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It is shown that existing problems with the formal theory of ionization can be effectively resolved. An
integral representation for the ionization amplitude free of ambiguity and divergence problems is given.
Moreover, the ionization amplitude in the new formulation is shown directly to have an ideal form for
practical calculations.
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total wave function describing scattering state of all three
particles in the continuum (e� e� p! e� e� p) with

Using Eq. (4) and Green’s theorem, the volume integral
in Eq. (3) can be transformed into a surface integral
With the spectacular progress in high-performance
computing, the study of electron-atom ionization through
various direct numerical calculations has emerged as a
powerful approach to the problem (see, e.g., [1]).
Agreement with experiment is generally very good.
However, otherwise sophisticated approaches to the prob-
lem such as exterior complex scaling (ECS) [2], conver-
gent close coupling [3], R matrix [4], T matrix [5], etc.,
all rely on one or another form of approximation when it
comes to extracting the ionization amplitude. Further-
more, the formal theory of ionization is presently not
able to show how to calculate the ionization amplitude
unambiguously. In this Letter, we give a new integral
representation for the ionization amplitude, which is
free of ambiguity and divergence problems, and show
that this representation is capable of considerably simpli-
fying practical calculations. The approach described here
is rather general as is the nature of the problem. The
results given below are readily applicable to extract the
exact amplitudes in direct calculations of other atomic [6]
and nuclear [7] three-body breakup processes. They may
also be useful in further developing the effective-charge
perturbation approaches [8–10].

Without the loss of generality, we consider here
electron-impact ionization of atomic hydrogen and as-
sume that the proton is infinitely heavy compared to the
electrons and remains at rest. To avoid inessential com-
plications we also assume the electrons to be distinguish-
able. The generalization to the case of indistinguishable
electrons is straightforward. Atomic units are used
throughout.

The ionization amplitude in the prior form is defined
according to [11]

T�k1; k2� �
Z
dr1dr2����r1; r2�Vi��i��r1; r2�: (1)

Here ��i� is the initial-channel wave function and �� is a
0031-9007=03=91(25)=253202(4)$20.00 
incoming scattered-wave boundary condition. It satisfies

�E�H����r1; r2� � 0; (2)

where H � H0 � V is the three-body Hamiltonian, H0

is the free Hamiltonian, V is the full interaction, and E is
the total energy of the system. The potential Vi in (1) is
the interaction of the incident electron with the target
particles, r1 and r2 are the coordinates of the electrons
relative to the proton, and k1 and k2 are their momenta.

The ionization amplitude in the form (1) is not conve-
nient for full-scale practical calculations, for it requires
calculation of the total scattering wave function ��,
which develops from an initial state of three free par-
ticles. Furthermore, in this case knowledge of �� in the
entire space would be necessary.

In searching for more practical ways of calculating the
ionization amplitude Peterkop [12,13] and Rudge [14]
considered the integral

Iz1;z2�k1; k2� �
Z
dr1dr2���r1; r2�

� �H � E���2C����r1; r2�; (3)

where �� is a solution of the Schrödinger equation

�E�H����r1; r2� � 0 (4)

describing the actual ionization process (e�H ! e�
e� p) with outgoing scattered-wave boundary condition
[15]. The function ��2C�� is a product of two Coulomb
wave functions of effective charges z1 and z2:

��2C���r1; r2� � eik1	r1 z1�k1; r1�e
ik2	r2 z2�k2; r2�; (5)

with incoming wave boundary condition, where

 ��k; r� � ��1� i�=k� exp���=2k�

� 1F1�� i�=k; 1;�i�kr� k 	 r��; (6)

and where 1F1 is the confluent hypergeometric function.
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Iz1;z2�k1;k2� �
1

2
lim
R!1

R5
Z
dr̂r1dr̂r2

Z �=2

0
d�sin2�cos2�

�

�
��2C���

@��

@R
���

@��2C���

@R

�
; (7)

where R � �r21 � r
2
2�

1=2 is the hyperradius and �r̂r1; r̂r2; �� is
the five-dimensional hyperangle, with � � arctan�r2=r1�.

Expression (7) is better than (1) in terms of practical
calculations, for it is more convenient to calculate the
total wave function �� being developed from the simple
(and exact) initial state ��i� given by a product of a plane
wave and a hydrogen bound state wave function. In addi-
tion, the expression (7) is amenable to partial-wave ex-
pansion, as a result of which it reduces to a sum of
one-dimensional integrals. This is in contrast with
Eq. (1), which after partial-wave expansion at best re-
duces to a two-dimensional integral. Finally, we empha-
size that Iz1;z2 depends only on the asymptotic behavior of
the wave functions �� and ��2C�� on an infinitely large
hypersphere, and therefore, knowledge of the wave func-
tions over the entire space is not required.

The asymptotic behavior of �� when all interparticle
distances are large (i.e., r1 ! 1, r2 ! 1, and r3 ! 1,
where r3 � r1 � r2; we call this domain �0) was found
by Peterkop [16] and is written as

���r1; r2� ���!�0
A�r̂r1; r̂r2; ��R�5=2ei�R�i� ln��R�; (8)

where � � �2E�1=2,

� �
1

�

�
1

sin�
�

1

cos�
�

1�����������������������������������
1� r̂r1 	 r̂r2 sin2�

p �
; (9)

and A is the ionization amplitude. With this asymptotic
form Peterkop demonstrated that Iz1;z2 exists and differs
from the ionization amplitude only by a phase factor

A�k̂k1; k̂k2; �0� �
�3=2

�2��5=2
ei��R��i�=4Iz1;z2�k1; k2�; (10)

where �0 � arctan�k2=k1�. However, Eq. (10) involves a
phase factor � which diverges as R! 1 unless the ef-
fective charges satisfy

z1
k1
�
z2
k2
�

1

k1
�

1

k2
�

1

jk1 � k2j
; (11)

in which case the phase factor� vanishes. Equation (11) is
known as the Peterkop condition and Eq. (10) with Eq. (7),
or (3), as the integral representation for the ionization
amplitude.

Thus, z1 and z2 depend on vectors k1 and k2. For this
reason this procedure was not very useful in practice for
almost 40 years, for it is not clear how to implement
condition (11) in realistic calculations. From a practical
point of view, problems with Peterkop’s effective-charge
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approach were pointed out recently by Baertschy et al. [2].
Their calculations showed that a hypothetical possibility
to find suitable effective charges z1 and z2 would lead to
numerical problems due to nonorthogonality of the
Coulomb wave of a nonunit effective charge to the bound
states of hydrogen. From the formal side, even if the
Peterkop condition is satisfied this would not allow one
to establish the ionization amplitude in full. This is
because, as mentioned by Peterkop [13], some part of
the complex amplitude A in asymptotic form (8) can be
moved to the phase factor and the resulting wave function
is still a solution to the original Eq. (4) transformed into
the six-dimensional hyperspace. Accordingly, the re-
maining part of A can equally well be called an ioniza-
tion amplitude.

On the other hand, if Eq. (10) is correct, then due to
the fact that cross sections depend only on the magni-
tude of the amplitude one can ignore the phase part
with its ambiguity and divergence problems altogether.
This is exactly what is done, for example, in the ECS
[2] method. Indeed, the calculations made using Eqs. (10)
and (3) with z1 � z2 � 1 show generally very good
agreement with experiment. So, what is wrong with
the formal theory of ionization? Why is one required
to ignore obvious problems of the theory in order to
proceed with practical calculations, yet the calculations
agree well with experiment? In the end, is the procedure
based on Eq. (10) and used in the aforementioned ap-
proaches correct?

To begin, we consider the Peterkop formulation sum-
marized by Eqs. (10) and (3) and show that it is incom-
plete. For further discussion we should distinguish all
possible geometries where condition R! 1 is satisfied.
In addition to the �0 domain defined earlier, we identify
the domain where r1 ! 1, r2 ! 1 with limited r3 as �3

and when r2 (or r1) goes to infinity but r1 (r2) remains
limited as �2 (�1). Domains �1, �2, and �3 correspond
to �! 0, �! �=2, and �! �=4 in the above integral,
respectively.

The problems with Peterkop’s integral representation
for the ionization amplitude originate from the fact that
the Peterkop asymptotic form used to calculate the inte-
gral (7) is invalid in all asymptotic regimes except �0. It
is clearly seen from Eq. (9) that the Peterkop form cannot
be used when �! 0, �! �=2, and �! �=4. At the
same time integration over � runs through all these
points. Thus, in the integral representation suggested by
Peterkop the contributions from �1, �2, and �3 domains
are either missing or taken into account incorrectly.

To establish the correct relationship between the ion-
ization amplitude and the integral (7), if there is any, we
need the full ambiguity-free asymptotic form of the total
scattering wave function ��. Such an asymptotic form
has been given recently [17,18] for each of the mentioned
domains separately. A combined result valid in all of
these domains is [19]
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���r1; r2� ���!R!1 �3=2

�2��5=2
T
�
�
R
r1;
�
R
r2

�
1

R5=2
ei�R�i�=4 1�K1; r1� 1�K2; r2� �1=2�K3; r3�; (12)

where

K 1 �
�
R
r1 �

R

�r33
r3; K2 �

�
R
r2 �

R

�r33
r3; K3 �

�
2R

r3 �
R
�

�
r1
r31
�

r2
r32

�
: (13)

In (12) the ionization amplitude T is as defined according to Eq. (1) (see [17,18]) and therefore unambiguous.
Then for the surface integral in (7) we get

Iz1;z2�k1;k2� �
i
2
lim
R!1

R5
Z
dr̂r1dr̂r2

Z �=2

0
d�sin2�cos2�
�� cos�k1 	 r̂r1 � sin�k2 	 r̂r2����R cos�r̂r1; R sin�r̂r2�

� exp
�iR cos�k1 	 r̂r1 � iR sin�k2 	 r̂r2� �z1�k1; R cos�r̂r1� �z2�k2; R sin�r̂r2�: (14)

Using the asymptotic form of the plane wave we immediately have

Iz1;z2�k1;k2� �
2�2

ik1k2
lim
R!1

R3
Z �=2

0
d� sin� cos�

� f
�� k1 cos�� k2 sin���
��R cos�k̂k1; R sin�k̂k2� exp
�iRk1 cos�� iRk2 sin��

�  �z1�k1; R cos�k̂k1� �z2�k2; R sin�k̂k2� � 
�� k1 cos�� k2 sin������R cos�k̂k1;�R sin�k̂k2�

� exp
iRk1 cos�� iRk2 sin�� 
�
z1�k1;�R cos�k̂k1� �z2�k2;�R sin�k̂k2� � 	 	 	g: (15)
This is an extremely oscillatory integral as R! 1.
Therefore, only points of stationary phase in � will
contribute to the integral. One can verify that both terms
within the braces have a common stationary-phase point
at k1 sin� � k2 cos�, where we have cos� � k1=� and
sin� � k2=�. We see then that the second term is identi-
cally zero at the stationary point. The dots indicate other
terms of the integrand, which have no stationary points
and, therefore, do not contribute to the integral.
Calculating the remaining integral, we arrive at

Iz1;z2�k1; k2� � T�k1; k2� lim
R!1

�z1;z2�k1; k2; R�; (16)

where

�z1;z2�k1;k2; R� �  �z1�k1; Rk1=�� 
�
z2�k2; Rk2=��

�  1� ~KK1; Rk1=�� 1� ~KK2; Rk2=��

�  �1=2� ~KK3; 2Rk3=��; (17)

and

~KK 1 � k1 �
�
4R

k3
k33
; ~KK2 � k2 �

�
4R

k3
k33
;

~KK3 � k3 �
�
R

 
k1
k31
�

k2
k32

!
;

(18)

with k3 � �k1 � k2�=2.
First of all, we see that Iz1;z2 is R dependent no matter

what z1 and z2 are or how large R is. So it is appropriate to
write Iz1;z2�k1; k2� � Iz1;z2�k1; k2; R�. Second, from (16) it
turns out that one can indeed represent the ionization
amplitude in terms of the trial integral (7); however, the
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correct relationship is written as

T�k1; k2� � lim
R!1

Iz1;z2�k1;k2; R�
�z1;z2�k1; k2; R�

: (19)

Furthermore, �z1;z2 is well behaved in the entire space
for arbitrary z1 and z2. Consequently, there is no necessity
for z1 and z2 to satisfy a particular condition in contrast
to condition (11) required for the Peterkop amplitude
(10). Therefore, one may choose z1 and z2 such that they
maximally simplify the practical calculation of Iz1;z2 . The
resulting ionization amplitude (19) will not depend on
this choice.

Thus, the ionization amplitude can be represented in
terms of a trial integral which has a structure ideally
suited for practical calculations. However, we can go even
further and ask the question: Is it not possible, if our
understanding of the formal theory is complete, to extract
the ionization amplitude without recourse to external
trial quantities? The answer is yes, as we now demon-
strate. Consider the following expression:

I�k1;k2� � h��jH
 

0 � H
!

0j�
�sc��i; (20)

where ��sc�� � �� ���i� is the scattered part of the
total wave function ��. A left (right) arrow on the
differential Hamiltonian operator indicates that it acts
on the bra (ket) state. Equation (20) is also convenient for
numerical calculations as it can easily be transformed to a
surface integral similar to (7). In order to calculate this
integral, in addition to the asymptotic form of ��sc��

given by Eq. (12), we also need an equivalent form of
253202-3
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the wave function �� which has been given in Ref. [20].
Transforming Eq. (20) into a surface integral and calcu-
lating it making use of the correct asymptotic behavior
for �� and ��sc��, we get after some algebra

I�k1; k2� � T�k1; k2� lim
R!1
j 1� ~KK1; Rk1=��j2

� j 1� ~KK2; Rk2=��j2j �1=2� ~KK3; 2Rk3=��j2:

(21)

By virtue of the three-body correlation effects, ~KK1, ~KK2,
and ~KK3 do not vanish even in kinematical regimes where
their respective driving terms k1, k2, and k3 are close to
zero. Therefore, we can safely take the remaining limit to
obtain

I�k1; k2� � T�k1; k2�: (22)

Thus, Eq. (20) is nothing but a surface-integral form of
the exact ionization amplitude itself.

This remarkable result can be verified independently as
follows. First note that Eq. (4) can be written as

�E�H���sc���r1; r2� � Vi�
�i��r1; r2�: (23)

Combining this with Eq. (2), it immediately follows that

T�k1; k2� � h��jVij��i�i � h��jE� H
!

j��sc��i

� h��jH
 

� Ej��sc��i � h��jE� H
!

j��sc��i

� h��jH
 

0 � H
!

0j�
�sc��i � I�k1; k2�: (24)

This is truly a powerful demonstration of the self-
consistency of the theory when it is formulated in a
mathematically correct fashion. The latter also makes it
obvious that the amplitude of any fragmentation process
in a many-body system can be directly written in a
convenient surface-integral form.

What are the consequences of the present formulation
when practical calculations are considered? The analyti-
cally given �z1;z2 is increasingly oscillatory with increas-
ing R. Therefore, Iz1;z2 presently being used in large-scale
computations must be increasingly oscillatory as well.
The use of Eq. (19) instantly washes away these unneces-
sary oscillations from Iz1;z2 leaving only the exact ampli-
tude. This should simplify the calculations immensely.
The cross sections calculated with Eq. (19) are expected
to vary somewhat in the kinematical regimes where any
of k1, k2, or k3 are small compared to the cross sections
calculated from Iz1;z2 alone. In all other kinematics, where
j�z1;z2 j ! 1 with increasing R, the present formulation
should correct the phase problems with the amplitude
without significantly changing its magnitude. Our analy-
sis thus provides a formal justification of the cross sec-
tions obtained in the ECS method [1,2], in such
kinematical regimes.

Summarizing, we have been able to resolve long-
standing problems in the theory of ionization and pro-
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vided a new indirect, but practical, prescription for cal-
culating ionization amplitudes. We have also shown that
in the new formulation the ionization amplitude directly
takes a surface-integral form ideal for practical calcula-
tions. The presented theory is readily applicable to extract
the exact breakup amplitudes in direct calculations of
general few-body systems spanning atomic, molecular,
and nuclear physics.
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