

MURDOCH RESEARCH REPOSITORY

http://researchrepository.murdoch.edu.au/7730/

Hallett, C.S. and Valesini, F.J. (2009) *The development and validation of an estuarine health index using fish community characteristics.* In: 8th Indo Pacific Fish Conference and 2009 ASFB Workshop and Conference, 31 May - 5 June 2009, Fremantle, Western Australia.

Presentation

It is posted here for your personal use. No further distribution is permitted.

The development and validation of an Estuarine Health Index using fish community characteristics

Chris Hallett, Fiona Valesini

What is `Estuarine Health'?

Assessment of ecosystem condition / state

Comparison to 'Reference condition'

<u>Key Feature:</u>

The extent to which

(i) Appropriate environmental conditions are maintained

(ii) Appropriate species, populations and communities are supported

(iii) Ecological processes and interactions occur at appropriate rates and scales

Multimetric biotic indices

Characteristics of aquatic communities reflect both acute and chronic changes to their environment.

Characteristics (metrics):

- Species diversity, abundance, composition
- Nursery function
- Trophic structure

Developing indices using fish assemblage characteristics – Key stages:

Stage 1: Metric selection

- Distance-based linear modelling
- Non-linear multivariate techniques
- Weight of evidence approach

Stage 2: Establishing reference conditions

Ideally, the biotic integrity of an ecosystem should be assessed in comparison to an 'undisturbed' reference condition, representing the state of a pristine system unmodified by anthropogenic influences, incorporating natural variability.

(Harris and Silveira 1999)

Few aquatic systems are free from human impact

Therefore two possible approaches:

'Least disturbed' or 'Best available' reference sites Best values from many sites, (no independent pre-selection of reference sites)

• Select sites minimally impacted by human influence

• Define reference conditions for each metric from values for these "best" sites

• A large number of sites are sampled to provide a representation of the region

• Define reference conditions for each metric as the "best" values from among all selected sites

Previous studies of fish fauna in the Swan Estuary

Stage 3: Metric scoring

e.g. method exemplified by Harrison & Whitfield 2004

FIG. 7. Ranked species richness data for predominantly closed, moderately sized estuaries in the subtropical region. The vertical line represents the cut-off of the upper quartile of the data. The mean (reference value) of the upper quartile = 24 species.

- E.g. Reference value for each metric = mean of upper quartile of values from reference sites for that metric
- Score samples for each metric (0-5) in comparison to the reference value for that metric

Stage 4: Calculate index by summing scores for all metrics

Stage 5: Index validation - sensitivity

Sensitivity - the ability of the index to correctly distinguish between samples (e.g. locations, times) which differ significantly in terms of estuarine health

Stage 5: Index validation - reliability

Reliability - ability to generate a consistent signal which is not disrupted by background variability (noise)

Approach:

Test the repeatability of index scores

Fig. 7. Mean EFCI values versus EFCI scores for estuaries that were repeatedly sampled. Diagonal line represents the 1:1 EFCI score to mean EFCI relationship. Vertical and horizontal lines represent the boundary of moderate EFCI ratings; shaded areas include EFCI ratings of poor-to-moderate and good-to-moderate. (*e.g.* compare index value *VS* mean value of repeated samples)

Outcomes: Implications for Management

- Quantitative assessment of estuary health
- Monitor changes in health over time
- Inform management decisions
- Communication tool for public
- Potential for wider applicability

Index outcomes – wider applicability

Acknowledgements:

Funded by: Dept. of Water, Dept. of Fisheries, Swan River Trust, WAMSI, Murdoch University Images courtesy: F. Valesini, D. Morgan, M. Allen, T. Linke

Department of Fisheries Government of Western Australia

Examples of candidate metrics for testing

METRIC TYPE			
Species diversity, abundance, composition	Nursery function	Trophic integrity	
Species richness (total no. of taxa)	No. of estuarine resident taxa	Feeding guild composition	
Presence of 'indicator species'	No. of estuarine-spawning taxa	No. of benthic invertebrate feeding taxa	
Dominance (no. of taxa that make up 90% of the abundance)	Proportion of 'nursery species'	No. of piscivorous taxa	
No. of introduced pest species		Proportion of individuals as macrophagic carnivores	
No. of intolerant species		Proportion of piscivores	
Species composition, relative to reference assemblage		Proportion of top carnivores	
Presence of rare or threatened species		Proportion of detritivores	
Diversity indices		Proportion of omnivores	
		Number of trophic specialist taxa	

Provisional metric suite

Nearshore (Seine nets)	Offshore (Gill nets)
Assemblage composition (BC)	Assemblage composition (BC)
Shannon-Weiner diversity	Species richness
No. trophic specialist spp.	No. trophic specialist spp.
No. trophic generalist spp.	No. trophic generalist spp.
Proportion detritivores	Proportion detritivores
Feeding Guild Composition	
No. benthic associated spp.	Proportion benthic associated spp.
No. estuarine spawning spp.	Proportion estuarine spawning spp.
Proportion P. olorum	

Metric selection

Fig. 4 Graphical screening of the candidate metrics as a function of the pre-classification of the habitat (Hscore) by boxplots + quintiles of the reference distribution to score (for abbreviations of the metrics see Table 3)

Breine et al. 2007

Habitat Quality Assessment:

ر 🔘

200

10000

Habitat quality category	No. of sites
Excellent	7
Good	46
Fair	65
Poor	18

Inability to select responsive metrics

Inability to select responsive metrics

MDS of raw fish composition: – no evidence of grouping by habitat quality category

MDS of raw fish composition:

- samples group by region

ANOSIM:

- no sign. diff's in fish composition between HQ categories

References:

- Breine, J. J., Maes, J., Quataert, P., Van den Bergh, E., Simoens, I., Van Thuyne, G., and Belpaire, C. (2007). A fish-based assessment tool for the ecological quality of the brackish Schelde estuary in Flanders (Belgium). *Hydrobiologia* 575: 141-159.
- Deegan, L. A., Finn, J. T., Ayvazian, S. G., Ryder-Kieffer, C. A., & Buonaccorsi, J. (1997). Development and validation of an estuarine Biotic Integrity Index. *Estuaries* **20** (3): 601-617.
- Fairweather, P. G. (1999). Determining the 'health' of estuaries: Priorities for ecological research. *Australian Journal of Ecology* **24**: 441-451.
- Harris, J. H., & Silveira, R. (1999). Large-scale assessments of river health using an Index of Biotic Integrity with low-diversity fish communities. *Freshwater Biology* **41**: 235-252.
- Harrison, T. D., and Whitfield, A. K. (2004). A multi-metric fish index to assess the environmental condition of estuaries. *Journal of Fish Biology* **65**: 683-710.
- Karr, J. R. (1993). Defining and assessing ecological integrity: beyond water quality. *Environmental Toxicology and Chemistry* **12**: 1521-1531.
- USEPA. (2006). Developing Biological Indicators: Lessons Learned From Mid-Atlantic Streams. USEPA report EPA/903/F-06/001. US Environmental Protection Agency, Fort Meade, Maryland.