < fs(x).

Max substring set: Let s be a string. The max substring set of s, denoted MSS(s), is

defined to be the set of all max substrings of s.

For example, from (1),

MSS(s) = {<s, 2>, <i, 3>, <ive, 2>, <positivelives, 1>} (2)

106

Frequent max substring: Let x and s be two strings. For a given frequency threshold

value θ, θ >0, x is called as a frequent max substring of s if x is a max substring of s and

fs(x) ≥ θ.

Frequent max substring set: Let s be a string and θ be a given frequency threshold

value, the frequent max substring set of s at threshold θ, denoted FMAX(s, θ), is the set

of all frequent max substrings of s the substring frequency of which is at or above θ, i.e.

FMAX(s, θ) = { x | x is a max substring of s and fs(x) ≥ θ }.

For example, from (2),

FMAX(s, 2) = {<s, 2>, <i, 3>, <ive, 2>}

3.4.1 Frequent suffix trie structure or FST structure

In the frequent max substring technique, only subtrees that correspond to frequent max

substrings are constructed. The frequent suffix trie structure is the data structure

employed to extract the frequent max substring set and to create the index at the same

time. The basic concept of the frequent max substring technique is to enumerate

substrings and record their frequencies and positions. Such substrings are then selected

based on the given frequency threshold value. Therefore, it is necessary to have some

efficient enumeration method that can be used to generate all substrings and their

frequencies correctly from the strings. Consequently, the concept of the frequent suffix

trie structure is proposed. The frequent suffix trie structure is similar to the suffix trie

structure as both data structures are used to enumerate all substrings from the string by

constructing all suffixes over the tree. Despite this, the frequent suffix trie structure

additionally provides the list of positions and frequency information of all substrings.

The frequent suffix trie structure has the following properties:

107

1. Let suffi = s[i, n] be the suffix of s starting at i th position and end at position n. A

set of all suffixes of an n-length string s or s[i, n]; where 1 ≤ i ≤ n, is a set of

substrings of string s that starts at position i and ends at position n [95].

2. The frequent suffix trie structure of n-length string s is a tree structure that

represents all suffixes of string s starting with the root node and ending with n

leaf nodes. Also ‘$’ is appended at the end of string s. The terminating

symbol‘$’ is added to show the end of string s and to make all suffixes of string

s different from each other. Therefore, all suffixes of string s contain ‘$’ at the n

different ends of the frequent suffix trie structure. The frequent suffix trie

structure also shows all substrings with their frequencies and position lists of

any substrings of string s.

3. An edge is labeled with a symbol or a character that is an element of the

character set. Every edge label has a length of exactly one. The labels of the

edges connecting a current node with its children start with different characters.

The concatenation of edge labels from the root to the leaf labeled i is suffi

4. A node is used to represent a substring with frequency and list of positions (or

.pos). The position is the end position of each substring of string s. Each depth

of node leads to increased length of substrings and connecting to child

substrings, child nodes. All leaf nodes keep suffixes with their frequencies and

list positions of suffixes. All leaf nodes are also labeled with i, where i is the

starting position of each suffix.

5. In the frequent suffix trie structure, the frequency of parent substrings, parent

nodes, is always not less than the frequency of child substrings in the same path.

6. Child substrings are always a proper superstring of prior extracted substrings in

the same path. The substrings can also be a proper superstring of smaller

substrings in different paths.

108

3.4.1.1 The frequent suffix trie construction

The frequent suffix trie structure can be created in three steps. The following example

shows the frequent suffix trie structure representing all substrings with their frequencies

and list of positions of string s = ‘positivelives’.

Let string s = ‘positivelives’

1) Append ‘$’ to the string and define the position of each character in the string

Let string s = p o s i t i v e l i v e s $

Positions = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2) Enumerate all suffixes of the string

1. positivelives$
2. ositivelives$
3. sitivelives$
4. itivelives$
5. tivelives$
6. ivelives$
7. velives$
8. elives$
9. lives$
10. ives$
11. ves$
12. es$
13. s$
14. $

3) All suffixes are used to create a frequent suffix trie structure as shown in Figure 3.8.

109

Figure 3.8. Frequent suffix trie structure for string s = ‘positivelives$’

3.4.2 Algorithms

From Figure 3.8, the frequent suffix trie structure can be used as the data structure to

extract frequent max substrings by using the following steps:

<ves, 1>
.pos=13

<ves$, 1>
.pos=14

10

Root

7

 6

 4

 5

 3

8

e

t

i

v

e

l

i

v

e

s

$

s

$

i

l

i

v

e

s

$

v

e

l

i

v

e

s

$

s

$

s

i

t

i

v

e

l

i

v

e

s

$

o l

i

v

e

s

$

o

s

i

t

i

v

e

l

i

v

e

s

$

p s

$
i

t

i

v

e

l

i

v

e

s

$

t

i

v

e

l

i

v

e

s

$

v

s

$

e

l

i

v

e

s

$

$

1

 2

 9

11

13

14

12

<e, 2>
.pos=8,12

<el, 1>
.pos=9

<eli, 1>
.pos=10

<eliv, 1>
.pos=11

<elive, 1>
.pos=12

<elives, 1>
.pos=13

<elives$, 1>
.pos=14

<itivel, 1>
.pos=9

<itiveli, 1>
.pos=10

<itiveliv, 1>
.pos=11

<itivelive, 1>
.pos=12

<itivelives, 1>
.pos=13

<itive_lives$, 1>
.pos=14

<itive, 1>
.pos=8

<es, 1>
.pos=13

<es$, 1>
.pos=14

<itiv, 1>
.pos=7

<iti, 1>
.pos=6

<it, 1>
.pos=5

<i, 3>
.pos=4,6,10

<ivel, 1>
.pos=9

<iveli, 1>
.pos=10

<iveliv, 1>
.pos=11

<ivelive, 1>
.pos=12

<ivelives, 1>
.pos=13

<ivelives$, 1>
.pos=14

<ive, 2>
.pos=8,12

<iv, 2>
.pos=7,11

<ives, 1>
.pos=13

<ives$, 1>
.pos=14

<l, 1>
.pos=9

<li, 1>
.pos=10

<liv, 1>
.pos=11

<live, 1>
.pos=12

<lives, 1>
.pos=13

<lives$, 1>
.pos=14

<ositivel, 1>
.pos=9

<ositiveli, 1>
.pos=10

<ositiveliv, 1>
.pos=11

<ositivelive, 1>
.pos=12

<ositivelives, 1>
.pos=13

<ositivelives$, 1>
.pos=14

<ositive, 1>
.pos=8

<ositiv, 1>
.pos=7

<ositi, 1>
pos=6

<osit, 1>
.pos=5

<osi, 1>
.pos=4

<os, 1>
.pos=3

<o, 1>
.pos=3

<positivel, 1>
.pos=9

<positiveli, 1>
.pos=10

<positiveliv, 1>
.pos=11

<positivelive, 1>
.pos=12

<positivelives, 1>
.pos=13

<positivelives$, 1>
.pos=14

<positive, 1>
.pos=8

<positiv, 1>
.pos=7

<positi, 1>
pos=6

<posit, 1>
.pos=5

<posi, 1>
.pos=4

<pos, 1>
.pos=3

<po, 1>
.pos=3

<p, 1>
.pos=3

<sitivel, 1>
.pos=9

<sitiveli, 1>
.pos=10

<sitiveliv, 1>
.pos=11

<sitivelive, 1>
.pos=12

<sitivelives, 1>
.pos=13

<sitive_lives$, 1>
.pos=14

<sitive, 1>
.pos=8

<sitiv, 1>
.pos=7

<siti, 1>
pos=6

<sit, 1>
.pos=5

<si, 1>
.pos=4

<s, 2>
.pos=3,13

<$, 1>
.pos=14

<vel, 1>
.pos=9

<veli, 1>
.pos=10

<veliv, 1>
.pos=11

<velive, 1>
.pos=12

<velives, 1>
.pos=13

<velives$, 1>
.pos=14

<ve, 2>
.pos=8,12

<v, 2>
.pos=7,11

<tivel, 1>
.pos=9

<tiveli, 1>
.pos=10

<tiveliv, 1>
.pos=11

<tivelive, 1>
.pos=12

<tivelives, 1>
.pos=13

<tivelives$, 1>
.pos=14

<tive, 1>
.pos=8

<tiv, 1>
.pos=7

<ti, 1>
pos=6

<t, 1>
.pos=5

<s$, 1>
.pos=14

110

Step 1: Enumerate SFS(s) of string s using the FST structure.

Step 2: Extract frequent substring set or FSS(s, θ)

Step 3: Extract frequent max substring set or FMAX(s, θ)

From the above algorithm, the frequent max substring technique must first enumerate

substring frequency sets or SFS(s). If |s| = n, then |SFS(s)| = O(n2), because SFS(s)

consists of 1-length substrings to n-length substrings. A large amount of memory has to

be used to keep numerous substrings in SFS(s). Thus, a resolution to reduce memory is

the reduction of the number of substring extractions in order to find the frequent max

substrings, using two reduction rules:

a) Reduction rule using the given frequency threshold value, θ, to check

extracting termination condition

b) Reduction rule using superstring definition

Rule a: Reduction rule using the given frequency threshold value, θ , to check

extracting termination condition.

From the property (5) of the frequent suffix trie structure, the frequency of a parent

substring (node) is always not less than that of its child substring (node), because the

parent substring is distributed to the child substring. Therefore, the enumeration of the

child substring is terminated when the frequency of its parent substring is less than θ in

the same path, and also its parent substring is deleted from the index.

111

Let x and y be two substrings on the same path on the frequent suffix trie structure, if y

is a proper superstring of x, then the frequency of y or fs(y) is always less than or equal

to the frequency of x or fs(x), i.e.

y ⊃ x fs(y) ≤ fs(x)

Rule b: Reduction rule using superstring definition

From the property (6) of the frequent suffix trie structure, substring enumeration can be

reduced by considering superstring definition. For example, let x be the substring of s

that has length 1 and y is substring of s that has length 2, and also y is proper superstring

of x. If the frequency of x is equal to the frequency of y where x and y are substrings in

different paths, substring enumeration would be stopped in the x path, denoted as:

y ⊃ x and fs(y) = fs(x) Stop generating x path

In order to improve the algorithm, the frequent max substring technique is proposed.

This technique uses the above two reduction rules to reduce storage requirements and

the number of computations. The heap structure was employed to support computation

for the proposed technique [47]. The heap structure is commonly used as a priority

queue data structure that satisfies the heap property. The operations commonly

performed with a heap are delete-max or delete-min. In the frequent max substring

technique, min-heap is used as the data structure to support extracting frequent max

substrings, using the operations insert and delete-min regarding the position of

substrings (.pos). Therefore, it can insert, update and delete substrings on the min-heap

112

structure in order to efficiently extract frequent max substrings. In the following

section, extracting FMAX(s, θ) is shown as the following steps.

1. Enumerate the 1-length substrings with their frequencies, and then select frequent

substrings that occur at least at the given frequency threshold value. Substrings,

frequency and position transactions (.pos) are kept in the min-heap structure and

sorted by order of occurrence in the string. The position transaction (.pos) of

substrings is used as a key to arrange substrings into the min-heap structure. Min

position transactions mean more priority substrings are first inserted into the min-

heap structure, because the prior substrings can be more frequent max substrings

than later substrings.

2. Enumerate the child substrings of the first priority substring in the min-heap

structure to process, and select only frequent child substrings. The min-heap

structure will then be updated by using a deletion rule [95]. When each frequent

child substring is enumerated every time, the deletion rule will be used to check,

being a superstring of the frequent child substring, in order to remove existing

substrings in the min-heap structure, which is a substring of the frequent child

substring at the same frequency. If the frequency of existing substrings in the min-

heap structure is equal to the frequency of superstrings, the existing substrings will

be deleted from the min-heap structure and frequent child substrings are inserted

into min-heap instead by considering two rules: (1) a substring is inserted into the

min-heap structure, ordered by the occurring position on the string, (2) if the first

position of the substring is equal to the first position of an existing substring in min-

heap, a substring is inserted in the last position in the same group. The processed

113

substrings are deleted from min-heap. The other substrings are processed until the

min-heap structure is empty.

3. Extract the frequent max substrings by selecting substrings having no superstring,

from substrings in min-heap.

The next example shows the process of the algorithm using the min-heap structure and

two reduction rules to reduce the storage requirement and the number of computations

for frequent max substrings.

Let string s = ‘positivelives’

And the given frequency threshold value or θ = 2

String s = p o s i t i v e l i v e s $

Positions (.pos) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Min-heap structure

Firstly, all substrings with a length of 1 are extracted, together with their frequencies

and list of positions. The frequencies of these substrings are then checked in order to

select only the frequent substrings with a length of 1. These frequent substrings are

finally kept in the min-heap structure for further processes.

 s, 2 i, 3 v, 2 e, 2
.pos=3, 13 .pos=4, 6, 10 .pos=7, 11 .pos=8, 12

114

<s, 2> is removed from the min-heap structure, and then child substrings of <s, 2> are

extracted using the position transaction of <s, 2>. Child substrings consisting of<si, 1>

and <s$, 1>. <si, 1> and <s$, 1> are not kept in the min-heap structure because their

frequencies are less than the given frequency threshold value.

<i, 3> is removed from the min-heap structure, and then its child substrings are

extracted using its position transaction. The child substrings of <i, 3> consist of <it, 1>

and <iv, 2>. The existing substring in min-heap, <v, 2>, is deleted from the min-heap

structure because <iv, 2> is a proper superstring of <v, 2> at the same frequency, and

then <iv, 2> is kept in the min-heap structure instead of using the insertion rule because

its frequency is equal to the frequency threshold value. The min-heap structure does not

keep <it, 1> because its frequency is less than the given frequency threshold value.

Min-heap has <iv, 2> removed, and then its child substrings are extracted using its

position transaction. The child substrings of <iv, 2> consisting of <ive, 2>. <e, 2> are

deleted from min-heap because <ive, 2> is a proper superstring of <e, 2> at the same

frequency, and then <ive, 2> is kept in min-heap instead of using the insertion rule,

because its frequency is equal to the given frequency threshold value.

 i, 3 v, 2 e, 2
.pos=4, 6, 10 .pos=7, 11 .pos=8, 12

 iv, 2 e, 2
.pos=7, 11 .pos=8, 12

 ive, 2
.pos=8, 12

115

Min-heap has <ive, 2> removed, and then its child substrings are extracted using its

position transaction. It consists of <ivel, 1> and <ives, 1>. They are not kept in min-

heap because their frequencies are less than the given frequency threshold value.

The algorithm will stop when the min-heap structure is empty. That means all

substrings in min-heap were detected and processed completely.

From the process, the frequent suffix trie structure can be shown as Figure 3.9.

Figure 3.9. Frequent suffix trie structure using proposed algorithm

Figure 3.9 shows the FST structure using the proposed algorithm. The result is

FMAX(s, θ) = {<s, 2>, <i, 3>, <ive, 2>}. From observation, the frequent max substring

technique providea lesser number of indexing terms, but all possible frequent substrings

can be derived from the set of indexing terms that is extracted by frequent max

substring techniques without information loss.

<s, 2> <i, 3>

.pos=7,11

<ive, 2>

v

Root

.pos=3, 13

.pos=4,6,10

<iv, 2>

i s

e

.pos=8,12

116

The next example shows the frequent suffix trie structure representing all substrings

with their frequencies and list of positions of the Thai language.

Let strings s = ‘ก�����ก��ก��	

1) Append ‘$’ to the string and define the position of each character in the string

String s : ก � � � � � ก � � ก � � $

Position (.pos) : 1 2 3 4 5 6 7 8 9 10 11 12 13

2) Enumerate all suffixes of the string

1. ก�����ก��ก��$

2. �����ก��ก��$

3. ����ก��ก��$

4. ���ก��ก��$

5. ��ก��ก��$

6. �ก��ก��$

7. ก��ก��$

8. ��ก��$

9. �ก��$

10. ก��$

11. ��$

12. �$

13. $

3) All suffixes are used to create the frequent suffix trie structure as shown in Figure

3.10.

117

Figure 3.10. Frequent suffix trie structure for string s = ‘ก�����ก��ก��$

The next example shows the process of the proposed algorithm using the min-heap

structure and two reduction rules to reduce the storage requirement and the number of

computations of frequent max substrings for the Thai language.

118

Let strings s = ‘ก�����ก��ก��	

And the given frequency threshold value or θ = 2

String s : ก � � � � � ก � � ก � � $

Position (.pos) : 1 2 3 4 5 6 7 8 9 10 11 12 13

Min-heap structure

Firstly, all substrings with a length of 1 are extracted together with their frequencies.

The frequencies of these substrings are then checked in order to select only the frequent

substrings with a length of 1. These frequent substrings are finally kept in min-heap for

further processes.

<ก, 3> is removed from min-heap, and then its child substrings are extracted using its

position transaction of <ก, 3>. Child substrings consist of <ก�, 2> and <ก�, 1>. The

min-heap structure has <�, 2> deleted, because <ก�, 2> is a proper substring of <�, 2>

at the same frequency and <ก�, 1> is not kept in the min-heap structure because its

frequency is less than the given frequency threshold value. The min-heap structure

 ก, 3 �, 2 �, 3
.pos=1, 7, 10 .pos=2, 11 .pos=3, 5, 12

119

keeps <ก�, 2> using the insertion rule, because its frequency is equal to the given

frequency threshold value.

The min-heap structure has <ก�, 2> removed, and then its child substrings are extracted

using its position transaction. The child substrings of <ก�, 2> consist of <ก��, 2>. The

min-heap structure keeps <ก��, 2> using the insertion rule because its frequency is

equal to the given frequency threshold value.

The min-heap structure has <ก��, 2> removed, and then its child substrings are

extracted using its position transaction. They consist of <ก���, 1> and <ก��$, 1>. They

are not kept in the min-heap structure because their frequencies are less than the given

frequency threshold value.

 ก�, 2 �, 3
.pos=2, 11 .pos=3, 5, 12

 ก��, 2 �, 3
 .pos=3, 12 .pos=3, 5,12

 �, 3
.pos=3, 5, 12

120

Min-heap has <�, 3> removed, and then its child substrings are extracted using its

position transaction. They consist of <��, 1>, <��, 1> and <�$, 1>. They are not kept in

the min-heap structure because their frequencies are less than the given frequency

threshold value.

The algorithm finishes when the min-heap structure is empty. That means all substrings

in the min-heap structure were detected and processed completely.

From the process, the frequent suffix trie structure can be shown as Figure 3.11.

Figure 3.11. Frequent suffix trie structure using proposed algorithm for string s =

‘ก�����ก��ก��$

121

Figure 3.11 shows the FST structure using the proposed algorithm. The result is

FMAX(s, θ) = {<ก, 3>, <�, 3>, <ก��, 2>}.

However, it is always possible to have more than one text document in the document

collection. In order to construct the index for multiple documents, the frequent max

substring technique is applied to the documents one by one in order to extract indexing

terms and construct the document index. A merging technique is then applied to

integrate document indices into one index.

For instance, after the first document has been processed, all indexing terms extracted

from the first documents are stored in the index. The frequent max substring technique

moves to the second document in order to extract the indexing terms and construct the

index using the same process applied to the first document. Finally, the second

document index is then merged to the first document index.

Assuming that there are n documents in the text document collection, this process goes

through n pass. Once the n documents have been processed, all indexing terms, together

with their occurrence information and frequency from the n documents, would have

been contained in the index.

Note that the overlapping indexing terms from different documents are kept in the same

record, using document indicating ID. Therefore, the document ID of the text

documents may need to be stored in the index.

122

Figure 3.12 illustrates an overview of the general process on how to construct the index

for multiple documents.

Doc d1 P o s i t i v e l i v e s
1 2 34 5 6 7 8 9 10 11 12 13

Doc d2 P o s i t i v e f i t s
1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.12. Example of indexing multiple documents using frequent max

substring technique

Doc d1

Positivelives

Doc d2

Positivefits

Frequent max substring technique

Doc d1 index
Indexing terms Occurrence information
 s <id1, 2, .pos=3, 13>
 i <id1, 3, .pos=4, 6, 10>
 ive <id1, 2, .pos=8, 12>

Doc d2 index
Indexing terms Occurrence information
 s <id2, 2, .pos=3, 12>
 i <id2, 3, .pos=4, 6, 10>
 t <id2, 2, .pos=5, 11>

Doc d1 index merges Doc d2 index (Resultant index)
Indexing terms Occurrence information
 s <id1, 2, .pos=3, 13>, <id2, 2, .pos=3, 12>
 i <id1, 3, .pos=4, 6, 10>, <id2, 3, .pos=4, 6, 10>
 ive <id1, 2, .pos=8, 12>
 t <id2, 2, .pos=5, 11>

123

The majority of the indexing techniques, such as the word inverted index and the n-

gram inverted index techniques as described in Chapter 2, also used the same process

when they are applied to index multiple documents [45], [1], [7]. This idea can also be

applied to substring indexing and frequent substring indexing. However, the problem of

substring indexing is that the data structures used in this technique do not keep

occurrence information and frequency. Meanwhile the problem of frequent substring

indexing is that the data structure used in this technique keeps only the occurrence

information without frequency.

In the process of searching the query via the frequent max substring technique, the

wildcard search is adopted for the search operation after the frequent max substrings are

extracted. A wildcard is a character that may be used in the query to represent one or

more characters. The most commonly used wildcard is an asterisk (‘*’). The asterisk

can be used as a placeholder for any sequence of characters. For example, searching for

the query ‘*per*’ would yield results which contain such indexing terms as ‘per’,

‘operation’, ‘permanent’ or ‘expert’. In the frequent max substring technique, the search

first works by matching the query with the element in the set of indexing terms. If the

query exactly matches the element in the set of indexing terms, then the search stops

and returns the frequency and the position of the element. In contrast, if the query

cannot be exactly matched with the element in the set of indexing terms, the query is

formed in wildcard format such as ‘*retrieve*’. Then, this extended query is compared

to the elements in the set of indexing terms, in order to find indexing terms that contain

the extended query as their substrings. When all indexing terms that contain the

extended query are retrieved, the frequency and positions will also be retrieved from the

information that is collected about the occurrences, together with the indexing terms.

124

The strength of the proposed frequent max substring technique is that this technique

improves significantly in terms of storage space over the suffix based method and

Vilo’s method. The proposed technique retains a relatively smaller number of indexing

terms without sacrificing its effectiveness in information retrieval. The details will be

presented in Section 3.5. This is because each frequent max substring can potentially

represent multiple frequent substrings that occur in the strings. This makes the proposed

technique more storage efficient than substring indexing and frequent substring

indexing. The proposed technique is also more efficient in computation when compared

to language-dependent techniques, as the frequent max substring technique does not

require pre-processing in segmenting the indexing terms like the word inverted index

technique does. In addition, the frequent max substring technique also does not require

pre-processing and query processing before indexing and searching can be performed,

which provides more benefits than the word inverted index and n-gram inverted index

techniques.

To demonstrate the strengths and weaknesses between the proposed technique and other

techniques, experimental studies and comparison results on indexing Thai text

documents are presented in the next sections.

3.5 Experimental studies

One of the basic requirements for evaluation is that results from different indexing

techniques can be compared in terms of indexing efficiency and retrieval performance

[96]. In this section, an experiment for indexing Thai text documents is shown. The

objective of this experimental study is to demonstrate an experiment result for indexing

Thai text documents using five different approaches, in order to compare indexing

efficiency and retrieval performance. Suffix array, word inverted index, n-gram

125

inverted index, Vilo’s technique and the proposed frequent max substring techniques

are investigated. From literature reviews, only a few papers work on the comparison of

suffix array, word inverted index and n-gram inverted index techniques for indexing

Thai text documents [1], [10]. In addition, Vilo’s technique has never been applied and

proved for indexing Thai text documents, although this technique was proposed to work

on non-segmented texts like the genome sequence. Consequently, and while no one has

made this comparison before, five indexing techniques will be investigated and

compared in term of indexing Thai text documents in this thesis. The experimental

study is divided into two main sections: evaluation of indexing and evaluation of

retrieval performance, as will be described in Sections 3.5.2 and 3.5.3 respectively. In

the evaluation of indexing, five indexing approaches are compared and evaluated in

terms of the number of indexing terms, index size and indexing time. Meanwhile, the

retrieval performance of five indexing approaches is evaluated by using standard

precision and recall in the evaluation of retrieval performance section [7]. To make this

comparison fair, the frequency threshold θ is set to 2 for the five indexing techniques in

this experiment, which could ignore all words or substrings occurring only once in the

texts, because one occurrence of words or substrings in the texts could usually not be

taken as significant in defining the subject matter [77], [69] in Thai text.

3.5.1 Text collection

Unlike in English, standard data sets in Thai are not yet available for evaluating Thai

text processing or indexing techniques [29]. However, in order to observe the

performance of indexing techniques, a set of 50 Thai web pages with a size of 3.56 Mb

is used as the text collection for the evaluation. In this experiment, 50 is chosen as the

number of test web pages or documents in the text collection, because the number of

documents normally used to evaluate Thai text processing techniques ranges from 10 to

126

80 documents or 1.25 Mb to 5.75 Mb [29], [48]. All Thai web pages used are Thai news

websites, which consist of different content: sports, travel, education and political news

as shown in Appendix A. The documents have varying sizes and lengths as also shown

in Appendix B. The set of documents contains 103,287 characters, and average

document length is 2,065 characters or 430 words per document. The basic statistics for

the text collection are shown in Table 3.3.

Table 3.3. Basic statistics for Thai text collection

 No. of

Docs

No. of

Chars

No. of

Words

Avg.

Chars/Docs

Avg.

Words/Docs

Sports news 15 24,727 5,447 1,648.46 636.13

Travel news 15 31,098 6,177 2,073.2 411.8

Political

news

15 38,017 8,050 2,534.46 536.66

Education

news

5 9,445 1,807 1,889 361.4

3.5.2 Evaluation of indexing

In indexing efficiency evaluation, the methodology used to compare the five indexing

approaches is based on space and time efficiency for indexing Thai text documents. In

space efficiency, the number of indexing terms which were enumerated by using five

different approaches is compared, and index sizes used by the five approaches are also

evaluated. The computational complexities used by the five indexing techniques are

calculated in order to compare the time efficiency for indexing Thai text documents. In

the n-gram inverted index, 3 is chosen to be the n, as most 3-gram indexing terms are

meaningful in the Thai language. In the following sections, the comparison among five

different indexing approaches is presented.

127

3.5.2.1 Space efficiency

In order to compare the five different indexing techniques for Thai text documents, the

number of indexing terms which were extracted is first compared. The five indexing

approaches used in the comparison are: suffix array, word inverted index, n-gram

inverted index, Vilo’s technique and the proposed frequent max substring techniques. In

order to show the results clearly, the results from the five techniques are separated and

shown in Figures 3.13, 3.14 and 3.15. The group of suffix array and the proposed

frequent max substring technique is shown in Figure 3.13 and the group of Vilo’s

technique and the proposed frequent max substring technique is shown in Figure 3.14.

Meanwhile, the group of word inverted index, 3-gram inverted index and the proposed

frequent max substring technique is shown in Figure 3.15 as these three methods

provided similar results and the results occur far from the first two groups. (For more

data refer to Appendix C).

Figure 3.13. Graph of number of indexing terms extracted from two techniques:

suffix array and proposed frequent max substring technique

T
h

e
nu

m
b

er
 o

f i
nd

ex
in

g
 t

er
m

s

Text length (n characters)

128

Figure 3.14. Graph of number of indexing terms extracted from two techniques:

Vilo’s technique and proposed frequent max substring technique

From Figure 3.13, it can be observed that the frequent max substring technique

extracted a much smaller number of indexing terms when compared to suffix array. The

frequent max substring technique also extracted a smaller number of indexing terms

when compared to Vilo’s technique as observed from Figure 3.14.

From observation, these three algorithms: suffix array, Vilo’s technique and the

frequent max substring technique can be used to retrieve all frequent substrings which

occur at least at the given frequency threshold value, as described in previous sections.

The indexing terms extracted by using these three techniques may or may not be

meaningful as these are language-independent techniques. From the results crossing

over Figure 3.13 and 3.14, the suffix array approach provides a much greater number of

indexing terms than Vilo’s technique and the proposed frequent max substring

technique. The number of indexing terms which were extracted by the suffix array

approach is the number of all substrings from the text documents. This is because the

T
h

e
nu

m
b

er
 o

f i
nd

ex
in

g
 t

er
m

s

Text length (n characters)

129

suffix array basically enumerates the complete set of the substrings from the given

string before finding the number of occurrences of each substring. While for Vilo’s

technique, the number of indexing terms generated is dependant on the size of the

longest substrings that occur at least at the given frequency threshold value. In addition,

the proposed frequent max substring technique provides a smaller number of indexing

terms than the suffix array technique and Vilo’s technique. In the proposed frequent

max substring technique, the algorithm enumerates only substrings that correspond to

the frequent max substrings that contain all frequent substrings. Therefore, it uses less

storage space for storing and extracting indexing terms. This could suggest that the

proposed frequent max substring technique is more storage efficient when compared to

suffix array and Vilo’s techniques.

Figure 3.15. Graph of number of indexing terms extracted from three techniques:

word inverted index, 3-gram inverted index and proposed frequent max substring

technique

T
h

e
nu

m
b

er
 o

f i
nd

ex
in

g
 t

er
m

s

Text length (n characters)

130

In the word inverted index method, all indexing terms are meaningful because this

technique usually relies on language analysis or on the use of a dictionary. However,

one of the drawbacks of this technique is that this method requires query processing and

pre-processing in terms of segmentation, before searching and indexing can be

performed. However, the ambiguous context of the Thai language is one of the major

causes in degrading the efficiency of the parser. Additionally, the word inverted index

technique sometimes loses the frequent substrings, as this technique uses word

segmentation in extracting indexing terms as described in Chapter 2.

In the 3-gram inverted index approach, the indexing terms extracted by using this

technique may or may not be meaningful. Despite this, using the 3-gram inverted index

yields a smaller number of indexing terms than the proposed frequent max substring

technique. Whereas, the disadvantage of the 3-gram inverted index is that it requires

query processing before searching can be performed and query processing may lose the

meaning of indexing terms. The n-gram inverted index also requires pre-processing to

generate n-gram before indexing can be performed.

From Figure 3.15, it can be observed that the proposed frequent max substring

technique provides slightly greater numbers of indexing terms than the word inverted

index and the 3-gram inverted index techniques. It is worth noting that this proposed

technique does not require any query processing or pre-processing before searching and

indexing can be performed. Furthermore, most of the indexing terms extracted by the

proposed frequent max substring technique are meaningful, as these indexing terms

occur frequently in the text documents and most of them are noun phrases as will be

described further in Section 3.5.3. However, the occurrence of indexing terms in text

documents and the given frequency threshold value are the main factors impacting the

131

number of indexing terms. The results show that the number of indexing terms

increases when the text documents contain numerous small frequent substrings and the

lengths of the frequent max substrings are short. In addition, the number of indexing

terms also decreases when the given frequency threshold value increases.

For another experiment, a comparison of index size from five approaches is shown in

Figures 3.16, 3.17 and 3.18, respectively (For more data refer to Appendix D). The

comparison of index size refers to the storage space used by the five different

approaches to index and store indexing terms and their pointers. Each technique

requires a different index size, although they are performed using the same data

collection. This is because the indexing terms which are extracted by the five

approaches have varying lengths and pointers. Therefore, the comparisons between the

number of indexing terms and index size are different in terms of memory. In this

experiment, bytes are used as a measuring unit for comparing the index size used in the

five different approaches.

Figure 3.16. Comparison of index size from two techniques: suffix array and

proposed frequent max substring technique

In
d

ex
 s

iz
e

(b
yt

es
)

Text size (bytes)

132

Figure 3.17. Comparison of index size from two techniques: Vilo’s technique and

proposed frequent max substring technique

Figure 3.18. Comparison of index size from three techniques: word inverted index,

3-gram inverted index and proposed frequent max substring technique

From the evaluation results as shown in Figure 3.16, the suffix array approach

obviously requires much more space to store indexing terms when compared to the

proposed frequent max substring and other techniques. This is because this algorithm

In
d

ex
 s

iz
e

(b
yt

es
)

Text size (bytes)

In
d

ex
 s

iz
e

(b
yt

es
)

Text size (bytes)

133

constructs a suffix array that contains all suffixes from the string, sorted alphabetically

starting at position i in the string and continuing to the end of the string. As a result, one

of the drawbacks in terms of index size in this technique seems to be very critical. Since

the size of electronically stored information in the Thai language has grown

exponentially, the method of suffix array is no longer practical for use in some

applications, especially for a large collection of text documents, because the suffix array

uses high storage space for containing all suffixes of the string, even when the string is

short [1]. Meanwhile, Vilo’s technique also requires more storage space when

compared to the frequent max substring and other techniques, but less than the suffix

array approach as shown in Figure 3.17. Although the given frequency threshold value

can be used to reduce the index size, Vilo’s technique still generates all possible

frequent substrings from the given Thai text documents, which requires more storage

space.

In the word inverted index, 3-gram inverted index and proposed frequent max substring

techniques, index sizes used by these three approaches are quite similar, as shown in

Figure 3.18. These three techniques also yield much smaller index sizes than the suffix

array and Vilo’s approaches. The proposed frequent max substring technique stores

only frequent max substrings, thus this technique requires a small index size. However,

the word inverted index and 3-gram inverted index approaches also require less index

size than the proposed frequent max substring technique as these two techniques store

the indexing terms in word and small substring levels. Although the proposed frequent

max substring technique requires more index size, the benefit of this technique is that it

does not need additional space to store a dictionary, corpus or manually hand crafted

rules and does not require pre-processing to generate word and n-gram when compared

to the word inverted index and n-gram inverted index, respectively.

134

3.5.2.2 Time efficiency

In this section, a comparative study of the five approaches in terms of indexing time is

performed. The time used to index the text documents is calculated in process rounds

dependent on the text lengths or n characters. Time complexities used in these five

approaches are also examined in this section. Figures 3.19, 3.20, 3.21 and 3.22 show the

experimental results in terms of indexing time (For more data refer to Appendix E).

Figure 3.19. Comparison of indexing time of two techniques: word inverted

index and proposed frequent max substring technique

Figure 3.20. Comparison of indexing time of two techniques: 3-gram inverted

index and proposed frequent max substring technique

T
h

e
nu

m
b

er
 o

f p
ro

ce
ss

 r
o

u
nd

s

Text length (n characters)

T
h

e
nu

m
b

er
 o

f p
ro

ce
ss

 r
o

u
nd

s

Text length (n characters)

135

Figure 3.21. Comparison of indexing time of two techniques: suffix array and

proposed frequent max substring technique

Figure 3.22. Comparison of indexing time of two techniques: Vilo’s technique

and proposed frequent max substring technique

It can be observed from Figure 3.19 that the proposed frequent max substring technique

uses less indexing time than the word inverted index technique. However, in some cases

(at 3,243, 3,475, and 4,022 text lengths), the frequent max technique requires more

indexing time than the word inverted index technique. This is because there is a higher

number of frequent max substrings being kept in the min-heap structure during the

T
h

e
nu

m
b

er
 o

f p
ro

ce
ss

 r
o

u
nd

s

Text length (n characters)

T
h

e
nu

m
b

er
 o

f p
ro

ce
ss

 r
o

u
nd

s

Text length (n characters)

136

extracting process from these three text documents. When the min-heap structure

contains more frequent max substrings, more indexing time is required to check the

substring status as described in Section 3.4.2. However, it is less likely that this case

will happen in the proposed algorithm during the extraction of indexing terms, as it uses

the two reduction rules. The two reduction rules are used to check the substring

(indexing term) status in order to reduce the number of indexing terms in the min-heap

structure. Meanwhile, Thai text documents need to be parsed and tokenized into

individual terms before construction can be performed in the word inverted index.

Therefore, this technique requires two processing times: the pre-processing and

indexing times. The total time of the word inverted index technique is then O(n|Dic|) +

O(n2). O(n|Dic|) time complexity is required to parse words from a given Thai text

document, by using a set of all possible words in the dictionary to match a given Thai

text document for the segmenting process. O(n2) time complexity is required for

constructing the inverted index. As a result, the word inverted index method takes

O(n|Dic|) + O(n2) time complexity for indexing Thai text documents, where |Dic| is

dictionary size. Meanwhile the proposed frequent max substring technique does not

require pre-processing time. However, the one of the drawbacks of the proposed

frequent max substring technique is the indexing time required for constructing an

index when compared to the other three techniques: suffix array, 3-gram inverted index

and Vilo’s technique. As can be observed from the results, the proposed frequent max

substring technique requires more time to check the substring status for indexing. This

is due to the use of the two reduction rules (as described in Section 3.4.2) to reduce the

number of indexing terms. However, the indexing time is dependent on the given

frequency threshold value and the size of maximum indexing terms. As mentioned, the

proposed frequent suffix trie structure presented in Section 3.4.1 is used to perform

indexing. The indexing time is therefore not known before the proposed frequent suffix

137

trie structure is built, because it is dependent on the given frequency threshold value

and the size of maximum indexing terms. For instance, at every depth of the frequent

suffix trie structure, the indexing time is proportional to the total number of nodes and

the time required to check the substring status of all nodes at that depth. Therefore,

each depth requires O(n2) in time complexity. As mentioned, the indexing time is also

dependent on the given frequency threshold value and the depth of the resultant

frequent suffix trie or the size of maximum indexing terms. As a result, this method

requires O(n2d) in time complexity where d is the size of maximum indexing terms.

In the 3-gram inverted index technique, Thai text documents need to be tokenized into

3-grams before construction can be performed. As a result, the 3-gram inverted index

also requires two processing times: the pre-processing and indexing times. The 3-gram

inverted index approach takes O(n) + O(n2) time complexity as O(n) time complexity is

required to generate all 3-grams from a given Thai text document and O(n2) time

complexity is used for constructing the inverted index. As observed from the Figure

3.20, the 3-gram approach requires less indexing time than the proposed frequent max

substring technique, although this technique needs pre-processing.

In Figure 3.21, it can be observed that the indexing time of the suffix array method

increased slightly depending on text length. This technique first generates all suffixes of

the string. Then all suffixes are sorted in alphabetical order to compute the frequency

and location of indexing terms. As a result, this method takes O(n2) time complexity for

constructing an index. Furthermore, the indexing time used to index the suffix array can

be changed, dependent on sorting algorithms. In this experiment, Quicksort is used in

sorting suffixes as it is the simplest efficient approach to building a suffix array.

138

From Figure 3.22, Vilo’s technique takes O(nd) time complexity where d is the depth of

the trie or the size of maximum indexing terms. In this technique, the pattern trie data

structure is used to perform indexing. The indexing time is not known before the trie is

built because it is dependent on the frequency threshold value and the depth of the trie.

For instance, if the defined frequency = 1, the algorithm constructs the full suffix trie

where depth n takes O(n2). In contrast, if the defined frequency = 2, the algorithm takes

O(nd) time complexity where d is depth of the trie or the size of maximum indexing

terms that occur at least at the given frequency threshold value.

It can be observed that the 3-gram inverted index, suffix array and Vilo’s techniques

performed well in terms of indexing time as these three techniques are straightforward

and simple in constructing the index. The 3-gram inverted index, suffix array and Vilo’s

techniques take O(n) + O(n2), O(n2) and O(nd) time complexity respectively.

Meanwhile the word inverted index and proposed frequent max substring techniques

take O(n|Dic|) + O(n2) and O(n2d) time complexity respectively, where |Dic| is

dictionary size and d is the size of maximum indexing terms. These two techniques

required more time than the other three methods to compute complex tasks, such as

indexing term segmentation using dictionary matching and checking superstring

definitions in the proposed frequent max substring technique.

3.5.3 Evaluation of retrieval performance

Retrieval performance is based on an ability to partition the text document collection

into relevant and non-relevant documents, and into retrieved and not retrieved

documents, according to what the user wants or queries as shown in Figure 3.23. Two

most commonly used evaluation measures used to evaluate retrieval performance are

precision and recall [7], [69]. Precision and recall were introduced in the Cranfield

139

studies to summarize and compare search results [96]. In information retrieval,

precision is defined as the ability to retrieve top-ranked documents that are mostly

relevant. The formal definition of recall is the ability of the search to find all of the

relevant documents in the text document collection. The definitions of these two

measures assume that, for a given query, there is a set of documents that is retrieved and

a set that is not retrieved. This obviously applies to the results of a Boolean search. If

relevance is assumed to be binary, then the results of the query can be summarized as

shown in Figure 3.23. In this figure, A is the relevant set of documents for the query,

A is the non-relevant set, B is the set of retrieved documents, and B is the set of

documents that are not retrieved. The operation ∩ gives the intersection of two sets. For

example, A ∩ B is the set of documents that are both relevant and retrieved as shown in

Figure 3.23.

Precision = Number of relevant documents retrieved / Total number of

documents retrieved, can be denoted by
||

||

B

BA∩

Recall = Number of relevant documents retrieved / Total number of relevant

documents, can be denoted by
||

||

A

BA∩

where |.| gives the size of the set.

Figure 3.23. Precision and recall for given example information request

Entire document
collection

BA∩ BA∩

BA∩

N
ot

 r
et

rie
ve

d

R
et

rie
ve

d

 Relevant
documents

Retrieved
documents

|A| |B|

 Relevant Non-relevant

Relevant
documents

in retrieved set
|Ab| BA∩

140

From Figure 3.23, consider the example query q and the set A of relevant documents.

Let |A| be the number of relevant documents in set A. Assume that a given retrieval

strategy processes the query q and generates the retrieved document set B. Let |B| be the

number of retrieved documents in set B. Therefore, the relevant documents in the

retrieved document set B is in the desired document set Ab that satisfies the user’s

query, where |Ab| is the number of documents in the intersection of sets A and B. As a

result, precision and recall values can be calculated from the number of documents in

different sets. In other words, precision is the proportion of retrieved documents that are

relevant. Recall is the proportion of relevant documents that are retrieved. There is an

implicit assumption in using these measures that the task involves retrieving as many of

the relevant documents as possible and minimizing the number of non-relevant

documents retrieved.

In order to evaluate the retrieval performance of the five indexing techniques, the above

standard precision and recall measures are used as measures of their performance. The

five indexing approaches used in the evaluation are suffix array, word inverted index, n-

gram inverted index, Vilo’s technique and the proposed frequent max substring

technique. In this experiment, eight queries are used as test queries that consist of four

phrase queries and four single word queries as shown in Table 3.4. Most queries are

noun words and noun phrases that can be used to define document types. All test

queries are derived from the most frequent 100 queries that have been used by Thai

users when using a search engine (for more detail, see

http://business.truehits.net/keyfile/key_5.php). Phrase queries used in this experiment

consist of two words, because the survey shows that two-word phrase queries are most

often used when searching the web. The statistics were presented by OneStat.com under

141

the title: ‘Most Searchers Have Two Words for Google’ (for more information, see

http://searchenginewatch.com/3627479). The survey also shows that two-word phrase

queries can normally satisfy users’ needs appropriately.

Table 3.4. All test queries consisting of four phrase queries and four single

word queries

Phrase queries Single word queries

ก���
���!�"(Thai politics) �.��%A
����(Cabinet)

����"�!�"(Thai travel) �����
 (Hotel)

 �ก���'(�'%�(Competition result) �%กก�F�(Athlete)

ก�����"�ก�����(Learning and teaching) ���"� (Learn)

Again, 50 Thai web pages, which consist of the 15 sport, 15 travel, 5 education and 15

political web pages used in the experiment earlier, are used to measure precision and

recall. Phrase queries and single word queries are used to test the retrieval performance

of the five indexing techniques. In this experiment, the number of documents that is

relevant to each query is known. For a given query, and a specific definition of

relevance, retrieval performance can be defined as a measure of how well the search

results correspond to what the user wants. This retrieval performance can be evaluated

by considering precision and recall values. The following presents precision and recall

values of the five indexing techniques as shown in Tables 3.5 to 3.9.

142

Table 3.5. Precision and recall values of word inverted index technique

Phrase queries Single word queries

Queries Precision Recall Queries Precision Recall

ก���
���!�"

(Thai politics)

0.66 0.66 �+��%,
����

(Cabinet)

0.33 1

����"�!�"

(Thai travel)

0.78 1 �����

(Hotel)

0.54 1

 �ก���'(�'%�

(Competition result)

0.5 0.5 �%กก�-�

(Athlete)

0.48 1

ก�����"�ก�����

(Learning and
teaching)

1 1 ���"�

(Learn)

0.62 1

Average 0.735 0.79 0.4925 1

Table 3.6. Precision and recall values of 3-gram inverted index technique

Phrase queries Single word queries

Queries Precision Recall Queries Precision Recall

ก���
���!�"

(Thai politics)

0.54 0.66 �+��%,
����

(Cabinet)

0.28 1

����"�!�"

(Thai travel)

0.72 0.72 �����

(Hotel)

0.54 1

 �ก���'(�'%�

(Competition result)

0.66 0.5 �%กก�-�

(Athlete)

0.42 0.86

ก�����"�ก�����

(Learning and
teaching)

1 1 ���"�

(Learn)

0.55 1

Average 0.73 0.72 0.4475 0.965

143

Table 3.7. Precision and recall values of Vilo’s technique

Phrase queries Single word queries

Queries Precision Recall Queries Precision Recall

ก���
���!�"

(Thai politics)

0.7 0.77 �+��%,
����

(Cabinet)

0.33 1

����"�!�"

(Thai travel)

0.78 1 �����

(Hotel)

0.54 1

 �ก���'(�'%�

(Competition result)

0.6 0.75 �%กก�-�

(Athlete)

0.48 1

ก�����"�ก�����

(Learning and
teaching)

0.75 1 ���"�

(Learn)

0.62 1

Average 0.7075 0.88 0.4925 1

Table 3.8. Precision and recall values of suffix array technique

Phrase queries Single word queries

Queries Precision Recall Queries Precision Recall

ก���
���!�"

(Thai politics)

0.7 0.77 �+��%,
����

(Cabinet)

0.33 1

����"�!�"

(Thai travel)

0.78 1 �����

(Hotel)

0.54 1

 �ก���'(�'%�

(Competition result)

0.6 0.75 �%กก�-�

(Athlete)

0.48 1

ก�����"�ก�����

(Learning and
teaching)

0.75 1 ���"�

(Learn)

0.62 1

Average 0.7075 0.88 0.4925 1

144

Table 3.9. Precision and recall values of frequent max substring technique

Phrase queries Single word queries

Queries Precision Recall Queries Precision Recall

ก���
���!�"

(Thai politics)

0.77 0.77 �+��%,
����

(Cabinet)

0.33 1

����"�!�"

(Thai travel)

0.78 1 �����

(Hotel)

0.54 1

 �ก���'(�'%�

(Competition result)

0.75

0.75 �%กก�-�

(Athlete)

0.48 1

ก�����"�ก�����

(Learning and
teaching)

1 1 ���"�

(Learn)

0.62 1

Average 0.825 0.88 0.4925 1

In order to compare the retrieval performance of different indexing techniques, Table

3.10 shows the average precision and recall values provided by the five indexing

techniques.

Table 3.10. Average precision and recall values of five indexing techniques

Average precision and recall values from five indexing techniques

Algorithms Avg. Precision Avg. Recall

Frequent max substring technique 0.6588 0.94

Word inverted index technique 0.6138 0.895

Vilo’s technique 0.6 0.94

Suffix array approach 0.6 0.94

3-gram inverted index technique 0.5888 0.8425

As observed from Table 3.10, the frequent max substring technique provides the best

average precision and recall values. This is because the frequent max substring

technique is used to extract frequent and long indexing terms, known as frequent max

145

substrings. These indexing terms can be used to define the subject matter of the query

more clearly in the relevant documents. As mentioned earlier, the survey given by

OneStat.com under the title: ‘Most Searchers Have Two Words for Google’

(http://searchenginewatch.com/article/2067569/Most-Searchers-Have-Two-Words-for-

Google) shows that phrase queries usually provide better results than single word

queries, in that they provide more relevant results to user’s queries. These phrase

queries are normally contained as substrings in frequent max substrings. This is the

reason why the frequent max substring technique provides better retrieval performance

compared to other techniques. Meanwhile, Vilo’s technique and the suffix array

approach provide the same average precision and recall values. This is because these

two techniques are used to extract and keep all frequent indexing terms, as mentioned in

the previous sections. Additionally, three indexing techniques: the frequent max

substring technique, suffix array approach and Vilo’s technique provide the same recall

values in this experiment. It can also be observed from Table 3.5 to 3.9 that the recall

values of single word queries are higher than that of phrase queries for all techniques.

This is because all techniques can basically be used to find relevant documents that

contain the single word queries, and the single word queries generally occur more often

than the phrase queries in the text collection. Due to this reason, the ability to find

desired documents using single word queries is higher than using phrase queries.

However, the frequent max substring technique provides better precision values than

the suffix array approach and Vilo’s technique, because the number of retrieved

documents searched by the frequent max substring technique is less than the number of

retrieved documents searched by the other two techniques.

146

In searching phrase queries with the word inverted index technique, the phrase queries

are required to be segmented into individual single words before searching. Following

that, all single words are sent to the search process in order to find all documents that

contain all segmented single words. Due to this reason, the word inverted index

technique provides low precision and recall values, because single words are usually

used as general terms rather than specific terms. In addition, in a single word query

search, some relevant documents cannot be found with the word inverted index

technique if the given single word query cannot match any indexing term in an index,

because of the use of different word segmentation techniques.

When comparing different techniques, the 3-gram inverted index technique provides

lower precision and recall values than other techniques. When using the 3-gram

inverted index technique, the given query needs to be split into 3-gram terms. For

example, if the given query is ‘�����
’ or ‘hotel’, this query has to be segmented into

Y����, Y����, Y���� and ���
�. One of the drawbacks of splitting the query into 3-gram

terms is that all 3-gram terms lose their semantic information and most of them are not

meaningful. As a result, the 3-gram inverted index technique provides low precision

and recall values. This is mainly because most of the split 3-gram terms cannot define

what the user needs and thus cannot find the relevant documents.

Additionally, when queries were used to test retrieval performance, many advantages

and disadvantages of each indexing technique were found. One of the main drawbacks

of the word inverted index and 3-gram inverted index techniques are that these methods

require query processing using segmentation, before searching can be performed. In

searching phrase queries, the main problem of the word inverted index technique is that

147

the phrase queries need to be segmented using the same word segmentation algorithm

used for extracting indexing terms, so that an obtained set of words from the phrase

queries can be used to query the text collection as shown in Figure 3.24.

Figure 3.24. Example of querying text collection by using a phrase query in

word inverted index technique

From Figure 3.24, ‘����"�!�"’ which means ‘Thai travel’ in English, was used as the

phrase query to search relevant documents. This phrase query has to be segmented into

‘ ����"�’ (travel) and ‘!�"’ (Thai) before searching. As a result, ‘����"�’ (travel) and ‘!�"’

(Thai) terms were used to find all documents that contain these two terms. The Boolean

operators such as ‘AND’ are needed for querying the text collection and this makes the

query complex.

This problem also happens with the 3-gram inverted indexing technique. In the 3-gram

inverted indexing technique, both phrase and single words queries need to be split into

148

3-gram terms by using the 1-sliding technique as mentioned in Chapter 2. For instance,

if the given query is ‘����"�!�"’ (Thai travel), ‘����"�!�"’ (Thai travel) has to be split into

seven 3-gram terms before a search can be performed as shown in Figure 3.25.

Figure 3.25. Example of querying text collection in 3-gram inverted index

technique

From Figure 3.25, it can be observed that the given query was split into seven 3-gram

terms and these terms were used to find documents which contain these split 3-gram

terms. This could complicate the query after processing in the 3-gram inverted index

technique. Hence, one of the drawbacks of the 3-gram inverted index technique is that

this technique requires more resources, such as Boolean operation (AND etcetera), in

searching.

149

In contrast, the advantage of the frequent max substring technique, Vilo’s technique and

the suffix array approach is that these three indexing techniques do not require pre-

processing of the query before the search can be performed. In these three indexing

techniques, the queries can directly be used for searching relevant documents that

contain the queries as shown in Figure 3.26. This could be used as an option to search

exact phrase queries from the documents, as these three indexing techniques can be

used to find all frequent substrings from the documents. In addition, although phrase

queries were segmented by any word segmentation technique or the 1-sliding technique

used in the 3-gram inverted index technique, these three indexing techniques are still

able to find the relevant documents as shown in Figure 3.27.

 Figure 3.26. Example of querying text collection using exact phrase query

in frequent max substring technique

150

Figure 3.27. Example of querying text collection using a segmented query in

frequent max substring technique

In Figure 3.26, ‘����"�!�"’ (Thai travel) was directly used as the phrase query to search

relevant documents in the frequent max substring technique and all documents which

contain ‘����"�!�"’ (Thai travel) were retrieved. Additionally, the frequent max substring

technique also provides good results in terms of searching relevant documents even

when ‘����"�!�"’ (Thai travel) was segmented into single words: ‘����"�’ (travel) and

‘!�"’ (Thai) as depicted in Figure 3.27.

3.6 Conclusion

This chapter presents a proposed technique, called the frequent max substring

technique, to extract indexing terms, known as frequent max substrings, for indexing

151

Thai text documents. The proposed technique is able to construct the index using less

storage space to facilitate more efficient Thai text retrieval. The proposed technique

used a proposed data structure, called the frequent suffix trie or FST structure, to ensure

exhaustive enumeration of substrings to support extraction and storing of frequent max

substrings. In practice, the heap data structure is employed to compute the frequent max

substrings by using two reduction rules to reduce storage requirement and the time

required for extracting frequent max substrings. The experiments were performed on

indexing of 50 Thai web pages. The comparison results with different indexing

techniques are also presented. Five indexing techniques are compared in terms of

indexing efficiency and retrieval performance. From the indexing efficiency evaluation

and comparison results, it can be observed that the proposed technique requires less

space to store the indexing terms than the suffix array and Vilo’s techniques.

Meanwhile, the proposed frequent max substring technique provides a similar number

of indexing terms when compared to the word inverted index and 3-gram inverted index

techniques. In addition, the word inverted index, 3-gram inverted index and frequent

max substring techniques yield similar index sizes, which are much smaller when

compared to the suffix array and Vilo’s approaches. However, one of the drawbacks of

the word inverted index and 3-gram inverted index techniques is that these techniques

require query processing and pre-processing before searching and indexing can be

performed. Due to being language-dependent, the main problem of the word inverted

index is that it requires word segmentation (i.e. the need for well-defined linguistic

knowledge or the use of a dictionary or a corpus) in order to extract indexing terms,

before constructing an index and searching the relevant documents. Like the word

inverted index technique, the n-gram inverted indexing technique, which is language-

independent, also requires the determination of the appropriate n-gram before any

extraction or searching can be done. Meanwhile the proposed frequent max substring

152

technique does not require any query processing and pre-processing. The proposed

frequent max substring technique is also a language-independent technique that could

be applied to many applications. In terms of time efficiency, one of the drawbacks of

the proposed frequent max substring technique is the indexing time required for

constructing an index, when compared to other techniques. This proposed technique

requires more time to double check the conditions. However, the indexing time is

dependent on the given frequency threshold value and the size of the maximum

indexing terms.

Furthermore, the occurrence of the indexing terms in text documents and the given

frequency threshold value are also the main factors impacting on the space and time

efficiency of the proposed technique. In the retrieval performance evaluation,

comparison results show that the proposed frequent max substring technique provides

the best precision and recall values, because this proposed technique extracts and keeps

frequent and long indexing terms, known as the frequent max substring. These frequent

max substrings can normally better describe the content of documents. Meanwhile,

Vilo’s technique and the suffix array approach provide the same precision and recall

values. Additionally, the frequent max substring technique, Vilo’s technique and the

suffix array approach provide good recall results, as these three techniques can find all

documents that contain the query. As a result, these three techniques provided high

recall value.

In the word inverted index and 3-gram inverted index techniques, query processing

using segmentation is required before searching. The precision and recall values for

these two techniques are subject to the quality of the segmentation, i.e. the splitting of

general terms. These general terms normally cannot be used to exactly specify what the

153

user needs and they are often not meaningful when used with the 3-gram inverted index

technique.

Furthermore, another benefit of the frequent max substring technique, Vilo’s technique

and the suffix array approach is that the given query can directly be used to search

relevant documents without query processing before searching. In addition, the frequent

max substring technique, Vilo’s technique and the suffix array approach are also able to

search relevant documents even when the query was segmented into single words.

Meanwhile, the word inverted index and 3-gram inverted index techniques require

query processing for all cases.

154

Chapter 4

Hybrid Method: Integration of the Frequent Max

Substring Technique and Thai Language-

Dependent Technique

4.1 Introduction

The objective of this chapter is to show that the frequent max substring technique

presented in Chapter 3 can also be combined with other Thai language-dependent

techniques to become a novel language-dependent technique. This hybrid method is

based on the integration of the frequent max substring technique and a Thai language-

dependent technique for extracting and indexing meaningful indexing terms from Thai

text documents. In order to see whether the hybrid method provides significant benefits

for indexing Thai text documents, the hybrid method is compared with the word

inverted index technique in terms of the number of indexing terms and retrieval

performance, as the word inverted index technique is the more widely used language-

dependent technique for Thai text indexing [1], [7], [34], [44]. Before presenting the

hybrid method, some related works are described in Section 4.2.

4.2 Related works

As outlined in Chapter 2, the word inverted technique is the more widely adopted

method used for indexing Thai text documents [1] ,[7], [34], [44]. This technique relies

mainly on the outcome of word segmentation techniques [97], [98], [4]. The objective

155

of word segmentation techniques is to extract a set of words contained in the text

documents. Keywords are then selected from this set of words in order to create the

index for the corresponding text documents as described in Chapter 2. However, due to

the limitations of word segmentation techniques and the difficulty in Thai phrase or

sentence extraction, only a few significant works on Thai information extraction are

available and will be reviewed as follows.

In [99], the study considers the generation of substrings from text corpus of non-

segmented languages and focuses on natural language processing (NLP) issues such as

morphology and part-of-speech (POS) tagging.

In [98], the alternative method for extracting important keywords from categorized text

corpora was proposed. This method was referred to as automatic categorized keyword

extraction (ACKE). The algorithm is based on the analysis of frequent substring-sets for

mining sequential patterns. The ACKE algorithm is composed of two main steps: (1) a

process of generating frequent substrings, which satisfies some constraints, and (2) a

process of merging those frequent substrings into keywords. Therefore, applying the

ACKE algorithm to a text corpus generates keywords which are highly distinctive in

indexing documents.

In sentence segmentation, the tri-gram model was adopted. Current research into

sentence boundaries can be found in the paper by Mittrapiyanuruk P. and

Sornlertlamvanich in 2000 [100]. Their proposed algorithm was used to extract

sentences from a paragraph by detecting the true sentence breaking spaces. The

statistical part-of-speech (POS) tagging technique was applied to the space

classification problem in this technique. The algorithm considers two consecutive

156

strings with a space in between each time to determine whether the space is a true

sentence breaking space. This approach was evaluated by the ORCHID corpus [55],

which is a part-of-speech tagged corpus. However, from the evaluation, this approach

cannot generate high segmentation accuracy and segmentation of sentences is still a

complex task. The segmentation of Thai sentences is difficult mainly due to the reason

that the definition of segmenting cannot be fully defined.

In [101], a method for paragraph extraction based on extracting Thai compound nouns

was proposed. It is known that compound nouns that occur frequently could carry more

semantic information. Therefore, Thai compund nouns play an important role in Thai

language processing. For this reason, this approach focused on compound nouns

extracted by using part-of-speech (POS) tagging. Furthermore, the term weighting

technique was used to calculate term frequency and document frequency, and to score

all words by removing stopwords in the paragraph. The similarity between paragraphs

was measured according to cosine similarity value. The results were used to select a

representative paragraph among similar paragraphs.

4.3 Hybrid method

In this section, the hybrid method that combines the frequent max substring technique

and Thai language-dependent technique is described. The hybrid method has similar

features as those in [101], as it attempts to generate meaningful indexing terms from

Thai text documents using Thai language-dependent techniques (i.e. requiring linguistic

knowledge of the Thai language) such as POS tagging and stopword removal.

Therefore, the hybrid method consists of two main steps: (1) a process of extracting the

frequent max substrings as indexing terms, using the frequent max substring technique,

and (2) a process of processing those frequent max substrings into indexing terms

157

which are meaningful, using the Thai language-dependent techniques of stopword

removal and POS tagging as shown in Figure 4.1.

Figure 4.1. A system architecture

From Figure 4.1, Thai text documents are used as an input to extract meaningful

indexing terms, and the process of extracting meaningful indexing terms will be

described as follows.

Let D be a text collection consisting of n Thai text documents, d1 d2 …. dn. Firstly, the

frequent max substring technique is used to extract frequent max substrings which

satisfy the following constraint: the length of the frequent max substrings is more than

two at the given frequency threshold value. This process does not require any linguistic

knowledge of the Thai language. As mentioned in Chapter 2, most single and bi-gram

indexing terms in Thai text documents are insignificant and may not have any useful

meaning in the Thai language. These terms are usually used only as parts of words or to

form some grammatical constructions in the Thai language.

Thai text
documents

Meaningful
indexing terms

Indexing term
extraction

Text processing
POS

tagging

Frequent
max

substring
technique

Stopword
removal

Using
POS

tagged
corpus

158

Assuming the frequent max substring technique produces m frequent max substrings,

the length of which is more than two, denoted fms = (fm1, fm2, ….., fmm), where fmi is

the ith frequent max substring extracted from the Thai text documents.

After these frequent max substrings are extracted, the next process is Thai stopword

removal. Thai stopwords are frequently occurring insignificant words in the Thai

language. These Thai words do not represent the content of the documents as discussed

in Section 2.4.1.3 in Chapter 2. Therefore, such words should be removed from the set

of frequent max substrings first. In this process, the set of stopwords will be compared

to the frequent max substrings extracted from the first step in order to remove these

words from the extracted frequent max substrings. The set of Thai stopwords can be

denoted by STWORD = (st1, st2, stj ….., stl) where 1 ≤ j ≤ l, l is the number of

stopwords, and stj is a member of the Thai stopwords group in the Thai language as

shown in Table 2.2 in Chapter 2. Let fmi be the frequent max substring that is extracted

earlier by the frequent max substring technique and this term has a length of more than

two. If fmi = stj, fmi will be removed from the index. As a result, the index will no

longer contain stopwords. Finally, a further process is to perform part-of-speech (POS)

tagging, which assigns each frequent max substring the appropriate POS tag in order to

extract meaningful indexing terms. The POS tags used in this thesis are derived from

the ORCHID project [102]. ORCHID is the name of the collaboration project between

Communications Research Laboratory (CRL) of Japan and National Electronics and

Computer Technology Center (NECTEC) of Thailand, for building a Thai POS tagged

corpus. This is a freely available corpus that contains already segmented Thai texts

[55]. This project was started in 1996 with the aim of creating a Thai language corpus

for processing the Thai language. The POS tag set consists of 47 tags, where each

syntactic category is further divided into subcategories as shown in Table 4.1.

159

Table 4.1 Thai part-of-speech as tagset for ORCHID[102]

No. POS Description Example
1 NPRP Proper noun �,������ 95, �����(�, ���ก, $�����,�"�
2 NCNM Cardinal number)�*��, ���, ��
, 1, 2, 3
3 NONM Ordinal number ���)�*��, ������, �����
, ���1, ���2, ���3
4 NLBL Label noun 1, 2, 3, 4, ก, ', a, b
5 NCMN Common noun)�%����, ��)��, �����, ��
6 NTTL Title noun ��., $���ก
7 PPRS Personal pronoun �/., �'�, <%�
8 PDMN Demonstrative pronoun ���, �%��, ����%��, ������
9 PNTR Interrogative pronoun 4��, ��!�, �"(��!�
10 PREL Relative pronoun ���, =���, �%�, 6�
11 VACT Active verb ������, �����$��, ก,�
12 VSTA Stative verb �)��, �6�, ���
13 VATT Attributive verb ����, ��, ��"
14 XVBM Pre-verb auxiliary, before

negator ‘���’
�ก,�, �ก���, ก���%�

15 XVAM Pre-verb auxiliary, after negator
‘ ���’

�(�", �(�, !��

16 XVMM Pre-verb, before or after negator
‘ ���’

���, ��", ����

17 XVBB Pre-verb auxiliary, in
imperative mood

ก�/.�, 	�, �+,0, �"(�,)��

18 XVAE Post-verb auxiliary !�,
�, '*-�
19 DDAN Definite determiner, after noun

without classifier in between
���, �%��, ��(�, �%-�)
�

20 DDAC Definite determiner, allowing
classifier in between

��-, �%-�, ����, �6��

21 DDBQ Definite determiner, between
noun and classifier or preceding
quantitative expression

�%-�, ��ก, �$�"�

22 DDAQ Definite determiner, following
quantitative expression

$���, D���

23 DIAC Indefinite determiner, following
noun; allowing classifier in
between

!)�, ����, �(��5

24 DIBQ Indefinite determiner, between
noun and classifier or preceding
quantitative expression

���, ���
�., �ก���

25 DIAQ Indefinite determiner, following
quantitative expression

ก�(�, �3&

26 DCNM Determiner, cardinal number
expression

)�*����, ���� 2 �%�

27 DONM Determiner, ordinal number
expression

���)�*��, ������, ����/����"

160

No. POS Description Example
28 ADVN Adverb with normal form �ก(�, ����, +��, �
�����
�
29 ADVI Adverb with iterative form ����5, ��
�5, +��5
30 ADVP Adverb with prefixed form ��"����
31 ADVS Sentential adverb ��"�ก�,, 8��
��
32 CNIT Unit classifier �%�, ��, ��(

33 CLTV Collective classifier �6(, ก�/(
, 16�, �+,�, ���, ����, ���, �/(�
34 CMTR Measurement classifier ก,��ก�%
, �ก��, +%���
�
35 CFQC Frequency classifier ��%-�, ����"�
36 CVBL Verbal classifier
���,
%�
37 JCRG Coordinating conjunction ���,)���, ��(
38 JCMP Comparative conjunction ก�(�, �)
���ก%�, ��(�ก%�
39 JSBR Subordinating conjunction �$����(�, ������	�ก, ���, �
��(�, D��
40 RPRE Preposition 	�ก, ��, '��, 4��, ��
41 INT Interjection ���",���, ���, ��L, �L�
42 FIXN Nominal prefix ก��������, ���
��/ก����
43 FIXV Adverbial prefix �"(������
44 EAFF Ending for affirmative sentence 	K�, 	��, �(�, ��%�, ��, �(�, �D��
45 EITT Ending for interrogative

sentence
)���, �)��, !)
,
%-"

46 NEG Negator !
(,
,!��, !
(!��,
,
47 PUNC Punctuation (,), Y, ,, ;

To tag Thai text documents with appropriate parts-of-speech (POS), the training corpus

derived from ORCHID, where texts are manually segmented and tagged with the POS,

is used to segment and assign POS to each word. A paragraph in the training corpus is

separated into sentences and then into words before assigning POS to each word as

shown in Figure 4.2.

161

Figure 4.2. Sample of the training corpus which is POS tagged text

%TTitle: ก������5)���2��ก�� �����)3L 1
%ETitle: [1st Annual Conference]
%TAuthor:
%EAuthor:
%TInbook: ก������5)���2��ก�� �����)3L 1, 8���ก���2��.7��+�%���2��Jก)���2ก��7����+2������,
�m������& 2531, ��D 1
%EInbook: The 1st Annual Conference, Electronics and Computer Research and Development
Project, Fiscal Year 1988, Book 1
%TPublisher: /��.��)�8�8�.3�2��Jก)���2ก��7����+2������7BD����2, ก��)����2).�/����� �)�8�8�.3
7��ก��+������
%EPublisher: National Electronics and Computer Technology Center, Ministry of Science,
Technology and Energy
%Page:
%Year: 1989
%File:
#P1
#1
ก������5)���2��ก�� �����)3L 1//
ก��/FIXN
����5/VACT
)��/NCMN
�2��ก��/NCMN
<space>/PUNC
�����/CFQC
)3L 1/DONM
//
#2
8���ก���2��.7��+�%���2��Jก)���2ก��7����+2������//
8���ก���2��.7��+�%��/NCMN
�2��Jก)���2ก��/NCMN
7��/JCRG

162

In the hybrid method, the training corpus—which is made up of POS tagged texts—is

used to segment and assign each frequent max substring with parts-of-speech (POS) by

comparing and analyzing the POS of the segmented words in the frequent max

substrings. For example, if fmi consists of seven words, fmi will then be denoted as fmi =

(w1, w2, w3, w4, w5, w6, w7). Figure 4.3 shows an example of POS tagging of the

frequent max substrings.

Figure 4.3. Example of POS tagging of frequent max substrings

To extract meaningful frequent max substrings (i.e. meaningful indexing terms), the

POS of segmented words on the frequent max substrings will be considered. Although a

frequent max substring may consist of several words and may also be composed of

many different POS depending on the words, meaningful frequent max substrings

usually contain noun words. This is because keywords are usually carried by nouns that

can be used to identify subject matter [101]. The analysis based on the frequency of

words occurring in Thai text documents showed that most Thai words are nouns [10].

As a result, frequent max substrings which contain noun words can be considered as

meaningful indexing terms rather than frequent max substrings which carry many

prepositions or conjunctions etcetera. This shows that by applying the frequent max

substring technique to the Thai language-dependent technique can assist Thai text

Let fmi = �D�?��D�ก��+�%���/�0#ก2�8'.���
English translation It directly impacts on economic system development

fmi = w1 w2 w3 w4 w5 w6 w7
Segmented words �D�?� �D� ก�� +�%�� �/�0#ก2� 8'. ���
POS VACT RPRE FIXN VACT NCMN FIXV VATT

163

indexing, as this method generates frequent meaningful indexing terms from Thai text

documents.

4.4 Experimental studies

In this section, an experiment for extracting meaningful indexing terms based on the

hybrid method is presented. Fifty Thai web pages mentioned in Chapter 3 were used in

the experiment. In this experiment, the frequent max substrings with a length of more

than two are first extracted from the input dataset. The Thai language-dependent

technique is then applied to the resultant set of frequent max substrings in order to

reduce the number of insignificant indexing terms using stopword removal and to find

meaningful indexing terms using POS tagging as described in Section 4.3.

Table 4.2 shows the number of frequent max substrings with a length of more than two

that are extracted from the input dataset. The table also shows the number of stopwords

removed from the extracted frequent max substrings and the number of meaningful

indexing terms extracted from frequent max substrings by using POS tagging.

Table 4.2 Number of insignificant indexing terms and meaningful indexing terms

extracted with hybrid method

Text
Id Text name

Text length
(n characters)

No. of frequent max

substrings with a
length of more than 2

No. of
stopwords

No. of

meaningful terms

1 sport2 721 48 6 41

2 sport1 805 68 5 60

3 sport4 874 49 7 38

4 sport3 913 68 14 51

5 travel4 1007 92 16 74

6 sport7 1020 98 7 88

7 sport9 1057 78 14 63

8 travel3 1107 96 16 80

9 sport15 1135 91 12 73

164

Text
Id Text name

Text length
(n characters)

No. of frequent max

substrings with a
length of more than 2

No. of
stopwords

No. of

meaningful terms

10 travel11 1157 93 11 79

11 sport6 1417 134 16 112

12 travel13 1444 141 18 117

13 sport5 1468 125 18 102

14 education2 1507 141 22 119

15 political1 1512 153 22 124

16 education4 1544 126 17 103

17 travel2 1561 129 14 114

18 travel1 1563 142 14 123

19 sport8 1643 144 12 129

20 political3 1652 177 26 147

21 travel15 1789 165 15 150

22 political14 1879 193 27 164

23 travel12 1901 159 15 138

24 travel6 2002 200 31 162

25 political13 2030 193 26 165

26 education5 2035 162 14 143

27 political9 2064 218 22 192

28 political15 2107 224 27 191

29 political5 2126 239 36 201

30 education3 2142 223 29 190

31 education1 2217 253 24 224

32 travel14 2290 255 24 230

33 sport13 2339 236 22 208

34 sport10 2367 202 13 185

35 sport11 2368 202 13 185

36 travel10 2431 253 29 221

37 political2 2437 256 37 213

38 political8 2518 249 30 217

39 political4 2735 265 27 233

40 political12 2760 293 28 261

41 travel8 2835 246 24 218

42 travel9 2893 333 23 304

43 political10 2922 369 41 322

44 sport12 3020 331 23 300

45 political11 3243 360 38 319

46 travel7 3475 381 28 347

47 sport14 3580 351 19 329

48 travel5 3643 434 23 401

49 political6 4010 517 49 457

50 political7 4022 470 34 430

165

It is clear that the number of meaningful indexing terms extracted by the hybrid method

as shown in Table 4.2 is less than the number of indexing terms extracted by the

frequent max substring technique as shown in Appendix C. This means that the hybrid

method reduces the cost of indexing in terms of storage space. Furthermore, most of the

meaningful indexing terms extracted by the hybrid method are noun phrases. These

indexing terms often contain many keywords that represent the content of Thai text

documents. In order to determine whether the hybrid method is appropriate for indexing

Thai text documents, a comparison with language-dependent techniques is needed. The

word inverted index technique is used in the study to compare the results from the

hybrid method in terms of the number of indexing terms and retrieval performance.

Table 4.3 compares the number of indexing terms extracted with the hybrid method

with the number of indexing terms generated from the word inverted index technique,

with both techniques being used as the language-dependent technique for indexing Thai

text documents.

Table 4.3 Comparison of number of indexing terms extracted from hybrid

method and word inverted index technique

Text
Id Text name

Text length
(n characters)

Number of indexing terms

Hybrid method
Word inverted index

technique

1 sport2 721 41 29

2 sport1 805 60 36

3 sport4 874 38 27

4 sport3 913 51 42

5 travel4 1007 74 30

6 sport7 1020 88 32

7 sport9 1057 63 36

8 travel3 1107 80 43

9 sport15 1135 73 57

10 travel11 1157 79 33

11 sport6 1417 112 67

12 travel13 1444 117 47

166

Text
Id Text name

Text length
(n characters)

Number of indexing terms

Hybrid method
Word inverted index

technique

13 sport5 1468 102 77

14 education2 1507 119 48

15 political1 1512 124 54

16 education4 1544 103 56

17 travel2 1561 114 53

18 travel1 1563 123 53

19 sport8 1643 129 73

20 political3 1652 147 67

21 travel15 1789 150 71

22 political14 1879 164 73

23 travel12 1901 138 78

24 travel6 2002 162 104
25 political13 2030 165 80

26 education5 2035 143 74

27 political9 2064 192 74

28 political15 2107 191 68

29 political5 2126 201 79

30 education3 2142 190 74

31 education1 2217 224 84

32 travel14 2290 230 80

33 sport13 2339 208 96

34 sport10 2367 185 86

35 sport11 2368 185 86

36 travel10 2431 221 89

37 political2 2437 213 93

38 political8 2518 217 84

39 political4 2735 233 98

40 political12 2760 261 105
41 travel8 2835 218 88

42 travel9 2893 304 97

43 political10 2922 322 120
44 sport12 3020 300 144
45 political11 3243 319 127
46 travel7 3475 347 129
47 sport14 3580 329 109
48 travel5 3643 401 131
49 political6 4010 457 132
50 political7 4022 430 144

167

To illustrate the number of indexing terms, Figure 4.4 shows the number of indexing

terms extracted by the two language-dependent techniques: the hybrid method and the

word inverted index technique.

Figure 4.4. Number of indexing terms extracted from two language-dependent

techniques

From Figure 4.4, it can be observed that the hybrid method extracted more indexing

terms than the word inverted index. When the text length of the document is short, the

difference between the hybrid method and the word inverted method is not very big.

However, as the text length grows, the number of indexing terms extracted by the

hybrid method grows as well. This is because longer text documents usually have a

higher possibility of containing frequent max substrings than shorter texts documents

do. As has been discussed in Section 4.3, shorter terms are normally insignificant terms

in most Thai text documents. Thus the hybrid method works on extracting more

168

meaningful and representative longer terms, and this can be archived in longer text

length documents.

Although the hybrid method still extracts more indexing terms than the word inverted

index technique does, the hybrid method provides better results in terms of retrieval

performance. This will be explained in the following section.

In comparing retrieval performance between two language-dependent techniques, eight

test queries, four phrase queries and four single word queries as shown in Table 3.2 in

Chapter 3, are used to test the retrieval ability of the hybrid method and the word

inverted index technique. Two indices are created from 50 Thai web pages, one using

the hybrid method and the other using the word inverted index method. The retrieval

performance is measured by precision and recall of the two methods as shown in Table

4.4 and 4.5 respectively. Table 4.6 also shows average precision and recall values

provided by the two indexing techniques. Note that one of the drawbacks of the word

inverted index is that the phrase queries need to be segmented into words before

searching (i.e. word segmentation). Meanwhile, the hybrid method does not require

query processing before searching. The hybrid method can directly use phrase queries

for searching.

169

Table 4.4. Precision and recall values of word inverted index technique

Phrase queries Single word queries

Queries Precision Recall Queries Precision Recall

ก���
���!�"

(Thai politics)

0.66 0.66 �+��%,
����

(Cabinet)

0.33 1

����"�!�"

(Thai travel)

0.78 1 �����

(Hotel)

0.54 1

 �ก���'(�'%�

(Competition result)

0.5 0.5 �%กก�-�

(Athlete)

0.48 1

ก�����"�ก�����

(Learning and
teaching)

1 1 ���"�

(Learn)

0.62 1

Average 0.735 0.79 0.4925 1

Table 4.5. Precision and recall values of the hybrid method

Phrase queries Single word queries

Queries Precision Recall Queries Precision Recall

ก���
���!�"

(Thai politics)

0.77 0.77 �+��%,
����

(Cabinet)

0.33 1

����"�!�"

(Thai travel)

0.78 1 �����

(Hotel)

0.54 1

 �ก���'(�'%�

(Competition result)

0.75

0.75 �%กก�-�

(Athlete)

0.48 1

ก�����"�ก�����

(Learning and
teaching)

1 1 ���"�

(Learn)

0.62 1

Average 0.825 0.88 0.4925 1

170

Table 4.6. Average precision and recall values of two indexing techniques

Language-dependent methods Avg. Precision Avg. Recall

Word inverted index technique 0.6138 0.895

Hybrid method 0.6588 0.94

From Table 4.5 and 4.6, it can be observed that the hybrid method provides the same

precision and recall values as the frequent max substring technique described in Section

3.5.3. The results show that the hybrid method performs better than the word inverted

index technique in terms of retrieval performance, even many small and insignificant

indexing terms were not retained in the hybrid method. In this experiment, it can be

observed that small and insignificant indexing terms may not impact on retrieval

performance as these indexing terms are usually not used as a query in searching

relevant documents. These terms are also not used as keys to specify subject matter in

Thai text documents. However, the retrieval performance of the word inverted index

technique and the hybrid method could possibly fall if the given query is made up of

stopwords or the given query consists of three characters. Despite this, these cases

usually do not happen in practicality, because noun phrases or noun words are usually

used as queries in searching relevant documents in most cases.

4.5 Conclusion

This chapter proposes the hybrid method that integrates the frequent max substring

technique and Thai language-dependent technique to extract meaningful indexing terms

from Thai text documents. In the hybrid method, frequent max substrings with a length

of more than two are first extracted. The Thai language-dependent technique is then

applied to remove insignificant indexing terms from the set of frequent max substrings,

using stopword removal. The resultant frequent max substrings are finally considered

171

using their part-of-speech with the POS tagged corpus in order to find meaningful

indexing terms. The experimental comparison results on extracting indexing terms from

50 Thai text documents were presented in this chapter. The hybrid method was

compared with the word inverted index technique in terms of the number of indexing

terms and retrieval performance. These two techniques are used as language-dependent

techniques for indexing Thai text documents. It can be observed that the hybrid method

results in a higher number of indexing terms than the word inverted index technique

does. However, the hybrid method provides better retrieval performance than the word

inverted index technique. One reason for this is that with the hybrid method, the

meaningful indexing terms extracted are mostly noun phrases and these indexing terms

better represent the content of the documents. Consequently, the hybrid method could

be used as an option for indexing Thai text documents. This experiment also shows that

the frequent max substring technique can be used with other language-dependent

techniques when necessary, to become an effective hybrid language-dependent

technique.

172

Chapter 5

Non-Segmented Document Clustering Using Self-

Organizing Map and the Frequent Max

Substring Technique

5.1 Introduction

This chapter proposes a non-segmented document clustering method using the self-

organizing map (SOM) and the frequent max substring technique to improve the

efficiency of information retrieval. The objective of this chapter is to demonstrate that

the frequent max substring technique presented in Chapter 3 can be used with other

techniques to enhance the clustering of non-segmented documents. SOM is selected for

the illustration mainly because it has been widely used for document clustering and is

successful in text indexing [103], [104]. However, when applying it to a non-segmented

document, the challenge is to identify any interesting patterns efficiently. There are two

main phases in the proposed method: the pre-processing phase and clustering phase. In

the preprocessing phase, the frequent max substring technique is first applied to

discover frequent max substrings from non-segmented text documents. These frequent

max substrings are then used as indexing terms, together with their number of

occurrences, to form a document vector. In the clustering phase, SOM is used to

generate the document cluster map by using the feature vector of the frequent max

substrings. To demonstrate the proposed technique, experimental studies and

comparison results on clustering Thai text documents, which consist of non-segmented

texts, are presented in this chapter. The results show that the proposed technique can be

173

used for Thai texts. The document cluster map generated from the proposed method can

be used to find the relevant documents more efficiently.

5.2 Document clustering

Document clustering is an important area [45] in today’s world due to the rapid increase

in the number of electronic documents. Document clustering, which can sometimes be

generalized as text clustering, indentifies the similarity of documents and summarizes a

large number of documents using key attributes of the clusters. Document clustering

uses analysis of the distance between documents in order to find the similarities of

documents and may assist fast information retrieval or filtering [105]. This is because

the clustering technique categorizes documents into groups based on their similarities in

terms of their member occurrences. Thus clustering can be used to categorize document

databases and digital libraries, as well as providing useful summary information of the

categories for browsing purposes. In information retrieval, a typical search on a

document database or the world wide web can return several thousands of documents in

response to users’ queries. It is often very difficult for users to identify their documents

of interest from such a huge number of documents. Clustering documents enables the

user to have a clear and easy grasp of the relevant documents from the collection of

documents that are similar to each other and could be relevant to the user’s queries.

Hence clustering normally enables the user to locate the right document with increased

efficiency.

For text clustering in information retrieval, a document is normally considered as a bag

of words, even though a document actually consists of a sequence of sentences and each

sentence is composed of a sequence of words. Very often the positions of words are

ignored when performing document clustering. Words, also known as indexing terms,

174

and their weights in documents are usually used as important parameters to compute the

similarity of documents [106]. Those documents that contain similar indexing terms and

frequencies are grouped under the same cluster. This process is straightforward for

European languages where words are clearly defined by word delimiters such as space

or other special symbols. European texts are explicitly segmented into word tokens that

are used as indexing terms. Many algorithms have been developed to calculate the

similarity of documents and to build clusters for fast information retrieval. In contrast,

document clustering can be a challenging task for many Asian languages such as

Chinese, Japanese, Korean and Thai, because these languages are non-segmented

languages, (i.e. a sentence is written continuously as a sequence of characters without

explicit word boundary delimiters). Due to this characteristic, texts in a non-segmented

document cannot be directly used to calculate the similarity. Normally, pre-processing

could be necessary to discover keywords (i.e. indexing terms) for Asian documents

before clustering [107], [108]. As a result, most approaches for clustering non-

segmented documents consist of two phases: a keyword extraction process to extract the

keywords, and a document clustering process to compute the similarity between the

input documents.

5.3 Keyword extraction

Keywords are usually regarded as an important key to identifying the main content of

documents [98], [109], [108]. Most of the semantics are usually carried by nouns,

although a sentence in a natural language text is composed of nouns, pronouns, articles,

verbs, adjectives, adverbs, and connectives. Keyword extraction is one of the main

processes in text mining. Most keyword extraction methods proposed in literature were

accomplished by constructing a set of words from given texts. Keywords are then

selected from the set of words during the pre-processing step. Many approaches have

175

been proposed to extract keywords from non-segmented documents such as Chinese

[63], Japanese [110] or Thai documents [111]. Most techniques are based on word

segmentation, which is one of the most widely used information extraction techniques

in natural language processing (NLP). However, most word segmentation approaches

involve complex language analysis and require long computational time as described in

Chapter 2. After keyword extraction is performed, keywords are then transformed into a

feature vector of the words that appear in documents. The term-weights (usually term-

frequencies) of the words are also contained in each feature vector. The vector space

model (VSM) has been a standard model of representing documents by containing the

set of words with their frequencies [45]. In the VSM, each document is replaced by the

vector of the words. The vector size is dependent on the number of keywords that

appear in the documents. Let wik be the weight of keyword k that appears in the

document i, and Di = (wi1, wi2,…, wit) is the feature vector for document i, where t is

the number of unique words of all documents. Therefore, the size of the feature vector

is equal to t dimension. In Figure 5.1, an example of the document vectors where t is

equal to 3 is depicted.

Figure 5.1. Example of document vectors in 3-dimension

W1

W2

W3

D1 =(w11, w12, w13)

D2 =(w21, w22, w23)

176

From Figure 5.1, the similarity between two documents can be computed with one of

several similarity measures based on two corresponding feature vectors, for example

cosine measure, Jaccard measure, and Euclidean distance measure [112].

5.4 Document clustering algorithms and related works

In document clustering, there are two main approaches: the hierarchical and partitional

approaches [113], [114], [115]. The hierarchical approach produces document clusters

by using a nested sequence of partitions that can be represented in the form of a tree

structure called a dendrogram. The root of the tree contains one cluster covering all data

points, and singleton clusters of individual data points are shown on the leaves of the

tree. There are two basic approaches when performing hierarchical clustering:

agglomerative (bottom up) and divisive (top down) clustering [115]. The advantage of

the hierarchical approach is that it can take any form of similarity function, and also the

hierarchy of clusters allows users to discover clusters at any level of detail. However,

this technique may suffer from the chain effect, and its space requirement is at least

quadratic or O(n2) compared to the k-means algorithm that provides O(Iknm) where I is

the number of necessary iterations, k is the number of clusters, n is the number of

documents and m is the dimensionality of the vectors. The partitional approach [116],

on the other hand, can be divided into several techniques—for example, k-means [117],

Fuzzy c-means [118], and QT (quality threshold) [119] algorithms. The k-means

algorithm is more widely used among all clustering algorithms because of its efficiency

and simplicity. The basic idea of the k-means algorithm is that it separates given data

into k clusters where each cluster has the center point, also called centroid, which can

be used to represent the cluster. K-data points are randomly selected as the centroids by

the algorithm. All data points are then assigned to the closest centroid by computing the

distance between every data point and each centroid. Therefore, each centroid and its

177

members can form a cluster. The algorithm also re-computes the centroid of each

cluster using the data in the current cluster, and this step is repeated until the centroids

stabilize. The main advantages of the k-means algorithm are its efficiency and

simplicity. Its weaknesses are that it is only applicable to data sets where the notion of

the mean is defined, the number of clusters can be identified by users, and it is sensitive

to data points that are very far away from other points called outliers [45].

Furthermore, the self-organizing map (SOM) [120], [121] can be used as one of the

clustering algorithms, as this technique has been widely used and is successful for

document clustering due to its popularity and performance in unsupervised density

mapping of an input distribution [103], [122]. The SOM is an artificial neural network

architecture that uses unsupervised learning. SOM is capable of ordering high

dimensional data into a two-dimensional map by grouping similar (or closely related)

inputs together. To use SOM in document clustering, text documents are described by

features with high dimensionality, and SOM based techniques have been successfully

applied to document clustering.

Many clustering techniques have been developed and can be applied to cluster

segmented languages. Most of these traditional approaches use documents as the basis

for clustering [123], [124]. The vector space document (VSD) model is a widely used

data representation model for document clustering [125]. This data model starts with a

representation of any document as a feature vector of the words that appear in

documents. The term-weights of the words are also contained in each feature vector.

The similarity measures are used to compute the similarity of two document vectors. An

alternative approach of document clustering is phrase-based document clustering.

Etzioni [126] introduced the notion of phrase-based document clustering. They

178

proposed to use a generalized suffix-tree to obtain information about the phrases

between two documents and use common phrases to cluster the documents. According

to [104], Bakus, Hussin, and Kamel used a hierarchical phrase grammar extraction

procedure to identify phrases from documents and used these phrases as features for

document clustering. The self-organizing map (SOM) method was used as the

clustering algorithm. An improvement in the clustering performance was demonstrated

in their paper when using phrases rather than single words as features [23].

Mladenic and Grobelnik used a Naive Bayesian method to classify documents based on

word sequences of different length [127]. Experimental results show that using the

word sequences with a length of no more than three words can improve the

performance of a text classification system. But when the average length of used word

sequences is longer than three words, there is no difference between using word

sequences or single words.

However, there is not much research on phrase-based document clustering for Asian

languages, primarily due to the fact that most Asian language texts are non-segmented

and it is difficult to separate words and phrases from the non-segmented texts. Most

document clustering approaches require a pre-processing stage where word

segmentation, stopword removal or semantic analysis is performed. Natural language

processing techniques provide good support for this step. Word segmentation is an

important step involved in most natural language processing tasks. A text is separated

into a sequence of tokens by using word segmentation techniques.

In [107], a Chinese document clustering method using a data mining technique and

neural network model was proposed. This technique was divided into two main parts:

179

first, the pre-processing part, which provides Chinese sentence segmentation, and the

second part, which is clustering, the dynamical SOM model was adopted for

dynamically clustering segmented text documents. In addition, this method uses the

term vectors clustering process instead of the document vectors clustering process.

In the Thai language, Kruengkrai and Jaruskulchai propose a model for document

clustering in Thai text documents [128]. They investigated complete links for

hierarchical clustering and single passes for non-hierarchical clustering techniques.

These two algorithms are applied to cluster Thai news archives. The research also

employs a parallel algorithm in calculating the similarity between two documents. They

implemented an algorithm on the PIRUN Linux cluster, which is a parallel computer

using cluster computing technology. Experimental results show that there is no

difference in the clustering results given by the two algorithms.

5.5 SOM based clustering using the frequent max substring technique

for non-segmented texts

In this section, a new method that combines Kohonen’s SOM and the frequent max

substring technique, to process the non-segmented text documents into clusters is

described. SOM is one of the main unsupervised learning methods in the family of

artificial neural networks (ANN) that was first developed by Teuvo Kohonen in 1984

[129]. The SOM can be visualized as a regular two-dimensional array of cells or nodes

(neurons). The SOM algorithm defines a mapping from the input vector onto a two-

dimensional array of nodes. When the input vector x(t)∈Rn is given, it is connected to

all neurons in the SOM array denoted as vector mi(t)∈Rn, which are associated by each

neuron and is gradually modified in the learning process. The input vector x(t)∈Rn is

180

the input data set where t is the indexing term of the input documents. This input data

set has to be mapped with all neurons in the map denoted as a two-dimensional network

of cells or the model vector mi(t)∈Rn.

In mapping, the node where vector mi is the most similar to the input vector x will be

activated. This node is often called a best-matching node or a winner. The winner and a

number of its neighboring nodes in the SOM array are then turned towards the input

vector x according to the learning principle.

In this chapter, a set of non-segmented documents (Thai documents) is used as an input

to train a map using SOM. Those Thai documents used in Chapter 3 will be converted

to a text collection to be used in this chapter. The process of clustering will be described

as follows.

Let D be a document collection consisting of n documents, d1, d2, ..., dn. Firstly, the

frequent max substring technique is used to generate a set of frequent max substrings,

FMAX, at the given frequency threshold value θ from the document collection. These

extracted frequent max substrings will be used as the set of indexing terms for the

document collection.

Assuming the above process produces m frequent max substrings from the document

collection, denoted as FMAX = (fm1, fm2, ..., fmm), where fmi is the ith frequent max

substring generated from the document collection. These m substrings are used as the

indexing terms.

181

The weight wij represents the frequency of indexing term fmi occurring in document dj

for each indexing term and each document. An m*n matrix of such weights is then

calculated. In this matrix, row i represents the frequencies of occurrence of the ith

indexing term fmi in the n documents, while jth column represents the document vector

for document j. An example of the matrix is depicted in Figure 5.2.

 fmi

 4 3 7 0 0 0 … 0 0 �ก���'(�'%� (Competition result)

 3 3 0 0 2 0 2 0 ����%��%���� (Competition rank)

 6 4 5 0 0 0 0 0 �����ก���'(�'%� (Competition time table)

 2 2 2 0 0 0 0 0 ก��
ก���%��,� (Umpire)

V = 3 3 4 0 0 0 0 0 ������+����,3 (Semi final round)
 0 0 0 8 4 7 4 9 �%���ก����ก�����"���,���� (Currency exchange rate)
 : :
 0 0 0 3 0 4 … 0 0 8/�ก,	ก�����/� (Investment business)

 0 0 0 2 0 2 0 0 ��%�)��,
��%$"� (Real estate)

 0 0 0 4 3 4 3 3 �D������ก����,� (Financial status)

 0 0 2 3 4 3 4 0 �����
�.���	���p (Yearly budget)

 d1 d2 d3 d4 d5 di … dn-1 dn

Figure 5.2. Example of document matrix at given frequency threshold value θ is

equal to 2

Figure 5.2 shows an example of document matrix. In a document matrix, each element

wij is at least at θ if fmi occurs in the document dj or 0 if fmi does not appear in the

document dj, i.e.

≥ θ if fmi occurs in dj

 wij =
 0 otherwise.

After the document matrix is obtained, the document vectors are presented to SOM for

clustering. These documents can be clustered according to the similarity of their

182

document vectors. Two documents containing the same or similar document vectors

will map to the same neuron. In contrast, the two documents may map to two distant

neurons if they contain different or non-overlapping frequent max substrings.

Furthermore, the documents with similar frequent max substrings may map to

neighbouring neurons. This means that neurons can form document clusters by

examining mapped neurons in the document cluster map. In Figure 5.3, the organization

of the document map, which clusters similar documents into the same neuron, is

depicted as shown in the boxes. Frequent max substrings in the boxes represent the

content of documents in the collection.

Figure 5.3. Document cluster map

neighboring
neurons

distant neuron

neuron

 The set of fms
 d3

 �ก���'(�'%� (Competition result)
ก��)��ก���'(�'%� (Competition time table)
ก��
ก���%��,� (Umpire)
����%�����ก (Qualifying round)
�����
�.���	���p (Yearly)))budget)
…

 The set of fms

 d1 d2
 �ก���'(�'%� �ก���'(�'%� (Competition result)

����%��%���� ����%��%���� (Competition rank)
����%�����ก ����%�����ก (Qualifying round)
ก��
ก���%��,� ก��
ก���%��,� (Umpire)
������+����,3 ������+����,3 (Semi final round)
… …

183

After the SOM has been trained, the document clusters are formed by labeling each

neuron that contains certain documents of similar type. The documents in the same

neuron may not contain exactly the same set of frequent max substrings, but they

usually contain mostly overlapping frequent max substrings. As a result, the document

cluster map can be used as a prediction model to generate the different groups of similar

documents, and each group will then be used to specify the document type by

comparing the frequent max substrings of each group with the keywords of each area.

In Figure 5.4, clustering the documents into different groups, by mapping input data

with neurons in the document cluster map to find document groups of several types is

depicted.

Figure 5.4. Neuron network architecture

From Figure 5.4, the following will describe the process of matching input data x with

neurons in the document cluster map by using SOM.

Let’s consider the input vector x = [x1, x2, …, xn]
t∈Rn as the input data set where t is

the FMAX of the input documents. This input data set has to be matched with all

neurons in the map, which is denoted as a two-dimensional network of cells or the

model vector mi = [mi1, mi2, …, min]
t∈Rn depicted in Figure 5.5. Each neuron i in the

Input
Data x

Prediction
model

Sport

Travel Political
Education

Output y

184

network contains the model vector mi, which has the same number of indexing terms as

the input vector x.

 …

 :

Figure 5.5. Self-organizing map

From Figure 5.5, the input vector x is compared with all neurons in the map or the

model vector mi to find the best matching node, called the winner. The winner unit is

the neuron on the map where the set of frequent max substrings of the input vector x is

the same or similar to the set of frequent max substrings of the model vector mi, by

using some matching criterion, for example the Euclidean distances between x and mi.

As a result, this method can be used to cluster documents into different groups, and it is

also suggested that this can be used to reduce the search time for relevant documents.

5.6 Experimental studies and comparison results

In this section, the experiment for clustering non-segmented documents (Thai

documents) based on the proposed SOM and frequent max substring technique is

presented. The proposed technique is also compared with the hierarchical clustering

technique using single words in a group of documents [130], [128], [131], [132]. Fifty

Thai documents used as the text collection in Chapter 3 were used as an input dataset to

train a map. All documents were found on Thai news websites, and consist of 15 sport,

15 travel, 15 political, and 5 education documents as shown in Appendix A. In the

proposed technique, the set of frequent max substrings was first generated by the

Winner
mi

m1 m2

x

185

frequent max substring technique from the document dataset, at the given frequency

threshold value θ. Thirty-five frequent max substrings were extracted, consisting of

long and frequently occurring terms in sport, travel, political and educational

documents. These were used as the set of indexing terms for these 50 documents. The

50 input documents were then transformed to a document matrix of weighted frequent

max substring occurrences. Hence, these 35 indexing terms and 50 input documents

form a 35 * 50 matrix, where each document vector was represented by a column of the

matrix and the rows of the matrix correspond to the indexing terms. This 35 * 50 matrix

is used to train a map using SOM, and the number of neurons selected in this

experiment is nine as shown in Figure 5.6. In this experimental study, nine neurons

were selected after trials with different number of neurons, as it provided the best result.

Figure 5.6 shows the map containing nine neurons and 50 Thai documents. Each neuron

contains a group of similar documents.

Figure 5.6. SOM contains nine neurons and a group of similar documents from

collection of 50 Thai documents

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

186

After a 35 * 50 matrix is used to train a map using SOM, the SOM generates a two-

dimensional document cluster map as shown in Figure 5.6. This map contains nine

neurons (with each neuron corresponding to each cluster for this case), but only five

neurons containing groups of similar documents. From Figure 5.6, the experimental

result showed that SOM can cluster 50 documents into five neurons on the map, and

similar documents were grouped into the same neuron as shown in Table 5.1.

Table 5.1. Clustering results of using SOM and frequent max substring technique

Neuron ID Row Column Document ID
Neuron 5 1 2 Political1, Education1, Education2,

Education3, Education4, Sport1, Sport2,
Sport3, Sport4, Sport5, Sport6, Sport7,
Sport8, Sport9, Sport10, Sport11, Sport12,
Sport13, Sport14, Sport15, Travel10

Neuron 2 2 1 Political2, Political3, Political4, Political5,
Political6, Political7, Political8, Political9,
Political10, Political11, Political12,
Political13, Political14, Political15,

Neuron 4 2 2 Travel2, Travel4, Travel5, Travel6, Travel7,
Travel8, Travel9, Travel13, Travel15,

Neuron 1 3 1 Travel12
Neuron 3 3 2 Education5, Travel1, Travel3, Travel11,

Travel14

One of the basic requirements to measure the performance of the proposed clustering

approach is to compare the results with different clustering approaches in terms of

occurrences of the group of documents. In this chapter, the proposed technique is

compared with hierarchical based document clustering using single words. This method

is chosen because it has been widely used and has been applied successfully in many

applications in the area of document clustering [132], [133], [131]. This method has

also been used to perform Thai document clustering [130], [128], [134].

187

To use this technique with the Thai language, single words are first extracted by using

Thai word segmentation techniques from the same document dataset used in the

experiment discussed earlier. After word segmentation is performed, single words are

then transformed into feature vectors of the words that appear in the documents. The

term-frequencies of the words are also contained in each feature vector. The feature

vectors of the words are then used to compute the similarity of the documents by using

the hierarchical clustering approach. In hierarchical clustering, the feature vectors of the

words with their frequencies were used as input data, and the number of clusters was set

to nine, as nine clusters provided the best result as well. The experimental result showed

that the hierarchical clustering program can cluster 50 documents into nine clusters as

shown in Table 5.2.

Table 5.2. Clustering results of using hierarchical clustering approach

Cluster ID Document ID
Cluster 1 Education1, Education2, Education3, Education4,

Sport9, Sport13, Travel1, Travel2, Travel3, Travel4,
Travel5, Travel7, Travel8, Travel9, Travel10,
Travel11, Travel12, Travel13, Travel14, Travel15,
Political15

Cluster 2 Education5
Cluster 3 Sport1
Cluster 4 Sport2, Sport3, Sport4, Sport5, Sport6, Sport7,

Sport8, Sport15
Cluster 5 Sport10, Sport11

Cluster 6 Sport12

Cluster 7 Sport14

Cluster 8 Travel6

Cluster 9 Political1, Political2, Political3, Political4,
Political5, Political6, Political7¸ Political8,
Political9, Political10, Political11, Political12,
Political13, Political14

188

From the above experimental studies, both techniques give good results for groups of

political documents. The political documents were grouped into neuron 2 in the

proposed technique and cluster 9 in the hierarchical clustering technique. In addition,

the group of education documents are also fairly well clustered by both techniques as

the same education documents, Education1, Education2, Education3 and Education4,

were grouped into neuron 5 in the proposed technique and cluster 1 in the hierarchical

clustering technique. However, it can be seen from this experiment that the groups of

education and sport documents are mapped onto the same neuron (Neuron5) in the

proposed technique, because they both contain mostly overlapping frequent max

substrings such as �ก���'(�'%� (competition result), ก��	%��%��%� (position ranking), !���%�

����%� (getting award), etcetera. Meanwhile, travel and education documents were

grouped into the same cluster (cluster 1) with the hierarchical clustering technique,

because the travel and education documents share many words. Furthermore, some of

the education, sport and travel documents are distributed across several small clusters as

shown in Table 5.2. In the proposed technique, some errors occurred within the group

of travel documents as shown in Table 5.1. The travel documents were mapped onto

several neurons due to overlapping terms that appeared across different type of

documents.

As observed from the results, the proposed technique can be used to cluster non-

segmented documents into several groups according to their similarity. The accuracy of

this technique is 83.25 percent, while the accuracy of the hierarchical clustering

approach is 79.75 percent. The accuracy in this case is calculated by the number of

correctly clustered documents, based on the benchmark results generated from a Thai

expert. In the proposed technique, it can also be observed that the documents are

189

clustered into five neurons only, even though this proposed technique is started with

nine neurons. In contrast, the hierarchical clustering approach created many small

clusters that contain only a few documents and the nine clusters are all used to contain

documents. This shows that the difference of clustering result between the proposed

technique and the hierarchical clustering approach does not come only from the

difference between the frequent max substrings and single words which are used as the

indexing terms, but also from the difference between the performance of the proposed

technique and the hierarchical clustering approach. The proposed technique can

generate empty clusters (neurons), whereas the hierarchical clustering approach cannot

do so. As a result, the proposed method may be used to cluster non-segmented

documents more efficiently when compared to the hierarchical clustering approach.

Furthermore, the accuracy of the clustering depends very much on the content of

documents, and the indexing terms generated. The content of one document may have

overlapping frequent terms from two different types of documents. For instance, in the

proposed technique, Education5, Travel1, Travel3, Travel11 and Travel14 documents

are mapped onto neuron 3 in Table 5.1, because they present information on

ecotourism, containing overlapping terms from education and travel documents.

Meanwhile, the Education5 document was separated from the groups of education and

travel documents in the hierarchical clustering approach because Education5 contains

different content, ecotourism, from the content of most education and travel documents

as shown in Table 5.2.

An additional advantage of the proposed technique is that it is more computationally

efficient than the hierarchical clustering approach. This is because it is a language-

independent technique. This means it does not rely on any knowledge of language and

190

does not require a pre-processing step to perform segmentation as describe in Chapter 3.

In contrast, the hierarchical clustering approach is language-dependent, and therefore

requires the word segmentation technique in order to extract single words from text

documents before clustering can be performed.

5.7 Conclusion

This chapter describes a non-segmented document clustering method using the self-

organizing map (SOM) and the frequent max substring technique. The frequent max

substring technique is first used to discover patterns of interest, called frequent max

substrings, rather than individual words from Thai text documents, and these frequent

max substrings are then used as indexing terms with their number of occurrences to

form a document vector. SOM is then applied to generate a document cluster map by

using a document vector. The experimental studies and comparison results on clustering

50 Thai text documents is presented in this chapter. The proposed technique was

compared to the hierarchical based document clustering technique, with the use of

single words for grouping document occurrences. From the experimental results, the

proposed technique can be used to cluster 50 Thai documents into different clusters

with an accuracy of 83.25 percent, while the hierarchical clustering approach provides

an accuracy of 79.75 percent. The hierarchical clustering approach also created many

small clusters that contained only a few documents. As a result, the generated document

cluster map from the proposed technique may be used to find documents relevant to a

user’s query more efficiently.

191

Chapter 6

Non-Segmented Text Problems

6.1 Introduction

The objective of this chapter is to demonstrate the applicability of the frequent max

substring technique presented in Chapter 3 to other non-segmented text problems. Its

primary purpose is to show that the frequent max substring technique is not only

applicable to Thai text indexing and non-segmented document clustering, but it is also

applicable for indexing other non-segmented texts like the Chinese language and

genome sequences in bioinformatics. In this chapter, applying the frequent max

substring technique to the Chinese language and genome sequencing is described in

Sections 6.2.3 and 6.3.3 respectively. The main objective is to show that the frequent

max substring technique is a versatile text indexing technique. This chapter is divided

into two main sections: non-segmented language problems (Section 6.2) and genome

sequencing problems (Section 6.3). Section 6.2 is subdivided into: characteristics of the

Chinese language, related works, application of the frequent max substring technique to

the Chinese language, experimental studies and comparison results. Meanwhile, Section

6.3 includes: characteristics of the genome sequence, related works, applying the

frequent max substring technique to genome sequencing, experimental studies and

comparison results.

6.2 Non-segmented language problems

Many natural languages are non-segmented languages. These languages share similar

characteristics as the Thai language in terms of the structure of writing. They are

192

written in a string of symbols without explicit word boundary delimiters. This suggests

that the frequent max substring technique can be applied for other non-segmented

languages. In this chapter, the Chinese language is selected for the illustration because

it is one of the non-segmented languages that has been widely used in the world. The

Chinese language is similar to the Thai language in many ways, because they are both

non-segmented languages. In the Chinese language, each character has its own

meaning, so it can be regarded as a word. On the other hand, several Chinese characters

can be linked together to make a phrase. A phrase may consist of two, three or more

characters, but there are no spaces between Chinese characters except punctuation

marks such as ‘,’ or ‘。’(full stop) [36]. In addition to Chinese, many other Asian

languages such as Japanese and Korean are also considered to be non-segmented

languages. Words in these languages, which are similar to Thai and Chinese, are not

naturally separated by any word delimiting symbols such as white spaces, and in some

cases semicolons and commas. Therefore, there are many challenges for indexing non-

segmented languages, as outlined in Chapter 2. Many efforts have been devoted to

researching and developing indexing techniques for such problems. To demonstrate the

use of the frequent max substring technique for the Chinese language, the experimental

and comparison results on Chinese text documents are presented in Section 6.2.4.

Before the experiment is presented, the characteristics of the Chinese language are first

described in the next section, followed by an overview of the related works.

6.2.1 Characteristics of the Chinese language

Among many non-segmented languages, the Chinese language shares the same problem

with the Thai language. The Chinese language is considered as un-delimited text, where

the structure of writing is a string of symbols without explicit word boundary delimiters

[36], [35], [37], [38], [5]. Chinese writings consist of mainly Han characters (hanzi),

193

which are also used in the Japanese language (known as kanji) and in Korean (known as

hanja). In modern Chinese, the pictograph words have been simplified by using

characters made up of seven strokes (horizontal and vertical strokes, left-falling and

right-falling strokes, a point stroke, and a hook stroke) as shown in Figure 6.1 (see

http://www.solideas.com/solrcell/chinese.html).

Figure 6.1. Example of Chinese texts

In Chinese texts, words can be composed of one or more characters and a word

boundary is not necessarily used between two characters. This means Chinese sentences

are continuous strings of characters without white spaces or punctuation marks. Like

the Thai language, Chinese does not have variations of words: no changes of tenses,

194

gender and no plural forms. The number of commonly used Chinese characters is

around 8,000 to 13,000 characters [135].

In the higher levels, the Chinese language can be classified as a non-segmented

language. Due to the reason that it does not have word delimiters, readers have to use

their own knowledge to analyze context. The segmentation and indexing techniques

used for the Chinese language consist of both the language-dependent and language-

independent techniques. In the language-dependent technique, word based and rule

based indexing techniques are used for indexing the Chinese language. The language-

independent techniques include the character based and n-gram based indexing

techniques. These techniques are similar to those used in the Thai language as described

in Chapter 2. However, well-defined linguistic knowledge for each particular language

is still required to perform segmentation and indexing in the language-dependent

technique. Meanwhile, character based or n-gram based indexing techniques, language-

independent techniques, can be directly applied to the Chinese language without the

well-defined linguistic knowledge requirement. Furthermore, the frequent max

substring technique can also be applied to the Chinese language, as this technique does

not require linguistic knowledge of the language. The following section describes some

techniques used in the area of text indexing for the Chinese language.

6.2.2 Related works

In order to improve information retrieval systems, many indexing techniques have been

proposed for the Chinese language. One such technique is the inverted index technique.

The inverted index technique can be regarded either as a language-dependent or

language-independent technique, depending on the segmentation method used. To

index the Chinese language with the inverted index technique, a segmentation algorithm

195

is often an essential part of the indexing technique. A segmentation algorithm is used to

segment text documents into indexing terms before the inverted index can be

constructed, as described in Chapter 2. Although indexing terms can be manually

identified by human experts for Chinese texts, the process is time consuming and labour

intensive in most circumstances. Therefore, segmentation algorithms are used to

automatically extract indexing terms from Chinese texts [40]. In Chinese text indexing,

several researchers have attempted to develop more efficient techniques of text

segmentation to divide text documents into words or terms [40]. At present, the

majority of the methods proposed for extracting indexing terms in the Chinese language

fall into one of two main categories: character based (CB) and word based (WB), which

are both used in the Chinese language [36].

In character based methods, single-gram, bi-gram or tri-gram [60], [61] are used as the

indexing terms. However, bi-gram indexing is the most popular technique that is widely

used to segment Chinese text documents, since 80 per cent of modern Chinese words

are bi-syllabic [62]. The representation of bi-gram is to use all contiguous overlapping

2-character pairs as indexing terms by using the 1-sliding technique for extraction.

In word based (WB) indexing approaches, Foo & Li conducted experiments to study the

impact of Chinese word segmentation and its effect on IR. Four automatic character

based segmentation approaches and a manual one were used to index and evaluate the

accuracy of these approaches. The experiments revealed that the segmentation approach

had an effect on IR effectiveness. Better IR results could be achieved by using the same

method for query and document processing, which increased the probability of

matching queries to documents.

196

6.2.3 Applying the frequent max substring technique to the Chinese language

In this section, the process of extracting frequent max substrings as indexing terms by

using the frequent max substring technique is presented. The same processes as

described in Chapter 3 are used to extract indexing terms from Chinese text documents.

The given frequency threshold value is set to 2 so that one occurrence of indexing terms

can be ignored from the texts, as indexing terms occurring less frequently in text

documents could usually be assumed to be insignificant in defining subject matter [77],

[69]. The following describes briefly the steps of extracting frequent max substrings as

indexing terms from Chinese text documents (For more detail, see Chapter 3)

Let string s = ‘假的作真的时真的亦为假的’

and the given frequency threshold value of θ = 2

1. Extract the frequent substring set, FSS(s, θ), with their frequencies and

positions. These indexing terms are kept, and are sorted in order of occurrence

in the text documents on the index data structure for further processes.

2. Then, the frequent max substring set, FMAX(s, θ), is extracted by selecting

indexing terms having no superstring from the frequent substring set, FSS(s, θ),

in order to reduce the number of the indexing terms.

From the above steps, the example of the FST structure that was constructed from

Chinese text documents can be shown in Figure 6.2.

197

Let string s = ‘假的作真的时真的亦为假的’

and the given frequency threshold value or θ = 2

Figure 6.2. FST structure using frequent max substring technique on Chinese text

documents

Figure 6.2 shows the FST structure. The result is FMAX(s, θ) = {<的, 4>, <假的, 2>,

<真的, 2> }

6.2.4 Experimental results

In this section, the experiment of indexing Chinese text documents using the frequent

max substring technique is presented. In this experiment, the given frequency threshold

value is set to 2, therefore only indexing terms that occur at least two times are of

interest. In order to measure indexing efficiency, the frequent max substring technique

is compared with bi-gram based indexing in terms of the number of indexing terms and

retrieval time. Bi-gram based indexing is chosen because it is one of the most widely

used techniques for indexing Chinese text documents [60], [36]. One of the advantages

of bi-gram based indexing and the frequent max substring technique is language-

independence [111], [136], [7], [26], [65]. As a result, these methods are used for

indexing Asian languages [22], [21], [111].

<假, 2>
.pos = 1, 11

假 的

的

<假的, 2>
.pos = 2, 12

Root

<的, 4> .pos =2, 5, 8, 12

<真, 2> .pos = 4, 7
 的
<真的, 2>
.pos = 5, 8

真

198

In this experiment, the text collection used for evaluation is a set of Chinese text

documents obtained from the website: http://www-

personal.umich.edu/~dporter/sampler/sampler.html. The documents have varying

lengths. The set of documents consists of 20 text documents and contains 28,522

characters. The document lengths range from 564 to 2,187 characters. In the frequent

max substring technique, the set of frequent max substrings is extracted as indexing

terms from the set of Chinese text documents, at the given frequency threshold value.

As presented in Chapter 3, the proposed frequent suffix trie structure was employed to

extract the indexing terms and construct the index in this proposed technique. Table 6.1

shows the number of indexing terms extracted from the frequent max substring

technique.

Table 6.1. Number of indexing terms extracted from frequent max substring

technique

The frequent max substring technique

Id Text name
Text size

(n characters)
The number of
indexing terms

1 Chinese1 564 87
2 Chinese2 612 93
3 Chinese3 732 101
4 Chinese4 856 96
5 Chinese5 915 113
6 Chinese6 1,003 135
7 Chinese7 1,051 129
8 Chinese8 1,108 153
9 Chinese9 1,274 142
10 Chinese10 1,409 136
11 Chinese11 1,500 172
12 Chinese12 1,623 169
13 Chinese13 1,792 199
14 Chinese14 1,874 178
15 Chinese15 1,885 188
16 Chinese16 1,961 203
17 Chinese17 2,013 224
18 Chinese18 2,048 231
19 Chinese19 2,115 269
20 Chinese20 2,187 253

199

In this experiment, the frequent max substring technique is compared with the bi-gram

based indexing technique in order to evaluate indexing efficiency. In bi-gram based

indexing, pre-processing is required to extract bi-gram terms before indexing can be

performed. The bi-gram term is a substring of 2 overlap or non-overlap successive

characters extracted from texts. Extracting a set of bi-gram terms from text documents

can be done by using the 1-sliding technique as described in Chapter 2. For instance, let

a simple Chinese text document d containing the string ‘假的作真的时真的亦为假’

and this document d is a string of characters s1, s2, ..., sN. Therefore, the ith bi-gram

term extracted from the document d is the substring si, si+1, ..., si+n. Figure 6.3 shows

the bi-gram terms overlap sequence of the document d containing the string s ‘假的作

真的时真的亦为假的’.

Figure 6.3. Example of bi-gram terms from document d

For bi-gram based indexing, after bi-gram terms are extracted from the text documents,

all tokenized bi-gram terms are then stored in the inverted index for retrieval. The same

technique described in Chapter 2 is employed to construct the bi-gram inverted index.

The number of indexing terms extracted from the bi-gram based indexing is shown in

Table 6.2.

Let d: 假的作真的时真的亦为假的

Bi-gram terms: 假的, 的作, 作真, 真的, 的时, 时真, 真的, 的亦, 亦为,
 为假, 假的

200

Table 6.2. Number of indexing terms extracted from bi-gram based indexing

The bi-gram based indexing technique

Id Text name
Text size

(n characters)
The number of
indexing terms

1 Chinese1 564 62
2 Chinese2 612 68
3 Chinese3 732 87
4 Chinese4 856 94
5 Chinese5 915 102
6 Chinese6 1,003 112
7 Chinese7 1,051 113
8 Chinese8 1,108 131
9 Chinese9 1,274 127
10 Chinese10 1,409 134
11 Chinese11 1,500 148
12 Chinese12 1,623 151
13 Chinese13 1,792 172
14 Chinese14 1,874 162
15 Chinese15 1,885 169
16 Chinese16 1,961 181
17 Chinese17 2,013 208
18 Chinese18 2,048 223
19 Chinese19 2,115 246
20 Chinese20 2,187 237

In order to compare the two indexing techniques: the bi-gram based indexing technique

and the frequent max substring technique for Chinese text documents, the number of

indexing terms extracted from both techniques is compared. In Figure 6.4, a comparison

of bi-gram based indexing and the frequent max substring technique is presented. The

vertical axis represents the number of indexing terms and the horizontal axis represents

the text document size (n characters).

201

Figure 6.4. Comparison of number of indexing terms extracted from bi-gram

based indexing and frequent max substring technique

From the comparison results, it can be observed that the bi-gram based indexing

technique extracted a lesser number of indexing terms than the frequent max substring

technique. The indexing terms extracted from the bi-gram based indexing technique are

small and each term consists of two characters. Most indexing terms are meaningful

indicating that bi-syllable is a good assumption for these Chinese text documents.

Meanwhile, the frequent max substring technique generates slightly more indexing

terms compared to the bi-gram based indexing technique. The indexing terms extracted

from the frequent max substring technique have varying lengths. This means more

space is needed to store indexing terms compared to the bi-gram based indexing

technique. However, the advantage of the frequent max substring technique is that it

does not require text pre-processing and query processing before indexing and retrieval

can be performed, as mentioned in Chapter 3. One of the drawbacks of the bi-gram

based indexing technique is that it requires text pre-processing in order to extract the bi-

gram terms by using the 1-sliding technique before indexing can be performed as

202

explained in Chapter 2. Furthermore, query processing is also required in terms of

segmentation before retrieval can be performed as described in Chapters 2 and 3. In the

bi-gram based indexing technique, the query has to be segmented into bi-gram terms, so

that these terms can be used to match the extracted bi-gram terms kept in the index as

described in Chapter 3. For instance, if the given query is ‘假的作真的’, it has to be

segmented into four bi-gram terms: 假的, 的作, 作真 and 真的 before retrieval.

However, query processing is the main factor in making the query complex and requires

more retrieval time, as all segmented bi-gram terms are used for looking up the relevant

documents at the same time, using Boolean ‘AND’ as described in Chapter 3.

Therefore, the bi-gram based indexing technique usually requires more retrieval time

than the word based, rule based and the frequent max substring techniques [26], [10],

[39], [10].

In this experiment, the retrieval time of two indexing techniques is also compared. Five

queries are used as test queries in order to evaluate retrieval time. All queries can

directly be used to look up relevant documents in the frequent max substring technique.

Meanwhile, all queries have to be segmented into bi-gram terms before looking up

relevant documents in the bi-gram based indexing technique. Table 6.3 shows the

average time used by two indexing approaches for retrieving the text collection.

Overall, the frequent max substring technique performed better than the bi-gram based

indexing in terms of retrieval time.

203

Table 6.3. Comparison of retrieval time used by bi-gram based indexing and

frequent max substring technique

 The frequent max substring
technique

The bi-gram based
indexing technique

Avg. retrieval time 0.9 sec. 2.6 sec.

Consequently, it can be observed that the frequent max substring technique requires

more space to store and extract the indexing terms, compared to the bi-gram based

indexing technique. However, the bi-gram based indexing technique suffers from

poorer retrieval time in looking up relevant documents when compared to the frequent

max substring technique.

6.3 Genome sequencing

Over the last decade, genome sequence databases have grown rapidly and have been

widely used by molecular biologists for homology searching. The survey shows that the

GenBank contains over 77 Gbp (giga, i.e. 109, base-pairs) from over 73 million

sequence entries [137]. Due to the large amount of data available, the task of providing

efficient indexing has become important. It has become critical to develop scalable data

management techniques for sequence storage and retrieval. In searching such databases,

efficient indexing techniques are essential for indexing a massive amount of sequence

data for retrieval. In fact, various algorithms and data structures on strings can be

applied to genome sequences because they can be regarded as a sequence of string

[138], [139]. The most widely used data structures are suffix trees and suffix arrays as

described in Chapter 3. However, it is sometimes difficult to use the conventional suffix

based methods for genome sequence databases because of the drawbacks of index sizes.

204

In this chapter, the frequent max substring technique is also applied to genome

sequencing problems as the characteristic of the genome sequence is similar to Thai

texts and genome sequencing is not based on human languages. To demonstrate that the

frequent max substring technique can be applied to genome sequencing, the

experimental and comparison results are presented in Section 6.3.4. Before the

illustration is presented, the characteristics of the genome sequence are first described

in the next section, followed by some related works.

6.3.1 Characteristics of the genome sequence

In the modern era of molecular biology, the genome sequence can be refer to all of a

living thing’s hereditary information [140]. This hereditary information is encoded in

DNA or RNA, which are used for maintaining, building and running an organism, and

passing life on to the next generation. In most organisms, the genome includes genes

that are packaged in chromosomes, and the non-coding sequences of the DNA that

affects specific characteristics of living things. The genome term was introduced by

Hans Winkler, Professor of Botany at the University of Hamburg, Germany, in 1920.

This genetic material or DNA can be represented as long texts with a specific alphabet,

known as the nucleotide bases, for example, {A, C, G, T} in the genome. Most patterns

usually occur frequently in the texts because there is only a four-character alphabet to

represent genome sequences. A typical example of the genome sequence is shown in

Figure 6.5.

Figure 6.5. Example of nucleotide structure of some species’ genes

Human PIPSL TCACCTCTAGTTGAAGAGACTTTGCAAATGCTAACTACAAGT
Chimp PIPSL TCACCTGTAGTTGGAGAGACTTTGCAAATGCTAACTACAAGT
Human TCACCTCTAGTTGGAGAGACTTTGCAAATGCTAACTACAAGT
Chimpanzee TCACCTCTAGTTGGAGAGACTTTGCAAATGCTAACTACAAGT
Cow TCACCTGTAGTTGGAGAGACTTTGCAAACGCTAACTACAAGT
Mouse TCACCTGTAGTTGGACAACCTTTGCAAATACTAAATTTGAGT
Dog TCACCTGTAGTTGGAGAGACTTTGCCAATGCAAACTACAAGC

205

In fact, the genome contains many relationships. For instance, the genome is the largest

part that can be divided into chromosomes, chromosomes are the smaller parts that

contain genes, and inside the genes represents the DNA, which is the smallest part.

These relationships can be depicted as shown in Figure 6.6.

Figure 6.6. Relationships of genome

There are many types of living things in the world that can be divided into many species

such as cows, dogs, mice, chimpanzees, humans and so on. These species have their

own distinctive genome: the cow genome, the dog genome, the mouse genome, the

chimpanzee genome, the human genome and so on. Therefore, genomes can be

classified according to species, and can also be used to identify individuals. For

example, the genome of people in this world can be classified as the human genome,

and each person also has a unique genome and characteristics that can be used to

identify individuals. However, two persons may have the same genome if they are

identical twins. This significantly shows that the genomes between two persons can be

more similar than the genomes between people and other species.

Genome

Chromosomes

Genes

DNA

206

6.3.2 Related works

As mentioned in the previous section, genome sequence databases are increasing in size

exponentially. Due to this challenge of the ever increasing data available, many

approaches have been proposed for indexing and searching from genomic databases.

The basic methods proposed earlier perform a full text search without using indices as

described in Chapter 3 [70]. However, one of the drawbacks of this technique is its poor

searching ability. As a result, the suffix tree, suffix trie and suffix array data structures

have been widely used in biological sequence analysis, because these structures are

fundamental data structures for string matching [141], [139], [137]. Unfortunately, the

existing basic algorithms for constructing these data structures do not support large

inputs when they are used in real-life applications, thus requiring that the input is small

enough to be kept in main memory. Therefore, it is difficult to use them for genome-

scale databases, because of their massive amount of index sizes. In order to address this

particular drawback, many researchers have improved several algorithms based on

these data structures in order to handle huge amounts of genome sequence data.

Vilo introduced an algorithm for discovering frequent substrings from biosequences in

1998 [93], [76]. This algorithm systematically generates a pattern trie while maintaining

information about the occurrences of each substring. It is basically a generalization of

the wotd (write-only top-down) suffix trie construction algorithm [79], [91] to find

frequent substrings of a string. This technique is interested in substrings that occur at

least at the frequency threshold value in the string, by constructing only the subtrees of

the suffix trie that correspond to the frequent substrings. This algorithm has been

successfully used for analyzing the full genome of yeast and for predicting certain

regulatory elements [76].

207

According to [137], [142], Phoophakdee and Zaki proposed an approach for indexing

genome-scale sequences using suffix trees, called TRELLIS+, which effectively scales

a large amount of genome sequence data using only a limited amount of main-memory,

based on a string buffering strategy. Their works focus on a disk-based suffix tree to

develop scalable data management techniques for retrieval, analysis and storage of

complete and partial genomes. In this algorithm, the index size is not increased when

the input sequence is very large. The experimental results showed that TRELLIS+

outperforms existing suffix tree approaches. Their technique was able to index genome-

scale sequences and also allowed rapid searching over the disk-based index.

In 2001, Kunihiko Sadakane and Tetsuo Shibuya presented storing indices in memory

in a compressed form [139]. The compressed suffix array was used as a data structure in

this technique. The suffix array can be compressed in the same scale of the string in this

technique. It stores the suffix array at the cost of a small increase in access time. The

experimental results showed that the overhead of using the compressed suffix array is

reasonable in practice. By using this technique, the compressed suffix array of a string

requires the same index size as the string itself. They also proposed an approximate

string matching algorithm in order to support the compressed suffix array.

Hugh E. Williams and Justin Zobel proposed a technique for searching genome

sequence databases in 2002, known as the index-based approach for both selecting

sequences that display broad similarity to a query and for fast local alignment [143].

Several criteria were applied to satisfy the use of this technique. These indexing and

retrieval techniques are embodied in a full-scale prototype retrieval system, CAFÉ, that

is based on techniques used in text retrieval and in approximate string matching for

databases [144]. The principal features of CAFÉ are the incorporation of data structures

208

for query resolution and the indexing technique used. The experimental studies show

that this index-based searching technique provides good results with low computational

requirements for local alignments. The index-based searching technique produces

results which are comparable with existing exhaustive search schemes.

In 2009, Marina Barsky, Ulrike Stege, Alex Thomo and Chris Upton proposed the

external-memory suffix tree construction algorithm for very large inputs [141], known

as B2ST. This algorithm is able to construct suffix trees for input sequences significantly

larger than the size of the available main memory [145]. B2ST minimizes random access

to the input string and accesses the disk-based data structures sequentially. It is able to

build a disk-based suffix tree for virtually unlimited sizes of input strings, thus filling

the ever growing gap between the increase of main memory in modern computers and

the much faster increase in the size of genomic databases.

6.3.3 Applying the frequent max substring technique to genome sequencing

In this section, the frequent max substring technique proposed in this thesis is employed

to classify frequent max substrings from genome sequencing where the structure is

written as a sequence of the specific alphabet in the genome without explicit delimiters.

The main objective of doing this is to show that the frequent max substring technique

can be applied to indexing genome sequencing. It also allows the construction of the

index using the proposed frequent suffix trie data structure as described in Chapter 3.

To illustrate the applicability of the frequent max substring technique for genome

sequencing, the following example shows how the proposed frequent suffix trie data

structure is used to represent all substrings with their frequency and list of positions of a

genome sequence.

209

Let string s = ‘ATGATGT’ as the genome sequence.

And the given frequency threshold value or θ = 2 as most substrings in biosequences

usually occur frequently, because there are only four possible characters in the alphabet

(A, C, G, T) to represent all genome sequences.

Step 1: Append ‘$’ to the string and define the position of each character in the

sequence.

String s : A T G A T G T $

Positions : 1 2 3 4 5 6 7 8

Step 2: Enumerate all suffixes of the string.

 1: ATGATGT$
 2: TGATGT$
 3: GATGT$
 4: ATGT$
 5: TGT$
 6: GT$
 7: T$
 8: $

Step 3: All suffixes are used to create the frequent suffix trie structure, as shown in

Figure 6.7.

210

Figure 6.7. Frequent suffix trie structure of string s = ‘ATGATGT’

The frequent max substring technique that was described in Chapter 3 is used to extract

frequent max substrings from the genome sequence using the min-heap structure as

shown in the following steps.

Min-heap structure

Firstly, all substrings with a length of 1 are extracted, together with their frequencies

and list of positions. The frequencies of these substrings are then checked in order to

select only the frequent substrings with a length of 1. These frequent substrings are

finally kept in the min-heap structure for further processes.

 A, 2 T, 3 G, 2
.pos=1, 4 .pos=2, 5, 7 .pos=3, 6

.pos = 8

Root

<T:3>
<A:2>

 7 <T$:1>

4

 8

<ATGATGT$:1> 1

.pos = 1,4

.pos =2,5,7

A T G $

T G

T

$

G A

$

A

$

G

T

A

$

T

T

T

T

$

T

$

.pos = 8

 3

 5

 2

<AT:2>

<ATG:2>

<ATGT:1> <ATGA:1>

<ATGAT:1>

<ATGATGT:1>

<ATGT$:1>

<TG:2>

<TGT:1>

<TGT$:1>

<TGA:1>

<TGAT:1
>

<TGATGT:1>

<TGATGT$:1>

<G:2>

<GA:1>

<GAT:1>

<GATGT:1>

<GATGT$:1>

.pos = 2,5

.pos = 3,6

.pos = 8

.pos = 7

.pos = 4

.pos = 5

.pos = 7

.pos = 3,6

.pos = 7

.pos = 7

.pos = 8

.pos = 4

.pos = 5

.pos = 3,6

.pos = 4

.pos = 5

.pos = 7

.pos = 8

<$:1>
.pos = 8

<ATGATG:1>
.pos = 6
 T

G

<TGATG:1>
.pos = 6

G

<GATG:1>
.pos = 6

.pos = 8

T

<GT:1>

$

 6 <GT$:1>
.pos = 8

.pos = 7

211

Next, <A, 2> is removed from min-heap in order to indicate that <A, 2> is detected and

extracts its child substrings for the next process. After <A, 2> is removed from min-

heap, the algorithm extracts child substrings of <A, 2> using list of positions or pointers

of <A, 2> to reduce time complexity. Child substrings consist of <AT, 2>. <AT, 2> is

kept in min-heap using the insertion rule, because <AT, 2> is the substring that occurs

in two different positions in string s.

<T, 3> is removed from min-heap, after which child substrings of <T, 3> are extracted

using the list of positions or pointers of <T, 3>. Child substrings consisting of <TG, 2>

and <T$, 1>. <G, 2> are deleted from min-heap because <TG, 2> is a proper

superstring of <G, 2> at the same frequency, and <TG, 2> is kept in min-heap instead,

using the insertion rule, because its frequency is equal to the given frequency threshold

value.

<AT, 2> is removed from min-heap and then its child substrings are extracted using its

list of positions (pointers). They consist of <ATG, 2>. <TG, 2> is deleted from min-

heap because <TG, 2> is a substring of <ATG, 2> with the same frequency. After that,

<ATG, 2> is kept in min-heap using the insertion rule because <ATG, 2> is the

substring that occurs in two different locations in string s.

 T, 3 AT, 2 G, 2
.pos=2, 5, 7 .pos=2, 5 .pos =3, 6

 AT, 2 TG, 2
.pos=2, 5 .pos =3, 6

 ATG:2
.pos =3, 6

212

<ATG, 2> is removed from min-heap and then its child substrings are extracted using

its list of positions. They consist of <ATGA, 1> and <ATGT, 1>. They are not kept in

min-heap because their frequencies are less than θ.

The algorithm will stop when min-heap is empty. This means all substrings in min-heap

were detected and processed completely.

From the above algorithm, the resulting frequent suffix trie structure can be depicted in

Figure 6.8.

Figure 6.8. Frequent suffix trie structure using proposed frequent max substring

technique

Figure 6.8 shows the frequent suffix trie structure. The result is FMAX(s, θ) = {<T, 3>,

<ATG, 2>}

From observation, the frequent max substring set, FMAX, is able to contain all frequent

substrings as shown in Table 6.4.

<A:2>

.pos = 3,6

A T

T

G

<AT:2>

<ATG:2>

.pos = 1,4

.pos = 2,5

Root

<T:3>

.pos =2,5,7

213

Table 6.4. Number of frequent max substrings and frequent substrings

Frequent max substrings Frequent substrings

<T, 3> <T, 3>

<ATG, 2> <A, 2>

<G, 2>

<AT, 2>

<TG, 2>

<ATG, 2>

It can be observed from Table 6.4 that <T, 3>, <A, 2>, <G, 2>, <AT, 2>, <TG, 2> and

<ATG, 2> are substrings of <T, 3> and <ATG, 2>, which are extracted from the

frequent max substring technique. The indexing terms <A, 2>, <G, 2>, <AT, 2>, <TG,

2> and <ATG, 2> can be enumerated from indexing term <ATG, 2>, while <T, 3> can

be enumerated from <T, 3>. It is considered that <T, 3> and <ATG, 2> can be kept,

instead of keeping <A, 2>, <G, 2>, <AT, 2> and <TG, 2> in order to reduce index size

and the number of indexing terms.

6.3.4 Experimental studies and comparison results

To illustrate the feasibility of using the frequent max substring technique for genome

sequencing, a comparison experiment was carried out to compare the performance from

Vilo’s method. Vilo’s technique is selected here because this technique aims to find

frequent substrings in order to reduce index size and the number of indexing terms.

Meanwhile, other techniques focus more on compression and merging the data structure

or memory in order to support the growth of genome sequence databases. In order to

compare the two different algorithms for genome sequencing, the number of indexing

terms that are enumerated by using Vilo’s algorithm and the number of indexing terms

214

that are enumerated by using the frequent max substring technique are compared. The

dataset used for this evaluation is the genome sequence found on the website:

http://www.broadinstitute.org/cgi-bin/annotation/methanosarcina/download-

sequence.cgi. Genome sequences have various lengths. The set of genome sequences

consists of 20 sequences and contains 52,500 characters. The sequence lengths start

from 250 to 5,000 characters.

From Figure 6.9 to Figure 6.17, the results of the comparison of the two indexing

methods used in this experiment are presented. The given frequency threshold values

were set between two and ten, so that the difference number of the indexing terms can

be examined when the given frequency threshold value varied. (For more information

on the dataset for different thresholds refer to Appendix F). Note that two is the

common frequency threshold value used to find frequent substrings [76]. In this

experiment, the given frequency threshold values stop at ten because the difference

between the number of indexing terms in the two techniques starts to be very small at

ten. In Figure 6.9 to Figure 6.17, the vertical axis represents the number of indexing

terms extracted by the two different approaches: Vilo’s algorithm and the frequent max

substring technique. The horizontal axis represents the sequence lengths.

215

Figure 6.9. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 2

Figure 6.10. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 3

216

Figure 6.11. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 4

Figure 6.12. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 5

217

Figure 6.13. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 6

Figure 6.14. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 7

218

Figure 6.15. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 8

Figure 6.16. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 9

219

Figure 6.17. Comparison of number of indexing terms extracted from two

approaches at given frequency threshold value = 10

The results showed that Vilo’s algorithm extracted a greater number of indexing terms

than the frequent max substring technique at the low given frequency threshold value.

All indexing terms extracted from Vilo’s algorithm were contained by all indexing

terms extracted from the frequent max substring technique as described in Chapter 3.

However, the number of indexing terms is likely to be closer to each other when the

given frequency threshold value increases. In order to support the experimental studies,

the reduction rate of both algorithms was also compared. The conventional suffix trie

algorithm that was described in Chapter 3 was used as the Naïve method and compared

with the two approaches. The reduction rate of the number of indexing terms using the

conventional suffix trie algorithm is equal to 0 per cent as this technique extracted the

complete set of indexing terms (substrings) from strings. The reduction rate can be

evaluated using the measurement in the proportion of the number of indexing terms

extracted from the conventional suffix trie and the number of indexing terms extracted

from other compared techniques. Therefore, the proportion of the reduction rate using

220

two techniques can be shown in Figure 6.18, when compared to the conventional suffix

trie algorithm.

Figure. 6.18. Reduction rate of number of indexing term enumerations using

frequent max substring technique and Vilo’s technique when compared with

conventional suffix trie algorithm

From Figure 6.18, the experimental results showed that the frequent max substring

technique can increase the reduction rate of the number of indexing terms by up to

99.98 percent at low frequency threshold value, and the reduction rate has increased

slightly at the higher frequency threshold value. Meanwhile, the reduction rate of Vilo’s

technique is lower than the reduction rate of the frequent max substring technique,

although Vilo’s algorithm also provided a high reduction rate of up to 99.96 percent at

low frequency threshold value. However, it can be observed that the reduction rate of

both algorithms is likely to be closer when the frequency threshold value is higher. In

addition, the reduction rate of the number of indexing terms for both algorithms

0

221

increases according to the given frequency threshold values and the maximum size of

indexing terms.

6.4 Conclusion

The purpose of this chapter is to demonstrate the applicability of the frequent max

substring technique. The experiment results show that the frequent max substring

technique can be applied not just to Thai text indexing or non-segmented document

clustering but it can also be applied for indexing other non-segmented texts like the

Chinese language and the genome sequence in bioinformatics. These non-segmented

texts share the same features with the Thai language in terms of structure. The frequent

max substring technique can be applied to other non-segmented texts because this

proposed technique is language-independent and can be applied to any pattern or

structure as described in Chapter 3. In this chapter, applying the frequent max substring

technique to the Chinese language and genome sequencing was demonstrated. From the

experiment and comparison results, it can be observed that the frequent max substring

technique is a versatile technique that can also be applied to other non-segmented text

problems.

222

Chapter 7

Conclusions

7.1 Contribution and outcomes

This study has focused on a problem concerning the development of Thai text indexing

techniques. The research in this study has provided a better understanding of indexing

Thai text documents based on language-dependent and language-independent

techniques. To conclude this research, it can be summarized by the following:

� Successfully developed an efficient Thai text indexing technique:

A new text indexing technique, called the frequent max substring technique, is proposed

for indexing Thai text documents. This technique is used to extract indexing terms and

construct an index for Thai text documents. The proposed technique addresses several

challenges that arise from indexing Thai text documents via language-dependent and

language-independent techniques.

It is demonstrated that the use of the proposed technique can improve performance in

terms of construction time, as this proposed technique is language-independent (i.e.

does not require the use of a dictionary or corpus or grammatical knowledge of

language). The proposed frequent max substring technique also does not require any

text pre-processing in extracting indexing terms before indexing can be performed. This

is why the proposed technique is fast and simple when compared to language-dependent

techniques. When using a language-dependent technique like the word inverted index

technique, one of the main drawbacks is that it requires well-defined linguistic

223

knowledge or the use of a dictionary or a corpus in order to extract indexing terms

before constructing an index.

Among the language-independent techniques, the proposed technique also improves

space efficiency in order to address one of the drawbacks of some language-

independent techniques. The proposed technique extracts only strings that are both long

and frequently occurring, known as frequent max substrings, from Thai text documents

as indexing terms, in order to reduce the number of insignificant indexing terms from

an index. Due to this reason, the proposed technique is able to construct the index using

less storage space to facilitate more efficient Thai text retrieval.

In the evaluation of the frequent max substring technique, it is compared to four other

indexing techniques: the word inverted index, the n-gram inverted index, the Vilo

technique and the suffix array. The experiments were performed by indexing 50 Thai

web pages. Five indexing techniques were compared in terms of indexing efficiency

and retrieval performance.

From the indexing efficiency evaluation, it can be concluded that the frequent max

substring technique requires less space to store indexing terms than the suffix array and

Vilo’s techniques. The number of indexing terms extracted from the frequent max

substring technique is around 21.50 percent of the number of indexing terms extracted

from the suffix array technique, and is around 13.63 percent of the number of indexing

terms extracted from Vilo’s technique. Meanwhile, the frequent max substring

technique provides a similar number of indexing terms and index size when compared

to the word inverted index and 3-gram inverted index techniques. The number of

indexing terms and index size generated by the inverted index, 3-gram inverted index

224

and frequent max substring techniques are much smaller, around 89 percent, when

compared to the suffix array and Vilo’s approaches. The frequent max substring

technique is also more efficient in computation when compared to the word inverted

index, as the frequent max substring technique does not require text pre-processing in

segmenting text documents like the word inverted index technique does. The results of

the experiment in Chapter 3 have shown that the frequent max substring technique uses

less indexing time than the word inverted index technique. The indexing time used by

the frequent max substring technique is around 70.47 percent of the indexing time used

by the word inverted index technique. In the word inverted index, text documents need

to be parsed and tokenized into individual linguistic units using word segmentation

approaches, which are very time consuming depending on the segmentation algorithm.

In retrieval performance evaluation, results have shown that the frequent max substring

technique provides the best precision and recall values over other existing techniques

used in the comparison study. This is because the proposed technique extracts frequent

max substrings, which can normally describe the content of documents better.

Additionally, the frequent max substring technique, Vilo’s technique and suffix array

approach provide similar recall results and these three techniques can find all

documents that contain the query. Meanwhile, the precision and recall values for the

word inverted index and 3-gram inverted index techniques are subject to the quality of

segmentation, (i.e. the splitting of general terms). This is because the word inverted

index and 3-gram inverted index techniques require query processing using

segmentation before searching. However, lower precision and recall values from the

word inverted index and 3-gram inverted index techniques are usually caused by query

processing, because the set of split terms normally cannot be used to exactly specify

what the user needs. Furthermore, another advantage of the frequent max substring

225

technique, Vilo’s technique and suffix array approach over the word inverted index and

3-gram inverted index techniques is that the given query can directly be used to search

relevant documents without query pre-processing. In addition, the frequent max

substring technique, Vilo’s technique and suffix array approach are also able to search

relevant documents even when the query was segmented into single words using the

query processing technique. Meanwhile, the word inverted index and 3-gram inverted

index techniques require query processing for all cases.

� Proposed data structure to facilitate fast and accurate enumeration of

substrings to support the frequent max substring technique:

In order to efficiently extract indexing terms and construct the index, the frequent max

substring technique used a proposed data structure, called the frequent suffix trie or FST

structure, to ensure exhaustive enumeration of substrings to support the extraction of

frequent max substrings as indexing terms. The proposed data structure facilitates the

extraction of substrings, together with their occurrence information and frequency,

while the conventional suffix trie extracts only substrings without any information [47].

In practice, the heap data structure is employed to compute the frequent max substrings

by using the two reduction rules to reduce storage requirement and the time required for

extracting the frequent max substrings.

� Successfully developed the frequent max substring technique to perform Thai

text indexing for language-dependent and language-independent techniques:

This thesis also shows that the frequent max substring technique can also be combined

with other Thai language-dependent techniques to become a hybrid language-dependent

technique. The hybrid method is used for extracting and indexing meaningful indexing

terms from Thai text documents. From the experimental results, the hybrid method can

226

be used to reduce the number of indexing terms and index sizes when compared to the

frequent max substring technique, and it provides better retrieval performance than the

word inverted index technique. Consequently, the hybrid method could be used as an

alternative language-dependent technique for indexing Thai text documents.

� Successfully developed an integrated method using the proposed frequent max

substring technique with self-organising map (SOM) to enhance non-

segmented document clustering:

This thesis also proposes a non-segmented document clustering method using self-

organizing map (SOM) and the frequent max substring technique to improve the

efficiency of information retrieval. This demonstrates that the frequent max substring

technique can be used with other techniques to enhance clustering of non-segmented

documents. In the evaluation of the proposed document clustering technique,

experimental studies and comparison results on clustering of Thai text documents

which consist of non-segmented texts are presented. The proposed technique is

compared to the hierarchical clustering approach, which is the more widely used

document clustering technique in the Thai language. The results have shown that the

proposed technique can be used for clustering Thai text documents. The generated

document cluster map from the proposed technique can be used to find the relevant

documents according to a user’s query more efficiently, when compared to the

hierarchical clustering approach.

� Successfully applied the proposed technique with some other non-segmented

texts like Chinese and genome sequences:

Finally, the applicability of the frequent max substring technique to other non-

segmented text problems has been demonstrated in this thesis. Due to being a language-

227

independent technique, the frequent max substring technique can be very versatile. It is

not only applicable for Thai text indexing and non-segmented document clustering, but

it is also applicable for indexing other non-segmented texts like the Chinese language

and genome sequences in bioinformatics. To demonstrate the use of the frequent max

substring technique for these non-segmented texts (the Chinese language and genome

sequences), the experimental and comparison results are presented. The results have

shown that the frequent max substring technique requires less retrieval time than the bi-

gram based indexing technique in looking up relevant documents in the Chinese

language. The retrieval time used by the frequent max substring technique is around 33

percent of the retrieval time used by the bi-gram based indexing technique. This is

because the bi-gram based indexing technique needs query processing. Meanwhile, the

frequent max substring technique also requires less space for storing indexing terms,

and constructing the index than the Vilo method, in indexing genome sequences. The

space for storing indexing terms used by the frequent max substring technique is around

84.63 percent of the space for storing indexing terms used by the Vilo’s technique in

indexing genome sequences.

However, this research also revealed some underlying limitations of the proposed

technique. One of the drawbacks of the proposed frequent max substring technique is

the indexing time required for constructing an index when compared to other language-

independent techniques. This limitation is caused by the use of two reduction rules as

described in Section 3.4.2 in Chapter 3, in order to reduce the number of indexing terms

during the process. However, the indexing time is dependent on the given frequency

threshold value and the size of the maximum indexing terms.

228

7.2 Future work and directions

This thesis is mainly designed to develop an efficient Thai text indexing technique in

order to enhance the performance of Thai text indexing. From the outcomes of this

research, there are some possible directions in which this research could be continued in

the future. The following are discussions and recommendations of some possible future

work to expand the knowledge in this area.

1. One of the disadvantages of the frequent max substring technique is the

indexing time required for constructing the index. More detailed analysis and

evaluation are necessary to formulate alternatives in the extraction algorithm, in

order to reduce the indexing time used by the frequent max substring technique.

However, a balance needs to be taken into account to find the optimum point

between better performance and better indexing time.

2. The continual development of the frequent max substring technique could be

expanded to include the search algorithm. A new search algorithm could be

developed in the future in order to find an appropriate searching technique for

the frequent max substring technique. This would lead to the improvement of

the frequent max substring technique in terms of search ability.

This study has proposed the use of the frequent max substring technique to address the

indexing problem for the Thai language and to enhance the performance of Thai text

indexing. It is believed that the research and experimental studies from this thesis have

contributed to the improvement of the performance in several practical applications. It

is also hoped that further work will continue in order to improve the efficiency of Thai

text indexing.

229

APPENDIXES

APPENDIX A: Addresses of Thai text collection

Id Name Address of data set
1 sport2 http://www.astv-tv.com/news1/viewdata.php?data_id=1001731

2 sport1 http://www.phuketcity.go.th/pkm/index.php?option=com_content
&task=view&id=1620&Itemid=97&lang=th_TH

3 sport4 http://news.mjob.in.th/sport/cat10/news19541/

4 sport3 http://radiothailand.prd.go.th/chonBuri/040newsboard/aspboard_
Question.asp?GID=356

5 travel4 http://news.sanook.com/scoop/scoop_361899.php

6 sport7 http://www.seagames2007.th/th/index.php?option=com_content
&task=view&id=1149&Itemid=107

7 sport9 http://www.seagames2007.th/th/index.php?option=com_content
&task=view&id=1154&Itemid=107

8 travel3 http://www.ryt9.com/s/prg/258847/

9 sport15 http://cfd-press.blogspot.com/2009_06_01_archive.html

10 travel11 http://www.siamfreestyle.com/forum/index.php?showtopic=1918

11 sport6 http://www.seagames2007.th/th/index.php?option=com_content
&task=view&id=1118&Itemid=107

12 travel13 http://www.scholiday.co.th/scwb/viewtopic.php?f=4&t=90

13 sport5 http://news.mumuu.com/sport/page2/

14 education2 http://www.intel.com/cd/corporate/education/apac/tha/news/3195
61.htm#Link4

15 political1 http://www.spokesman.go.th/tape/410721t.txt

16 education4 http://www.intel.com/cd/corporate/education/apac/tha/news/3195
61.htm#Link2

17 travel2 http://travel.sanook.com/news/news_07858.php

18 travel1 http://www.welcomethai.com/hotelreservation/news.asp?id=11

19 sport8 http://www.seagames2007.th/th/index.php?option=com_content
&task=view&id=1147&Itemid=107

20 political3 http://www.matichon.co.th/matichon/view_news.php?newsid=01
col01210652§ionid=0116&day=2009-06-21

21 travel15 http://www.phuketall.com/news/news.php?id=2785

22 political14 http://www.serichon.com/board/index.php?topic=26662.0

23 travel12 http://thai.tourismthailand.org/festival-event/content-6781.html

24 travel6 http://thai.tourismthailand.org/news/content-1491.html

25 political13 http://www.atnnonline.com/atnnonline/index.php/component/cont
ent/article/41-special-report/167-2009-05-28-08-00-13.html

26 education5 http://www.intel.com/cd/corporate/education/apac/tha/news/3195

230

61.htm#Link1

27 political9 http://vivaldi.cpe.ku.ac.th/~note/event/?id=397567

28 political15 http://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B
8%A3%E0%B8%82%E0%B8%B1%E0%B8%9A%E0%B9%84
%E0%B8%A5%E0%B9%88%E0%B8%97%E0%B8%B1%E0%
B8%81%E0%B8%A9%E0%B8%B4%E0%B8%93_%E0%B8%
8A%E0%B8%B4%E0%B8%99%E0%B8%A7%E0%B8%B1%E
0%B8%95%E0%B8%A3_%E0%B8%88%E0%B8%B2%E0%B
8%81%E0%B8%95%E0%B8%B3%E0%B9%81%E0%B8%AB
%E0%B8%99%E0%B9%88%E0%B8%87%E0%B8%99%E0%
B8%B2%E0%B8%A2%E0%B8%81%E0%B8%A3%E0%B8%B
1%E0%B8%90%E0%B8%A1%E0%B8%99%E0%B8%95%E0
%B8%A3%E0%B8%B5

29 political5 http://203.151.20.17/news_detail.php?newsid=1218170712

30 education3 http://www.intel.com/cd/corporate/education/apac/tha/news/3195
61.htm#Link16

31 education1 http://www.intel.com/cd/corporate/education/apac/tha/news/3195
61.htm#Link23

32 travel14 http://www.scholiday.co.th/scwb/viewtopic.php?f=4&t=90

33 sport13 http://www.marketeer.co.th/inside_detail.php?inside_id=6833

34 sport10 http://www.ryt9.com/s/prg/285415/

35 sport11 http://www.thaipr.net/nc/readnews.aspx?newsid=48B88F177C5D
488E79B59DD02C018C2F

36 travel10 http://www.ryt9.com/s/prg/130748/

37 political2 http://www.freemarketthai.com/tag/%E0%B8%84%E0%B8%A7
%E0%B8%B2%E0%B8%A1%E0%B8%82%E0%B8%B1%E0%
B8%94%E0%B9%81%E0%B8%A2%E0%B9%89%E0%B8%87
%E0%B8%97%E0%B8%B2%E0%B8%87%E0%B8%81%E0%
B8%B2%E0%B8%A3%E0%B9%80%E0%B8%A1%E0%B8%B
7%E0%B8%AD%E0%B8%87/

38 political8 http://www.suthichaiyoon.com/WS01_A001_news.php?newsid=
7656

39 political4 http://www.naewna.com/news.asp?ID=142987

40 political12 http://politicalbase.in.th/index.php/%E0%B8%8A%E0%B8%A7
%E0%B8%99_%E0%B8%AB%E0%B8%A5%E0%B8%B5%E0
%B8%81%E0%B8%A0%E0%B8%B1%E0%B8%A2

41 travel8 http://www.rd1677.com/branch.php?id=48957

42 travel9 http://www.thai-tour.com/wb/view_topic.php?id_topic=1553

43 political10 http://www.thaiedresearch.org/thaied_news/index1.php?id=12382

44 sport12 http://www.komchadluek.net/detail/20090316/5600/%E2%80%9
C%E0%B8%8A%E0%B8%A5%E0%B8%9A%E0%B8%B8%E
0%B8%A3%E0%B8%B5%E2%80%9D%E0%B8%99%E0%B8
%B3%E0%B8%97%E0%B8%AD%E0%B8%87%E2%80%9C%
E0%B8%81%E0%B8%B2%E0%B8%8D%E0%B8%88%E0%B
8%99%E0%B8%9A%E0%B8%B8%E0%B8%A3%E0%B8%B5
%E0%B9%80%E0%B8%81%E0%B8%A1%E0%B8%AA%E0

231

%B9%8C.html

45 political11 http://www.ryt9.com/s/govh/430506/

46 travel7 http://www.ryt9.com/s/prg/144633/

47 sport14 http://www.geocities.com/patcharee_toy/toynews3.htm

48 travel5 http://thai.tourismthailand.org/news/release-content-2059.html

49 political6 http://www.siamturakij.com/home/news/print_news.php?news_id
=413328535

50 political7 http://news.mcot.net/politic/inside.php?value=bmlkPTg1NTg4Jm
50eXBlPXRleHQ=

232

APPENDIX B: Details of Thai text collection

Text id Text name The number of
characters

(n characters)

Text size
(bytes)

1 sport2 721 721
2 sport1 805 805
3 sport4 874 874
4 sport3 913 913
5 travel4 1007 1007
6 sport7 1020 1020
7 sport9 1057 1057
8 travel3 1107 1107
9 sport15 1135 1135

10 travel11 1157 1157
11 sport6 1417 1417
12 travel13 1444 1444
13 sport5 1468 1468
14 education2 1507 1507
15 political1 1512 1512
16 education4 1544 1544
17 travel2 1561 1561
18 travel1 1563 1563
19 sport8 1643 1643
20 political3 1652 1652
21 travel15 1789 1789
22 political14 1879 1879
23 travel12 1901 1901
24 travel6 2002 2002
25 political13 2030 2030
26 education5 2035 2035
27 political9 2064 2064
28 political15 2107 2107
29 political5 2126 2126
30 education3 2142 2142
31 education1 2217 2217
32 travel14 2290 2290
33 sport13 2339 2339
34 sport10 2367 2367
35 sport11 2368 2368
36 travel10 2431 2431
37 political2 2437 2437
38 political8 2518 2518
39 political4 2735 2735
40 political12 2760 2760
41 travel8 2835 2835
42 travel9 2893 2893
43 political10 2922 2922

233

Text id Text name The number of
characters

(n characters)

Text size
(bytes)

44 sport12 3020 3020
45 political11 3243 3243
46 travel7 3475 3475
47 sport14 3580 3580
48 travel5 3643 3643
49 political6 4010 4010
50 political7 4022 4022

234

APPENDIX C: Comparison of number of indexing terms extracted
from five indexing techniques

Text
id

Text
name

The number of indexing terms
Suffix
array

Word
inverted

index

3-gram
inverted

index

Vilo’s
technique

Frequent max
substring
technique

1 sport2 276864 29 132 1139 145
2 sport1 342930 36 146 1363 156
3 sport4 402477 27 124 998 194
4 sport3 438240 42 158 1022 204
5 travel4 530689 30 142 939 244
6 sport7 544170 32 161 3850 247
7 sport9 583464 36 202 3088 209
8 travel3 638739 43 167 1148 256
9 sport15 670785 57 250 2262 226

10 travel11 696514 33 172 1255 270
11 sport6 1037244 67 281 1838 329
12 travel13 1076502 47 224 1605 354
13 sport5 1112010 77 324 3047 312
14 education2 1170939 48 236 2229 353
15 political1 1178604 54 254 1997 335
16 education4 1228252 56 267 4457 319
17 travel2 1255044 53 242 1543 398
18 travel1 1258215 53 244 1548 409
19 sport8 1388335 73 302 2014 360
20 political3 1403374 67 325 3818 396
21 travel15 1642302 71 311 2628 395
22 political14 1809477 73 340 2332 430
23 travel12 1851574 78 332 2608 379
24 travel6 2051049 104 354 2545 465
25 political13 2108155 80 392 4475 384
26 education5 2118435 74 352 6013 409
27 political9 2178552 74 395 4456 383
28 political15 2269239 68 353 2073 505
29 political5 2309899 79 365 2543 475
30 education3 2344419 74 371 3674 481
31 education1 2509644 84 409 4582 507
32 travel14 2675865 80 344 2442 519
33 sport13 2790427 96 421 2687 537
34 sport10 2856969 86 393 4314 446
35 sport11 2859360 86 393 4314 446
36 travel10 3012009 89 435 3821 530
37 political2 3026754 93 434 3400 511
38 political8 3229335 84 409 4458 502
39 political4 3804385 98 466 4897 525
40 political12 3873660 105 500 4592 591
41 travel8 4085235 88 421 3783 473

235

Text
id

Text
name

The number of indexing terms
Suffix
array

Word
inverted

index

3-gram
inverted

index

Vilo’s
technique

Frequent max
substring
technique

42 travel9 4252710 97 458 3668 654
43 political10 4337709 120 551 3562 695
44 sport12 4631170 144 582 3232 695
45 political11 5334735 127 613 5210 670
46 travel7 6119475 129 615 5071 703
47 sport14 6492330 109 156 8351 696
48 travel5 6721335 131 655 5122 775
49 political6 8134285 132 720 5177 894
50 political7 8182759 144 700 5711 818

236

APPENDIX D: Comparison of index sizes used by five indexing
techniques

Text
id

Text
name

Index size (bytes)
Suffix
array

Word
inverted

index

3-gram
inverted

index

Vilo’s
technique

Frequent max
substring
technique

1 sport2 261723 188 678 10705 783
2 sport1 326025 236 749 14098 961
3 sport4 384123 184 638 8305 999
4 sport3 419067 273 808 7727 1052
5 travel4 509542 219 735 7534 1344
6 sport7 522750 215 826 90172 1371
7 sport9 561267 281 1030 48990 1181
8 travel3 615492 272 864 9776 1411
9 sport15 646950 364 1272 22660 1336

10 travel11 672217 243 880 9937 1405
11 sport6 1007487 437 1429 14178 1825
12 travel13 1046178 337 1145 14629 1901
13 sport5 1081182 509 1643 36353 1755
14 education2 1139292 326 1207 29244 1829
15 political1 1146852 381 1292 20313 1897
16 education4 1195828 389 1357 102130 1716
17 travel2 1222263 352 1232 12523 1990
18 travel1 1225392 352 1242 12545 1993
19 sport8 1353832 452 1534 16394 1969
20 political3 1368682 471 1647 65888 2989
21 travel15 1604733 489 1585 27917 2222
22 political14 1770018 536 1724 19042 2484
23 travel12 1811653 527 1683 26557 2197
24 travel6 2009007 677 1803 22346 2630
25 political13 2065525 570 1986 61628 2529
26 education5 2075700 542 1790 140910 2575
27 political9 2135208 523 2020 51654 2707
28 political15 2224992 475 1788 16868 2697
29 political5 2265253 537 1854 24561 2691
30 education3 2299437 516 1884 51449 2834
31 education1 2463087 639 2072 58914 4381
32 travel14 2627775 521 1748 21429 3053
33 sport13 2741308 611 2134 22485 2837
34 sport10 2807262 558 2005 51060 2797
35 sport11 2809632 558 2005 51060 2797
36 travel10 2960958 601 2203 41547 3096
37 political2 2975577 658 2209 34813 3049
38 political8 3176457 593 2090 55627 3139
39 political4 3746950 657 2373 61902 3287
40 political12 3815700 738 2531 54046 3495
41 travel8 4025700 619 2140 39845 3073

237

Text
id

Text
name

Index size (bytes)
Suffix
array

Word
inverted

index

3-gram
inverted

index

Vilo’s
technique

Frequent max
substring
technique

42 travel9 4191957 653 2323 36276 4017
43 political10 4276347 812 2792 34906 3936
44 sport12 4567750 864 2936 24516 3703
45 political11 5266632 912 3105 57387 4107
46 travel7 6046500 892 3123 53360 4445
47 sport14 6417150 702 816 142595 4933
48 travel5 6644832 920 3318 51313 4721
49 political6 8050075 930 3651 48897 5458
50 political7 8098297 995 3572 58823 5105

238

APPENDIX E: Comparison of indexing times used by five indexing
techniques

Text
id

Text
name

Indexing time (processing round)
Suffix
array

Word
inverted

index

3-gram
inverted

index

Vilo’s
technique

Frequent max
substring
technique

1 sport2 519841 75168576 520562 15862 11436502
2 sport1 648025 83993700 648830 26565 21384825
3 sport4 763876 91253466 764750 15732 13749768
4 sport3 833569 95361024 834482 20086 18338518
5 travel4 1014049 105273794 1015056 23161 23323127
6 sport7 1040400 106646100 1041420 52020 53060400
7 sport9 1117249 110553744 1118306 31710 33517470
8 travel3 1225449 115838694 1226556 28782 31861674
9 sport15 1288225 118800450 1289360 31780 36070300

10 travel11 1338649 121128644 1339806 19669 22757033
11 sport6 2007889 148716984 2009306 22672 32126224
12 travel13 2085136 151589676 2086580 34656 50043264
13 sport5 2155024 154144404 2156492 51380 75425840
14 education2 2271049 158298294 2272556 22605 34065735
15 political1 2286144 158831064 2287656 49896 75442752
16 education4 2383936 162241976 2385480 44776 69134144
17 travel2 2436721 164054856 2438282 24976 38987536
18 travel1 2442969 164268174 2444532 25008 39087504
19 sport8 2699449 172807454 2701092 41075 67486225
20 political3 2729104 173768924 2730756 82600 136455200
21 travel15 3200521 188424636 3202310 64404 115218756
22 political14 3530641 198072906 3532520 41338 77674102
23 travel12 3613801 200433836 3615702 68436 130096836
24 travel6 4008004 211285074 4010006 50050 100200100
25 political13 4120900 214296950 4122930 101500 206045000
26 education5 4141225 214834950 4143260 168905 343721675
27 political9 4260096 217956336 4262160 74304 153363456
28 political15 4439449 222587694 4441556 35819 75470633
29 political5 4519876 224635286 4522002 55276 117516776
30 education3 4588164 226360134 4590306 115668 247760856
31 education1 4915089 234452184 4917306 64293 142537581
32 travel14 5244100 242339250 5246390 45800 104882000
33 sport13 5470921 247639286 5473260 35085 82063815
34 sport10 5602689 250670034 5605056 56808 134464536
35 sport11 5607424 250778304 5609792 56832 134578176
36 travel10 5909761 257603346 5912192 70499 171383069
37 political2 5938969 258253764 5941406 90169 219741853
38 political8 6340324 267041454 6342842 85612 215571016
39 political4 7480225 290648450 7482960 65640 179525400
40 political12 7617600 293374200 7620360 71760 198057600
41 travel8 8037225 301558950 8040060 99225 281302875

239

Text
id

Text
name

Indexing time (processing round)
Suffix
array

Word
inverted

index

3-gram
inverted

index

Vilo’s
technique

Frequent max
substring
technique

42 travel9 8369449 307896204 8372342 69432 200866776
43 political10 8538084 311067354 8541006 99348 290294856
44 sport12 9120400 321796100 9123420 48320 145926400
45 political11 10517049 346281054 10520292 132963 431199009
46 travel7 12075625 371859750 12079100 121625 422646875
47 sport14 12816400 383471700 12819980 171840 615187200
48 travel5 13271449 390449454 13275092 102004 371600572
49 political6 16080100 431255450 16084110 100250 402002500
50 political7 16176484 432594254 16180506 128704 517647488

240

APPENDIX F: Comparison of number of indexing terms extracted
from Vilo’s method (contracted form ‘Vilo’) and the
frequent max substring technique (contracted form
‘FM’) at given frequency threshold values between 2
and 10

Text
id

Text
name

Text Length
(n

characters)

The number of indexing terms

Threshold = 2 Threshold = 3 Threshold = 4

Vilo FM Vilo FM Vilo FM

1 g_250 250 652 117 153 85 79 68

2 g_500 500 818 252 233 165 132 122

3 g_750 750 547 420 273 266 177 176

4 g_1000 1000 720 551 377 360 246 246

5 g_1250 1250 1405 626 757 418 388 289

6 g_1500 1500 1606 778 857 517 460 372

7 g_1750 1750 1663 1096 855 716 552 519

8 g_2000 2000 1620 1057 809 685 503 474

9 g_2250 2250 1843 1127 841 704 574 498

10 g_2500 2500 2195 1306 985 866 650 619

11 g_2750 2750 2342 1406 1095 917 708 644

12 g_3000 3000 2309 1631 1112 1043 761 741

13 g_3250 3250 2510 1695 1227 1079 806 766

14 g_3500 3500 4176 1833 1443 1207 888 842

15 g_3750 3750 5268 1908 1639 1261 978 904

16 g_4000 4000 4078 2097 1620 1353 1022 951

17 g_4250 4250 4293 2247 2317 1491 1534 1044

18 g_4500 4500 4777 2387 2491 1569 1645 1121

19 g_4750 4750 10461 2421 3173 1609 1690 1183

20 g_5000 5000 9116 2611 3161 1687 1726 1254

241

Text
id

Text
name

Text Length
(n

characters)

The number of indexing terms

Threshold = 5 Threshold = 6 Threshold = 7

Vilo FM Vilo FM Vilo FM

1 g_250 250 56 54 39 39 34 34

2 g_500 500 105 102 84 84 62 62

3 g_750 750 125 125 105 105 92 92

4 g_1000 1000 181 181 145 145 119 119

5 g_1250 1250 266 233 212 196 161 160

6 g_1500 1500 311 282 250 236 203 203

7 g_1750 1750 399 390 316 312 263 261

8 g_2000 2000 388 377 303 300 256 254

9 g_2250 2250 417 375 338 308 285 261

10 g_2500 2500 496 485 384 376 319 314

11 g_2750 2750 531 498 428 402 358 342

12 g_3000 3000 562 551 458 452 371 365

13 g_3250 3250 599 586 482 472 399 395

14 g_3500 3500 663 646 526 518 431 429

15 g_3750 3750 693 664 558 538 455 450

16 g_4000 4000 756 728 601 578 502 485

17 g_4250 4250 1061 806 691 646 544 535

18 g_4500 4500 1137 864 758 704 606 593

19 g_4750 4750 1284 914 879 754 746 640

20 g_5000 5000 1306 956 884 769 754 653

242

Text
id

Text
name

Text Length
(n

characters)

The number of indexing terms

Threshold = 8 Threshold = 9 Threshold = 10

Vilo FM Vilo FM Vilo FM

1 g_250 250 30 30 26 26 24 24

2 g_500 500 49 49 43 43 40 40

3 g_750 750 85 85 77 77 65 65

4 g_1000 1000 105 105 93 93 83 83

5 g_1250 1250 141 141 126 126 106 106

6 g_1500 1500 172 172 152 152 132 132

7 g_1750 1750 233 231 194 193 176 176

8 g_2000 2000 220 218 202 200 170 168

9 g_2250 2250 244 228 212 200 189 179

10 g_2500 2500 273 271 235 234 209 208

11 g_2750 2750 305 293 270 262 234 228

12 g_3000 3000 315 311 277 275 249 247

13 g_3250 3250 338 335 301 299 275 274

14 g_3500 3500 379 377 333 332 292 292

15 g_3750 3750 413 410 357 356 317 317

16 g_4000 4000 429 417 380 369 342 334

17 g_4250 4250 472 468 405 401 362 359

18 g_4500 4500 514 505 442 434 385 381

19 g_4750 4750 632 541 556 478 493 425

20 g_5000 5000 651 558 561 480 507 436

243

List of References

[1] C. Haruechaiyasak, C. Damrongrat, C. Sangkeettrakarn, S. Kongyoung, and N.
Angkawattanawit, "Sansarn Look!: A Platform for Developing Thai-Language
Information Retrieval Systems," in 21st International Technical Conference on
Circuits/Systems, Computers and Communications, Chiang Mai, Thailand,
2006.

[2] S. Haruechaiyasak, S.Kongyoung, and C. Damrongrat, "LearnLexTo: A
Machine-Learning Based Word Segmentation for Indexing Thai Texts," in ACM
17th Conference on Information and Knowledge Management, 2008.

[3] W. Kanlayanawat and S. Prasitjutrakul, "Automatic Indexing for Thai Text with
Unknown Words Using Trie Structure," in Proceeding of NLP Pacific Rim
Symposium, 1997, vol. 14, no. 2, pp. 153-172, 2001.

[4] R. Sukhahuta and D. Smith, "Information Extraction Strategies for Thai
Documents," International Journal of Computer Processing of Oriental
Languages (IJCPOL), pp. 14(2):153-172, 2001.

[5] K. Khankasikam and N. Muansuwan, "Thai Word Segmentation a Lexical
Semantic Approach," in the 10th Machine Translation Summit (MT Summit),
Phuket, Thailand, 2005, p. 331.

[6] P. Sojka and D. Antos, "Context Sensitive Pattern Based Segmentation: A Thai
Challenge," in Proceedings of EACL 2003 Workshop Computational Linguistics
for South Asian Languages—Expanding Synergies with Europe, Budapest,
2003, pp. 65-72.

[7] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. New York:
ACM Press, 1999.

[8] C. Jaruskulchai, "Thai Text Segmentation: Problems and Potential Solutions," in
the Sixth Annual Workshop on Science and Technology Exchange between Thai
Professionals in North America and Thailand, Edmonton, Alberta, Canada,
1996.

[9] A. Kawtrakul, C. Thumkanon, Y. Poovorawan, P. Varasrai, and M.
Suktarachan, "Automatic Thai Unknown Word Recognition," in Proceeding of
NLPRS’97, 1997, pp. 341-348.

[10] J. Chuleerat, "An Automatic Indexing for Thai Text Retrieval," PhD thesis,
George Washington University, USA, 1998.

[11] T. Theeramunkong, V. Sornlertlamvanich, T. Tanhermhong, and W. Chinnan,
"Character-Cluster Based Thai Information Retrieval," in Proceedings of the
Fifth International Workshop on Information Retrieval with Asian Languages
Hong Kong, 2000, pp. 75-80.

[12] C. Haruechaiyasak, S. Kongyoung, and M. N. Dailey, "A Comparative Study on
Thai Word Segmentation Approaches," in Proceedings of Electrical
Engineering/Electronics, Computer, Telecommunications, and Information
Technology, 2008.

[13] Y. Poovorawan, "Dictionary-based Thai Syllable Segmentation (in Thai)," in
9th Electrical Engineering Conference, Bangkok, 1986.

[14] V. Sornlertlamvanich, "Word Segmentation for Thai in Machine Translation
System," Bangkok.

[15] Y. Thairatananond, "Towards the Design of a Thai Text Syllable Analyzer," in
Asian Institute of Technology, 1981.

244

[16] S. Charnyapornpong, "A Thai Syllable Separation Algorithm," in Asian Institute
of Technology, 1983.

[17] T. Theeramunkong and S. Usanavasin, "Non-Dictionary-Based Thai Word
Segmentation using Decision Trees," in Proceedings of the First International
Conference on Human Language Technology Research, 2001, pp. 1-5.

[18] S. Meknavin, P. Charoenpornsawat, and B. Kijsirikul, "Feature-based Thai
Word Segmentation," in Proceedings of the Natural Language Processing
Pacific Rim Symposium (NLPRS’97), Phuket, Thailand 1997.

[19] C. Kruengkrai and H. Isahara, "A Conditional Random Field Framework for
Thai Morphological Analysis," in Proceeding of the Fifth International
Conference on Language Resources and Evaluation (LREC-2006), 2006.

[20] J. Chuleerat, Dictionary-Based Thai CLIR: An Experimental Survey of Thai
CLIR, vol. 2406/2002: Springer Berlin/Heidelberg, 2002.

[21] W. Cavnar and J. Trenkle, "N-Gram Based Text Categorization," in
Proceedings of the 3rd Annual Symposium on Document Analysis and
Information Retrieval, Las Vegas, 1994, pp. 161-175.

[22] P. Majumder, M. Mitra, and B. B. Chaudhuri, "N-Gram: A Language
Independent Approach to IR and NLP," in International Conference on
Universal Knowledge, 2002.

[23] J. D. Cohen, "Highlights: Language - and Domain-Independent Automatic
Indexing Terms for Abstracting," Journal of The American Society for
Information Science, vol. 46, no. 3, pp. 162-174, 1995.

[24] W. B. Cavnar, "Using an N-Gram-Based Document Representation with a
Vector Processing Retrieval Model," in D.K. Harman editor, Proceedings of the
Third Text REtrieval (TREC-3), 1994, pp. 269-277.

[25] H. E. Williams and J. Zobel, "Indexing and Retrieval for Genomic Databases,"
in IEEE Transaction on Knowledge and Data Engineering, 2002, pp. 63-78.

[26] J. Mayfield and P. McNamee, "Single N-Gram Stemming," in Proceedings of
the 26th Annual International Conference on Information Retrieval, ACM SIGIR,
Toronto, Canada, 2003, pp. 415-416.

[27] A. Califano and I. Rigoutsos, "FLASH: A Fast Look-Up Algorithm for String
Homology," in Proceedings of the 1st International Conference on Intelligent
Systems for Molecular Biology, Bethesda, Maryland, 1993.

[28] M. Yamamoto and K. W. Church, "Using Suffix Arrays to Compute Term
Frequency and Document Frequency for All Substrings in a Corpus,"
Computational Linguistics, vol. 27, pp. 1-30, 2001.

[29] C. Jaruskulchai and C. Kruengkrai, "A practical text summarizer by paragraph
extraction for Thai," in Proceedings of the Sixth International Workshop on
Information Retrieval with Asian Languages, Sappro, Japan, 2003, pp. 9-16.

[30] W. Aroonmanakun, "Collocation and Thai word segmentation," in Proceedings
of the 5th SNLP & 5th Oriental COCOSDA Workshop, 2002, pp. 68-75.

[31] S. Luksaneeyanawin, "A Thai Text to Speech System," in Proceedings of the
Conference on Electronics and Computer Research and Development, 1992.

[32] K. Asanee, T. Chalathip, and S. Sapon, "A Statistical Approach to Thai Word
Filtering," in Proceedings SNLP'95, the 2nd Symposium on Natural Language
Processing, Bangkok, Thailand, August 2-4, 1995, pp. 398-406.

[33] V. Ruttikorn, S. Waraporn, J. Somsak, and T. Sakchai, "An Analysis on Correct
Sentence Selection by Word's General Usage Frequency," in Natural Language
Processing: Multi-lingual Machine Translation and Related Topics, 1994, pp.
291-300.

245

[34] S. J. Puglisi, W. F. Smyth, and A.Turpin, "Inverted Files Versus Suffix Arrays
for Locating Patterns in Primary Memory," in SPIRE 2006, pp. 122-133.

[35] J. H. Lee and J. S. Ahn, "Using n-Grams for Korean Text Retrieval," in
Proceedings of the19th Annual International Conference on Information
Retrieval, ACM SIGIR, Zurich, Switzerland, 1996, pp. 216-224.

[36] K. L. Kwok, "Comparing Representations in Chinese Information Retrieval," in
Proceedings of the 20th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Philadelphia, USA, 1997,
pp. 34-41.

[37] H. Fujii and W. B. Croft, "A Comparison of Indexing Techniques for Japanese
Text Retrieval," in Proceedings of ACM SIGIR 16th Annual International
Conference on Research and Development in Information Retrieval, 1993, pp.
237-246.

[38] P. McNamee, "Knowledge-Light Asian Language," in Proceedings of the Third
NTCIR Workshop on Research in Information Retrieval, Automatic Text
Summarization and Question Answering Text Retrieval, at the NTCIR-3.
Workshop, 2002.

[39] M. S. Kim, K. Y. Whang, J. G. Lee, and M. J. Lee, "n-Gram/2L: A Space and
Time Efficient Two-Level n-Gram Inverted Index Structure," in VLDB,
Trondheim, Norway, 2005, pp. 325-336.

[40] M. M. Hasan and Y. Matsumoto, "Chinese-Japanese Cross Language
Information Retrieval: A Han Character Based Approach," in Proceedings of the
SIGLEX Workshop on Word Senses and Multi-linguality, ACL-2000, Hong
Kong, 2000, pp. 19-26.

[41] P. Srichaivattana, "Dictionary-Less Search Engine for the Collaborative
Database," in Proceeding of the 3rd International Symposium on
Communications and Information Technologies, , September, 2003.

[42] C. Jaruskulchai., "Thai Text Segmentation: Problems and Potential Solutions,"
in The Sixth Annual Workshop on Science and Technology Exchange between
Thai Professionals in North America and Thailand, Edmonton, Alberta, Canada,
1996.

[43] R. Pankhuenkhat, "Thai Linguistics": Chulalongkorn, 1998.
[44] A. Kawtrakul, C. Thumkanon, and P. McFetridge, "Automatic Multilevel

Indexing for Thai Text Information Retrieval," in IEEE Asia Pacific Conference
on Circuits and Systems, 1998.

[45] B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data.
New York: Springer-Verlag Berlin Heidelberg, 2007.

[46] R. L. Haskin, "Special-Purpose Processors for Text Retrieval," Database
Engineering, vol. 4, no. 1, pp. 16-29, September 1981.

[47] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge: Cambridge University Press, 1997.

[48] R. Sukhahuta and D. Smith, "Information Extraction Strategies for Thai
Documents," International Journal of Computer Processing of Oriental
Languages (IJCPOL), vol. 14, no. 2, pp. 153-172, 2001.

[49] D. Lewis, "Naive (Bayes) at Forty: The Independence Assumption in
Information Retrieval," in Proceeding of 10th European Conference on Machine
Learning, 1998, pp. 4-15.

[50] J. R. Quinlan, "Induction of Decision Trees," in Machine Learning, vol. 1, no. 1,
pp. 81-106, 1986.

[51] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer,
1995.

246

[52] T. Joachims, "Text Categorization with Support Vector Machines: Learning
with Many Relevant Features," in Proceedings of the 10th European Conference
on Machine Learning, 1998, pp. 137-142.

[53] F. Peng, F. Feng, and A. McCallum, "Chinese Segmentation and New Word
Detection using Conditional Random Fields," in Proceedings of the 20th
International Conference on Computational Linguistics (COLING), 2004.

[54] J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields:
Probabilistic models for segmenting and labeling sequence data," in
Proceedings of the Eighteenth International Conference on Machine Learning
(ICML), 2001, pp. 282-289.

[55] V. Sornlertlamvanich, T. Charoenporn, and H. Isahara, "ORCHID: Thai Part-
Of-Speech Tagged Corpus," in Technical Report TR-NECTEC-1997-001: Thai
National Electronics and Computer Technology Center, December 1997.

[56] T. Theeramunkong, W. Chinnan, T. Tanhermhong, and V. Sornlertlamvanich,
"Full-Text Search for Thai Information Retrieval Systems," in The Fourth
Symposium on Natural Language Processing, Thailand, 2000.

[57] E. Adams, "A Study of Trigrams and Their Feasibility as Index Terms in a Full
Text Information Retrieval System." PhD thesis, George Washington University,
USA, 1991.

[58] Y. Ogawa and T. Matsudua, "Optimizing query evaluation in n-gram indexing,"
in Proceedings of International Conference on Information Retrieval, ACM
SIGIR, Melbourne, Australia, 1998, pp. 367-368.

[59] H. E. Williams, "Genomic Information Retrieval," in Proceedings of the 14th
Australasian Database Conferences, 2003.

[60] L. F. Chien, "Fast and Quasi-Natural Language Search for Gigabytes of Chinese
Texts," in Proceedings of 18th ACM SIGIR Conference on Research and
Development in Information Retrieval, New York, USA, 1995, pp. 112-120.

[61] T. Liang, S. Y. Lee, and W. P. Yang, "Optimal Weight Assignment for a
Chinese Signature File," in Journal of Information Processing and
Management, vol. 32, no. 2, pp. 227-237.

[62] Y. T. Lin, Chinese English Dictionary of Modern Usage. Hong Kong: Chinese
University of Hong Kong Press, 1972.

[63] H. Jiao, Q. Liu, and H.-b. Jia, "Chinese Keyword Extraction Based on N-Gram
and Word Co-Occurrence," in 2007 International Conference on Computational
Intelligence and Security Workshops (CISW 2007) China, 2007.

[64] Y. Ogawa, A. Bessho, M. Iwasaki, M. Nishimura, and M. Hirose, "A New
Indexing and Text Ranking Method for Japanese Text Databases Using Simple-
Word Compounds as Keywords," in Proceedings of the Third International
Symposium on Database Systems for Advanced Applications, 1993, pp. 197-204.

[65] E. Miller, D. Shen, J. Liu, and C. Nicholas, "Performance and Scalability of a
Large-Scale N-Gram Based Information Retrieval System," Journal of Digital
Information, vol. 1, no. 5, pp. 1-25, 2000.

[66] J. D. Cohen, "Recursive Hashing Functions for n-Grams," ACM Transactions on
Information Systems, vol. 15, no. 3, pp. 291-320, July 1997.

[67] U. Manber and G. Myers, "Suffix Arrays: A New Method for On-Line String
Searches," in the First Annual ACM-SIAM Symposium on Discrete Algorithms,
1990, pp. 319-327.

[68] D. B. Paul and J. M. Baker, "The Design for the Wall Street Journal-Based CSR
Corpus," in Proceedings of DARPA Speech and Natural Language Workshop,
1992, pp. 357-361.

247

[69] C. T. Meadow, B. R. Boyce, D. H. Kraft, and C. Barry, Text Information
Retrieval Systems, 3rd ed., London, UK: Academic Press, 2007.

[70] D. E. Knuth, J. H. Morris Jr, and V. R. Pratt, "Fast Pattern Matching in Strings,"
SIAM Journal on Computing, vol. 6, no. 2, pp. 323-350, 1977.

[71] R. S. Boyer and J. S. Moore, "A Fast String Searching Algorithm," in
Communications of the ACM (CACM), vol. 20, no. 10, pp. 762-772, October
1997.

[72] D. M. Sunday, "A Very Fast Substring Search Algorithm," in Communications
of the ACM (CACM), vol. 33, no. 8, pp. 132-142, August 1990.

[73] A. V. Aho and M. J. Corasick, "Fast Pattern Matching: An Aid to Bibliographic
Search," in Communications of the ACM (CACM), vol. 18, no. 6, pp. 333-340,
June 1975.

[74] S. Wu and U. Manber, "Agrep—a fast approximate pattern searching tool," in
USENIX Conference, January 1992.

[75] L. A. Hollaar, K. F. Smith, W. H. Chow, P. A. Emrath, and R. L. Haskin,
"Architecture and Operation of a Large, Full-Text Information-Retrieval
System," in Advanced Database Machine Architecture, D.K. Hsiao, Ed.,
Englewood Cliffs, New Jersey: Prentice-Hall, 1992, pp. 256-299.

[76] J. Vilo, "Discovering Frequent Patterns from Strings: Department of Computer
Science, University of Helsinki, Finland," Technical Report C-1998-9, May
1998.

[77] H. P. Luhn, "The Automatic Creation of Literature Abstracts," IBM Journal of
Research, vol. 2, no. 4, pp. 159-165, 1958.

[78] P. Weiner, "Linear Pattern Matching Algorithms," in IEEE 14th Annual
Symposium on Switching and Automata Theory, 1973.

[79] R. Giegerich and S. Kurtz, "A Comparison of Imperative and Purely Functional
Suffix Tree Constructions," Science of Computer Programming, vol. 25, no. 2-
3, pp. 187-218, 1995.

[80] L. Colussi, "Fastest Pattern Matching in Strings," Journal of Algorithms, vol.
16, no. 2, pp. 163-189, 1994.

[81] R. Sinha, S. J. Puglisi, A. Moffat, and A. Turpin, "Improving Suffix Array
Locality for Fast Pattern Matching on Disk," in Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, 2008, pp. 661-672.

[82] F. M. Liang, "Word Hy-phen-a-tion By Com-put-er." Doctor of Philosophy,
Stanford University, USA, 1983.

[83] M. Nelson, "Fast String Searching with Suffix Trees," Dr Dobb's Journal, 1996.
[84] G. A. Stephen, String Searching Algorithms, vol. 6: World Scientific Press,

2000.
[85] R. Sinha, "Using Compact Tries for Cache-Efficient Sorting of Integers," in

Proceedings of International Workshop on Efficient and Experimental
Algorithms, 2001, pp. 513-528.

[86] M. Jung, M. Shishibori, Y. Tanaka, and J.-i. Aoe, "A Dynamic Construction
Algorithm for the Compact Patricia Trie using the Hierarchical Structure,’
Journal of Information Processing and Management, vol. 38, no. 2, March
2002.

[87] D. R. Morrison, "PATRICIA—Practical Algorithm to Retrieve Information
Coded in Alphanumeric," Journal of the ACM (JACM), vol. 15, no. 4, pp. 514-
534, 1968.

[88] E. M. McCreight, "A Space-Economical Suffix Tree Construction Algorithm,"
Journal of the ACM (JACM), vol. 23, no. 2, pp. 262-272, 1976.

248

[89] E. Ukkonen, "On-Line Construction of Suffix Trees," Algorithmica, vol. 14, no.
3, pp. 249-260, 1995.

[90] R. Giegerich and S. Kurtz, "From Ukkonen to McCreight and Weiner: A
Unifying View of Linear-Time Suffix Tree Construction," Algorithmica, vol. 19
no. 3, pp. 331-353, 1997.

[91] R. Giegerich, S. Kurtz, and J. Stoye, "Efficient Implementation of Lazy Suffix
Trees," in Proceedings of the Third Workshop on Algorithmic Engineering
(WAE99), 1999, pp. 30-42.

[92] G. Navarro, "A Guided Tour to Approximate String Matching," ACM
Computing Surveys, vol. 33, no. 1, pp. 31-88, Mar. 2001.

[93] J. Vilo, "Pattern Discovery from Biosequences," in Facutly of Science,
Department of Computer Science. PhD thesis, University of Helsinki, Helsinki,
November 2002.

[94] T. Chumwatana, K. W. Wong, and H. Xie, "Using Frequent Max Substring
Technique for Thai Keyword Extraction used in Thai Text Mining," in 2nd
International Conference on Soft Computing, Intelligent System and Information
Technology (ICSIIT 2010), Bali, Indonesia, 1-2 July 2010.

[95] T. Chumwatana, K. W. Wong, and H. Xie "Frequent Max Substring Mining for
Indexing," International Journal of Computer Science and System Analysis
(IJCSSA), India, 2008.

[96] W. B. Croft, D. Metzler, and T. Strohman, Search Engines: Information
Retrieval in Practice. Boston: Addison-Wesley, 2010.

[97] L. Narupiyakul, C. Thomas, N. Cercone, and B. Sirinaovakul, "Thai Syllable-
Based Information Extraction Using Hidden Markov Models," in the 5th
International Conference on Intelligent Text Processing and Computational
Linguistics (CICLing-2004) Seoul, Korea, February 15-21, 2004, pp. 537-546.

[98] C. Haruechaiyasak, P. Srichaivatanna, S. Kongyoung, and C. Damrongrat,
"Automatic Thai Keyword Extraction from Categorized Text Corpus," 2008.

[99] T. Yamashita and Y. Matsumoto, "Language-Independent Morphological
Analysis," in the Sixth Applied Natural Language Processing Conference, April
2000, pp. 232-238.

[100] P. Mittrapiyanuruk and V. Sornlertlamvanich, "The Automatic Thai Sentence
Extraction," in the Fourth Symposium on Natural Language Processing, May
2000, pp. 23-28.

[101] N. Suwanno, Y. Suzuki, and H. Yamazaki, "Extracting Thai Compound Nouns
for Paragraph Extraction in Thai Text," in IEEE International Conference on
Natural Language Processing and Knowledge Engineering (IEEE NLP-KE '05),
2005.

[102] T. Charoenporn, V. Sornlertlamvanich, and H. Isahara, "Building a Large Thai
Text Corpus—Part-Of-Speech Tagged Corpus: ORCHID" in Proceedings of
NLPRS’97, 1997.

[103] C.-H. Lee and H.-C. Yang, "A Web Text Mining Approach Based on Self-
Organizing Map," in the 2nd International Workshop on Web Information and
Data Management, Kansas City, Missouri, United States, 1999, pp. 59-62.

[104] J. Bakus, M. F. Hussin, and M. Kamel, "A SOM-Based Document Clustering
Using Phrases," in Proceedings of the 9th International Conference on Neural
Information Processing (ICONIP’02). vol. 5, 2002, pp. 2212-2216.

[105] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey, "Scatter/Gather: A
Cluster-Based Approach to Browsing Large Document Collections," in
Proceedings of the 15th Annual International ACM SIGIR conference on
Research and Development in Information Retrieval, 1992, pp. 318-329.

249

[106] I. Matveeva, "Document Representation and Multilevel Measures of Document
Similarity," in Proceedings of the 2006 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology, New York, June 04-09, 2006, pp. 235-238.

[107] C.-M. Tseng, K.-H. Tsai, C.-C. Hsu, and H.-C. Chang, "On the Chinese
Document Clustering Based on Dynamical Term Clustering," in AIRS 2005, pp.
534-539.

[108] Y. Li, S. M. Chung, and J. Holt, "Text Document Clustering Based on Frequent
Word Meaning Sequences," Data and Knowledge Engineering (DKE), vol. 64,
no 1, pp. 381-404, 2008.

[109] Y. Wang and J. E. Hodges, "Document Clustering using Compound Words," in
Proceedings of the 2005 International Conference on Artificial Intelligence
(ICAI 2005), Las Vegas, Nevada, USA, 2005, pp. 307-313.

[110] J. Mathieu, "Adaptation of a Keyphrase Extractor for Japanese Text," in
Proceedings of the 27th Annual Conference of the Canadian Association for
Information Science (CAIS-99) Sherbrooke, Quebec, 1999, pp. 182-189.

[111] T. Chumwatana, K. W. Wong, and H. Xie, "An Automatic Indexing Technique
for Thai Texts using Frequent Max Substring," in Eighth International
Symposium on Natural Language Processing, 2009 (SNLP '09) Bangkok,
Thailand, 2009.

[112] R. Feldman and J. Sanger, The Text Mining Handbook: Advanced Approaches
in Analyzing Unstructured Data. Cambridge University Press, 2006.

[113] R. C. Dubes and A. K. Jain, Algorithms for Clustering Data, Prentice Hall,
1988.

[114] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley and Sons, 1990.

[115] M. Steinbach, G. Karypis, and V. Kumar, "A Comparison of Document
Clustering Techniques," in KDD Workshop on Text Mining, 2000.

[116] Y. Zhao and G. Karypis, "Comparison of Agglomerative and Partitional
Document Clustering Algorithms," in The SIAM Workshop on Clustering High-
Dimensional Data and Its Applications, Washington, DC, April 2002.

[117] Z. Huang, "Extensions to the K-means Algorithm for Clustering Large Datasets
with Categorical Values," in Data Mining and Knowledge Discovery, 1998, pp.
283-304.

[118] D. Dembele and P. Kastner, "Fuzzy C-means Method for Clustering Microarray
Data," Bioinformatics, vol. 19, no. 8, pp. 973-980, 2003.

[119] L. J. Heyer, S. Kruglyak, and S. Yooseph, "Exploring Expression Data:
Identification and Analysis of Coexpressed Genes," Genome Research, vol. 9,
no. 11, pp. 1106-1115, 1999.

[120] C. C. Fung, K. W. Wong, H. Eren, R. Charlebois, and H. Crocker, "Modular
Artificial Neural Network for Prediction of Petrophysical Properties from Well
Log Data," IEEE Transactions on Instrumentation & Measurement, vol. 46, no.
6, pp. 1259-1263, December 1997.

[121] D. Myers, K. W. Wong, and C. C. Fung, "Self-Organising Maps Use for
Intelligent Data Analysis," Australian Journal of Intelligent Information
Processing Systems, vol. 6, no. 2, pp. 89-96, 2000.

[122] A. Blazejewski and R. Coggins, "Application of Self-Organizing Maps to
Clustering of High-Frequency Financial Data," in The Second Workshop on
Australasian Information Security, Data Mining and Web Intelligence, and
Software Internationalisation, Dunedin, New Zealand, 2004.

250

[123] D. R. Hill, "A Vector Clustering Technique,’ in Mechanized Information
Storage, Retrieval and Dissemination, K. Samuelson, Ed. North-Holland,
Amsterdam, 1968.

[124] J. J. Rocchio, "Document Retrieval Systems—Optimization and Evaluation,"
PhD thesis, Harvard University, USA, 1966.

[125] G. Salton, A. Wong, and C. S. Yang, "A Vector Space Model for Automatic
Indexing," Communications of the ACM, vol. 18, no. 11, pp. 613-620, 1975.

[126] O. Zamir, "Clustering Web Documents: A Phrase-Based Method for Group
Search Engine Results," PhD thesis, University of Washington, USA, 1999.

[127] D. Mladenic and M. Grobelnik, "Word Sequence as Features in Text-Learning,"
in Proceedings of the 17th Electrotechnical and Computer Science Conference
(ERK-98) Ljubljana, Slovenia, 1998.

[128] C. Kruengkrai and C. Jaruskulchai, "Thai Text Document Clustering Using
Parallel Spherical K-means Algorithm on PIRUN Linux Cluster (in Thai)" in
The Fifth National Computer Science and Engineering Conference, Chiang Mai
University, Chiang Mai, Thailand, 2001, pp. 7-9 November.

[129] T. Kohonen, Self-Organization and Associative Memory, vol. 8. New York:
Springer, 1984.

[130] K. Lairungruang, "Automatic Thesaurus Construction with Term Context and
Syntactic Analysis for Thai Text Retrieval," Master thesis, Mahidol University,
Bangkok, Thailand, 2003.

[131] F. Archetti, P. Campanelli, E. Fersini, and E. Messina, "A Hierarchical
Document Clustering Environment Based on the Induced Bisecting k-Means."
vol. 4027 of Lecture Notes in Computer Science, H. L. Larsen, G. Pasi, D.
O.Arroyo, T. Andreasen, and H. Christiansen, Eds.: Springer, 2006, pp. 257-
269.

[132] K. Wang, M. Ester, and B. C. M. Fung, "Hierarchical Document Clustering
using Frequent Itemsets," in SIAM International Conference on Data Mining,
San Francisco, CA, United States, 2003, pp. 59-70.

[133] A. K. Jain and R. C. Dubes, Algorithm for Clustering Data. Englewood Cliffs,
NJ: Prentice Hall, 1988.

[134] C. Thumkanon, A. Kawtrakul, Y. Poovorawan, F. Andres, K. Nakasiri, W.
Manomaiphibul et al., "Research Resource Management for Thai Language
Processing Service," in International Conference on Computer Communication
1999 (ICCC'99) Tokyo, 1999.

[135] L. Wieger, Chinese Characters: Their Origin, Etymology, History,
Classification and Signification. The Catholic Mission Press, 1965.

[136] T. Chumwatana, K. W. Wong, and H. Xie, "Non-Segmented Document
Clustering Using Self-Organizing Map and Frequent Max Substring
Technique," in 16th International Conference on Neural Information Processing
(ICONIP 2009), Bangkok, Thailand, 2009.

[137] B. Phoophakdee and M. J. Zaki, "TRELLIS+: An Effective Approach for
Indexing Genome-Scale Sequences Using Suffix Trees,’ in Pacific Symposium
on Biocomputing 2008, Kohala Coast, Hawaii, USA, 2008.

[138] H. Huo and V. Stojkovic, "A Suffix Tree Construction Algorithm for DNA
Sequences," in the Proceedings of the 7th IEEE International Conference on
Bioinformatics and Bioengineering (BIBE 2007), Boston, 2007, pp. 1178-1182.

[139] K. Sadakane and T. Shibuya, "Indexing Huge Genome Sequences for Solving
Various Problems," in Genome Informatics, vol. 12, pp. 175-183, 2001.

251

[140] P. Baldi and G. W. Hatfield, DNA Microarrays and Gene Expression: From
Experiments to Data Analysis and Modeling. Cambridge, United Kingdom:
Cambridge University Press, 2002.

[141] M. Barsky, U. Stege, A. Thomo, and C. Upton, "Suffix Trees for Very Large
Genomic Sequences," in CIKM '09: Proceedings of the 18th ACM Conference
on Information and Knowledge Management, 2009.

[142] B. Phoophakdee and M. J. Zaki, "Genome-Scale Disk-Based Suffix Tree
Indexing," in Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, 2007, pp. 833--844.

[143] H. E. Williams and. J. Zobel, "Indexing and Retrieval for Genomic Databases,"
in IEEE Transactions on Knowledge and Data Engineering, 2002, pp. 63-78.

[144] H. E. Williams, "Indexing and Retrieval for Genomic Databases," PhD thesis,
RMIT University, Melbourne, Australia, 1998.

[145] M. Barsky, U. Stege, A. Thomo, and C. Upton, "A New Method for Indexing
Genomes Using On-Disk Suffix Trees," in CIKM '08: Proceedings of the 17th
ACM Conference on Information and Knowledge Management, 2008, pp. 649-
658.

