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Performance of Robust GCV and Modified GCV for

Spline Smoothing

MARK A. LUKAS

Mathematics and Statistics, Murdoch University

FRANK R. DE HOOG and ROBERT S. ANDERSSEN

CSIRO Mathematics, Informatics and Statistics

ABSTRACT. While it is a popular selection criterion for spline smoothing, general-

ized cross-validation (GCV) occasionally yields severely undersmoothed estimates.

Two extensions of GCV called robust GCV (RGCV) and modified GCV have been

proposed as more stable criteria. Each involves a parameter that must be chosen,

but the only guidance has come from simulation results. We investigate the per-

formance of the criteria analytically. In most studies, the mean square prediction

error is the only loss function considered. Here, we use both the prediction error

and a stronger Sobolev norm error, which provides a better measure of the quality

of the estimate. A geometric approach is used to analyse the superior small-sample

stability of RGCV compared to GCV. In addition, by deriving the asymptotic in-

efficiency for both the prediction error and the Sobolev error, we find intervals for

the parameters of RGCV and modified GCV for which the criteria have optimal

performance.

Key words: asymptotic, generalized cross-validation, nonparametric regression, small sample,

Sobolev error, spline smoothing

Running headline: Robust GCV and modified GCV criteria

1 Introduction

In many data analysis applications, it is required to fit a smooth curve to noisy data

yi = f(xi) + εi, a ≤ x1 < x2 < · · · < xn ≤ b, i = 1, . . . , n, (1)

where f(x) is smooth and the random errors εi are assumed to be independent and identically

distributed with mean 0 and common variance σ2. Besides yielding good estimates of f(x) at the

design points xi, the curve and its derivative, respectively, should closely track f(x) and f ′(x)

over the whole interval. Smoothing splines are widely used for this and related nonparametric

regression problems; see e.g. Eubank (1988); Gu (2002); Ramsay & Silverman (2005); Wahba

(1990). The natural polynomial smoothing spline of degree 2m − 1 is defined as the minimizer

fλ of

n−1
n∑

i=1

(yi − f(xi))
2 + λ

∫ b

a

(f (m)(x))2dx (2)
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over all functions f for which f (m) is square integrable. The smoothing parameter λ > 0 deter-

mines the amount of smoothing, and its selection is critical to generating a good spline estimate

fλ.

One of the most popular parameter selection criteria is generalized cross-validation (GCV)

(Craven & Wahba, 1979; Wahba, 1990). Denote fλ = (fλ(x1), . . . , fλ(xn))
T and let A(λ) be the

smoothing matrix defined by fλ = A(λ)y. The GCV criterion selects λ as the minimizer of the

GCV function

V (λ) =
n−1∥(I −A(λ))y∥2

[n−1tr(I −A(λ))]2
, (3)

where ∥·∥ denotes the Euclidean norm. For spline smoothing and also for more general estimation

problems, it is known that GCV has good asymptotic properties as the sample size n → ∞. In

particular, under mild conditions, the GCV estimate is asymptotically optimal with respect to

the mean square prediction error (Li, 1986). However, for small or moderately sized samples, it

has been observed (Wahba, 1990, sect. 4.9) that GCV has significant variability, sometimes giving

a parameter value that is far too small (possibly even 0), resulting in a very rough spline estimate.

Efron (2001) gave a novel geometric interpretation of the erratic small-sample behaviour of GCV

and the closely related Mallows Cp criterion. He showed that Cp suffers from an instability (called

the reversal effect) in which, for a small change in the data, a desired ‘optimal’ value of λ can

change from being a minimizer of the Cp function to becoming a local maximizer.

Generalized maximum likelihood (GML) is another well-known selection criterion (Wahba,

1985), which is equivalent to restricted maximum likelihood (REML) in the mixed model for-

mulation of smoothing splines (Ruppert et al., 2003). It is shown in Efron (2001); Kou & Efron

(2002) that, although GML is more stable than GCV, it can have a large bias. Motivated by

the deficiencies of GCV and GML, Kou & Efron (2002) proposed a new criterion, called the

extended exponential criterion, which has much less variability than GCV. Recently, Hall &

Robinson (2009) showed that the variability of cross-validation (CV) can be significantly reduced

by bagging either the CV function or the CV bandwidth estimate.

We consider another selection criterion called robust GCV (RGCV). This criterion was first

proposed for spline smoothing by Robinson & Moyeed (1989), who found in simulations that it has

much less variability than GCV (see also van der Linde (2000)). In the more general framework

of Tikhonov regularization of linear inverse problems (which includes spline smoothing), the

RGCV criterion was developed in Lukas (2006, 2008). The criterion uses an approximate average

influence measure F (λ) = µ2(λ)V (λ), where µ2(λ) = n−1tr(A2(λ)), and selects λ as the minimizer

of the weighted sum

V (λ) = γV (λ) + (1− γ)F (λ) = [γ + (1− γ)µ2(λ)]V (λ), (4)

where γ ∈ (0, 1) is a robustness parameter. Graphically, the term (1 − γ)F (λ) in V (λ) changes

the shape of the GCV function near 0 so that RGCV is less likely to choose a very small value of

λ (Lukas, 2006). For spline smoothing, the function V (λ) (like V (λ)) can be computed efficiently

in O(m2n) operations (Lukas et al., 2010).
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In this paper, it is shown that RGCV is a very effective selection criterion for spline smoothing

problems of any sample size. We determine the precise effect of the parameter γ and hence find

a range of values for which the RGCV estimate is both stable and has good performance. For

the loss function, we use both the (mean square) prediction error T (λ) = n−1∥fλ − f∥2, where
f = (f(x1), . . . , f(xn))

T , and a stronger Sobolev error.

In most theoretical or empirical studies of selection criteria, the prediction error is the only

loss function considered; see e.g. Kim & Gu (2004); Li (1986). The asymptotic behaviour and

optimal rate of the prediction risk ET (λ) and its minimizer λET are well known (Wahba, 1990).

However, the prediction error has limitations, since it is a pointwise measure and, furthermore,

it is insensitive to the derivative and curvature of fλ − f , which are important for the quality of

the fit. This issue is especially important in applications where there is a specific requirement for

estimates of f ′(x) or f ′′(x) (Ramsay & Silverman, 2005).

Since f is assumed to be smooth, it is reasonable to use derivatives not only in the roughness

penalty in (2) to construct the family of spline estimates {fλ}, but also in a loss function that

defines an optimal estimate from the family, i.e. an optimal value of λ. Suppose that f belongs

to the Sobolev space W = Wm,2[a, b] of functions whose mth weak derivative is in L2(a, b). Then

a natural measure of the accuracy of fλ is obtained by using the squared Sobolev norm on W to

obtain

W (λ) := ∥fλ − f∥2W =

∫ b

a

(fλ(x)− f(x))2dG+

∫ b

a

(f
(m)
λ (x)− f (m)(x))2dx, (5)

which will be called the Sobolev error. Here G is the limit as n → ∞ of the empirical distribution

functions for the points {xi}. Note that, from (2), fλ belongs to W by definition. In fact,

fλ has higher smoothness if m ≥ 2, since fλ ∈ C2m−2[a, b] (Wahba, 1990). The asymptotic

behaviour and optimal rate of the Sobolev risk EW (λ) and its minimizer λEW are derived in

Cox (1984b). We will also consider, as an extension of (5), the weighted Sobolev error Wκ(λ) :=

∥fλ − f∥2L2(G) + κ∥f (m)
λ − f (m)∥2L2

, where κ > 0 is a constant.

In section 2, we investigate the small-sample behaviour of RGCV using the geometric approach

of Efron (2001). The reversal effect is used to derive an analytic measure of the instability of

RGCV as a function of γ. This function is computed for several examples from the literature.

It shows that the stability of RGCV improves considerably as γ is decreased from 1 (the GCV

case), and when γ = 0.3, the criterion is very stable. Simulation results confirm this behaviour.

If γ is decreased too far, the RGCV estimates become too biased, leading to poor spline

estimates. In sections 3 and 4, this behaviour is quantified for the large-sample case by deriving

the asymptotic inefficiency of the (restricted) RGCV estimate with respect to both the prediction

risk ET (λ) and the Sobolev risk EW (λ). For ET (λ), the inefficiency grows monotonically but

slowly as γ is decreased from 1, and it is still relatively small (approximately 1.1) when γ = 0.3.

For EW (λ), as γ is decreased from 1, (an estimate of) the inefficiency decreases to a unique

minimum point, and, when m = 2, the corresponding optimal value of γ lies in the interval

(0, 0.6). The same result holds for the weighted Sobolev risk EWκ(λ), independent of κ. The
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special case of the inefficiency for GCV (γ = 1) is of interest in its own right.

The small-sample and large-sample results in sections 2 – 4 indicate that RGCV with γ ∈
[0.2, 0.4] (approximately) will give both stable and accurate cubic spline estimates for a wide class

of functions f . Robinson & Moyeed (1989) found that the value γ = 0.5 gave good results in

simulations, but they did not provide detailed comparisons. A large simulation study in Lukas

et al. (2008) confirms that RGCV performs well for γ ∈ [0.2, 0.4].

Perhaps the simplest approach to stabilizing GCV is the modified GCV criterion (Cummins

et al., 2001; Kim & Gu, 2004). In this criterion, the GCV function V (λ) in (3) is modified to the

score function

Vρ(λ) =
n−1∥(I −A(λ))y∥2

[n−1tr(I − ρA(λ))]2
(6)

by replacing tr(I−A(λ)) with tr(I−ρA(λ)) for some constant ρ > 1. This constrains the effective

degrees of freedom trA(λ) to be less than n/ρ. Simulation results in Cummins et al. (2001); Kim

& Gu (2004) suggest that, for prediction error loss, ρ = 1.4 is a good choice.

It is known (Cummins et al., 2001; Lukas, 2008) that under mild assumptions, if trA → 0 and

trA/tr(A2) has a limit M as n → ∞, then RGCV has the same asymptotic behaviour as modified

GCV, provided the parameters γ and ρ in the criteria are related by γ−1 = 1 + 2(ρ− 1)M . For

cubic spline smoothing, the limit condition holds with M = 4/3. Therefore, for large n, the good

interval 0.2 ≤ γ ≤ 0.4 for RGCV defines the corresponding good interval 2.5 ≥ ρ ≥ 1.5625 for

the modified GCV criterion. The value ρ = 1.4 corresponds to γ = 0.484.

In the last decade, there has been increased interest in penalized splines and P-splines (Ruppert

et al., 2003), which are defined using a spline basis and knot sequence that is much smaller than n.

Clearly, from (4), RGCV can be used to select the smoothing parameter for these splines. Because

they are spline-like smoothers, the small-sample results for RGCV in section 2 apply to them.

In addition, if the number of knots increases sufficiently quickly with n, these splines behave

asymptotically like smoothing splines (Claeskens et al., 2009), and we expect that asymptotic

results similar to those in sections 3 and 4 will also hold.

2 Geometry and small-sample stability of RGCV

GCV is closely related (Efron, 2001) to the Cp criterion of Mallows (1973), and they behave

essentially the same in practice (Craven & Wahba, 1979). The Cp criterion selects λ as the

minimizer of

C(λ) = n−1∥y −A(λ)y∥2 + 2σ2n−1trA(λ)− σ2, (7)

which is an unbiased estimate of the prediction risk ET (λ) = n−1E∥fλ − f∥2. By simple

differentiation, the Cp estimate satisfies r′(λ) = −2σ2µ′
1(λ), where r(λ) = n−1∥(I − A(λ))y∥2

and µ1(λ) = n−1trA(λ), while the GCV estimate satisfies r′(λ) = −2σ̂2(λ)µ′
1(λ), where σ̂2(λ) =

r(λ)/(1 − µ1(λ)). Therefore, the GCV estimate satisfies the same equation as the Cp estimate,

but with the variance estimate σ̂2(λ) in place of σ2.
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Similarly, we show that RGCV is closely related to a robustified version of Cp that we call

robust Cp (RCp), which selects λ as the minimizer of

C(λ) = γC(λ) + (1− γ)σ2µ2(λ). (8)

TheRCp estimate satisfies r′(λ) = −2σ2µ′
1(λ)−kγσ

2µ′
2(λ), where kγ = (1−γ)/γ, while the RGCV

estimate satisfies the same equation, but with the variance estimates σ̂2(λ) = r(λ)/(1 − µ1(λ))

and σ̃2(λ) = r(λ)/(1 + kγµ2(λ)) in place of σ2 in the first and second terms, respectively.

The instability of Cp and GCV for small n was explained by Efron (2001) using a simple

geometric interpretation. It is well known that the smoothing matrix A(λ) has a diagonalization

A(λ) = Udiag(aλi)U
T , where U is orthogonal and independent of λ, and aλi = 1/(1 + λτi),

i = 1, . . . , n, for a certain nondecreasing sequence {τi}, with τi = 0 for i = 1, . . . ,m. In fact, the

analysis in Efron (2001) and here applies to any spline-like smoother, i.e. a linear smoother in

which the smoothing matrix can be diagonalized as A(λ) = Udiag(aλi)U
T , where the diagonal

elements aλi have the form aλi = 1/(1 + λτi).

The function C(λ) in (7) can be simplified by defining z = UTy/σ and g = UTf/σ, where zi

has mean gi and variance 1, and substituting for y. Then the Cp estimate λ̂C is the minimizer of

lλ(u) =
∑

(b2λiui − 2bλi), (9)

where bλi = 1 − aλi and u = (z21 , z
2
2 , . . . , z

2
n)

T . The sum in (9) and throughout this section is

over i with τi ̸= 0. By simple differentiation, λ̂C satisfies the equation η̇T
λ (u − µλ) = 0, where

ηλi = −b2λi and µλi = 1/bλi = 1 + (1/λ)(1/τi). The mapping λ → µλ defines a line in Rn−m

(called the line of expectations by Efron (2001)), where µλ → 1 = (1, 1, . . . , 1)T as λ → ∞ and

µλ → ∞ as λ → 0. From the equation for λ̂C , it can be shown (Efron, 2001; Kou & Efron, 2002)

that, for a small change in the data, the Cp function can go from having a (local) minimum at

a desired ‘optimal’ value λ0 to a (local) maximum at λ0. Then, for such perturbed data, the

Cp choice will be far from λ0. This phenomenon, called the reversal effect in Efron (2001), can

occur when u is in a certain half-space called the reversal region. Let Vλ0 = diag(b−3
λ0i

/2) and

βλ0 = η̈λ0V
2
λ0
η̇λ0/(η̇λ0V

2
λ0
η̇λ0). Then the reversal region is defined as

RR = {w : R0(w) < 0}, R0(w) = λ2
0[l̈λ0(w)− βλ0 l̇λ0(w)]. (10)

Clearly, if u ∈ RR, then Cp cannot select λ0 as the estimate (whether l̇λ0(u) is 0 or not).

Note. For R0(w), there is an error in the defining equation (39) of Kou & Efron (2002) in that,

for the purpose of scaling, one should multiply by λ2
0 as in (10) rather than divide by λ2

0. For the

same reason, the expressions for the mean M(R0) and variance V (R0) in Appendix B of Kou &

Efron (2002) should not include the factors λ−4
0 and λ−8

0 , respectively. (Clearly, the expression

in Kou & Efron (2002) for M(R0) is poorly scaled since Σa2λ0i
bλ0i behaves like c(λ0)

−1/(2m) as

n → ∞ for some constant c (see theorems 2.3 and 5.1 in Kou (2003) for m = 2, where the

smoothing parameter equals nλ in our notation).)
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Because C(λ) is an unbiased estimate of the prediction risk ET (λ), it is natural to use λ0 =

λET in the definition (10), where λET is the minimizer of ET (λ). Simulation results in Kou &

Efron (2002) for two examples with cubic smoothing splines indicate that R0 with λ0 = λET is

a good predictor of the instability of Cp. The first example has 61 equally spaced points xi on

[−1, 1] (they are not defined explicitly in Kou & Efron (2002), but we take xi = −1 + (i− 1)/30,

i = 1, . . . , 61), f(x) = sin(π(x + 1))/(x/2 + 1) and the errors εi ∼ N(0, 1) (i.e. σ = 1). For

this example with 1000 replicates of the data, Fig. 7(b) in Kou & Efron (2002) shows that the

degrees of freedom df = trA(λ) =
∑

aλi for the Cp estimate λ̂C has much greater variability

when R0(u) < 0 than when R0(u) > 0.

The same is true for GCV when applied to these data, as shown in Figure 1(a). When

R0 > 0, most df values for the GCV estimates are near df = 5.26, the value of df corresponding

to λ0 = λET . (In Kou & Efron (2002) this value is df = 5.18, and the discrepancy could be due

to the choice of xi or to the search grid used for λ.) Of the 1000 replicates, 19.7% have R0 < 0

and for these the df values vary considerably between about 5 and 60.

The RCp function C(λ) defined in (8) can be expressed as

C(λ) = γ[σ2n−1
∑

(b2λiz
2
i − 2bλi) + σ2] + (1− γ)σ2n−1

∑
(1− bλi)

2

= σ2n−1{
∑

[b2λi(γz
2
i + (1− γ))− 2bλi] + (1− γ)(n−m)},

so the RCp estimate is the minimizer of

lλ(u) =
∑

[b2λi(γui + (1− γ))− 2bλi], (11)

where ui = z2i as before. Comparing (11) and (9), it is clear that lλ(u) = lλ(γu + (1 − γ)1) for

all λ and u. This formula leads to a simple geometric explanation of the stability of the RCp

criterion. First we have the following result.

Theorem 1 Consider a spline-like smoother with aλi = 1/(1+λτi), where the sequence {τi} ≥ 0

is non-constant and nondecreasing; in particular, a spline smoother. The point 1 (corresponding

to λ → ∞) on the line of expectations is not in the Cp reversal region RR for any λ0 > 0.

Proof. See the Appendix.

From theorem 1, we have the following conclusions. Since the reversal region is a half space,

if u is not in RR, then all points on the line segment u(γ) = γu+ (1− γ)1, γ ∈ [0, 1], lie outside

RR. Moreover, if u is in RR, then, for all sufficiently small γ ∈ (0, 1), the points u(γ) lie outside

RR. In this case, using (10), we can find the (data dependent) value γ∗ such that for all γ < γ∗,

u(γ) is outside RR. It is defined by

1

γ∗ = 1− R0(u)

R0(1)
= 1−

∑
(−η̈λ0i)ui − 2b̈λ0i − βλ0

∑
(−η̇λ0i)ui − 2ḃλ0i∑

(−η̈λ0i)− 2b̈λ0i − βλ0

∑
(−η̇λ0i)− 2ḃλ0i

.

For Example 1 of Kou & Efron (2002), simulations reveal that, with λ0 = λET , the (empirical)

distribution of γ∗ is supported on [0.2, 1] (approximately), and near 0.2 the density approaches 0

continuously. This indicates that RCp with γ = 0.2 is very stable.
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Since RGCV is related to RCp in much the same way as GCV is related to Cp, we can expect

that RGCV will display the same stability property as RCp. For the same 1000 replicates used

for GCV in Fig. 1(a), the reversal effect for RGCV with γ = 0.5 is much less serious, with only

5.3% of the replicates having R0(u(γ)) < 0. Figure 1(b) shows the corresponding results for

RGCV with γ = 0.3. Now only 0.9% of the replicates have R0(u(γ)) < 0, and for all of the 1000

replicates, the RGCV estimated df is between 2.3 and 13.7, a big improvement compared to GCV

in Fig. 1(a).
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Figure 1: Reversal results for (a) GCV and (b) RGCV (γ = 0.3) with λ0 = λET (i.e. df = 5.26,

marked with a horizontal line) for Ex. 1 of Kou & Efron (2002). The lower horizontal line marks

the value df = 4.59 corresponding to λEW , the minimizer of EW (λ).

It is clear from Fig. 1(b) that RGCV introduces a downward bias in the estimated df . This

is to be expected from the asymptotic estimate in corollary 1 in section 3. Some bias in this

direction is helpful since, as discussed in the Introduction, the Sobolev risk EW (λ) defined in

(5) is a better performance measure than ET (λ), and its minimizer λEW usually has a smaller

df value than λET . In particular, for the example above, λEW gives df = 4.59, which is marked

in Fig. 1(b) with the lower horizontal dash-dot line. In other examples to be considered below,

there is an even bigger difference between the df values corresponding to λET and λEW .

For any estimate λ̂, define the inefficiency with respect to the Sobolev error to be IW =

W (λ̂)/minW (λ). Plots of IW (instead of df) against R0 corresponding to Figs. 1(a) and 1(b)

show that, for this example, the sign of R0 is a good predictor of the instability of GCV measured

by IW , and that RGCV with γ = 0.3 is much more stable than GCV.

While it is natural to have λ0 = λET in the definition (10) of R0 for Cp and GCV, it is of

interest to know how sensitive RR = RR(λ0) is to the choice of the ‘optimal’ λ0. An obvious

comparison is to take λ0 = λEW , the minimizer of EW (λ), in the definition of R0. Since GCV

is biased as an estimator of λEW , we can expect that the probability P (u ∈ RR(λEW )) will be
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larger than P (u ∈ RR(λET )). For the same 1000 replicates used in Fig. 1, now 43.1% belong

to RR(λEW ) (and 39.8% of 3000 replicates), which is significantly higher than the corresponding

value of 19.7% belonging to RR(λET ) (in Fig. 1(a)).

The mean M(R0), variance V (R0) and skewness S(R0) of R0 are

M(R0) = λ2
0

[∑
2ḃ2λ0iµλ0i + (βλ0 η̇λ0

− η̈)T (Eu− µλ0
)
]

V (R0) = λ4
0

∑
(βλ0

η̇λ0i − η̈λ0i)
2var(ui)

S(R0) = λ6
0

∑
(βλ0 η̇λ0i − η̈λ0i)

3E(ui − Eui)
3/[V (R0)]

3/2,

where, for normal errors, Eui = g2i + 1, var(ui) = 4g2i + 2 and E(ui − Eui)
3 = 24g2i + 8. As in

Kou & Efron (2002), a three term Edgeworth expansion yields the approximation

P (u ∈ RR) ≈ Φ

(
−M(R0)√

V (R0)

)
− 1

6S(R0)
(

M(R0)
2

V (R0)
− 1

)
ϕ

(
−M(R0)√

V (R0)

)
, (12)

where ϕ and Φ are the standard normal density and distribution functions, respectively. Note

that there is good agreement between the analytic estimate P (u ∈ RR(λET )) = 0.19 (from (12))

and the empirical percentage 19.7% (from Fig. 1(a)), and also between P (u ∈ RR(λEW )) = 0.39

(from (12)) and the empirical percentage 39.8% (for 3000 replicates) discussed above.

Using u(γ) = γu+(1−γ)1 in place of u in (12) and normal errors, we can obtain an analytic

estimate of P (u(γ) ∈ RR(λ0)) for the RGCV criterion. The parameter γ appears in M(R0) and

V (R0) through the expressions Eui(γ) = γEui + 1− γ and var(ui(γ)) = γ2var(ui), respectively,

but it does not appear in S(R0) since it cancels out.

Because the RGCV estimate is asymptotically larger than λET (see (21)), it is appropriate

to use a value of λ0 in RR(λ0) that is larger than λET , say between λET and λEW . Figure 2

shows plots of (the estimate) P (u(γ) ∈ RR(λ0)), as a function of γ ∈ [0, 1], for six different

values of λ0 defined by λ0 = sλEW + (1 − s)λET for s = 0, 0.2, . . . , 1. For s = 0, we have

λ0 = λET , which is used in Fig. 1, and, for s = 1, we have λ0 = λEW . Clearly, for γ = 1 (i.e.

GCV), the probability P (u(γ) ∈ RR(λ0)) is in the interval [0.19, 0.39]. But, as γ decreases, the

corresponding probability interval gets closer to 0; in particular, when γ = 0.3, the interval has

decreased to approximately [0.004, 0.05]. This means that, with γ = 0.3, it is very unlikely that

RGCV will behave in an unstable manner because of the reversal effect.

The behaviour observed in Fig. 2 can also be seen in other examples. Using λ0 = λET , Fig.

3(a) displays plots of P (u(γ) ∈ RR(λ0)) for Examples 1–3 from Craven & Wahba (1979), which

involve a unimodal, bimodal and trimodal function f , respectively, with sample sizes of 50 and

100. Note that GCV has significant instability for Examples 1 and 2 (especially Ex. 1), and

this instability is only reduced a little by increasing n from 50 to 100. For the same replicates,

Fig. 3(b) shows the corresponding plots of P (u(γ) ∈ RR(λ0)) using λ0 = λEW . In all the cases

shown in Figs. 3(a) and 3(b), we can ensure that P (u(γ) ∈ RR(λ0)) (with both λ0 = λET and

λ0 = λEW ) is very small by taking γ = 0.3.
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Figure 3: Plots of P (u(γ) ∈ RR(λ0)) against γ with (a) λ0 = λET and (b) λ0 = λEW for Ex.

1–3 of Craven & Wahba (1979) with n=50 (dashed) and n=100 (solid)

3 Asymptotic inefficiency of RGCV for the prediction risk

Since the errors are independent with mean 0, the prediction risk can be expressed as ET (λ) =

b2(λ)+ v(λ), where b2(λ) = n−1∥Efλ−f∥2 is the squared bias and v(λ) = n−1E∥fλ−Efλ∥2 =

σ2µ2(λ) is the variance. It is known (Lukas, 2008) that, under suitable assumptions, as n → ∞,

the shifted RGCV function V (λ)−γn−1∥ε∥2 is consistent with the robust prediction risk defined

as

ET (λ) = γET (λ) + (1− γ)v(λ) = γb2(λ) + v(λ). (13)

Therefore, the RGCV estimate is asymptotically biased for the prediction risk. Here, we determine

the asymptotic inefficiency of the (restricted) RGCV estimate for the prediction risk.

We will use the same assumptions as in Cox (1984a); Nychka (1990). Let Gn denote the em-
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pirical distribution function for the design points {xi}. Cases A and B below cover deterministic

and random design points, respectively.

Case A. There is a distribution function G such that sup |Gn(x)−G(x)| = O(1/n). If {xi} are

uniformly spaced, then this holds with G(x) = (x− a)/(b− a).

Case B. The set {xi} is a random sample from a distribution with c.d.f. G.

In both cases, we assume that G ∈ C∞[a, b] and G′ is strictly positive on [a, b].

Assumption A1. The random errors εi in (1) satisfy E|εi|2+ν < ∞, with ν > 4m− 1 (case A),

and ν > 2(8m− 3)/5 (case B).

As for GCV in Nychka (1990), the convergence results will apply to the RGCV estimate

restricted to λ ≥ αn for a positive sequence αn → 0 as n → ∞.

Assumption A2. As n → ∞, the sequence αn → 0 at the rate αn ≈ n−4m/5 log(n) (case A),

and αn ≈ n−2m/5(log(n))m (case B). Here αn ≈ βn means that c1βn ≤ αn ≤ c2βn for some

positive constants c1 and c2.

Assumption A3. There are constants p ∈ [1, 2] and c = c(p) > 0 such that as n → ∞, the

squared bias satisfies

b2(λ) = n−1∥(I −A)f∥2 = cλp(1 + o(1)), (14)

uniformly for λ ∈ [αn,∞).

It is known that, under certain conditions, assumption A3 holds with p directly related to

the smoothness of f , including its boundary behaviour (Cox, 1988; Nychka, 1990). For f ∈ W =

Wm,2[a, b], we have the bound b2(λ) ≤ cλ(1 + o(1)) with c =
∫ b

a
[f (m)(x)]2dx. Equality holds

for a class of functions in W for which m is the maximum order of smoothness (i.e. they do not

belong to a Sobolev space of higher order), so p = 1 for this class. If f belongs to W2m,2[a, b]

and satisfies the natural boundary conditions f (j)(a) = f (j)(b) = 0, j = m, . . . , 2m− 1, then (14)

holds with p = 2 and c =
∫ b

a
[f (2m)(x)]2dx. Moreover, p = 2 is the highest exponent possible,

regardless of any higher smoothness of f .

The functions µ1(λ) = n−1trA(λ) and µ2(λ) = n−1tr(A2(λ)) can be estimated using the

eigenproblem defining the Demmler–Reinsch basis of natural polynomial splines. From results

about the asymptotic behaviour of the eigenvalues (Cox, 1984a; Speckman, 1985) (see also Nychka

(1990, lemma 3.1) and Eubank (1988, sect. 6.3.2)), it is known that under assumptions A1 and

A2, as n → ∞,

µk(λ) = αlkn
−1λ−1/(2m)(1 + o(1)), k = 1, 2, (15)

where α = π−1
∫ b

a
(G′(x))1/(2m) dx and

lk =

∫ ∞

0

(1 + x2m)−k dx = Γ(1/(2m))Γ(k − 1/(2m))/(2mΓ(k)), (16)

uniformly for λ ∈ [αn,∞). (Note there is an error in the definition of α in Nychka (1990).) For

m = 2, we have l1 = 10/9 and l2 = 5/6.
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From assumption A3 and the estimate of µ2(λ) in (15), it follows that

ET (λ) = (cλp + σ2αl2n
−1λ−1/(2m))(1 + o(1)), (17)

uniformly for λ ∈ [αn,∞). Let λET be the minimizer of ET (λ) for λ ≥ αn. Minimizing the

right-hand side in (17) gives the known estimate (Nychka, 1990; Wahba, 1990)

λET =

(
αl2σ

2

2mpcn

)2m/(2mp+1)

(1 + o(1)) (18)

(which is in [αn,∞) for all sufficiently large n).

Define S2 = n−1∥ε∥2. It is known (Nychka, 1990, lemma 3.1) that, as n → ∞, the shifted

GCV function V (λ)−S2 is consistent with the prediction error T (λ) and risk ET (λ), and it follows

(Nychka, 1990, lemma 3.2) that if λ̂V minimizes V (λ) for λ ≥ αn, then λ̂V = λET (1 + oP (1)).

These results can be extended to RGCV by showing that the shifted RGCV function V (λ)− γS2

is consistent with the robustified prediction error T (λ) = γT (λ) + (1 − γ)v(λ). Using the same

argument as in theorem 4.1 of Lukas (2008), we have the following result.

Theorem 2 Under assumptions A1–A3, as n → ∞,

sup
λ∈[αn,∞)

∣∣∣∣V (λ)− γS2 − T (λ)

ET (λ)

∣∣∣∣ = oP (1), sup
λ∈[αn,∞)

∣∣∣∣T (λ)− ET (λ)

ET (λ)

∣∣∣∣ = oP (1) (19)

and

ET (λ) = (γcλp + σ2αl2n
−1λ−1/(2m))(1 + o(1)), (20)

uniformly for λ ∈ [αn,∞).

Define λ̂V to be the minimizer of the RGCV function V (λ) for λ ≥ αn.

Corollary 1 The RGCV estimate λ̂V satisfies

λ̂V =

(
αl2σ

2

2mpγcn

) 2m
2mp+1

(1 + oP (1)) = γ− 2m
2mp+1λET (1 + oP (1)) (21)

as n → ∞.

Proof. Comparing (20) and (17), it is clear that the minimizer λET of ET (λ) for λ ≥ αn is

the same as that in (18) with c replaced by γc. Then, the estimate of λ̂V in (21) follows from

theorem 2 using the same argument as in lemma 3.2 of Nychka (1990).

Corollary 1 shows that λ̂V has the same optimal decay rate as λET . But, since 0 < γ < 1,

λ̂V is asymptotically larger than λET , as we would expect. With m = 2, p = 2 and γ = 0.5, the

factor is γ−2m/(2mp+1) = 1.36.

The following result gives the asymptotic inefficiency of λ̂V for the prediction error and risk.

Corollary 2 Suppose that λ̂T minimizes T (λ) for λ ≥ αn. Under assumptions A1–A3, as n →
∞,

IET =
ET (λ̂V )

ET (λET )
= K(1 + oP (1)), IT =

T (λ̂V )

T (λ̂T )
= K(1 + oP (1)), (22)
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where

K =
(2mpγ)−2mp/(2mp+1) + (2mpγ)1/(2mp+1)

(2mp)−2mp/(2mp+1) + (2mp)1/(2mp+1)
. (23)

Proof. The first equality in (22) is found by substituting the estimates obtained for λ̂V and

λET into the estimate for ET (λ) in (17). The second equality follows from the first equality since,

from (19) (with γ = 1) and because ET (λET ) ≤ ET (λ̂T ), we have

1 ≤
T (λ̂V )

T (λ̂T )
=

T (λ̂V )

ET (λ̂V )

ET (λ̂V )

ET (λET )

ET (λET )

ET (λ̂T )

ET (λ̂T )

T (λ̂T )
=

ET (λ̂V )

ET (λET )
(1 + oP (1)).

This completes the proof.

It is easy to show that, for any m and p, the value K of the asymptotic inefficiency IT in

(23) is a strictly decreasing function of γ, with K = 1 at γ = 1 and K → ∞ as γ → 0. The

value K = 1 at γ = 1 reflects the fact that GCV is asymptotically optimal for the prediction risk,

and the monotonic nature of the function is consistent with the fact that, as γ decreases, RGCV

becomes increasingly biased in estimating λET . Fig. 4(a) shows the graph of K as a function of γ

for m = 2 (cubic splines) with p = 1 (dashed) and p = 2 (solid). Table 1 shows the corresponding

values of K for several values of γ. Clearly, from the shape of the graphs, there is a large interval

of γ values for RGCV for which the asymptotic inefficiency IT is close to 1, in fact IT ≤ 1.153 for

all γ ∈ [0.3, 1]. Consequently, we can expect that, for any γ ∈ [0.3, 1], RGCV will perform well

for large n.

Note that, since the expression forK in (23) does not involve α or c, the asymptotic inefficiency

IT of RGCV is independent of the scale of the interval [a, b].

It is shown in theorem 4.2 of Lukas (2008) that, under certain conditions, the modified GCV

criterion, with score function Vρ(λ) in (6), is asymptotically equivalent to RGCV. The result

applies directly here under assumptions A1–A3, since it follows easily from (17) that nET (λ) → ∞
as n → ∞ for λ ≥ αn, and, if µ1(λ) → 0, then, from (15), we have µ1(λ)/µ2(λ) → l1/l2. Hence,

if µ1(λ) → 0 and γ−1 = 1 + 2(ρ − 1)l1/l2, then γ−1V (λ) − Vρ(λ) = oP (R(λ)). Therefore, from

theorem 2 and corollary 1, we obtain the following corollary for modified GCV.

Corollary 3 Suppose that λ̂Vρ minimizes Vρ(λ) for λ ≥ αn. Under assumptions A1–A3, λ̂Vρ

satisfies λ̂Vρ = γ−2m/(2mp+1)λET (1 + oP (1)) and has the same asymptotic inefficiency IET and

IT as for λ̂V in corollary 2, where γ−1 = 1 + 2(ρ− 1)l1/l2.

Using this result for cubic splines (i.e. m = 2, for which l1/l2 = (10/9)/(5/6) = 4/3), we

obtain the plot in Fig. 4(b) of the asymptotic inefficiency IT against ρ for modified GCV. Some

corresponding values are given in Table 1. Consequently, we can expect that, for any ρ ∈ [1, 1.875],

modified GCV will perform well for large n.
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Figure 4: Asymptotic inefficiency IT as a function of (a) γ for RGCV and (b) ρ for modified

GCV, with m = 2, p = 1 (dashed) and p = 2 (solid)

Table 1: Values of asymptotic inefficiencies IT for RGCV and modified GCV with m = 2

γ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1

ρ 8.125 4.375 2.5 1.875 1.5625 1.375 1.25 1.0938 1

IT (p = 1) 2.636 1.767 1.305 1.153 1.082 1.045 1.023 1.0042 1

IT (p = 2) 2.230 1.548 1.208 1.102 1.054 1.029 1.015 1.0026 1

4 Asymptotic inefficiency of RGCV for the Sobolev risk

The prediction error T (λ) has limitations as a measure of the quality of the fit of a spline estimate

fλ. It is only a pointwise measure and, furthermore, it is insensitive to discrepancies in the slope

and curvature of fλ, which are important for the quality of the fit. To see this, consider the

prediction error as an approximation of the squared L2(G) norm error
∫ b

a
h2dG, where h = fλ−f .

If G(x) = x (uniform points) and h(x) = c sin(kπx), then
∫ 1

0
(h(x))2dx is independent of k, while

the integrated squared (linear) curvature
∫ 1

0
(h′′(x))2dx is proportional to k4. In this situation,

even though the prediction error will be small if c is small, fλ would be judged to be too rough

if k is large.

When assessing the accuracy of fλ compared to f by eye, one intuitively takes into account not

only function values but also the slope and curvature. This suggests the use of a continuous error

involving integrated squares of fλ(x)−f(x) and its first and some higher derivatives. However, it

is only necessary to include fλ(x)− f(x) and the highest of the derivatives, since then the error

will automatically be sensitive to discrepancies in lower order derivatives. This follows from the

fact (see theorem 2.5 in Schumaker (1981)) that, for each integer j < J , there is a constant C

13



such that ∫ b

a

(h(j))2(x)dx ≤ C

[∫ b

a

h2(x)dx+

∫ b

a

(h(J))2(x)dx

]
for all h. Thus, since fλ is defined by (2) using the mth derivative and f is assumed to belong to

Wm,2[a, b], it is natural and reasonable to use the Sobolev error W (λ) defined in (5). The case

with m = 2 is the most common.

The asymptotic behaviour of the Sobolev risk EW (λ) was studied in Cox (1984b, 1988);

Wahba & Wang (1990); Lukas (1993). It is known (Cox, 1984b, theorem 5.1) that, under suitable

assumptions, if f ∈ W q,2[a, b] for m < q ≤ 3m, then

EW (λ) = λ−1O(λq/m + n−1λ−1/(2m)),

uniformly for λ in a certain interval depending on n. Therefore, EW (λ) has best possible rate

if λ = λEW ≈ n−2m/(2q+1). Using the appropriate substitution q = mp, it can be seen that this

optimal rate for λEW is the same as the optimal rate for λET in (18) for the prediction risk,

but, as we shall see, the constants are different. To find the asymptotic inefficiency of the RGCV

estimate, we will estimate EW (λ) more precisely.

First we define an error function that approximates the Sobolev error and is easier to estimate.

Let fint be the natural polynomial spline of degree 2m − 1 that interpolates f(x) at the points

xi, i = 1, . . . , n. It is well known (de Boor & Lynch, 1966) that fint is the unique minimizer of∫ b

a
[ϕ(m)(x)]2dx subject to ϕ(xi) = f(xi), i = 1, . . . , n. Let S denote the n dimensional vector

space of natural spline functions of degree 2m − 1 with knots at xi, i = 1, . . . , n. Define the

Hilbert space W̃ to be the set Wm,2[a, b] with the inner product

(f, g)W̃ = n−1
n∑

i=1

f(xi)g(xi) +

∫ b

a

f (m)(x)g(m)(x) dx. (24)

Let PS be the orthogonal projection of W̃ onto S.

Lemma 1 For any f ∈ W̃, we have PSf = fint.

Proof. Using the definition of W̃, we obtain

∥f − fint∥2W̃ = ∥f (m) − f
(m)
int ∥2L2

≤ ∥f (m) − ϕ(m)∥2L2
≤ ∥f − ϕ∥2W̃

for any ϕ ∈ S, where the second last inequality is a well known minimum property of fint (de Boor

& Lynch, 1966). The result follows.

Lemma 1 shows that fint is the best approximation of f from S in the sense that it minimizes

∥f − ϕ∥2
W̃

for ϕ ∈ S. Moreover, since fλ ∈ S, we have

W̃ (λ) := ∥fλ − f∥2W̃ = ∥fλ − fint∥2W̃ + ∥fint − f∥2W̃ . (25)

Since ∥fint−f∥2
W̃

is independent of λ, the error W̃ (λ) and ∥fλ−fint∥2W̃ have the same minimizer.

Similarly, EW̃ (λ) and E∥fλ − fint∥2W̃ have the same minimizer λ
EW̃

. This and (25) imply that,
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for any λ,

EW̃ (λ)

minλ EW̃ (λ)
=

E∥fλ − fint∥2W̃ + δ

E∥fλ
EW̃

− fint∥2W̃ + δ
≤

E∥fλ − fint∥2W̃
minλ E∥fλ − fint∥2W̃

, (26)

where δ = ∥fint − f∥2
W̃

= ∥f (m)
int − f (m)∥2L2

. Consequently, we can use the right-hand side of (26)

to bound the inefficiency on the left-hand side. The bound will be close if δ is relatively small.

This will be the case if f is sufficiently smooth and satisfies the same boundary conditions as fint;

in particular, if f ∈ Wm+1,2[a, b] and the points xi are equally spaced, then δ = O(n−2) (Swartz

& Varga, 1972), which is a much faster rate than that of E∥fλ
EW̃

− fint∥2W̃ as n → ∞ (see (38)

and (39)). Since the errors are independent with mean 0, we have

E∥fλ − fint∥2W̃ = En−1∥fλ − f∥2 + E∥(fλ − fint)
(m)∥2L2

= b2(λ) + v(λ) + b21(λ) + v1(λ), (27)

where b21(λ) = ∥Ef
(m)
λ − f

(m)
int ∥2L2

and v1(λ) = E∥f (m)
λ − Ef

(m)
λ ∥2L2

.

Consider the same diagonalization of the smoothing matrix A(λ) as in section 2, i.e. A(λ) =

Udiag(aλi)U
T , where U is orthogonal and aλi = 1/(1 + λτi), i = 1, . . . , n, for a certain nonde-

creasing sequence {τi}, with τi = 0, i = 1, . . . ,m. Let µ1(λ) = n−1trA(λ), µ2(λ) = n−1tr(A2(λ))

(as above) and µ12(λ) = (µ1(λ)− µ2(λ))/λ.

Lemma 2 If the errors εi are independent with mean 0 and variance σ2, then v(λ) = σ2µ2(λ),

v1(λ) = σ2µ12(λ),

b2(λ) = λ2n−1
∑

(τ−1
i + λ)−2(UTf)2i and

b21(λ) = λ2n−1
∑

τi(τ
−1
i + λ)−2(UTf)2i .

Proof. See the Appendix.

Analogous to assumption A3, it will be assumed that:

Assumption A4. There are constants p ∈ (1, 2), c and c1 such that, as n → ∞,

b2(λ) = cλp(1 + o(1)) and b21(λ) = c1λ
p−1(1 + o(1)),

uniformly for λ ∈ [αn,∞).

For assumption A4 to hold, it is necessary (Cox, 1988; Lukas, 1993) that f has smoothness

between that corresponding to Wm,2[a, b] and W2m,2[a, b].

Definition 1 Let C denote the class of problems where m = 2, the points xi are equally spaced

and f satisfies n−1(UTf)2i = kτ−r
i for constants k > 0 and r ∈ (5/4, 9/4).

Lemma 3 For problems in class C, if n4αn → ∞, then assumption A4 holds with p = r − 1/4.

Proof. See the Appendix.
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Define W to be the Sobolev space Wm,2[a, b] with inner product

(f, g)W =

∫ b

a

f(x)g(x)dG+

∫ b

a

f (m)(x)g(m)(x)dx

and let W (λ) = ∥fλ − f∥2W as in (5). Clearly, W̃ (λ)−W (λ) is equal to the error in the discrete

approximation n−1
∑

(fλ− f)2(xi) of
∫
(fλ− f)2dG. Using the assumption of independent errors

with mean 0, we have

EW̃ (λ)− EW (λ) = b2(λ)− b2G(λ) + v(λ)− vG(λ),

where b2G(λ) = ∥Efλ − f∥2L2(G) and vG(λ) = E∥fλ − Efλ∥2L2(G). It is known (Cox, 1984a;

Lukas, 1993) that, under certain assumptions, v(λ) = vG(λ)(1 + o(1)) as n → ∞. In addition, if

b2G(λ) ≈ min{1, λp} for p ≤ 2, then b2(λ) = b2G(λ)(1 + o(1)). In particular, these estimates hold

for class C. Therefore, since b2G(λ) ≤ EW (λ) and vG(λ) ≤ EW (λ), it is reasonable to make the

following assumption.

Assumption A5. As n → ∞, EW̃ (λ) = EW (λ)(1 + o(1)), uniformly for all λ ∈ [αn,∞).

We can now estimate the Sobolev risk EW (λ) and the weighted Sobolev risk EWκ(λ) =

E
∫
(fλ − f)2dG+ κE

∫
(f

(m)
λ − f (m))2dx for the (restricted) RGCV estimate.

Theorem 3 Suppose that λ̂V and λEW minimize V (λ) and EW (λ), respectively, for λ ≥ αn.

Under assumptions A1, A2, A4 and A5, as n → ∞, we have

IEW (λ̂V ) =
EW (λ̂V )

EW (λEW )
≤ K1(1 + oP (1)), (28)

where

K1 =
(wγ/γ∗)−2m(p−1)/(2mp+1) + (wγ/γ∗)(2m+1)/(2mp+1)

w−2m(p−1)/(2mp+1) + w(2m+1)/(2mp+1)
(29)

with

w =
2m(p− 1)

2m+ 1
and γ∗ =

c1l2(p− 1)

cp(l1 − l2)(2m+ 1)
. (30)

The bound K1 = K1(γ), for γ ∈ [0, 1], has minimum value 1 at γ = γ∗ if γ∗ ≤ 1. If, in addition,

∥fint − f∥2
W̃

= o(λp−1 + n−1λ−1−1/(2m)) uniformly for all λ ≥ αn, then

λEW =

(
α(l1 − l2)(2m+ 1)σ2

2mc1(p− 1)n

)2m/(2mp+1)

(1 + o(1)) (31)

and IEW (λ̂V ) = K1(1 + oP (1)). For class C (where m = 2), we have γ∗ = 0.6(2− p)/p ∈ (0, 0.6)

for p ∈ (1, 2). The same result holds for the inefficiency with respect to the weighted Sobolev risk

EWκ(λ), independent of κ.

Proof. See the Appendix.

From (31) and (18), the ratio λEW /λET can be evaluated for class C (using l1/l2 = 4/3 and

c1/c = (2− p)/(p− 1) from (40)) to obtain

lim
n→∞

λEW /λET = (p/(0.6(2− p))4/(4p+1). (32)
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This is a strictly increasing function of p ∈ (1, 2), with limλEW /λET = 1.505 at p = 1 and

limλEW /λET → ∞ as p → 2. Therefore, for large n, λEW > 1.5λET for all p ∈ (1, 2).

For class C, Fig. 5(a) shows the graph of the estimate K1 of the asymptotic inefficiency

IEW (λ̂V ) as a function of γ for the three values of p = 1.1, 1.5, 1.9. Note that, unlike the

monotonic graphs of IT in Fig. 4(a), the graphs in Fig. 5(a) have both decreasing and increasing

sections. In all cases, there is an initial improvement in the efficiency of the RGCV estimate as γ

decreases from 1 (i.e. GCV). This reflects the fact that GCV is biased in estimating λEW , while,

for γ near 1, the RGCV estimate is asymptotically larger than λET (see (21)) and hence closer to

λEW . The improvement is greatest for the smoothest case, i.e. p = 1.9, for which limλEW /λET

is largest (equal to 4.988 from (32)).

If γ is decreased too far, the RGCV estimate is too biased and the Sobolev risk grows. In

fact K1 → ∞ as γ → 0, though not as quickly as K → ∞ from (23), since 2m(p − 1) < 2mp.

The minimum value of K1 is 1 at γ = γ∗, and therefore, from (28), the asymptotic inefficiency

IEW (λ̂V ) is also 1 for γ = γ∗. When γ = γ∗, from (21) and (31), the RGCV estimate satisfies

λ̂V = λEW (1 + oP (1)).

The optimal value γ∗ = 0.6(2−p)/p decreases as the smoothness of f (and hence p) increases.

When p = 1.5, the optimal value is γ∗ = 0.2. Clearly, from Figs. 4(a) and 5(a), for p in a large

subinterval of (1, 2), RGCV has good large-sample performance for any γ ∈ [0.2, 0.4]. Moreover,

the results in section 2 indicate that, for γ ∈ [0.2, 0.4], RGCV has strong small-sample stability. A

large simulation study in Lukas et al. (2008) confirms that RGCV performs well for γ ∈ [0.2, 0.4].

From the asymptotic equivalence of RGCV and the modified GCV criterion (see corollary 3),

we obtain the following corollary.

Corollary 4 Suppose that λ̂Vρ minimizes Vρ(λ) for λ ≥ αn. Under assumptions A1, A2, A4 and

A5, the conclusions of theorem 3 also hold for λ̂Vρ , with γ−1 = 1 + 2(ρ− 1)l1/l2.

For class C, Fig. 5(b) shows the graph ofK1 as a function of ρ for modified GCV. From this and

the plot of the asymptotic inefficiency IT in Fig. 4(b), it is clear that, for p in a large subinterval

of (1, 2), the modified GCV criterion has good large-sample performance for any ρ ∈ [1.5, 2.5].

References

Claeskens, G., Krivobokova, T. & Opsomer, J. D. (2009). Asymptotic properties of penalized

spline estimators. Biometrika 96, 529–544.

Cox, D. D. (1984a). Gaussian approximation of smoothing splines. Tech. rep., Dept. Statist.,

University of Wisconsin/Madison.

Cox, D. D. (1984b). Multivariate smoothing spline functions. SIAM J. Numer. Anal. 21, 789–813.

Cox, D. D. (1988). Approximation of method of regularization estimators. Ann. Statist. 16,

694–712.

17



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

γ

I E
W

 e
st

im
at

e

 

 

(a)

1 2 3 4 5
0

1

2

3

4

ρ

I E
W

 e
st

im
at

e
(b)

Figure 5: Asymptotic inefficiency IEW estimate as a function of (a) γ for RGCV and (b) ρ for

modified GCV, with m = 2, p = 1.1 (solid), p = 1.5 (dashed) and p = 1.9 (dash-dot)

Craven, P. & Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the

correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31,

377–403.

Cummins, D. J., Filloon, T. G. & Nychka, D. (2001). Confidence intervals for nonparametric curve

estimates: Toward more uniform pointwise coverage. J. Amer. Statist. Assoc. 96, 233–246.

de Boor, C. & Lynch, R. E. (1966). On splines and their minimum properties. J. Math. Mech.

15, 953–969.

Efron, B. (2001). Selection criteria for scatterplot smoothers. Ann. Statist. 29, 470–504.

Eubank, R. L. (1988). Spline smoothing and nonparametric regression. Dekker, New York.

Gu, C. (2002). Smoothing spline ANOVA models. Springer, New York.

Hall, P. & Robinson, A. P. (2009). Reducing variability of crossvalidation for smoothing parameter

choice. Biometrika 96, 175–186.

Kim, Y.-J. & Gu, C. (2004). Smoothing spline Gaussian regression: more scalable computation

via efficient approximation. J. Roy. Statist. Soc. Ser. B 66, 337–356.

Kimeldorf, G. S. & Wahba, G. (1971). Some results on Tchebycheffian spline functions and

stochastic processes. J. Math. Anal. Appl. 33, 82–95.

Kou, S. C. (2003). On the efficiency of selection criteria in spline regression. Probab. Theory

Related Fields 127, 153–176.

18



Kou, S. C. & Efron, B. (2002). Smoothers and the Cp, generalized maximum likelihood, and

extended exponential criteria: a geometric approach. J. Amer. Statist. Assoc. 97, 766–782.

Li, K.-C. (1986). Asymptotic optimality of CL and generalized cross-validation in ridge regression

with application to spline smoothing. Ann. Statist. 14, 1101–1112.

Lukas, M. A. (1993). Asymptotic optimality of generalized cross-validation for choosing the

regularization parameter. Numer. Math. 66, 41–66.

Lukas, M. A. (2006). Robust generalized cross-validation for choosing the regularization param-

eter. Inverse Problems 22, 1883–1902.

Lukas, M. A. (2008). Strong robust generalized cross-validation for choosing the regularization

parameter. Inverse Problems 24, 034006.

Lukas, M. A., de Hoog, F. R. & Anderssen, R. S. (2008). Spline smoothing using robust GCV.

Tech. Rep. 08-154, CMIS, CSIRO.

Lukas, M. A., de Hoog, F. R. & Anderssen, R. S. (2010). Efficient algorithms for robust generalized

cross-validation spline smoothing. J. Comput. Appl. Math. 235, 102–107.

Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661–675.
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5 Appendix

Proof of theorem 1

Some simple algebra gives

l̇λ(1) = −2
∑

ḃλi(1− bλi) = −2
∑

τi(1 + λτi)
−3,

l̈λ(1) = 2
∑

ḃ2λi − b̈λi(1− bλi) = 6
∑

τ2i (1 + λτi)
−4,

where, for simplicity, we use λ in place of λ0. The sums are over i with τi > 0. Using the

expression for βλ in the appendix of Kou & Efron (2002), we have

βλ = −λ−1
[
2− 3(

∑
a3λib

−2
λi )/(

∑
a2λib

−2
λi )

]
= −λ−1

[
2−

∑
3τ−2

i (1 + λτi)
−1/

∑
τ−2
i

]
.

Then, from (10), we get R0(1) = 2λ
∑

τi(1 + λτi)
−3S0, where

S0 =

∑
3λτ2i (1 + λτi)

−4∑
τi(1 + λτi)−3

− 2 +

∑
3τ−2

i (1 + λτi)
−1∑

τ−2
i

=

∑
τ2i (2λ− τ−1

i )(1 + λτi)
−4∑

τi(1 + λτi)−3
+

∑
τ−1
i (2τ−1

i − λ)(1 + λτi)
−1∑

τ−2
i

>

∑
τ2i (λ− τ−1

i )(1 + λτi)
−4∑

τi(1 + λτi)−3
+

∑
τ−1
i (τ−1

i − λ)(1 + λτi)
−1∑

τ−2
i

. (33)

Let pi = τi(1 + λτi)
−3, qi = τ−3

i (1 + λτi)
3 and ri = (1 − λτi)(1 + λτi)

−1. Then, clearly, pi > 0,

and the sequences {qi} and {ri} are non-constant and nonincreasing, so the discrete Chebyshev

inequality (Mitrinović et al., 1993, eq. (1.4), p. 240) gives
∑

pi
∑

piqiri >
∑

piqi
∑

piri. Using

this in (33), we obtain S0 > 0 and hence R0(1) > 0, so 1 is not in RR.

Proof of lemma 2

The well-known expressions for v(λ) and b2(λ) follow easily from their definitions. For the other

expressions, we use the representation (Wahba, 1990, chap. 1) fλ =
∑

dj(λ)θj +
∑

ci(λ)ξi,
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where {θj} is a basis for the space H0 of polynomials of degree ≤ m − 1 (i.e. the null space of

dm/dxm) and {ξi} is the set of representers of the evaluation functionals H1 → R, f → f(xi).

Here H1 ⊂ Wm,2[a, b] is the orthogonal complement of H0 with respect to the inner product∑m−1
k=0 f (k)(a)g(k)(a) +

∫ b

a
f (m)(x)g(m)(x)dx. The vector of the coefficients ci(λ) is

c(λ) = Q(QT (Σ + nλI)Q)−1QTy, (34)

where Σ = [(ξ
(m)
i , ξ

(m)
j )L2 ] and Q is an n × (n − m) matrix with orthogonal columns that are

orthogonal to the vectors (θj(x1), . . . , θj(xn))
T , j = 1, . . . ,m. The smoothing matrix can be

written as A(λ) = I −nλQ(QT (Σ+nλI)Q)−1QT . Using this expression and (34), it follows that

∥f (m)
λ ∥2L2

= yT (nλ)−1[I −A(λ)− (I −A(λ))2]y = (nλ)−1yT [A(λ)−A2(λ)]y,

and hence v1(λ) = σ2(nλ)−1tr([A(λ)−A2(λ)]) = σ2µ12(λ).

From Kimeldorf & Wahba (1971), the interpolating spline fint can be expressed in a form

very similar to fλ. In fact fint =
∑

d̄jθj +
∑

c̄i(0)ξi, where c̄i(0) is defined by (34) but with y

replaced by f . Therefore, using Ey = f and the expression for A(λ), we obtain

b21(λ) = (Ec(λ)− c̄(0))TΣ(Ec(λ)− c̄(0))

= n−1fT (I −A(λ))2 lim
λ→0

(λ−1(I −A(λ)))f

= n−1
∑

(1− aλi)
2τi(U

Tf)2i

and the result follows.

Proof of lemma 3

If −1/4 < r < 9/4, then, from lemma 2 above and theorem 2.3 in Kou (2003), we have

b2(λ) = kλ2
∑

(τ−1
i + λ)−2τ−r

i

= kλr
∑

arλi(1− aλi)
2−r

∼ kλr(1/(4π))B(r − 1/4, 9/4− r)λ−1/4

= kλr−1/4(1/(4π))Γ(r − 1/4)Γ(9/4− r), (35)

where B is the beta function B(x, y) = Γ(x)Γ(y)/Γ(x+y). (The parameter λ used in Kou (2003)

is n times the parameter λ here.) Also, if 5/4 < r < 13/4, then, from lemma 2 above and theorem

2.3 in Kou (2003), we have

b21(λ) = kλ2
∑

(τ−1
i + λ)−2τ−r

i τi

= kλr−1
∑

ar−1
λi (1− aλi)

3−r

∼ kλr−1(1/(4π))B(r − 5/4, 13/4− r)λ−1/4

= kλr−1−1/4(1/(4π))Γ(r − 5/4)Γ(13/4− r). (36)

Therefore assumption A4 holds with p = r − 1/4, where 5/4 < r < 9/4.
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Proof of theorem 3

From assumption A5, we have EW (λ̂V ) ∼ EW̃ (λ̂V ) and EW (λEW ) ∼ EW̃ (λEW ) ≥ EW̃ (λ
EW̃

),

where λ
EW̃

minimizes EW̃ (λ) for λ ≥ αn. Therefore, from (26), we obtain

EW (λ̂V )

EW (λEW )
≤

EW̃ (λ̂V )

EW̃ (λ
EW̃

)
(1 + oP (1)) ≤

E∥fλ̂V
− fint∥2W̃

minE∥fλ − fint∥2W̃
(1 + oP (1)), (37)

and we can now estimate the right-hand side. For any λ = λ(n) satisfying αn ≤ λ → 0 as n → ∞,

equation (27), lemma 2, assumption A4 and (15) yield

E∥fλ − fint∥2W̃ = b2(λ) + v(λ) + b21(λ) + v21(λ)

∼ cλp + σ2αl2n
−1λ−1/(2m) + c1λ

p−1 + σ2α(l1 − l2)n
−1λ−1−1/(2m)

∼ c1λ
p−1 + σ2α(l1 − l2)n

−1λ−1−1/(2m). (38)

By minimizing this estimate and using the same argument as in lemma 3.2 of Nychka (1990), we

get

λ
EW̃

=

(
α(l1 − l2)(2m+ 1)σ2

2mc1(p− 1)n

)2m/(2mp+1)

(1 + o(1)). (39)

Comparing (21) and (39), we define γ∗ by the equation

αl2
2mpcγ∗ =

α(l1 − l2)(2m+ 1)

2mc1(p− 1)

giving (30). Using the estimates (38), (21) and (39) in the right-hand side of (37), and substituting

γ = γ∗γ/γ∗ and simplifying, gives the formula (29) for K1, and hence we have the bound (28).

If ∥fint− f∥2
W̃

= o(λp−1+n−1λ−1−1/(2m)) uniformly for all λ ≥ αn, then, from (38) and (25),

we have EW̃ (λ) ∼ E∥fλ − fint∥2W̃ , and it follows from assumption 5 that EW (λ) behaves as in

(38). By minimizing this estimate, we obtain the estimate for λEW in (31) (the same as for λ
EW̃

in (39)). Then EW (λEW ) ∼ EW (λ
EW̃

) ∼ EW̃ (λ
EW̃

). Using this and EW̃ (λ) ∼ E∥fλ − fint∥2W̃
for λ = λ̂V and λ = λ

EW̃ , it is clear that both of the inequalities in (37) can be replaced by

equalities, giving IEW (λ̂V ) = K1(1 + oP (1)).

It is easy to see that if γ∗ ≤ 1, then K1 = K1(γ), for γ ∈ [0, 1], has minimum value 1 at

γ = γ∗. For class C, from (35), (36) and (16), and using Γ(z + 1) = zΓ(z), we have l1/l2 = 4/3

and
c1
c

=
Γ(r − 5/4)Γ(13/4− r)

Γ(r − 1/4)Γ(9/4− r)
=

9/4− r

r − 5/4
=

2− p

p− 1
, (40)

so the expression for γ∗ in (30) simplifies to γ∗ = 0.6(2 − p)/p, which is in (0, 0.6) for p ∈
(1, 2). For the weighted Sobolev risk EWκ(λ), by using the weighted inner products (f, g)W̃κ

=

(f , g) + κ(f (m), g(m))L2 and (f, g)Wκ = (f, g)L2(G) + κ(f (m), g(m))L2 , the argument above yields

E∥fλ − fint∥2W̃κ
∼ κ[c1λ

p−1 + σ2α(l1 − l2)n
−1λ−1−1/(2m)], and the inefficiency bound K1 in (29)

follows in the same way.
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