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Abstract

University education is delivered via lectures and classes that are attended by students.
When and where these classes are taught is determined by the timetable. A timetable
has many stakeholders, and it is the task of planners to accommodate their needs as far
as possible, as it has a significant influence on the daily life of both staff and students.
Furthermore, it has a large impact on the use of the university’s resources. Rooms are a
significant cost, and as many are allocated specifically to teaching it is important that the
planners optimize their use. Creating a high-quality timetable is, therefore, essential to
providing an excellent education, while at the same time using the university’s resources
efficiently.

This thesis presents an introduction to the university course timetabling problem and
its different formulations. Although university timetabling has been widely studied in the
literature, work has focused on the creation of a schedule once all of the available resources
have been determined, called the course assignment problem. This thesis broadens the
perspective by also investigating the decision problems that must be solved before and
after the course assignment problem. One important problem is to determine the necessary
resources. This thesis formulates the room planning problem that determines which rooms
are available, and the teaching periods problem that determines timeslots for teaching. It
then analyzes how the available resources affect the quality of the timetable. Once the
timetable has been generated, there can be disruptions. This thesis investigates the quality
recovering problem, which addresses this issue. In this case, an important constraint is
that the new solution must be similar to the initial one, but not degrade the quality of
the timetable.

Solution methods are presented to these four problems. These are based on mixed-
integer programming, and the same underlying model is used in different ways to solve
decision problems that occur at different levels of the organization. All methods are tested
on the curriculum-based course timetabling problem used for the Second International
Timetabling Competition, which is the most-studied problem formulation in the literature.

Finally, this thesis suggests potential directions for future research, which aims to
ensure that there are tangible benefits for planners and universities.





Resumé (Danish Abstract)

Undervisning p̊a universiteter foreg̊ar ved at de studerende møder op til forelæsninger og
gruppeopgaver. Tidspunkt og sted for disse aktiviteter er fastlagt af et skema. Mange
mennesker har interesse i skemaet og det er skemalæggernes opgave at imødekomme deres
ønsker s̊a meget som muligt, da det har stor indflydelse p̊a den daglige rutine for b̊ade
undervisere og studerende. Derudover, har det ogs̊a en stor indflydelse p̊a forbruget af
universitetets ressourcer. Undervisningslokaler er en stor omkostning, s̊a det er vigtigt at
planlæggerne udnytter dem optimalt. For at kunne have god undervisning er det derfor
vigtigt at have skemaer med høj kvalitet samtidig med at universitets ressourcer bruges
effektivt.

Denne afhandling giver en introduktion til skemalægningsproblemer p̊a universiteter
og dets forskellige formuleringer. Selvom at universitetsskemalægning har været studeret
meget, har forskningen mest fokuseret p̊a at lægge hele skemaet n̊ar ressourcerne er fast-
lagt, kaldet kursusplanlægningsproblemet. Denne afhandling breder perspektivet ud og
undersøger de beslutninger der skal løses før og efter dette problem. Her er et vigtigt
problem, at fastlægge hvilke ressourcer der er nødvendige. Der formuleres rumplanlægn-
ingsproblemet der beslutter hvilke lokaler der bør benyttes, og undervisningstimeproblemet
der beslutter p̊a hvilke tidspunkter i løbet af ugen undervisning kan foreg̊a. Vi analyserer
hvordan tilgængelige ressourcer p̊avirker kvaliteten af skemaet. Efter skemaet er lagt vil
der komme ændringer der gør at noget skal planlægges om. Kvalitetsrekonstruktionsprob-
lemet løser det, hvilket ogs̊a analyseres. Her er det vigtigt at finde en løsning der ligner
den forrige uden at g̊a for meget p̊a kompromis med kvaliteten af det nye skema.

Vi præsenterer løsningsmetoder til alle disse fire problemer. De er alle baseret p̊a
heltalsprogrammering og bruger den samme underlæggende model til at løse de forskellige
beslutningsproblemer der foreg̊ar p̊a alle niveauer i organisationen. Alle metoder bliver
testet p̊a det problemformuleringen fra den anden internationale skemalægningskonkur-
rence, hvilket er det mest studerede problem i litteraturen.

Til sidst gives konklusioner og forslag til retninger for fremtidig forskning, s̊a der kan
skabes værdi for skemalæggere og universiteter.
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Chapter 1

Background

The importance of education cannot be underestimated. Universities are found world-
wide, and they deliver new knowledge and skills. Most teaching is delivered in the form
of lectures and classes. During lectures, anywhere from 20 to 200 students are taught as
a group. In classes, small groups of approximately 20 students apply their knowledge,
supervised by a teacher. When and where these lectures and classes are taught is deter-
mined by a timetable, which determines the schedule for all rooms, courses, teaching staff
and students.

The timetable has a significant impact on the weekly routine of students and staff as
it limits their other activities. Many of a university’s resources are allocated to teaching,
both in terms of staff time needed to plan and deliver materials, and in terms of space,
where universities must allocate rooms for lecture and classes. Therefore, it is important
to create high-quality timetables that meet the needs of students and staff, and utilize
resources efficiently.

Figure 1.1: The final timetable for each semester is preceded by various stages of infor-
mation collection and decision-making.

As illustrated in Figure 1.1, the preparation of the final timetable requires multiple
steps. Most universities have a semester structure; courses are run either in the spring or
in the fall, and a new timetable is drawn up twice per year. The first decision is, therefore,
to decide which courses will be offered. Next, planners collect the necessary data, which
includes the number of lectures per week, their length, and how many students will attend.
The following step is to determine available resources, i.e. which rooms can be used, during
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which timeslots. When this is complete, planners can assign courses to timeslots and
rooms. Finally, the timetable is published. However, unexpected disruptions can occur
and adjustments may need to be made. For example, if a room becomes unavailable during
the semester, the planners must find an alternative solution and update the timetable.
Universities, like all other organizations, constantly need to make sure that they are using
their resources efficiently. Two recent events in Denmark have highlighted the importance
of managing the timetable.

First, universities are required to cut annual costs by two percent. One way to achieve
these savings is by reducing the number of administrative staff. Consequently, tasks such
as timetabling are often centralized and efficiency tools are needed for staff to be able to
do the same amount of work in less time. Another consequence of the drive to cut costs
is that universities are keen to reduce their usage of rooms and buildings. Optimization
tools are therefore needed to ensure the optimal use of space. An example of this comes
from Roskilde University, where it was necessary to save 95 million DKK (13M EUR). An
analysis from a consultancy firm suggested that savings of 28 million DKK (4M EUR)
could be made by reducing the number of rented buildings. Estimating the consequences
of terminating a lease for the timetable is, therefore, important to ensure that the best
decision is made, and that the timetable remains feasible.

The second change is the Study Progress Reform (fremdriftsreformen in Danish). This
means that universities have to ensure that all students graduate within a standard time-
frame, which has significant consequences for planners. If a student needs to extend their
education by an extra semester because two courses were assigned at the same time and
it was not possible to follow both, the university receives less money. Ensuring that all
students are able to take their required courses in one semester is, therefore, important.

There is an abundant scientific literature on University Course Timetabling. However,
most work has focused on a single step: course assignment. How to determine the resources
needed and responding to disruptions to the timetable have received far less attention.

Decision support for timetabling planners is limited. Planners often have to juggle
competing demands from students, staff and the university administration in trying to
draw up a timetable that suits everyone. Therefore, providing them with tools that can
help them to prepare better timetables, respond more quickly to changes, and determine
the right amount of resources is an important part of ensuring a high educational standard
at universities everywhere.

1.1 Thesis Outline

This thesis consists of two parts. Part I introduces the field and the problems that are
addressed. Chapter 2 describes the framework and methods used to solve these problems
in operations research. Depending on the reader’s familiarity with the field and the
methods, this chapter (or parts of it) can be skipped. Chapter 3 gives an introduction
to the university course timetabling problem and how it relates to other problems. In
Chapter 4 the problem is analyzed from strategic, tactical and operational perspectives.
Chapter 5 summarizes these contributions and offers some overall conclusions drawn from
the work presented in this thesis, together with perspectives for future research.

Part II consists of three scientific papers. These papers address the research topics
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and constitute the majority of the work in this thesis.





Chapter 2

Operations Research

Operations research is the discipline of applying advanced analytical methods to help
make better decisions (Informs [2017]). It originated in military planning during the two
world wars and was later extended to a wide range of industries for purposes such as
logistics, network design, finance, and of course timetabling.

The framework used by the operations analyst is illustrated in Figure 2.1 and the
following presents its use in the context of university course timetabling.

Figure 2.1: Operations Research develops a mathematical representation of reality to
improve decisions.

A problem always starts in reality. For example, an organization that must solve the
problem of creating good, feasible timetables. The approach begins with an analysis that
aims to formulate the problem, by stating what the objective is, and what the decisions
that need to be taken are. At this stage, it is important to correctly identify the scope:
for example, it may be necessary to decide which room should be used for a course and
at what time, but not which courses should be offered in a particular semester. It is
also important to identify any constraints, for example, that courses followed by the same
students cannot be taught at the same time.

Once the problem has been formulated, a mathematical model is developed that de-
scribes the problem in variables and equations. A mathematical optimization model con-
sists of three elements:



8 Operations Research

Variables What are the decisions that need to be made? For example, when should a
course be planned?

Objective Given a set of decisions, how good is the solution? For example, it may be
necessary to limit courses taught in the evening.

Constraints What rules needs to be followed for a solution to be feasible? For example,
students can only attend one course at a time.

This leads to an unambiguous formulation of potential solutions that can be compared
and evaluated to identify which is best.

Once the mathematical model has been developed, the next goal is to identify the
optimal value of decision variables that meet all of the model’s constraints. This is known
as optimization, and there are a wide selection of methods that are discussed in the next
section.

When a solution is found, it is compared with reality and evaluated. In this case, a
solution is a timetable that describes when all courses should be taught. This timetable
can be presented to planners who can evaluate it. If it is acceptable, it can be published,
on the other hand, it may not be usable. For example, a lecture may need to be given in
a room with specific equipment. In this case, the operations analyst needs to adjust the
problem formulation and mathematical model to include the new requirements.

2.1 Optimization Methods

Optimization is about finding the best solution to a mathematical model that must either
be maximized or minimized. This section briefly describes some methods to find this
solution.

Finding the optimal solution can be challenging, as the number of potential solutions
is often too large to search through them all. For example, a timetabling problem can
involve 100 lectures that can be assigned to 20 timeslots, and five rooms. This problem
will have 100! ≈ 10157 potential solutions. Optimization methods can be divided into two
types: heuristic and exact.

Heuristics are algorithms that search the solution space using a strategy that seeks to
find a good solution without any guarantee that it is optimal. Generic heuristic frame-
works are called metaheuristics. An example of a metaheuristic is the hill climber, which
starts with a solution and iteratively improves it by finding the best one within a defined
neighborhood (e.g. by swapping the timeslots for two courses). Other examples of two
widely-used metaheuristics are Tabu Search (Glover and Laguna [2013]) and Simulated
Annealing (Laarhoven and Aarts [1987]).

Exact methods guarantee that a mathematically-optimal solution to a given problem
is found. One method that has been used with success on a large variety of problems is
mixed integer programming.

2.1.1 Mixed integer programming

Mixed integer programming (MIP) is a flexible and popular method. It is an extension
of linear programming, in which a mathematical model consisting of linear constraints
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and an objective is formulated. The difference between linear programming and MIP is
that in the former all variables have to take continuous values, while in the latter some
can take integer values. Let x be a vector of decision variables. Then, let b and c be a
vector of real numbers, and A be a matrix of real numbers. A MIP model then takes the
following form:

min cTx (2.1)

s.t. Ax = b (2.2)

x ≥ 0 (2.3)

some x only take integer values (2.4)

Problems in this form can be solved using a branch-and-bound method, described
in Land and Doig [1960]. For minimization problems, the method operates with two
values for the objective, a lower bound, and an incumbent. The incumbent is the best
feasible solution found so far, and this value will decrease over time as a better solution
is found. The lower bound is then the minimum potential value of the objective. This
value increases during the search; when the lower bound and the incumbent reach the
same value, the optimal solution is found. If the method is aborted before the optimal
solution is found, the solution is still bounded, meaning that no matter how much longer
the algorithm is run, no better solution will be found.

Software packages exist to solve such MIP models. These solvers include many ad-
vanced features such as pre-solve, cutting planes and matheuristics, in addition to the
branch-and-bound method. Consequently, as demonstrated by Bixby [2012], there has
been an overall improvement in the performance of the performance of a factor of over
29,000 since the early 1990s. Finally, computing power has increased exponentially, mak-
ing this a powerful tool for operations analysts.

2.1.2 Matheuristics

Matheuristics refers to the combination of mathematical programming methods such as
MIP, and heuristic methods.

As described in Lodi [2013], MIP solvers take many heuristic decisions to solve models.
One example is the branch-and-bound procedure, where the solver needs to choose which
variable to branch on. Solvers also include heuristics to find and improve solutions more
quickly; so-called primal and improvement heuristics. Primal heuristics help to find feasi-
ble solutions faster. One example is the feasibility pump proposed in Fischetti et al. [2005].
Here, the solver uses fractional node relaxation to search for a nearby integer-feasible so-
lution. Improvement heuristics improve an already-found solution. One example is the
Relaxation Induced Neighbourhood Search (RINS) proposed in Danna et al. [2005]. The
solver takes a fractional node relaxation, fixes variables that have the same value as the
incumbent, and solves that. For an overview of primal and improvement heuristics, see
Berthold [2006].
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2.2 Multi objective optimization

In multi objective optimization, there are several objectives rather than one. This is often
the case in timetabling, where multiple attributes must be minimized. A multi objective
optimization problem with two objectives, f1 and f2, is called a bi-objective optimization
problem. It is stated using two objective vectors c1 and c2, which are used to calculate
the two objectives:

min f1 = cT
1 x (2.5)

f2 = cT
2 x (2.6)

New methods are required to solve this. One way to overcome this problem is to
combine the two objectives into one, by introducing the parameters w1, w2 ∈ R and
calculating the weighted sum of the two objectives:

min w1f1 + w2f2 (2.7)

The problem with this method is that a linear function might not be able to represent
how the planner makes a trade-off between the two objectives. Rather than giving the
planner one solution, it is better to generate multiple solutions and let them choose which
one they find best.

Pareto-optimal solutions Figure 2.2 illustrates how to identify multiple solutions by
generating a front of so-called pareto-optimal solutions. A pareto-optimal solution is
one where one objective cannot be improved without degrading the other. A solution
is termed dominated if there exists another solution where both objectives are better.
Solutions that are not dominated are part of the pareto front indicated by the line. In
the example, the solution x1 is better than x2 for the objective f1, but x2 is better for
f2. The two corner solutions where, respectively, f1 and f2 are minimum, are called the
lexicographic solutions. These are used if objectives can be prioritized, for example if f1

is the priority and the aim is to minimize it, and at the same time f2 can be minimized
without degrading f1. Different methods exist to generate pareto-optimal solutions.

Epsilon Method One way to find pareto-optimal solutions is the epsilon method, pro-
posed in Haimes et al. [1971]. This introduces the parameter ε ∈ R. The method then
consists of selecting an objective, turning it into a constraint, and using ε as an upper
bound to solve the new problem, which results in a pareto-optimal solution.

min f1 (2.8)

s.t. f2 ≤ ε (2.9)

The lexicographic corner points can be found by solving two optimization problems.
The first is to find the minimum value of the highest-priority objective by removing
the other objective and optimizing. The next is to turn the primary objective into an
epsilon constraint, with an upper bound corresponding to the value of the objective, and
optimizing for the second objective.
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Figure 2.2: The pareto front consists of solutions where no other solutions are better given
both objectives. The two lexicographic solutions are found in the corners of the pareto
front.





Chapter 3

University Course Timetabling

In university course timetabling problem, the goal is to assign lectures to rooms and
timeslots given various hard and soft constraints. In this chapter, we define university
course scheduling and present the different formulations.

Figure 3.1 illustrates the families of scheduling problems, which Wren [1996] defines
as:
“the allocation, subject to constraints, of resources to objects being placed in space-time,
in such a way as to minimize the total cost of some set of the resources used.”

Scheduling problems include transport scheduling (e.g. Laporte [1992]) and job shop
scheduling (e.g. Taillard [1993]).

Figure 3.1: University timetabling is a timetabling problem that is part of the broader
family of scheduling problems.
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The timetabling problem is part of this broader family of scheduling problems, and
Wren [1996] defines it as:

“the allocation, subject to constraints of given resources to objects being placed in
space-time, in such a way as to satisfy as nearly as possible a set of desirable objectives.”

The category includes Employee Timetabling (e.g. Meisels and Schaerf [2003]), Roster-
ing problems (e.g. Burke et al. [2004]) and Sports Timetabling (e.g. Kendall et al. [2010]).
A large subset of these problems concern what is called Educational Timetabling (e.g.
Kingston [2013], Kristiansen and Stidsen [2013]), which includes timetabling problems
related to education at all levels, for example high schools (e.g. Kingston [2010], Sørensen
and Stidsen [2012]). University timetabling refers specifically to solving problems related
to universities and there have been several comprehensive overviews (Bardadym [1996],
Burke et al. [1997], Carter [2001], McCollum [2007], Lewis [2008], Phillips [2015]). The
usual definition refers to three problems, illustrated in Figure 3.2.

Figure 3.2: The three university timetabling problems.

The first is the student sectioning problem (e.g. Müller and Murray [2010]), where
courses are offered at various times during the semester to allow more students to follow
them; here the goal is to assign students to different sections. The second is the course
timetabling problem, which has received the most attention. This problem has several
variations that are described in Chapter 4. The third is the exam timetabling problem
(e.g. Carter [1986]), where the goal is to schedule exams for all courses.

The Course Timetabling Problem In the course timetabling problem, illustrated
in Figure 3.3, courses must be assigned to timeslots and rooms (input), leading to an
output, termed assignments. The form of these assignments is a function of hard and soft
constraints. Hard constraints must be satisfied in order for a timetable to be feasible,
for example, two courses cannot be held in the same room. Soft constraints distinguish
between a good and a bad timetable. An example could be that teachers prefer not to
teach in the morning.

Variants of this problem only aim to assign timeslots or rooms. For example, at the
Technical University of Denmark and the University of Auckland (New Zeland), timeslots
are decided by departments, and rooms are assigned later, at the institutional level. The
timeslot assignment is studied in Lach and Lübbecke [2008], while the room assignment
problem is studied in Phillips et al. [2015].
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Figure 3.3: The course timetabling problem aims to assign courses to timeslots and rooms
while taking hard and soft constraints into account, in order to generate the optimal
timetable.

3.1 Hard and soft constraints

There are significant differences between universities in the hard and soft constraints that
are taken into account when creating timetables. These differences are due to educational
differences, organizational culture, and regulations. A soft constraint at one university
can be a hard constraint at another (MirHassani and Habibi [2013]). For example, the
University of Udine (Italy) allows rooms to be filled beyond capacity, because some stu-
dents drop out at the beginning of the semester. But at the University of Auckland, fire
regulations prevent a room being filled beyond its capacity.

3.1.1 Hard Constraints

Most hard constraints are similar between universities and are covered in Di Gaspero et al.
[2007], Lewis et al. [2007], Phillips et al. [2015].

Lectures All lectures for a course should be assigned a timeslot and a room.

RoomOccupancy Only one lecture can take place in one room in one timeslot

Conflicts Two lectures taken by the same student or taught by the same member of staff
cannot be assigned to the same timeslot.

Availability If a teacher cannot teach in a specific timeslot, no lectures taught by that
teacher can be assigned to that timeslot.

RoomFeatures The room must have any necessary equipment (e.g. a lab for chemistry).

Temporal Courses have constraints regarding how they relate to each other. For exam-
ple, they may share an external lecturer and therefore should be run in consecutive
timeslots.

Although this list is not exhaustive, it indicates the range of hard constraints.

3.1.2 Soft Constraints

Soft constraints determine what a good timetable looks like, and differ between universi-
ties. They are always tied to one of three stakeholders: staff, students or management,
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who have different and sometimes even conflicting goals. Staff care about having an ap-
propriate room for their lectures, students care more about having a timetable that suits
their lifestyle, while management cares about the optimal use of rooms (Bonutti et al.
[2012], Phillips et al. [2015] and MirHassani and Habibi [2013]). Here, we investigate soft
constraints with respect to these three groups of stakeholders.

Staff

Teaching staff care about having the right environment to teach their course. Another
significant factor is their working environment; for example they may prefer to carry out
research rather than teach on specific days.

RoomCapacity The room should be big enough to accomodate all students.

RoomSuitability The room should be suitable for the teaching methods, e.g. some
lectures include group work and the room should, therefore, be able to accommodate
this.

RoomStability If there are multiple lectures in the same week, they should be assigned
to the same room.

TimeSuitability The lecturer may have a preferred timeslot for teaching.

Temporal If there are both lectures and group exercises, the lecture should be held
before the exercises.

Fairness Attempts should be made to respect the preferences of all members of staff
equally.

Students

The primary concern of students is to have a timetable that supports their learning and
does not conflict with their other activities.

CourseWishes Students create a wishlist of the courses they wish to follow and it is the
planner’s task to ensure that most requests are met.

TravelDistance When students have multiple lectures in one day, they should be as-
signed to rooms that are physically close to each other.

MinWorkingDays A course that has many lectures during the week should be spread
over a minimum number of days.

CurriculumCompactness When students have multiple lectures in one day they should
be run one after the other to avoid unproductive empty timeslots.

Lunchbreaks Students should have a lunch break around noon.

Workload The daily workload should be averaged out over the week.
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Management

The priority for management is to utilize resources efficiently. Chapter 4 examines man-
agement decisions in detail. One measure used in course assignment is:

RoomUtilization Empty rooms should be placed in consecutive timeslots so that they
can be used for other purposes (e.g. conferences).

3.2 Formulations

A formulation of university timetabling refers to a version of the course assignment prob-
lem that includes a selection of soft and hard constraints. As formulations usually contain
multiple soft constraints, they also include a weighting system that associates each soft
constraint with a number of penalty points in order to be able to compare two solutions
and identify the best. Formulations differ between universities. Many examples can be
found in the literature: Hochschule Konstanz by Erben and Keppler [1996], the University
of Valencia by Alvarez-Valdes et al. [2000], Athens University of Economics and Business
by Dimopoulou and Miliotis [2001], Ohio University by Martin [2004], the University
of Udine by Di Gaspero and Schaerf [2006], Purdue University by Murray et al. [2007],
TU-Berlin Lach and Lübbecke [2008], and the University of Auckland by Phillips et al.
[2015].

As researchers were working on different problems, it became clear that it was not
possible to compare results and methods. To overcome this, an international timetabling
competition was held in 2002 (Network [2002]). The organizers proposed a problem formu-
lation, together with a selection of instances, and participants competed to find the best
solutions. Five years later, in 2007, the Second International Timetabling Competition
(ITC2007) was held that included two formulations of the university timetabling problem:
the curriculum-based timetabling problem, formulated in Di Gaspero et al. [2007], and the
post-enrollment timetabling problem, formulated in Lewis et al. [2007]. The biggest dif-
ference between the two formulations is that individual students are not considered in the
curriculum-based version. Instead, they are taken into account through curricula, where
a curriculum is a set of courses followed by some students. The post-enrollment version
considers each student individually, and attempts to ensure that each has a high-quality,
feasible timetable. Later, Bonutti et al. [2012] proposed five variations of the curriculum-
based problem, including the original formulation. The goal was to develop a more diverse
set of benchmark datasets, and encourage researchers to reduce their particular problem
to one of these five, thereby making it possible to compare results and methods.

3.2.1 Curriculum-based Timetabling

The curriculum-based course timetabling problem (CB-CTT) is the most widely-used
formulation for university course timetabling. It was initially proposed in Di Gaspero
et al. [2007] in the context of ITC2007.

In CB-CTT the goal is to assign all courses to timeslots and rooms in a one week
period. The week consists of days (usually 5 or 6) and each day consists of timeslots
(usually also 5 or 6). Each course consists of a number of lectures, which corresponds to
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the number of timeslots for the week. Each course is associated with a member of staff,
and a number of students who attend it. A set of rooms is identified, and each room has
a capacity that corresponds to the number of people it can accommodate. Finally, the
curricula is the set of courses attended by students. The problem includes the following
hard constraints:

Lectures All lectures should be scheduled.

RoomOccupancy A room can only accommodate one lecture at a time.

Conflicts Lectures that are part of the same curriculum, or taught by the same member
of staff cannot be assigned to the same timeslot.

Availabilities Each member of staff has a set of timeslots during which he or she is
unavailable to teach.

Soft constraints are as follows, and each is associated with a number of penalty points:

RoomCapacity The room should be able to accommodate all students. Each student
above this capacity attracts one penalty point.

MinimumWorkingDays Each course has a minimum number of working days it should
be spread over. There is a five-point penalty for each day below this.

CurriculumCompactness Lectures that are part of the same curriculum should be as-
signed to consecutive timeslots. For each curriculum, two penalty points are awarded
to each lecture that does not have a lecture from the same curriculum either before
or after it.

RoomStability All lectures that are part of the same course should be taught in the
same room. Each extra room used for a course attracts one penalty point.

The objective is then to find a feasible solution that respects all of the hard constraints
and minimizes the number of penalty points.

Twenty-one instances were provided, shown in Table 3.1. These varied in both the
number of courses and the number of curricula. More instances were defined in Bonutti
et al. [2012], and subsequently Mühlenthaler defined six, very large instances from the
University of Erlangen. An initial instance generator was proposed in Burke et al. [2010],
followed by a more advanced version in Lopes and Smith-Miles [2010, 2013]. The latter is
able to generate more realistic instances by utilizing more advanced statistical methods.
In Burke et al. [2010] they show that the problem is NP-hard as the hard constraints
create a graph coloring problem.

To help researchers to compare their results, a website was created by Alex Bonutti.
The site contains all of the instances, which can be downloaded. It also allows researchers
to upload their solution and validate it for violations of hard and soft constraints. The
team track the best-known solutions and lower bounds. The site can be found at http://
tabu.diegm.uniud.it/ctt/ and is maintained by Luca Di Gaspero and Andrea Schaerf.
The competition and the website have had a significant influence on research and there is
an ongoing search to find better solutions and better lower bounds.

http://tabu.diegm.uniud.it/ctt/
http://tabu.diegm.uniud.it/ctt/
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Instance Courses Rooms Timeslots Curricula
comp01 30 6 30 14
comp02 82 16 25 70
comp03 72 16 25 68
comp04 79 18 25 57
comp05 54 9 36 139
comp06 108 18 25 70
comp07 131 20 25 77
comp08 86 18 25 61
comp09 76 18 25 75
comp10 115 18 25 67
comp11 30 5 45 13
comp12 88 11 36 150
comp13 82 19 25 66
comp14 85 17 25 60
comp15 72 16 25 68
comp16 108 20 25 71
comp17 99 17 25 70
comp18 47 9 36 52
comp19 74 16 25 66
comp20 121 19 25 78
comp21 94 18 25 78

Table 3.1: The 21 instances used for ITC2007, defined in Di Gaspero et al. [2007]. These
intstances differ in both size and number of curricula.

Three examples demonstrate how the original goal of the competition has been fulfilled.
The first is Lach and Lübbecke [2012], who use the problem to show the applicability of
their earlier work (Lach and Lübbecke [2008]). Second is Phillips et al. [2015], who present
their work on a specific problem from the University of Auckland, but also use the problem
to benchmark their method. The third example is in Mühlenthaler and Wanka [2016],
who show how fairness can be included in timetabling problems, and use CB-CTT as the
underlying problem formulation.

As McCollum et al. [2010] argue, the competition has been highly successful in bringing
the community together; it has introduced new ideas and created interest in the field.

3.3 Previous methods

Both heuristics and exact methods have been applied to the CB-CTT problem. Hertz
[1991] uses a Tabu Search. A memetic algorithm is used in Paechter et al. [1995]. An
early overview of methods applied to timetabling can be found in Burke et al. [1997].
Timetabling was solved with MIP in Ferland and Roy [1985] and Burke et al. [2007].
Burke et al. [2008b] highlight that taking soft constraints into account makes the problem
difficult. This is also shown in Glassey and Mizrach [1986] where a MIP model is proposed,
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but the model is solved using a heuristic (due to the difficulty). In Phillips et al. [2015],
MIP is used to solve a large-scale practical classroom assignment problem.

One of the rules of ITC2007 was that solvers were not allowed, which resulted in a
focus on heuristics. The winning algorithm is described in Müller [2009], and uses both
Iterative Forward Search and a Hill Climbing algorithm. Later, two new heuristics were
shown to perform better. A Tabu-based memetic approach was proposed in Abdullah and
Turabieh [2012], and an Adaptive Large Neighborhood Search in Kiefer et al. [2014].

MIP has also been applied to CB-CTT. First, Burke et al. [2008a] proposed the mono-
lithic model, also known as the three-index model. Later, Lach and Lübbecke [2012]
proposed a two-index model, where the the problem is decomposed into two stages that
are solved sequentially. The first stage creates the time assignment, and the second creates
the room assignment. Finally, MIP has been successfully used to create lower bounds.
Hao and Benlic [2011] use a partition-based approach based on the “divide and conquer
principle”. Cacchiani et al. [2013] split the objective function into two parts and solved
each separately using a column generation procedure. For a comprehensive overview and
comparison of the methods used to solve the curriculum-based course timetabling problem
problem see Bettinelli et al. [2015].



Chapter 4

Strategic, Tactical and
Operational Course
Timetabling

The course timetable process consists of many decisions. Before courses can be assigned
to rooms and timeslots, decisions need to be made regarding what rooms are available
and what timeslots can be used. As described previously in Section 3.1, there is a wide
selection of constraints, and decisions need to be made regarding which should be used and
their priority. Next, the courses must actually be assigned, and after that any disruptions
must be managed. These decisions are taken at different levels in the organization, and
this chapter describes the different timetabling problems at each level. Finally, we analyze
how these problems relate to the values of the organization, and the people involved.

Decision problems can be divided into three organizational levels: strategic, tactical
and operational, illustrated in Figure 4.1. Strategic problems define the overall priorities
when creating a timetable, and what resources are available. Tactical problems concern
how the timetable is drawn up (e.g. processes and priorities). Finally, operational prob-
lems concern the actual timetable (i.e. deciding which courses should be in what room
and when). We investigate the problems at each level.

4.1 Operational

The main problem here is the assignment problem which is described in Chapter 3, given
a number of hard and soft constraints. As highlighted earlier, this problem has received
most attention in the literature, and is investigated in Chapter 6.

A reduced version of this problem, where only hard constraints are considered, is called
the feasibility problem (Rudová et al. [2011]). The purpose is to detect if the problem is
infeasible due to inconsistencies in hard constraints. Examples include errors in the data
or conflicting staff requirements. These checks can be made during the data-gathering
phase and help to quickly correct or remove the problem.
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After a timetable has been drawn up and published, changes will necessarily occur.
Staff may be unable to teach in a certain timeslot, or a new course may need to be assigned.
The objective here is to find a new timetable that does not require too many changes to
the existing timetable. This leads to the minimum perturbation problem, where the goal
is to make an infeasible schedule feasible by making as few perturbations (changes) as
possible. This problem is investigated using heuristics in Barták et al. [2003], Muller
et al. [2005], Rudová et al. [2011]. Another paper by Phillips et al. [2016] uses MIP to
create a neighborhood with a part of the solution space, and gradually expand it until a
feasible solution can be found.

However, a minimum perturbation solution will often lead to violations of soft con-
straints, as shown in Chapter 7. It therefore becomes necessary to introduce additional
perturbations to reduce the number of violations. This results in the quality recovering
problem, where soft constraints are taken into account in order to find a solution with the
right trade-off between the number of perturbations and the number of violations of soft
constraints. This problem is investigated in Chapter 7.

Figure 4.1: Problems are found at different levels in the organization, which impact the
final timetable. (figure from Chapter 8)

4.2 Tactical

Tactical problems concern the processes and procedures that planners follow. Most uni-
versities have a team of planners who divide the work between them. This will often be
at a department or faculty level and, usually, requires them to divide the available rooms
between them. Large rooms are often in high demand, and decisions need to be made
regarding priorities. This collaboration problem is discussed in Dimopoulou and Miliotis
[2004], who note that it is important to take the distributed environment into account
when developing a successful planning tool. Such tools can create a flexible, automated
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procedure where courses that are shared between departments are planned first, before
each department plans their full timetable. Beyrouthy et al. [2010] analyze the conse-
quence of mixing different space types (e.g. lecture rooms and tutorial rooms) using MIP.
This study shows how relaxing a hard constraint can increase room utilization.

Another decision is how to weigh different soft constraints. This is known as the
prioritizing objectives problem. Phillips [2015] discusses how a mathematical model of
the assignment problem can be used to generate scenarios for mid-term planning (e.g.
analyzing the potential of relaxing hard and soft constraints to evaluate the impact on
the quality of the timetable). Silva et al. [2004] provide an overview of heuristics for multi-
objective optimization in timetabling and scheduling that can be used to find trade-offs
between different objectives.

4.3 Strategic

Strategic decisions encompass all of the high-level, long-term decisions that impact timeta-
bles and the organization. In the university context, it concerns available resources. Com-
pared to operational problems, these problems have not received much attention in the
literature.

Rooms and time are the two priorities for management. Issues concerns the number
and type of rooms and buildings to be constructed, and when students and staff are
available for teaching. The room planning problem was first investigated in Fizzano and
Swanson [2000], who applied a heuristic to the assignment problem and used this to
investigate how many rooms could be removed while still retaining a feasible schedule.
Later, Beyrouthy et al. [2007] used a greedy algorithm to build a room profile. Beyrouthy
et al. [2009] also took a strategic view in their analysis of how respecting soft constraints
can drive down room use based on bi-objective optimization. This teaching periods problem
had not previously been studied in the literature. Both of these problems are investigated
in Chapter 8.

4.4 The value of better decisions

Solving these problems, and making better decisions, reflects different values depending
on the problem that is solved. We divide these values into three categories: agility,
quality and cost, illustrated in Figure 4.1. The following paragraphs discuss these values
and show how the different problems contribute to them. It should be noted that this
categorization does not mean that the problems do not reflect other values, rather it
illustrates the principal values.

Agility Agility is being able to respond to changes, and quickly make alterations to the
timetable. All operational problems contribute to this. Being able to make operational
decisions faster reduces the stress for planners, by allowing them to find feasible solutions
quickly.
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Quality A high-quality timetable provides a good working environment for staff and
students. This attribute is achieved by taking into account soft constraints that reflect
the timetable preferences of students and staff. Both the quality problem and the quality
recovering problem take this into account, as unwanted features are minimized. Tactical
problems make a similar contribution. Prioritizing objectives ensures that the right trade-
offs are made in the planning process, resulting in high-quality timetables.

Cost A timetable that uses expensive resources efficiently can help the profitability of
a university. The capacity of a university is determined by the number of rooms, and
the teaching periods. Buildings and rooms are a high cost. Building new capacity is
expensive, while unused rooms can often be turned into offices or rented out for profit.
Minimizing overcapacity, as described in the room planning problem can thereby reduce
costs. Another way to increase capacity is to extend the number of teaching periods, for
example, by holding lectures later in the evening, as described in the teaching periods
problem.

As Figure 4.1 illustrates, problems at the top levels have a high impact, but are not often
solved. On the other hand, problems at the bottom level are often solved, but their effect
is short term and therefore have less impact.

4.5 Problems

This thesis investigates four problems: two are strategic problems, the teaching periods
problem and the room planning problem, and two are operational problems, the assignment
problem and the quality recovering problem.

These problems and the relations between them are illustrated in Figure 4.2. The two
strategic problems are solved in order to decide how many of the two resources (timeslots
and rooms) are needed. These problems take courses, and hard and soft constraints
as input. The two outputs (decisions) concern timeslots and rooms. The third output
relates to quality, as more resources increase quality. The decision-maker, therefore, needs
to make a trade-off between resources and quality.

Once resources have been determined, the assignment problem can be solved. The
solution to the assignment problem concerns which timeslot and room each course should
be taught in. The objective is to minimize the violation of soft constraints to obtain
a high-quality timetable. Once the timetable has been published, disruptions must be
managed. This results in the quality recovering problem. This problem takes the previous
assignments, and the disruption that makes these assignments infeasible as input. The
aim is to find a timetable similar to the existing one. A delta function measures how
many perturbations there are between the initial solution and the new one. The output is
a new timetable with assignments, a quality level, and the number of perturbations from
the initial solution.

It should be noted that the initial, strategic problems have fewer inputs and constraints
than subsequent problems. The problem is increasingly more constrained by previous
decisions; the quality recovering problem is the most constrained and only affects a few
assignments.
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Figure 4.2: Inputs and outputs of the problems. The output from each step is used as input to the next. The first, strategic,
problem is to identify the two resources timeslots and rooms. Next is the assignment problem, where the aim is to create a
high-quality timetable. Finally, when disruptions occur the timetable must be changed to find a new solution that is similar
to the old one.





Chapter 5

Contributions and Conclusions

The scientific contributions of this thesis are contained in three papers that have been sub-
mitted to international, peer-reviewed journals. Two of these papers analyze operational
assignment and quality recovering problems, while the third takes a strategic perspec-
tive and analyzes the room planning problem and the teaching periods problem. This
work uses the curriculum-based course timetabling (CB-CTT) formulation to define hard
and soft constraints, while datasets are taken from the second international timetabling
competition (ITC2007) competition. All solution methods are based on mixed integer
programming (MIP). This chapter begins with an overview of the contributions of each
paper, and ends with overall conclusions and suggestions for further research.

Chapter 6: A Fix-and-Optimize Matheuristic for Curriculum-Based Course
Timetabling This paper proposes a matheuristic to find feasible solutions to the course
assignment problem. As discussed previously in this thesis, most of the previous work
regarding CB-CTT is based on metaheuristics. One reason for this is that the assignment
problem is computationally hard to solve using a standard MIP solver. The proposed
algorithm combines MIP and heuristics by using a MIP solver to explore different parts
of the solution space. The smaller solution spaces are created by fixing a number of
variables, while an adaptive layer is used to choose the best neighborhood size to explore.
This method generates solutions faster, especially on large instances and performs better
than the original winning metaheuristic from the ITC2007 competition. The paper was
submitted to the Journal of Heuristics and its contributions are:

• The first matheuristic to solve the university course timetabling problem.

• A method to solve very large university course timetabling instances using MIP.

Chapter 7: Quality Recovering of University Timetabling This paper investi-
gates how to recover from disruptions to a feasible timetable. Previous work has solved this
problem by searching for a minimum perturbation solution that is as similar as possible
to the existing solution. However, this paper shows that such an approach tends to result
in a decrease in quality of between 7% and 232% on the ITC2007 instances. It therefore
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is beneficial to use additional perturbations in order to find a solution that remained close
to the initial one, but with better quality. By allowing more perturbations, the quality
decrease in the objective can be reduced to between 2% and 88%. The proposed method
uses bi-objective optimization to give the planner a choice of solutions. All solutions are
optimal, and as the method is based on MIP it can easily be incorporated into a system
(with the fix-and-optimize matheuristic) as it does not make any assumptions about the
formulation. The paper was submitted to OR Spectrum and its contributions are:

• The first analysis of how minimum perturbation solutions affect the quality of the
timetable.

• The first method to find solutions that both take quality and perturbations into
account. The proposed method finds optimal solutions using bi-objective optimiza-
tion.

Chapter 8: A Strategic View on University Timetabling The paper analyzes
how available resources affect the quality of the timetable using bi-objective optimization.
Decisions concerning available resources have a long-term impact on timetables and are
therefore important. The paper also demonstrates the trade-off between room profiles and
the number of timeslots needed to create a feasible timetable. As the method is based on
MIP, any formulation can be used as the underlying timetabling problem. The problem
is computationally hard and the paper also explores why. The paper was submitted to
the European Journal of Operations Research and its contributions are:

• The first MIP model of the strategic room planning problem.

• The first formulation of the strategic teaching periods problem including a MIP
model.

• The first exact method to find the pareto fronts in the trade-off between room profile,
number of timeslots and the quality of the timetable.

Published source code To encourage further research in this area the source code
has been made publicly available at http://github.com/miclindahl/UniTimetabling.
Specifically, this includes the codebase used in the computations given in the two papers
A Strategic View of University Timetabling and Quality Recovering of University Timeta-
bles. A flexible framework is provided that makes it easy to test different formulations,
algorithms and parameters. The codebase includes among others:

• A datareader and solution validator to CB-CTT.

• Two implemented MIP models: The 3-index from Burke et al. [2008a] and the
2-index from Lach and Lübbecke [2012].

• Three additional objective measures: total seats, number of timeslots and pertur-
bations.

• An implementation of the epsilon-method for bi-objective optimization that finds
trade offs between the objectives.

• A comprehensive test framework to compare the impact of different parameters.

http://github.com/miclindahl/UniTimetabling
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5.1 Conclusion

University Course Timetabling has received a lot of attention in the literature. However,
most of this work has focused on the assignment problem. This thesis takes a broad
perspective, by exploring the decisions that are made at strategic, tactical and operational
levels. Four problems are formulated: room planning, teaching periods, assignment, and
quality recovering. Solution methods are provided for the two problems room planning and
teaching periods that estimate the required resources. This output is used to create the
timetable in the assignment problem, where a solution method based on a matheuristic is
proposed. When assignments from the course assignment problem are disrupted, recovery
is possible using the quality recovering method. This thesis shows how multi-objective
optimization provides a better insight into the problems, and highlights trade-offs, allowing
the planner to make a better decision based on solid foundations.

All of the proposed methods are based on MIP. In the more constrained recovering
problems, where most assignments are fixed, optimal solutions can be quickly gener-
ated. However, the less-constrained assignment and strategic problems are still hard to
solve optimally within a reasonable time. The performance of MIP solvers has improved
significantly over the last decade, and ongoing improvements will directly influence the
performance of the computations presented in this thesis.

The CB-CTT formulation provides the underlying model for all computational exper-
iments. This formulation has been most widely-studied in the literature, which therefore
makes it easy for other researchers to continue to develop these methods.

The use of a mathematical model makes the methods generic, and the timetabling
formulation can take other soft and hard constraints into account without having to
change the solution method. In practice, it is better to use the same solution method and
underlying mathematical model in all steps of the timetabling process, in order to ensure
that the model used in planning is the same as the one used to make strategic decisions.
Decision support for these complex decision problems is essential if universities are to
avoid wasting resources on poor planning (and instead use it for research and education).

5.2 Future Research

The proposed methods can still be improved, as finding optimal solutions based on MIP
is difficult. With respect to the assignment problem the proposed matheuristics continue
to be outperformed by metaheuristics and there is clearly potential for more research. To
introduce variety into the chosen variables, the choice of neighborhoods is important, and
finding better neighborhoods would be interesting. Predicting which neighborhoods offer
improved solutions could be done adaptively using machine learning, which also would be
a step towards making the method more general applicable. Strategic problems proved
particularly difficult, given the large MIP gap between the upper and lower bound. It
could be interesting to find a way to approximate soft constraints in order to be able to
quickly estimate the consequence of removing, or adding, rooms and timeslots.

Timetabling is always based on limited information. Rooms are built without knowing
what courses will offered in the future, and courses are assigned to timeslots and rooms
without knowing what disruptions will occur. Incorporating these stochastic elements
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can create a better understanding of the impact of these uncertainties. University course
timetabling has been studied in the operations research community for over 30 years, but
many universities continue to do their timetabling manually. One reason for this is that
senior managers fail to appreciate the benefit of optimization. Universities, like every
other organization, prefer to do things the way they have always done them. To incor-
porate optimization methods, universities need to invest in software and make changes
to procedures which ensure that all of the necessary data is incorporated into the new
system. This is not easy for managers, who need to be convinced of the usefulness of
the exercise. Many will not consider that better solutions to the assignment problem is
worth a big investment. As this thesis has highlighted, managers care most about expen-
sive resources. Finding areas where resources are underutilized offers an opportunity to
financially quantify improvements and create a convincing business case. Furthermore,
the tactical problems described in Chapter 4 have not received much attention, and more
research into how soft constraints interact and what are the best trade-offs will help to
clarify how a good timetable looks like.

Another problem is that we can only work with a partial representation of reality when
applying optimization. Every member of staff, and each student is different and cares
more (or less) about the violation of soft constraints. One model will never be a complete
representation of reality and it is, therefore, important that rather than focus on building
software to generate the perfect timetable, we should support the planner in creating
the perfect timetable. Consequently, there is a need to focus on providing the planner
with insights and choices, leaving him or her to make the final decision. Multi-objective
optimization is one way to achieve this goal, as the planner can make a decision based
on information that goes beyond what is represented in the model. A related problem is
how to present options to the planner, and provide an overview of the different solutions.
Investigating interactions between decision-makers and software has been studied within
the artificial intelligence community, where it is known as human-computer symbiosis.

The success of the first and second international timetabling competitions resulted in
a lot of attention being given to solving the course assignment problem. To encourage
researchers to take a broader perspective, it is likely that further progress could be made
by launching a third timetabling competition, incorporating the following ideas:

• The formulation of a strategic problem, together with data instances.

• The formulation of a quality recovering problem, together with data instances.

• A multiple-stage competition, where the first stage is to determine resources, the
second is to create a timetable, and the third is to recover from disruptions. A
stochastic element could be introduced by limiting information about the next step.

• An advanced timetabling competition, inspired by advanced chess1. Here, the idea
is that humans plus optimization software competes to create the best timetable in
a very dynamic environment, in order to encourage intuitive user interfaces.

This thesis, which offers some new perspectives and publicly-available codebase, will hope-
fully encourage more research in these directions.

1See http://en.wikipedia.org/wiki/Advanced Chess
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Chapter 6

A Fix-and-Optimize
Matheuristic for
Curriculum-Based Course
Timetabling

Michael Lindahl · Matias Sørensen · Thomas R. Stidsen

Abstract University course timetabling covers the task of assigning
rooms and time periods to courses while ensuring a minimum viola-
tion of soft constraints that define the quality of the timetable. These
soft constraints can have attributes that make it difficult for mixed-
integer programming solvers to find good solutions fast enough to be
used in a practical setting. Therefore, metaheuristics have dominated
this area despite the fact that mixed-integer programming solvers have
improved tremendously over the last decade. This paper presents a
matheuristic where the MIP-solver is guided to find good feasible so-
lutions faster. This makes the matheuristic applicable in practical set-
tings, where mixed-integer programming solvers do not perform well.
To the best of our knowledge this is the first matheuristic presented for
the University Course Timetabling problem.

The matheuristic works as a large neighborhood search where the
MIP solver is used to explore a part of the solution space in each itera-
tion. The matheuristic uses problem specific knowledge to fix a number
of variables and create smaller problems for the solver to work on, and
thereby iteratively improves the solution. Thus we are able to solve
very large instances and retrieve good solutions within reasonable time
limits. The presented framework is easily extendable due to the flex-
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ibility of modeling with MIPs; new constraints and objectives can be
added without the need to alter the algorithm itself. At the same time,
the matheuristic will benefit from future improvements of MIP solvers.

The matheuristic is benchmarked on instances from the literature
and the 2nd International Timetabling Competition (ITC2007). Our
algorithm gives better solutions than running a state-of-the-art MIP
solver directly on the model, especially on larger and more constrained
instances. Compared to the winner of ITC2007, the matheuristic per-
forms better. However, the most recent state-of-the-art metaheuristics
outperform the matheuristic.

Keywords Matheuristics · Integer programming · University course
timetabling

6.1 Introduction

University course timetabling is the problem of assigning courses to rooms and time pe-
riods. This should be done without violating a number of hard constraints that would
make the timetable infeasible. For example, a teacher is only able to teach one class
in a certain time period. Furthermore, a number of soft constraints should be obeyed
as much as possible, because violating them would result in a timetable with undesired
features. An undesired feature could e.g. be lectures of one course planned in different
rooms during the week. The generating of high quality timetables automatically leads to
better timetables in a production setting, and the automatization can help planners make
timetables faster as they often have tight deadlines.

Timetabling differs between universities according to traditions and how their edu-
cations are structured. Many universities have curricula which consist of a number of
courses taken by a group of students in a specific semester. This problem formulation
is called the Curriculum-based Course Timetabling (CB-CTT). A formal description of
this problem was made for the Second International Timetabling Competition in 2007
by Di Gaspero et al. [2007] together with 21 benchmark instances from the University
of Udine. This allowed researchers to compare their results on the same instances with
roughly the same computational resources. The rules of the competition disallowed the
use of external solvers which meant that all contestants used metaheuristics. A website
has been made to keep track of the best known solutions and the best known bounds.
The website is maintained by A. Bonutti, L. Gaspero and A. Schaerf and can be found at
http://tabu.diegm.uniud.it/ctt/.

The purpose of this paper is to combine mixed-integer programming and heuristics to
find good feasible solutions fast, taking advantage of the large improvements in mixed-
integer programming solvers that have happened over the last decade as shown in Bixby
[2012]. This combination is commonly known as matheuristics. The matheuristic devel-
oped in this paper works as a large neighborhood search where the MIP solver is used to
explore a part of the solution space in each iteration. The heuristic uses problem specific
knowledge to fix a number of variables and create smaller problems for the solver to work
on and thereby iteratively improves the solution. Thus, we are able to solve very large

http://tabu.diegm.uniud.it/ctt/
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instances and retrieve good solutions within reasonable time limits. The presented frame-
work is easily extendable due to the flexibility of modeling with MIPs; new constraints
and objectives can be added without the need to alter the algorithm itself. At the same
time, the matheuristic will benefit from future improvements in MIP solvers.

The paper is organized as follows: In section 6.2 we describe previous work. In section
6.3 the Curriculum-based Course Timetabling problem is defined together with the MIP
formulation used. In section 6.4 the matheuristic is described. The computational results
of the algorithm are shown in section 6.5. Finally, the conclusion and outlook of future
directions are presented in section 6.6.

6.2 Previous work

The CB-CTT problem has received a lot of attention in the literature as the de-facto
benchmarking problem within university timetabling. The winning heuristic of the original
competition is described in Müller [2009]. More recently, especially two heuristics have
shown to perform well on the problem, see Abdullah and Turabieh [2012] and Kiefer et al.
[2014]. As the algorithm presented in this paper is based on a MIP solver, we will focus
on other MIP-based approaches in this section.

Integer programming has been applied to CB-CTT, but the models have proved dif-
ficult to solve due to the characteristics of the problem described by Burke et al. [2008].
In Hao and Benlic [2011] they successfully generate lower bounds by using MIP and a
partition-based approach based on the ”divide and conquer principle”, and Cacchiani
et al. [2013] split the objective function into two parts formulated as MIPs that are solved
separately by using a column generation procedure. In Lach and Lübbecke [2012] the
problem is separated in two stages (two MIP models) that are exact with respect to the
hard constraints when solved in sequence. They generate lower bounds and are also able
to generate good feasible solutions. For a complete overview of the different methods
applied to CB-CTT we recommend the overview by Bettinelli et al. [2015]. Hybridizing
exact methods with heuristics is not a new idea. One of the earliest examples is the cor-
ridor method by Sniedovich and Voß [2006], where a corridor is made around the current
solution to create a smaller search space. Within MIP Danna et al. [2005] proposed a
relaxation induced neighborhood search (RINS) by using the current incumbent together
with the linear relaxation to search for improving solutions. New heuristics have been
proposed, for example the local branching by Fischetti and Lodi [2003] who use the con-
cept of hamming distance to create a branching based on the current solution. Within
timetabling Avella et al. [2007] applie a local search algorithm on a high-school timetabling
problem and use a MIP solver to explore a very large neighborhood.

6.3 Curriculum-based Course Timetabling

In curriculum-based course timetabling (CB-CTT) the purpose is to assign a number of
lectures to a time period and a room. To be able to compare results to the current state-
of-the-art we use the formulation from the Second International Timetabling Competition
ITC-2007 stated in Di Gaspero et al. [2007].
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A set of courses is given, and each course consists of a number of lectures that should
be planned. A lecture should be assigned to a time period and a room without causing
any conflicts. A set of time periods is given, and each one is associated with a day and
a time, and two lectures of the same course can not take place at the same time or it
will result in a conflict. A set of rooms is given, and only one lecture can take place in
the same room in a time period, or it will result in a conflict. Each course also has a
teacher assigned, and it will result in a conflict if a teacher has two lectures in the same
time period. Furthermore, a set of curricula is also given. A curriculum consists of a set
of courses, and courses from the same curriculum will conflict if they are planned in the
same time period.

All lectures should be planned without conflicts, and the objective is to create a
timetable that minimizes the violation of a number of soft constraints. The soft con-
straints define some attributes that we would like to avoid. Each one is associated with a
number of penalty points, and the goal is therefore to minimize the total sum of penalty
points for the timetable. The following four soft constraints are defined:

RoomCapacity Each room has a capacity and each course has a number of students
who attend the course. If a course is planned in a room with less capacity than the
number of students attending the course, one penalty point is given for each student
exceeding this number.

RoomStability A course consists of several lectures and it is desired that all of these
are assigned to the same room. one penalty point is given for each additional room
used.

MinimumWorkingDays To distribute the workload of a course throughout the week it
is desired to spread the lectures out on several days. Each course has a number of
minimum working days which should be respected. For each day below five penalty
points are given.

CurriculumCompactness To avoid that students have idle time periods in the timetable
it is desired that curricula are planned consecutively. If a course of a curriculum is
planned in a time period where there is not another course from the same curriculum
in the previous or in following time period, two penalty points are given.

6.3.1 Mixed Integer Programming Model

The proposed matheuristic works on top of a MIP model. Different models for the CB-
CTT have been proposed in the literature and we refer to Bettinelli et al. [2015] for
an overview of these. We use the MIP model proposed in Lach and Lübbecke [2012].
This model has shown good results on the ITC2007 benchmark instances, and we believe
that this is currently the best model when the goal is to create feasible solutions. The
approach consists of two stages solved sequentially. The first stage assigns time periods
to the lectures, and the second stage then assigns the rooms. The decomposition is exact
with respect to the hard constraints, meaning that no feasible solutions are lost.

The following sets are defined:

C: Set of courses
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CU : Set of curricula

P: Set of timeslots across the week

D: Set of days of the week

R: Set of rooms

T : Set of teachers

The following parameters are defined:

l(c): The number of lectures for course c ∈ C

mnd(c): The minimum working days for course c ∈ C

dem(c): The demand for course c ∈ C i.e. the number of students.

cap(r): The capacity of room r ∈ R

C(t) Set of courses where the teacher is t ∈ T

C(cu) Set of courses included in curriculum c ∈ CU

Furthermore, the following helper sets are used to formulate the model:

C≥s = {c ∈ C : dem(c) ≥ s}, set of courses with a demand larger than or equal to s ∈ S

R≥s = {r ∈ R : cap(r) ≥ s}, set of rooms with capacity larger than or equal to s ∈ S

Stage I

The first stage determines at what time periods each lecture should be taught. It does not
assign any rooms, but keeps track of the available rooms to ensure that a feasible room
assignment exists and calculates the violation of the RoomCapacity constraint. The Stage
I therefore considers all soft constraints except for RoomStability. The decision variable
is defined as,

xc,p =

{
1 if course c ∈ C is planned at period p ∈ P
0 otherwise

The following auxiliary variables are also needed: To keep track of the violation of Room-
Capacity, the variable ys,c,p determines if course c ∈ C in period p ∈ P is planned in a
room of size s ∈ S or smaller. The variable zc,d is equal to one if course c ∈ C is planned on
day d ∈ D. The variable wc then counts the number of violations of the MinimumWork-
ingDays constraint for course c ∈ C. The variable rcu,p is one if a course from curriculum
cu ∈ CU is planned in period p ∈ P. The violation of the CurriculumCompactness is then
calculated by vcu,p that determines if there is an isolated lecture from curriculum cu ∈ CU
in period p ∈ P. The full model for stage I is shown in Model 1.

The objective (1a) calculates the violation of the three soft constraints. The constraints
of the MIP are described in the following:
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min
∑

p∈P,s∈S,c∈C≥s

objs,c,p · ys,c,p +
∑
c∈C

5 · wc +
∑

cu∈CU,p∈P
2 · vcu,p (1a)

s. t.
∑
p∈P

xc,p = L(c) ∀c ∈ C (1b)

∑
c∈C

xc,p ≤ |R| ∀p ∈ P (1c)

xc,p − ys,c,p ≥ 0 ∀c ∈ C, p ∈ P, s ∈ S (1d)∑
c∈C≥s

(xc,p − ys,c,p) ≤ |R≥s| ∀s ∈ S, p ∈ P (1e)

∑
p∈P

xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D (1f)

∑
d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C (1g)∑
c∈C(cu)

xc,p − rcu,p = 0 ∀cu ∈ CU , p ∈ P (1h)

− rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 ∀cu ∈ CU , p ∈ P (1i)∑
c∈C(t)

xc,p ≤ 1 ∀t ∈ T , p ∈ P (1j)

xc,p ∈ B ∀c ∈ C, p ∈ P (1k)

ys,c,p ∈ B ∀s ∈ S, c ∈ C≥s, p ∈ P (1l)

wc ∈ Z+ ∀c ∈ C (1m)

zc,d ∈ B ∀c ∈ C, d ∈ D (1n)

vcu,p ∈ B ∀cu ∈ CU , p ∈ P (1o)

rcu,p ∈ B ∀cu ∈ CU , p ∈ P (1p)

Model 1: The MIP model for the first stage.

Constraints

(1b) – A course c ∈ C should be assigned exactly Lc lectures.

(1c) – At given period p ∈ P it is not possible to assign more courses than available
rooms.

(1d) – If a room size is assigned to a course, the course should be assigned to that
time period.

(1e) – Ensures that we do not assign more courses to a certain room size than rooms
available of that size.
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(1f) – Calculates if a course c ∈ C is planned on day d ∈ D

(1g) – Calculates the violation of the MinimumWorkingDay constraint.

(1h) – Calculates if a curriculum is planned in a time period and ensures that only
one course from the same curriculum is planned.

(1i) – Calculates the CurriculumCompactness violation.

(1j) – Ensures that only one course with the same teacher is planned at the same
period.

Stage II

The Stage II model assigns a room to each lecture based on the solution of Stage I while
minimizing RoomStability. The decision variable is the following:

uc,p,r =

{
1 if course c ∈ C is planned in room r ∈ R at period p ∈ P
0 otherwise

The assignments of times is given from the previous stage as x∗c,p. If a course is not
assigned to a time period, no room should be assigned. The violation of room capacity is
given from the variables y∗s,c,p. This means that if a lecture has been assigned to a smaller
room in Stage I this should also be the case in the second stage.

Given a course c ∈ C, a time period p ∈ P and a room r ∈ R then the assignment is
invalid, i.e. uc,p,r = 0, if one of these three conditions is satisfied:

• If a course c is not assigned to a time period p then no room should be assigned.

– x∗c,p = 0

• If there is no violation of the capacity in Stage I then there should not be a violation
in Stage II.

– y∗s,c,p = 0 and dem(c) > cap(r)

• If the capacity is exceeded in Stage I, then the same violation should occur in Stage
II.

– y∗s,c,p = 1

– dem(c) ≤ cap(r)
– cap(r) = maxr̂∈R{cap(r̂) : cap(r̂) < dem(c))}

Furthermore, the variable yc,r states whether course c ∈ C takes place in room r ∈ R
at least once. This is used to calculate the violation of the RoomStability constraint. The
full model of Stage II is shown in Model 2.

The objective (2a) is the violation of the RoomStability objective. The constraints are
the following:
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min
∑

c∈C,r∈R
yc,r (2a)

s. t.
∑
p∈P

uc,p,r − |P| · yc,r ≤ 0 ∀c ∈ C, r ∈ R (2b)

∑
r∈R

uc,p,r = 1 ∀c ∈ C, p ∈ P : x∗c,p = 1 (2c)∑
c∈C,p∈P

uc,p,r ≤ 1 ∀r ∈ R (2d)

yc,r ∈ B ∀c ∈ C, r ∈ R (2e)

uc,p,r ∈ B ∀c ∈ C, p ∈ P, r ∈ R (2f)

Model 2: The MIP model for the second stage.

Constraints

(2b) – Calculates the violation of the RoomCapacity constraint.

(2c) – Ensures that all lectures get assigned to a room.

(2d) – Ensures that no more than one lecture is assigned to the same room.

6.4 Fix-and-Optimize Matheuristic

A natural way of finding good solutions to a problem is to iteratively improve a bad
solution. This is done by creating a neighborhood that can be explored around the
solution, like proposed in the Large Neighborhood Search (LNS) algorithm (Shaw [1998]).
An example of a matheuristic is the corridor method proposed by Sniedovich and Voß
[2006]. In the corridor method an exact method that can solve small instances of a
problem, but which is not applicable to large instances, is used. A corridor around the
current solution is created, and this results in a smaller neighborhood which can then be
explored by using the exact method. Our matheuristic build on a similar approach, as we
have a mixed-integer model that can solve small instances to optimality, but struggles with
large instances. In each iteration the MIP solver is used to explore a large neighborhood
defined by fixing a subset of the variables. This results in a new MIP that we call the
subproblem, and the solver is then used as a black-box to search for improving solutions
within this. This is the fix-and-optimize aspect of the matheuristic. This also implies that
if the original model is changed, e.g. a constraint is added or removed, the neighborhoods
are not affected as the same model is used. This can sometimes be a problem in move-
based heuristics where a new constraint can make certain moves obsolete as they depend
too much on special characteristics of the solution.



6.4 Fix-and-Optimize Matheuristic 47

An important aspect of implementing this algorithm is that the model is only built
from scratch once by the MIP-solver. As the same model instance is used throughout the
algorithm, and due to the way the fixing of the variables is defined, the solution found in
the previous iteration of the algorithm is always feasible with regard to the fixing of the
variables in the next iteration. For most MIP solvers, this means that the solve operation
in each iteration is automatically warm-started from the previously found solution, which
is a great benefit. For the MIP solver used in these experiments (Gurobi) this is certainly
the case.

In Caserta and Voss [2010] they put metaheuristics in two classes. The first is the
model based heuristics where a new solution is found by using a model. Our algorithm
falls in the second category called method based heuristic where the underlying model
is still the same, but the neighborhood is defined by how the MIP solver explores the
neighborhood.

The proposed method is applied to Stage I of the problem as experiments have shown
that the majority of the solution time is spent at this stage. The resulting solution is then
handed to the Stage II model to find a solution for the entire problem.

The algorithm is described in Algorithm 6.4.1. A key part of the algorithm is to
determine which variables to fix to create subproblems that are easier to solve than the
full problem, while still leading to improving solutions. This part will be explained in
Section 6.4.2.

Algorithm 6.4.1 Fix-and-Optimize Matheuristic

1: input:
2: problem instance
3: Set of neighborhoods N and initial sizes S
4: output:
5: Solution
6: x∗c,p ← Create Initial solution
7: Fix all decision variables
8: while stopping criteria not met do
9: Pick neighborhood n ∈ N

10: X(R) = NeighborhoodCreator(n) . Find connected decision variables
11: Unfix variables X(R)
12: x∗c,p ← Optimize subproblem
13: Update Sn . Use feedback from solver to update parameters
14: end while
15: Solve StageII(x∗c,p)

6.4.1 Initial solution

Before decisions variables can be fixed, a feasible initial solution is needed. As shown
in Lach and Lübbecke [2012] the problem can quickly be solved when the soft constraint
CurriculumCompactness is removed. Moreover, the objective MinimumWorkingDays also
introduces new auxiliary variables, and removing this makes the problem easier. Creating
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a start solution is therefore done by removing those two objectives: CurriculumCompact-
ness and MinimumWorkingDays. To avoid spending too much time in this step the solver
is set to return the first found solution.

6.4.2 Neighborhoods

A neighborhood defines which part of the solution space should be explored in an iteration.
As mentioned, this is done by choosing a subset of variables that should be unfixed thus
allowing the values to be changed.

The neighborhood should choose variables where it is likely that a change will result in
an improved solution. If the resulting subproblem is too constrained by the fixed variables,
then no new solutions will be found. At the same time it should also be possible for the
solver to find an improving solution which depends on how difficult the subproblem is to
solve. If the neighborhood is too difficult to solve within the time limit of each iteration,
no improvement will be made.

There is no exact way to predict how difficult a MIP model is to solve, but as mentioned
by Vielma [2015] the size of the model has a high impact. A simple measure which also
is easy to calculate, is the number of decision variables. We therefore define the size of
a neighborhood as the number of unfixed decision variables. In each iteration we have a
neighborhood size, S ∈ Z+, which will determine how many variables to pick.

It is also important to choose decision variables that are connected in the sense that
if one of them changes value, the others are likely to change value as well. An example
is that if an assignment of a course in a curriculum is moved to a new time period, it is
likely to affect other courses in that same curriculum, as they may need to be assigned to
a new time period to avoid a conflict.

We define a resource r as an entity associated to a set of decision variables. We define
the variables associated with resource r as X(r). A resource could for example be a course
where the associated decision variables are the ones that affect that course. i.e. to a course
c′ ∈ C the corresponding decision variables are

X(c′) = Xc,p : c = c′, p ∈ P

To pick resources that are connected we create a score function to measure how well
a specific resource is connected to a set of other resources. A high number means that if
a decision variable from the set of resources is changed, it will likely result in a change in
the given resource.
The score of resource r related to the list of resources R is defined the following way:

Score(R, r) ∈ R+
0

The algorithm uses a greedy heuristic to find connected resources. It starts with a list
of resources of the same type, for example all courses. It then picks the first at random
and then iteratively adds more depending on which one has the largest score. This is
repeated until the desired size is reached. The algorithm is shown in Algorithm 6.4.2.

Three different neighborhoods are defined. The purpose of this is to make sure that
it is possible to reach different parts of the solution space. The neighborhoods are put
into two categories, static and dynamic. The static neighborhoods look at the problem
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Algorithm 6.4.2 NeighborhoodCreator

1: input: List of resources R, Neighborhood Size S
2: output: List of decision variables X̃
3: R̄ := {Randomr∈R} . Pick a random resource
4: while |X(R̄)| < S do . Add more until desired size is reached
5: r = arg maxr∈R Score({R̄, r}) . Find resource with highest score
6: R̄ := R̄ ∪ r . Add resource
7: end while
8: return X(R̄) . Return corresponding decision variables

formulation to pick variables where the dynamic looks at the current solution too. The
three neighborhoods are: Curricula, Courses and Assignments.

Curricula The curricula neighborhood is static and chooses the decision variables of
courses that belong to a set of curricula. Looking at optimal solutions, the objective Cur-
riculumCompactness is usually contributing to a large part of the penalty. The purpose
of this neighborhood is to make sure that the parts of the solution space that can lead to
lowering this are explored. The score is calculated by choosing curricula with overlapping
courses as moving one lecture will influence both curricula. The resources are therefore
curricula CU and the score function is the number of courses in common:

Score(cu′, CU ′) = |c ∈ cu′| : c ∈ CU ′

Courses This neighborhood finds courses that have similar numbers of students attend-
ing and is therefore static. This is to be able to swap courses that use similar rooms. The
resource is courses C with the following score function that measures the difference from
the average number of students:

Score(c′, C′) = −

∣∣∣∣∣dem(c′)− 1

|C′|
∑
c∈C′

dem(c)

∣∣∣∣∣
Assignments This dynamic neighborhood looks at the assignments in the current best
solution and looks at how much the assignment violates the soft constraints . The pur-
pose of this is to fix undesired assignments that result in lowering the objective. Each
assignment is therefore associated with the amount of violation in which it results.

Score(y′s′,c′,p′ , Y ) = objs′,c′,p′ + 5 · w′c +
∑

p,cu∈CU :c∈CU
2 · rcu,p

6.4.3 Choosing neighborhood

In each iteration it needs to be decided which neighborhood to use. This is done in a
random manner by selecting what neighborhood to use from a uniform distribution.
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6.4.4 Adaptive Neighborhood Size

Finding the right size of the neighborhoods is important. We therefore continually adjust
the neighborhood size S to ensure that we are solving neither too easy or too difficult
subproblems.

A way to measure the hardness of a subproblem is to look how far from optimum we
are when the time limit of an iteration is reached. This is done by looking at the relative
gap between the lower bound and the incumbent for each subproblem. We define two
parameters MinGap and MaxGap and aim at creating subproblems that are solved within
this gap. If the gap is less than MinGap the neighborhood size of that neighborhood is
increased, and in the same way decreases it if it is larger than MaxGap.

The increase or decrease of the neighborhood size is defined in terms of the parameter
Decay. Because each neighborhood is different, we have a size S for each of the used
neighborhoods. The adaptive algorithm for updating the sizes is shown in Algorithm 6.4.3.

Algorithm 6.4.3 UpdateNeighborhoodsize

1: if MipGap > MaxGap then . Subproblem is too difficult
2: Size *= 1 - Decay . Decrease size
3: else if MipGap < MinGap then . Subproblem is too easy
4: Size *= 1 + Decay . Increase size
5: end if

Smoothing The amount of decision variables is not enough to predict how difficult a
subproblem is. Therefore, a lot of fluctuation in the MIP Gap happens between iterations
for the same number of decision variables. To handle this we smooth the MIP Gap by
using exponential smoothing, which makes it less fluctuated by averaging the MIP Gap
with its previous value. This is done in the following way: Let MipGapi be the gap in

iteration i, the smoothed gap, denoted M̃ipGapi, is then calculated in the following way,
where α is the smoothing factor.

M̃ipGap1 = MipGap1

M̃ipGapi = α ·MipGapi + (1− α) · M̃ipGapi−1, i > 1

An example of how the size of the neighborhood adapts when using the MipGap is
seen in Figure 6.1. It is seen that there is a lot of fluctuation in the MIPGap, but it is
smoothed by the exponential smoothing.

6.5 Computational results

To evaluate the algorithm we use both the instances from the ITC2007 competition and
the much larger instances from University of Erlangen. All data sets are available from
http://tabu.diegm.uniud.it/ctt/. We will compare the algorithm to running the
MIP solver directly on the CB-CTT model. As the goal is to provide a tool for practical

http://tabu.diegm.uniud.it/ctt/
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Figure 6.1: This figure illustrates the size of the neighborhood and the MipGap in each
iteration. It can be seen that the size of the neighborhood is gradually increased until it
is stabilized and then increased in the end again.

Neighborhood Curricula Courses Assignments
Size 1000 2500 60%

Table 6.1: The initial sizes of the neighborhoods. Two of them are absolute number of
decision variables and the other are a percentage of the total amount.

timetabling, we will compare to the state-of-the-art in metaheuristic, both the winner from
the original ITC2007 competition as well as newer algorithms proposed in the literature.

All experiments were run on a 64 bit Windows machine with a 4.00GHz CPU and
32GB of memory. To solve the integer programs we use Gurobi 6.5.0 running with stan-
dard parameters except for MIPFocus = 1 to tell the solver to focus on finding feasible
solutions instead of proving optimality. The solver is only allowed to use one thread. The
allowed time limit is determined by using the benchmark tool provided for the ITC2007
competition. This means that one CPU time unit corresponds to 260 seconds. We use
the same fraction on time for Stage I and II as proposed by Lach and Lübbecke [2012],
where approximately 75% of the time is used in Stage I. This means that Stage I is given
210 seconds and Stage II 50 seconds.

The time limit for each iteration in the matheuristic is set to 2 seconds. For the
adaptive part the following parameters are used: GapMin = 15%, GapMax = 20%, α = 0.3
and Decay = .02. The initial sizes of the neighborhoods are shown in Table 6.1. These are
either an absolute number of decision variables or as an percentage of the total amount
in the given instance.

All results are shown as the average over 10 runs with different random seeds to the
matheuristic and the MIP solver.
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Figure 6.2: Solving Comp12. It can be seen that the matheuristic makes many small
improvements compared to the full MIP that hits some large improvement less frequently.

6.5.1 Comparison of the neighborhoods and the full MIP

To see the effects of the three neighborhoods, a comparison is made between the individual
performance of each neighborhood, the full matheuristic and solving the full model directly
by using a state-of-the-art MIP solver. In Table 6.2 we show the results on solving Stage I
of the model. It is seen that each neighborhood by itself does not perform well, especially
the assignment neighborhood performs very badly. The courses neighborhood works best
by itself. It is seen that the performance is improved when two neighborhoods work
together, and the algorithm works best when all three neighborhoods are used.

Looking at how the solution improves over time, illustrated in Figure 6.2, it is seen
that the profiles differ. The matheuristic makes many small improvements, and the full
MIP hits some larger improvements, but these occur less frequently.
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Instance Full MIP Cou Cur Assi Cou,Cur Cou,Assi Cur,Assi All

comp01 4.0 4.0 4.0 27.3 4.0 4.0 4.0 4.0
comp02 50.7 55.4 57.6 159.2 39.2 58.9 49.0 45.8
comp03 87.2 98.4 77.8 131.7 72.1 92.1 76.9 73.4
comp04 35.0 35.3 35.0 90.3 35.0 35.0 35.0 35.0
comp05 392.2 567.1 369.6 687.8 378.1 517.1 379.6 369.6
comp06 47.2 57.6 66.9 71.6 43.5 45.6 46.6 42.4
comp07 6.2 15.1 67.2 23.6 8.0 9.7 10.4 7.8
comp08 37.0 37.6 37.0 81.8 37.0 38.2 37.0 37.0
comp09 100.1 100.6 106.9 138.2 99.7 99.8 99.6 99.1
comp10 4.4 22.1 22.8 59.0 11.4 17.1 11.4 10.2
comp11 0.0 0.0 0.0 14.2 0.0 0.0 0.0 0.0
comp12 462.5 542.0 366.8 531.5 364.0 418.3 360.4 359.6
comp13 61.4 68.7 65.5 141.7 61.7 65.2 62.0 61.7
comp14 51.6 66.1 61.6 84.8 57.7 59.3 56.5 55.1
comp15 87.2 97.1 76.5 127.6 78.5 92.0 80.3 73.7
comp16 22.1 36.5 59.9 56.4 29.6 32.8 25.3 26.9
comp17 76.8 79.0 83.5 100.5 70.7 75.0 73.4 71.5
comp18 78.9 89.7 76.4 106.7 75.4 76.9 80.7 71.9
comp19 58.1 70.8 59.1 179.7 59.4 69.0 59.2 59.8
comp20 18.4 41.9 55.9 48.5 16.3 24.1 20.4 17.7
comp21 107.2 118.1 107.1 162.1 97.7 105.5 99.5 95.3
Avg. Rank 3.0 5.4 4.4 6.7 2.1 4.1 2.9 1.7

Table 6.2: Comparison of all combinations of the three neighborhoods Courses,
Curriculum, Assignments and the full model on stage I. The best value for each instance
is marked with bold. It can be seen that overall the heuristic helps the solver to find
better solutions.
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6.5.2 Adaptive Neighborhood Sizes

To see the impact of the adaptive neighborhood sizes described in Section 6.4.4, tests are
run on the Stage I model with and without the adaptive part. The results are shown
in Table 6.3. It is seen that the adaptive neighborhood sizes have a large impact on the
results, finding the best solution for 19 of 21 instances. How the adaptive part affects the
neighborhood sizes can be seen in Figure 6.3. The two plots show neighborhood sizes and
the smoothed MIP gap respectively for the three neighborhoods. It is seen that with the
fixed neighborhood sizes, one of the neighborhoods always has a 100% MIP gap, and one
always have 0%. With the adaptive part these neighborhood sizes are adjusted so the
MIP gap falls between the min. and max. gap of 15% and 20%.

Instance No Adaptive Adaptive

comp01 4.0 4.0
comp02 51.4 45.8
comp03 81.9 73.4
comp04 35.0 35.0
comp05 405.6 369.6
comp06 43.8 42.4
comp07 8.2 7.8
comp08 37.0 37.0
comp09 101.6 99.1
comp10 14.5 10.2
comp11 0.0 0.0
comp12 384.9 359.6
comp13 61.2 61.7
comp14 56.6 55.1
comp15 82.6 73.7
comp16 28.1 26.9
comp17 73.5 71.5
comp18 80.5 71.9
comp19 59.3 59.8
comp20 20.6 17.7
comp21 96.5 95.3
Avg. Rank 1.7 1.1

Table 6.3: The matheuristic with and without the adaptive part on stage I. It is seen that
the adaptive part greatly improves the algorithm and finds the best solution on 19 out of
21 instances.
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Figure 6.3: The change in neighborhood size and MIP gap for the three neighborhoods
with and without the adaptive part. Without the adaptive part two of the MIP Gap’s stay
at 0% and 100% respectively. The adaptive part changes the size of the neighboorhods so
the MIP gaps stay within 15% to 20%.

6.5.3 Comparison with State of the art metaheuristics

To compare with the current state of the art of finding high quality solutions to CB-CTT
we compare with Müller [2009], the winner of the ITC2007 contest. We also compare with
two more recent algorithms from the literature, which have shown good results, that is
a Tabu-based memetic from Abdullah and Turabieh [2012] and a LNS from Kiefer et al.
[2014]. The results are shown in Table 6.4.

The matheuristic performs better than the original winner from ITC2007, Müller, but
worse than the LNS and the Tabu-based memetic. On one instance the matheuristic finds
the best solution.
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Instance Kiefer et al. [2014] Abdullah and Turabieh [2012] Müller [2009] MH

comp01 5.0 5.0 5.0 12.0
comp02 41.9 36.4 61.3 49.5
comp03 72.8 74.4 94.8 74.5
comp04 35.2 38.5 42.8 38.5
comp05 306.3 314.5 343.5 373.5
comp06 48.1 45.3 56.8 58.3
comp07 15.3 12.0 33.9 35.0
comp08 40.6 40.8 46.5 49.7
comp09 102.4 108.4 113.1 100.5
comp10 13.3 8.4 21.3 25.7
comp11 0.0 0.0 0.0 6.5
comp12 323.9 320.3 351.6 360.7
comp13 63.8 64.3 73.9 69.0
comp14 56.1 64.4 61.8 56.9
comp15 73.8 72.7 94.8 74.5
comp16 34.8 23.7 41.2 37.1
comp17 73.0 76.4 86.6 86.1
comp18 66.5 75.6 91.7 72.9
comp19 64.6 66.8 68.8 64.8
comp20 24.0 13.5 34.3 34.3
comp21 95.3 100.7 108.0 103.8
Avg. rank 1.4 1.8 3.3 3.1

Table 6.4: Comparison with the matheuristic including stage II with state of the art
metaheuristics. The running time is 1 CPU Time unit. The bold results are the best
result for that instance. The matheuristic (MH) performs better than the initial winner
of the competition but not better than more recent versions.

Very large instances

To see how the algorithm performs on very large instances we use the ones from University
of Erlangen. These instances have around six times as many decision variables at the first
stage and are far more constrained. Because these instances are much bigger, the timelimit
is set to 10 CPU time units. The results can be seen in Table 6.5. For two of the instances
the solver applied to the full MIP is not able to find a feasible solution, and in all cases
the matheuristic is able to find better solutions. Wbest show the currently best known
solution. An example of a run is seen in Figure 6.4 which shows that the solver has
difficulties in improving the solution for the full MIP. This shows that the matheuristic is
more stable in finding feasible solutions and improving them afterwards.

6.6 Conclusion

We have proposed a matheuristic that works as a framework on top of a MIP model. The
approach makes it possible to find good solutions even on larger and more constrained
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Instance Wbest Full MIP Matheuristic

erlangen2011 2 4670 - 5,956.0
erlangen2012 1 5716 19,067.0 9,648.8
erlangen2012 2 8813 - 15,059.8
erlangen2013 1 5476 20,467.0 10,052.0
erlangen2013 2 8150 16,308.0 11,120.4
erlangen2014 1 5981 15,765.0 8,372.0
Avg. Rank 2 1

Table 6.5: Comparison of the matheuristic on 6 very large instances running with 10 CPU
time units. The results are for the full model (StageI+II) and Wbest is the currently best
known solution. The matheuristic outperforms the full mip consistently and is able to
find solutions where the solver can not on two of the instances.

instances.

The algorithm has been applied to the standard benchmark datasets for Curriculum-
based University Course Timetabling. To the best of our knowledge, this is the first paper
which describes a matheuristic for this problem.

Computational results have shown that the matheuristic is better at finding feasible
solutions than solving the original MIP with a MIP solver.

Compared to metaheuristics, which is the most used method for practical timetabling,
the algorithm performs well. On average, it performs better than the original winner from
ITC2007, but not better than two more recently proposed heuristics. Research in heuris-
tics for timetabling has a long history, and more research is needed before matheuristics
can catch up. The proposed method can, however, utilize future improvements of both
solvers and models, and especially the solvers have improved tremendously over the last
decade Bixby [2012]. Furthermore, the matheuristic algorithm has the advantage of being
flexible when it comes to adding new constraints and objectives. The authors therefore
believe that matheuristics and mathematical programming will become a major approach
for practical timetabling.

6.6.1 Outlook

There are a lot of opportunities for future research in the area of matheuristics, aso applied
to CB-CTT. An important aspect is to make sure that the computational resources are
used to solve the right subproblems. In the following we propose three areas as subjects
for future research.

Neighbourhoods It would be interesting to look more into what the characteristics of
a good neighborhood are. This would also make it easier to adapt the algorithm to new
problems. Another interesting thing would be to generalize it to generic MIPs. This would
require neighborhoods with more generic definitions, as opposed to using problem-specific
knowledge.
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Figure 6.4: Solving the very large instance Erlangen2012 1. The matheuristic finds a
worse start solution but is able to improve it compared to the solver on the full model
that can not find any improving solution.

More Adaptive parameters The time limit in each iteration and the min. and max.
MIP gap is manually set. There might be a potential in making them adaptive. So that
for example in the beginning there is a short time limit and high MIP gap, and in the
later iterations, where the solution is closer to optimality, the MIP gap in each iteration
is smaller, and the time limit is longer.

Parallelization Because of the fixed variables many of the neighborhoods are not con-
nected and can therefore be solved in parallel. This can lead to further speed up by
exploiting multiple processors. This would, however, require the processors to somehow
share an instance of the MIP model, a problem to which there is no obvious solution in
our opinion.
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Chapter 7

Quality Recovering of
University Timetabling

Michael Lindahl · Thomas R. Stidsen · Matias Sørensen

Abstract At universities, the timetable plays a large role in the daily
life of students and staff, showing when and where lectures are given.
But whenever a schedule is executed in a dynamic environment, dis-
ruptions will occur. It is then desirable to find a new timetable similar
to the old one, so only a few people will be affected. This leads to
a minimum perturbation problem, where the goal is to find a feasible
timetable by changing as few assignments as possible. This solution
will, however, often lead to timetables of low quality.

The purpose of this paper is to show that minimum perturbation
solutions have low quality and how using additional perturbations re-
sults in timetables with significantly higher quality while still keeping
the number of perturbations low.

We formulate a bi-objective model and propose a method to solve
it by using mixed integer programming. We test the method on 21
instances of the Curriculum-based Course Timetabling Problem with
four different types of disruptions. The us of bi-objective optimization
enables us to generate multiple solutions whereby we give the planner a
choice. This allows the decision makers to determine the best trade-off
between the number of perturbations and the quality, ultimately lead-
ing to better timetables for students and staff when disruptions occur.

Keywords University Timetabling · Disruptions · Minimum Pertu-
bation · Mixed integer programming
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7.1 Introduction

Disruptions are unavoidable to all schedules executed in a dynamic environment. This is
also the case at universities where the timetable determines when and where lectures are
taught. After a timetable is finalized and published to lecturers and students, changes
will inevitably occur. For example, a lecturer might become unable to teach at a certain
time during the week, or a room might get reserved for a conference for an entire day.

When disruptions occur to a published timetable, changing the timetable will cause
inconvenience for the effected parties. Therefore, it is desirable that the new timetable is
as similar to the old one as possible, so the changes do not affect too many people. This
leads to the minimum perturbation problems where the goal is to reconstruct feasibility
for an infeasible schedule by making as few perturbations (changes) as possible.

However, creating a feasible timetable is only a part of the goal of the minimum
perturbation problem. The quality of the timetable is of great importance to universities.
The quality is defined by soft constraints, which are undesired features of the timetable
that should be avoided. Variations of these features that occur in university timetabling
are described in Bonutti et al. [2012]. Using the solution with the minimum number of
perturbations might lead to a big increase in the violation of the soft constraints given.
This is undesirable, and it is likely that the planner wants to make additional perturbations
to obtain a timetable of higher quality.

The purpose of this paper is to analyze the trade-off between perturbations and qual-
ity. This will give us insight into how much minimum perturbation solutions affect the
quality of timetables, and how the addition of more perturbations will improve the qual-
ity. Providing planners with these trade-offs can assist them in recovering an infeasible
timetable and still obtain high-quality timetables.

The paper is organized as follows: In Section 7.2 we describe the perturbation problem
and how we model it. In Section 7.3 we will show an algorithm to solve the problem. In
Section 7.4 we show the computational results, and finally, in Section 7.5 we will give our
conclusions.

7.1.1 Previous work

Minimum perturbation problems in university timetabling have received little attention
in the literature compared to the full static problem of creating the entire timetable. The
first work on minimum perturbations in scheduling was in El Sakkout and Wallace [2000]
who presented an algorithm based on constraint programming to minimally reconfigure
a timetable that has become invalid. Later, Elkhyari et al. [2003] also use constraint
programming to solve timetabling problems modeled as a minimum perturbation problem
on Resource-Constrained Project Scheduling Problems. In Zivan et al. [2011] they pro-
posed a hybrid search, also using constraint programming to solve minimum perturbation
problems for scheduling. An improved algorithm, utilizing lower bounds, was proposed in
Fukunaga [2013].

The first use of the minimum perturbation apprioach on real university timetabling
instances was in Barták et al. [2003], where they propose a branch-and-bound-like al-
gorithm to find approximate solutions. This work is extended in Muller et al. [2005],
where they modify the iterative forward search for the static problem to solve minimum
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perturbation problems. Finally, in Rudová et al. [2011] they describe their whole system
for timetabling at a large university that both incorporates minimal perturbation prob-
lems and also problems they call interactive problems, where the software suggests small
changes to existing timetables.

More recently, Phillips et al. [2016] use mixed integer programming to solve the min-
imum perturbation problem on real life instances from the University of Auckland. To
avoid solving large models they create a smaller problem with only a part of the timetable,
and if no feasible solution is found, they gradually expand it until a valid perturba-
tion is found. Mixed-integer programming has however been used on the static univer-
sity timetabling, see for example Ferland and Roy [1985], Burke et al. [2008], Lach and
Lübbecke [2008], Phillips et al. [2015].

For a more broad perspective on dynamic problems we refer to Kocjan [2002] and
Verfaillie and Jussien [2005].

Overall, there is a lack of research that examines the loss of quality when choosing the
minimal perturbation solution, and what the potential benefit is when using additional
perturbations. Mixed Integer Programming (MIP) has only been used in one previous
paper to solve this problem, but we believe that MIP models and their solvers will be well
suited.

7.2 The quality recovering problem

A perturbation problem consists of three components which are described in this section.
In loose terms, the perturbation problem can be defined as follows,

Pertubation problem = static problem + solution + disruption + ∆

The first part is the static problem, which is the underlying problem formulation needed
to create the timetable in the first place (containing all the hard and soft constraints).
The second part is the solution i.e., a feasible assignment of the courses with respect to
the static formulation. The third part is a disruption that changes the formulation and
makes the solution infeasible. Finally, to calculate the similarity between two solutions a
perturbation function is used, denoted ∆.

In the quality recovering problem we will distinguish between four solutions defined
as follows:

• SInit: The initial solution that after the disruption becomes infeasible.

• S∆
QR: The best solution with the distance ∆ from the initial solution. Two special

cases of this solution are:

– Smin
QR : The minimum perturbation solution ie. the closest feasible solution,

where min is the number of perturbations from the initial solution.

– Smax
QR : The solution with the best quality, furthest away from the initial solu-

tion, where max is the number of perturbations from the initial solution.
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Figure 7.1 illustrates the relation between these solutions, the solution space and the
disruption. In the following we describe the specific parts of the perturbation problem for
the university course timetabling problem.

Figure 7.1: An example of the perturbation problem. The figure shows a subset of the
solution space. The disruption makes a subspace of the solution space infeasible (grey
area), including the initial solution. The circles show two distances from the initial so-
lution. The minimum perturbation solution is the nearest feasible solution to the initial
solution. The quality recovering solutions is the one that is further away but has higher
quality.

7.2.1 Static problem

The static problem comes from the Second International Timetabling Competition ITC-
2007 stated in Di Gaspero et al. [2007], namely Curriculum-based Course Timetabling.
The problem was created to allow researchers to compare algorithms and results on the
same instances. The problem consists of assigning lectures to timeslots and rooms while
taking both hard and soft constraints into account.

All instances are real-world data sets from the University of Udine. The hard and
soft constraints originate from this university, but were generalized with the goal of not
making the model too complex while still having different types of constraints to capture
the essence of real world timetabling. This problem has received much attention in the lit-
erature as the de-facto benchmarking data set for university timetabling. For an overview
of the literature on this, we refer to the survey by Bettinelli et al. [2015].
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min fqual =
∑

c∈C,p∈P,r∈R
qc,r · xc,p,r (3a)

+
∑

c∈C,r∈R
1 · yc,r − |C| (3b)

+
∑
c∈C

5 · wc (3c)

+
∑

cu∈CU,p∈P
2 · vcu,p (3d)

s. t.
∑

p∈P,r∈R
xc,p,r = L(c) ∀c ∈ C (3e)

∑
c∈C

xc,p,r ≤ 1 ∀p ∈ P, r ∈ R (3f)∑
c∈C(t),r∈R

xc,p,r ≤ 1 ∀t ∈ T , p ∈ P (3g)

∑
c∈C(cu),r∈R

xc,p,r ≤ 1 ∀cu ∈ CU , p ∈ P (3h)

∑
p∈P

xc,p,r − |P| · yc,r ≤ 0 ∀c ∈ C, r ∈ R (3i)

∑
p∈d,r∈R

xc,p,r − zc,d ≥ 0 ∀c ∈ C, d ∈ D (3j)

∑
d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C (3k)∑
c∈C(cu),r∈R

xc,p,r − rcu,p = 0 ∀cu ∈ CU , p ∈ P (3l)

− rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 ∀cu ∈ CU , p ∈ P (3m)

xc,p,r ∈ B ∀c ∈ C, p ∈ P, r ∈ R (3n)

yc,r ∈ B ∀c ∈ C, r ∈ R (3o)

wc ∈ Z+ ∀c ∈ C (3p)

zc,d ∈ B ∀c ∈ C, d ∈ D (3q)

vcu,p ∈ B ∀cu ∈ CU , p ∈ P (3r)

rcu,p ∈ B ∀cu ∈ CU , p ∈ P (3s)

Model 3: The MIP model for the static university timetabling problem.
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First, we will describe the problem and explain the model by using mixed-integer
programming. In Burke et al. [2008] they proposed the first model known as the monolithic
model or the three-index model, seen in Model 3. First, the hard constraints given in (3e)-
(3h) are described and then the soft constraints given in (3i)-(3m).

Hard constraints

In curriculum-based course timetabling there is given a list of courses, C, a list of timeslots,
P, and a list of rooms, R. A course c ∈ C consists of a number of lectures, L(c). The goal
is then to schedule all lectures by assigning them to a timeslot and a room. For this we
use the following binary decision variable that determines which assignments are used

xc,p,r =

{
1 if course c ∈ C is planned at period p ∈ P and in room r ∈ R
0 otherwise

First of all, every lecture needs to be scheduled, which is handled by constraint (3e). A
room can only fit one course in it, which is ensured by constraint (3f). We also have a set
of teachers T , where C(t) is the set of courses taught by teacher t ∈ T . A teacher can only
teach one course at the time ensured by constraint (3g). Furthermore, students can also
only be at one place at a time. Therefore, a set of curricula CU is given and courses that
are a part of the same curriculum, C(cu), cannot be placed in the same timeslot, ensured
by constraint (3h). Last, there are unavailabilities, which are timeslots to which specific
courses cannot be assigned. We will set xc,p,r = 0 if course c ∈ C cannot be taught in
timeslot p ∈ P.

Soft constraints

The quality of a timetable is measured by how many soft constraints are being violated.
In total four soft constraints are defined, and each one is associated with a number of
penalty points. The objective function (3a)-(3d) is then equal to the sum of these penalty
points. The soft constraints are as following:

RoomCapacity Each room is associated with a capacity, and each course is associated
with a number of students attending the course. A penalty of 1 is given for each extra
student assigned to a room. This is calculated in the objective (3a), where we set qc,r
equal to the undercapacity of room r if course c is assigned to it.

RoomStability All lectures from the same course are assigned to the same room. A
penalty of 1 is given for each extra room used. To calculate this we introduce the binary
variable yc,r to indicate if course c is scheduled in room r, as ensured by constraint (3i).
The violation is then calculated in objective (3b) as the sum of rooms used minus the
total number of courses.
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MinimumWorkingDays The workload of a course should be distributed throughout
the week. Each course, c, therefore, has a number of minimum working days, mnd(c),
on which it at least should be planned. The binary variable zc,d indicates if course c is
scheduled on day d, ensured by constraint (3j). The amount of violation, wc, for course c
is then calculated by constraint (3k) and summed up in objective (3c) with the penalty
of 5.

CurriculumCompactness Students should not have idle timeslots, and therefore it
is desirable that a lecture from a given curriculum is next to a lecture from the same
curriculum. Two penalty points are given for each violation. The binary variable rcu,p
indicates if a lecture from curriculum cu is planned in timeslot p, ensured by constraint (3l).
The variable vcu,p then indicates if curriculum cu has no neighbors in timeslot p, ensured
by constraint (3m) and added in the objective in (3d).

7.2.2 Disruption

In this section we introduce the concept of disruption in terms of the model described in
Section 7.2.1. Disruptions take different forms depending on the type of environment in
which they occur, but are always related to a resource, e.g. a room, teacher, student or a
timeslot.

In this paper we will consider two types of disruptions: 1) A resource is removed i.e.
unavailable for assignment, and 2) a new shared resource is added, i.e. some courses
share a resource and cannot be assigned to the same timeslot. These two very generic
disruptions types show that MIP can represent the different kinds of disruptions that
occur at a university. A removed resource is for example when a room is unavailable or
a course cannot be taught in a specific timeslot. This is modeled in the following way
by altering the MIP model. Let J be the set of tuples with all combinations of courses,
timeslots and rooms.

J = {(c, p, r) : c ∈ C, p ∈ P, r ∈ R} (7.2)

Then let Ĵ ⊂ J be the set of resource combinations that are removed and fix those
variables to zero in the model, thereby making those solutions infeasible:

xc,p,r = 0 ∀(c, p, r) ∈ Ĵ (7.3)

Similar to removing a resource, a new shared one could also be added. This is for
example the case if a new curriculum is added because a group of students needs to be
able to take a specific set of courses. This will result in a conflict if these courses are
taught at the same time. Let Ĉ ⊂ C be the courses that share the new resource. The
following constraint is then added to the model,∑

c∈Ĉ,r∈R

xc,p,r ≤ 1 ∀p ∈ P (7.4)

Both of the two disruption types restrict the static model. This means that a new solution,
S∆

QR, can never be better than the initial solution, SInit, as a feasible solution to the
dynamic problem also is a feasible solution to the static problem, and the objective is the
same.
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min fqual (as defined by (3a)-(3d)) (8a)

f∆ = ∆(x, x̄) (as defined by (7.5)) (8b)

s. t. (3e)− (3s) (8c)

disruption (any of (7.3)-(7.4)) (8d)

Model 8: The bi-objective MIP model for the quality recovering problem, consisting of
the static model with an additional objective and a disruption.

7.2.3 Perturbation function

To measure the amount of changes between the initial solution, SInit, and a new solution,
S∆

QR, we need a perturbation function that will be our second objective. For this we use
the hamming distance to calculate the amount of decision variables of which the value have
changed. Because the sum of all variables is always the same, due to constraint (3e), we
only calculate the values that change from one to zero. Let J̄ = {(c, p, r) ∈ J : x̄c,p,r = 1}.
The hamming distance between two solutions are defined as,

∆(x, x̄) =
∑

(c,p,r)∈J̄

(1− xc,p,r) (7.5)

7.2.4 Quality recovering model

Altering the original static model by adding a disruption and a new minimum perturbation
objective results in the bi-objective model shown in Model 8. x̄ is the solution from Sinit.
All constraints and variables from the static problem is added in constraint (8c) and in the
objective (8a). The perturbation measure is added as a second objective (8b). Finally,
we add the disruption in constraint (8d). As mentioned, this disruption can take the
different forms described in Section 7.2.2. The two solutions Smin

QR , Smax
QR are equal to the

two lexicographic solutions, i.e. minimizing the objectives in prioritized order.

7.3 Quality recovering algorithm

To solve the quality recovering problem in Model 8 we need to take both objectives into
account; the quality objective fqual and the perturbation objective f∆. These two objec-
tives are conflicting, as keeping the number of perturbations down limits the potentially
improving solutions that can be found. This results in a bi-objective optimization prob-
lem. To solve this we search for pareto-optimal solutions, which are defined as solutions
where one objective cannot be improved without worsening the other.

To generate this solution frontier, we base our algorithm on the ε-constraint method
from Haimes et al. [1971]. The approach is to put a constraint on one of the objectives
while minimizing the other and repeat this with a new constraint. The pseudo code is
seen in Algorithm 7.3.1. The method starts by solving the minimum perturbation problem
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and then put a constraint on the perturbation objective. It then iteratively increases the
allowed number of perturbations while minimizing the quality objective.

The algorithm is terminated when no improved solution can be found, meaning that
a single extra perturbation does not lead to an improvement in fqual. Therefore, it is
possible that an improvement in quality occurs if additional extra perturbations are used.
Finding the minimum quality without the perturbation constraint is the same as solving
the static problem to optimality, which is very difficult (see Cacchiani et al. [2013]).

In practice, additional stopping criteria can be used to keep the running time down.
This could be a time limit or a upper bound on the number of iterations.

The algorithm is simple and fully sufficient for our problem. Because it uses mixed
integer programming underneath, it is very generic and can be used with most kind of
static problems as well as different perturbation functions depending on the problem at
hand.

Algorithm 7.3.1 Quality Recovering

1: ∆̃←Minimize(f∆) . Minimum Pertubations
2: f̃qual ←∞
3: repeat
4: Update ε-constraint: f̃∆ = ∆̃

5: S∆̃
QR ←Minimize(fqual) . Find Pareto-solution

6: ∆̃← ∆̃ + 1
7: until No improving solution is found

7.4 Computational results

To show the applicability of our method we use the data sets from the Second International
Timetabling Competition, described in Di Gaspero et al. [2007]. The 21 data sets can be
seen in Table 7.1, and it is seen that there is a variance between sizes and curricula. We
will use the currently best-known solution for each instance for the initial solution, SInit,
and then disrupt it so it becomes infeasible. All data sets and best-known solutions can
be found at http://tabu.diegm.uniud.it/ctt/. The complete source-code to make the
computations are available on http://github.com/miclindahl/UniTimetabling.

We will analyze the impact of four different disruptions that are very different, both
in terms of the way they impact the timetable and in terms of the number of lectures
affected. These disruptions cover scenarios that usually happen at a university. The four
disruptions are the following:

One Assignment Invalid One assignment, (ĉ, p̂, r̂), is invalid and needs to be assigned
to a different room or to a different timeslot. The following constraint is added

xĉ,p̂,r̂ = 0

Insert Curriculum Takes four courses Ĉ and put them into a curriculum meaning that
they cannot be taught at the same time. To be able to compare with SInit the

http://tabu.diegm.uniud.it/ctt/
http://github.com/miclindahl/UniTimetabling
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Instance Courses Rooms Timeslots Curricula
comp01 30 6 30 14
comp02 82 16 25 70
comp03 72 16 25 68
comp04 79 18 25 57
comp05 54 9 36 139
comp06 108 18 25 70
comp07 131 20 25 77
comp08 86 18 25 61
comp09 76 18 25 75
comp10 115 18 25 67
comp11 30 5 45 13
comp12 88 11 36 150
comp13 82 19 25 66
comp14 85 17 25 60
comp15 72 16 25 68
comp16 108 20 25 71
comp17 99 17 25 70
comp18 47 9 36 52
comp19 74 16 25 66
comp20 121 19 25 78
comp21 94 18 25 78

Table 7.1: The 21 instances used from the second international timetabling competition
defined in Di Gaspero et al. [2007]. They differ in size and in number of curricula.

objective function is not changed. Only the following constraint is added:∑
c∈Ĉ,r∈R

xc,p,r ≤ 1 ∀p ∈ P

Remove Room Whole Day Removes a room r̂ for an entire day d̂, ie. adding con-
straint:

xc,p,r̂ = 0 ∀c ∈ C, p ∈ d̂

One Timeslot Unavailable Makes one timeslot p̂ unavailable for all courses. The fol-
lowing constraint is added:

xc,p̂,r = 0 ∀c ∈ C, r ∈ R

All computations are made on a 64 bit Windows machine with a 4 GHz Intel Core i7
CPU and 32 GB of memory. To solve the integer programs we use Gurobi 7.0 with stan-
dard settings. All problems are solved to optimality, but an upper limit of 20 perturbations
is set to keep the computational time reasonable. We will first analyze each disruption
independently and show the impact on all instances, and, finally, we will summarize all
the results and look into the computational difficulty.
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7.4.1 One assignment invalid

The resulting full pareto fronts from making one assignment invalid on each of the 21
datasets is seen in Figure 7.2. Table 7.2 summarizes the results and shows the two lex-
icographic solutions, Smin

QR and Smax
QR . There is a significant difference between the data

sets where the three instances comp16, comp17, and comp21 only needs one perturbation
to obtain a feasible solution with the same quality as the disrupted solution. The data
sets comp09 and comp15 are different. Even though they can also be made feasible using
only one perturbation, they require four extra perturbations to recover the quality, which
is still not the same level of quality as before the disruption.

Instance SInit Smin
QR Smax

QR

fqual f∆ fqual f∆ fqual
comp01 5 1 41 2 6
comp02 24 1 33 2 32
comp03 64 1 70 2 †64
comp04 35 2 36 2 36
comp05 285 1 292 2 289
comp06 27 1 32 3 28
comp07 6 1 11 3 8
comp08 37 1 41 1 41
comp09 96 1 101 5 97
comp10 4 1 10 2 7
comp11 0 1 4 2 1
comp12 294 1 312 3 †294
comp13 59 1 183 3 †59
comp14 51 1 53 2 †51
comp15 62 1 89 5 64
comp16 18 1 †18 1 †18
comp17 56 1 †56 1 †56
comp18 61 1 70 4 65
comp19 57 1 59 2 †57
comp20 4 2 68 3 6
comp21 74 1 †74 1 †74

Table 7.2: The two lexicographic solutions for the one assignment invalid disruption.
Eight instances recover completely and regain the same quality level as the disrupted,
marked with †.
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Figure 7.2: The pareto fronts for each data set on the one assignment invalid disruption
and the objective value of the disrupted solution. The x-axis is f∆ and the y-axis is fqual.
There is a large difference between how much worse the quality is and how much is gained
by using extra perturbations.
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7.4.2 Insert curriculum

Adding a new curriculum of four courses impacts the timetable on each instance differently.
Figure 7.3 shows the pareto fronts together with the value of the disrupted solution. The
two instances comp06 and comp19 recovers a lot of quality by allowing extra perturbations.
A summary showing the two lexicographic solutions is seen in Table 7.3. Six instances
can recover and regain the same value of fqual as before the disruption.

Instance SInit Smin
QR Smax

QR

fqual f∆ fqual f∆ fqual
comp01 5 1 8 3 †5
comp02 24 5 73 7 †24
comp03 64 1 65 1 65
comp04 35 2 39 3 36
comp05 285 1 288 2 287
comp06 27 3 54 9 32
comp07 6 2 10 3 9
comp08 37 5 47 8 39
comp09 96 4 107 7 97
comp10 4 2 22 5 8
comp11 0 3 3 4 †0
comp12 294 1 301 1 301
comp13 59 3 †59 3 †59
comp14 51 1 55 3 †51
comp15 62 3 66 5 †62
comp16 18 2 25 3 24
comp17 56 3 59 5 57
comp18 61 2 82 3 62
comp19 57 4 89 12 63
comp20 4 2 12 3 6
comp21 74 2 88 3 80

Table 7.3: The two lexicographic solutions for each instance with the insert curriculum
disruption. On six instances the same solution value is completely recovered to the same
value as the disrupted solution, marked with †.
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Figure 7.3: The pareto fronts for the insert curriculum disruption. The x-axis is f∆ and
the y-axis is fqual. Especially the two instances comp06 and comp19 recover a lot of
quality from extra perturbations.
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7.4.3 Remove room whole day

The impact of removing a room for a whole day have a great impact on the solution,
as shown in Figure 7.4. Especially comp01 loses a lot of quality, going from five to 409
penalty points. The reason for this is that comp01 is the smallest instance with only six
rooms, and therefore removing one has a large impact. It is also interesting that on nine of
the instances there is no benefit of extra perturbations. Table 7.4 summarizes the results
showing that none of the instances recovers the initial objective value.

Instance SInit Smin
QR Smax

QR

fqual f∆ fqual f∆ fqual
comp01 5 6 409 17 92
comp02 24 4 26 5 25
comp03 64 2 65 2 65
comp04 35 2 37 2 37
comp05 285 4 332 8 294
comp06 27 3 38 4 31
comp07 6 3 9 3 9
comp08 37 2 39 2 39
comp09 96 3 99 4 98
comp10 4 5 18 7 8
comp11 0 9 48 14 21
comp12 294 5 299 7 297
comp13 59 2 61 2 61
comp14 51 3 54 5 52
comp15 62 2 64 3 63
comp16 18 5 21 5 21
comp17 56 4 60 4 60
comp18 61 5 98 11 78
comp19 57 3 60 4 59
comp20 4 4 8 4 8
comp21 74 4 78 4 78

Table 7.4: The two lexicographic solutions for the remove room whole day disruption.
None of the instances recovers to the same value as the disrupted solution.
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Figure 7.4: The pareto front for the remove room whole day disruption. The x-axis is f∆

and the y-axis is fqual. Especially comp01 is affected and uses many extra perturbations
to recover most of the quality.
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7.4.4 One timeslot unavailable

The final disruption we investigate is where an entire timeslot is made unavailable. Ta-
ble 7.5 summarizes the results and show that comp05 is infeasible and cannot be recovered.
The other instances require between four and 19 perturbations to become feasible, which
shows how large the impact of this disruption is. Figure 7.5 shows the full pareto fronts.
Using more perturbations improves the quality a lot on all instances, but most of them
are still far away from their initial solution value. Notice that we set an upper limit
on perturbations to 20, and therefore it is likely that the quality would be improved by
allowing more perturbations, which also would have resulted in longer running times.

Instance SInit Smin
QR Smax

QR

fqual f∆ fqual f∆ fqual
comp01 5 7 44 17 13
comp02 24 16 324 20 171
comp03 64 17 139 20 125
comp04 35 15 100 20 74
comp05 285 - - - -
comp06 27 19 192 20 186
comp07 6 19 194 20 188
comp08 37 14 123 20 96
comp09 96 12 178 20 128
comp10 4 17 118 20 100
comp11 0 4 16 10 †0
comp12 294 10 430 20 358
comp13 59 15 275 20 128
comp14 51 16 148 20 109
comp15 62 14 178 20 132
comp16 18 17 177 20 155
comp17 56 16 149 20 128
comp18 61 8 108 16 96
comp19 57 18 230 20 151
comp20 4 18 334 20 194
comp21 74 18 212 20 198

Table 7.5: The summary of the one timeslot unavailable disruption. comp05 is infeasible,
and for the other instances, it takes between four and 19 perturbations to find a feasible
solution. Notice that we set an upper limit on 20 perturbations, and therefore it is likely
that the quality would be improved by increasing this limit.
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Figure 7.5: The pareto fronts for the one timeslot unavailable disruption. The x-axis is
f∆ and the y-axis is fqual. The impact is high on all instances and comp05 is infeasible
and cannot be repaired.
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7.4.5 Overall comparison

As seen in the previous sections, the impact of the disruptions differs a lot between the
disruption types and the data sets. In this section we will summarize the overall results.

Table 7.6 shows the average minimum number of perturbations across all datasets for
each of the disruptions. It shows that the amount of perturbations needed to make the
solution feasible differs a lot between the disruptions, from 1.1 to 14.5. This means that
there is a wide variety of impact of the chosen disruptions on solutions.
Figure 7.6 shows that using additional perturbations decreases the number of violated soft
constraints. For each dataset, the results are scaled so the x-axis is the number of extra
perturbations relative to the minimum perturbation solution, meaning that zero is equal
to the minimum perturbation solution i.e.

f̄∆ = f∆(S∆
QR)− f∆(Smin

QR ) (7.7)

The y-axis shows the decrease in quality relative to the initial solution, so 0% means that
it reaches the same value, and 100% means that it is doubled, i.e.

f̄qual = 100 ·

(
fqual(S

∆
QR)

fqual(SInit)
− 1

)
(7.8)

To summarize on all the 21 instances we use quartiles due to the fact that the variation
between the instances is high, and the distribution is skewed with a few very large values.
The three lines indicate the 25%, 50% (median) and 75% quartile for the 21 instances.

Figure 7.6 shows that the median quality decrease for the minimum perturbation
solution differs between 7% and up to 232% on the disruptions. It is also seen that the
25% most affected instances decreases in quality between 53% and 975%. The loss of
quality is, therefore, significant in the minimum perturbation solution.

It is also seen that the quality increases significantly when introducing extra perturba-
tions. For the median it is between 2% and 88%, and on the 75% quartile the improvement
is between 19% and 374%. The distribution is skewed as the 25% and 50% quartiles are
close, but the 75% is much further away. This shows that a few instances are heavily
influences by the disruption compared to others.

Disruption Avg. Min. Perturbation (f∆)
One Assignment Invalid 1.1
Insert Curriculum 2.5
Remove Room Whole Day 3.8
One Timeslot Unavailable 14.5

Table 7.6: The average number of perturbations to make a solution feasible after each of
the four disruptions.

7.4.6 Computational complexity

Solving the static curriculum-based course timetabling problems to optimality is difficult
- as seen in Cacchiani et al. [2013] and Bettinelli et al. [2015] - because of the high
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Figure 7.6: An illustration of the quality decrease in the minimum perturbation solution
and how it increases by using extra perturbations for each of the different disruptions.
The three lines show the quartiles that indicate that there is a significant variance between
the datasets.

computational complexity. Adding a constraint on the perturbations reduces the solution
space. When the constraint is iteratively relaxed, the computational complexity increases.
Figure 7.7 shows the running time for solving the model as a function of the number of
perturbations for each of the four different disruptions. Overall is 77% of the iterations
solved in less than 10 seconds. But as the number of perturbations increase so does the
running time that for many perturbations is as high as 6 hours.

7.5 Conclusion

In this paper, we have proposed a method to recover feasibility of disrupted university
timetables while taking quality of solutions into account. We have proposed a bi-objective
optimization algorithm to find pareto-optimal solutions. This approach gives the planner
the option to choose between several solutions and decide on the best trade-off between
finding a timetable similar to the previous one and one with high quality.

Mixed Integer Programming is well suited for this task as it can prove infeasibility
and find minimum perturbation solutions fast. However, finding optimal solutions for
many additional perturbations is computationally very hard and will often take too much
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Figure 7.7: Running times for each iteration as a function of the number of perturbations
for each of the four different disruptions. In total 77% of the models are solved in less
than 10 seconds. But when the number of perturbations increases the solution time can
get up to 6 hours.

time to be used in practice. It should be noted that in practice the maximum number of
perturbations will often be limited, or a near-optimal solution will be usable, making the
proposed approach applicable. This is one of the very first studies that uses mixed integer
programming.

We tested the method on 21 instances of the Curriculum-based Course Timetabling
problem with four different types of disruptions. This showed how minimum perturbation
solutions lead to timetables of low quality with a median decrease in quality between
7% and 232%, depending on the disruption. It was shown how extra perturbations can
recover much of the lost quality, between 2% and 88% for the median.

The proposed method is very generic, and the algorithm can be used on a broad
variety of timetabling problems after formulating the static problem and the perturbation
function using mixed-integer programming.
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Chapter 8

A Strategic View on University
Timetabling

Michael Lindahl · Andrew Mason · Matias Sørensen · Thomas R. Stidsen

Abstract University Timetabling has traditionally been studied as
an operational problem where the goal is to assign lectures to rooms
and timeslots and create timetables of high quality for students and
teachers. Two other important decision problems arise before this can
be solved: what rooms are necessary, and in which teaching periods?
These decisions may have a large impact on the resulting timetables
and are rarely changed or even discussed. This paper focuses on solv-
ing these two strategic problems and investigates the impact of these
decisions on the quality of the resulting timetables.

The relationship and differences between operational, tactical and
strategic timetabling problems are reviewed. Based on the formulation
of curriculum-based course timetabling and data from the Second Inter-
national Timetabling Competition (ITC 2007), three new bi-objective
mixed-integer models are formulated. We propose an algorithm based
on the ε-method to solve them. The algorithm can be used to analyze
the impact of having different resources available on most timetabling
problems. Finally, we report results on how the three objectives - rooms,
teaching periods and quality - influence one another.

Keywords Timetabling · Multiple objective programming · Integer
programming



86 A Strategic View on University Timetabling

8.1 Introduction

Educational timetabling has gained a lot of attention within operations research and has
been studied for a long time; for an overview see Kingston [2013] and Kristiansen and Stid-
sen [2013]. Many variations of the problem exist as it varies between different educational
stages and countries. A definition commonly used for timetabling comes from Wren [1996]:

”Timetabling is the allocation, subject to constraints of given resources to objects be-
ing placed in space time, in such a way as to satisfy as nearly as possible a set of desirable
objectives.”

This definition captures the timetabling problems that are usually investigated in
the literature. However, other important related decisions are rarely investigated. For
example: Which resources should be available? Where in space and time is it allowed to
place these objects? This paper deals with decisions as to the availability of rooms and
teaching periods and analyzes how these decisions affects the resulting timetable.

An overview of the decision problems that relate to timetabling are illustrated in
Figure 8.1. The value of a timetable obtained by solving these problems is characterized
by three measures associated with the timetabling process:

Agility Responding to changes and quickly make alterations to the timetable.

Quality A timetable that gives a good work environment for employees and students.

Cost A timetable which uses costly resources efficiently.

We categorize each of these problems as either operational, tactical or strategic. The
strategic problems are the ones that are solved first and which then affect the tactical
problems that are solved next. Finally, the operational problems are solved last. The
problems we find at each level, as shown in Figure 8.1, are as follows:

Operational The operational problems are the ones that result in final timetable, i.e.
deciding which lectures should be taught in what rooms and when. This main problem
is solved every semester, and we separate it into two closely related cases. The first
case is the assignments problem, which is the feasibility problem of finding a conflict-free
timetable.

A common addition to this problem, which is the second case, is including quality
measures that aim to make a desirable timetable for students and staff, i.e. the quality
problem. Soft constraints formulate this, and the violation of these should be minimized.
Both course timetabling problems for the Second International Timetabling Competition,
formulated in Di Gaspero et al. [2007] fall into this second category.

After a timetable is put into production, disruptions will often occur during the
semester as alterations need to be made either due to changes. Handling such disrup-
tions requires solving the minimal perturbation problems addressed in Muller et al. [2005],
Phillips et al. [2014]. When decision-support tools are used to solve these problems, it
provides agility by being able to create the timetable more quickly and responding faster
to changes.
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Figure 8.1: Different variations of the timetabling problem occur at different strategic
levels. Each problem contributes with different value to the organization when solved.
The top problems are long-term decisions that have an impact on all timetables whereas
the problems at the bottom have lower impact but are decisions that need to be often
taken.

Tactical The tactical problems involve the decisions that are taken before creating the
actual assignments. This includes, for example, to prioritize the different quality measures
or how to divide the timetabling workload between multiple planners. These decisions
affect the quality because a course could end up being taught in an undesired timeslot
because the planner does not have other rooms available, even though there may be free
rooms in another part of campus.

Strategic The strategic problems are the long-term decisions that affect the timetable
and have a high impact on the organization. This could, for example, be to allow teaching
to be scheduled later in the day by adding additional timeslots, which we define as the
Teaching Periods problem. Adding extra timeslots has a high impact on the timetable for
professors and students and would therefore often be a decision made by the top manage-
ment. Buildings and rooms are a high-cost areas for universities because new buildings
are expensive and unused rooms can often be turned into offices or rented out. However,
these decisions can not be changed from year to year, and it is, therefore, crucial that new
rooms are of the actually needed size, and that a room is not rented out for five years if it
is required in the next semester. We refer to this problem as the Room Planning problem.

Compared to the operational and tactical problems, strategic problems have received
little attention in the literature. The Room Planning problem was first explored in Fizzano
and Swanson [2000], where they show how their assignment model can be used to find the
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minimum number of rooms necessary to create a feasible schedule. This is done iteratively
by removing rooms until the problem becomes infeasible. In Beyrouthy et al. [2007] they
analyze how available rooms affect the utilization and visualize this in multiple ways.
They then show how the room profile can be adjusted to achieve a higher utilization. They
investigate room robustness by sampling the sizes of the courses under different scenarios.
They do not, however, include timetable constraints such as curricula or teachers that can
make it impossible to create a timetable that does not conflict with the given rooms.

The authors in Beyrouthy et al. [2009] include timetabling constraints and examine
the utilization of rooms by determining how many courses can be planned with a given
room profile. They conclude that different constraints contribute to lower the utilization.
In Beyrouthy et al. [2010] the authors investigate space type planning, where space types
refer to various kinds of rooms such as lecture halls and tutorial rooms. The total capacity
is fixed.

The Teaching Periods problem of choosing the number of timeslots has not previously
been investigated. Decision-support tools for management that support these important
decisions are limited, or rather non-existent.

The purpose of this paper is to create new insight into how these strategic decisions
affect the timetable and to lay the foundation for future research within this area. We
will investigate the two strategic decisions of deciding which rooms to use and how many
timeslots there should be. We will also analyze how these decisions affect the quality of
the timetable by using bi-objective optimization and mixed-integer programming.

In section 8.2 we define the strategic problems and in section 8.3 we show the method
used to solve these problems. The results are shown in section 8.4, and finally conclusions
and suggestions for future research are given in section 8.5.

8.2 Curriculum-based Course Timetabling

University Timetabling differs a lot between universities due to differences between edu-
cation and traditions between countries. Therefore, it has been difficult for researchers
to compare their work, as they were solving different problems. To overcome this prob-
lem, timetabling competitions have been held where common problem formulations and
benchmark instances have been formulated.

As a basis for this analysis, we use the data-sets and problem formulation of Curriculum-
based Course Timetabling (CB-CTT) from the Second International Timetabling Compe-
tition ITC-2007 stated in Di Gaspero et al. [2007]. For an overview of the research done on
this problem, we recommend Bettinelli et al. [2015]. As discussed, this is an operational
problem, and we will now give the formulation of the original problem and then show how
it can be used as a basis to solve the strategic problems.

The original curriculum-based course timetabling problem is formulated as follows:
A set of courses is given, and each course consists of a number of lectures that should
be planned. A timeslot and a room should be assigned to each lecture without causing
conflict, where a timeslot is a time on a particular weekday. Two lectures from one course
cannot take place in the same timeslot, as this will cause a conflict. Besides courses and
timeslots, a list of rooms is also given, and only one lecture can be taught in a room in one



8.2 Curriculum-based Course Timetabling 89

timeslot. Each room also has a certain size, and it is a requirement that a room should
be able to accommodate all the students following a given course allocated in that room.
Each course is associated with a teacher, and a teacher can only teach one course at the
time. Finally, we also have a set of curricula that consists of a set of courses that cannot
be placed in the same timeslot.

The original formulation includes four different quality measures (soft-constraints):
RoomCapacity, stating that the room should be able to accommodate all students; Room-
Stability that states that all lectures from the same course should be planned in the
same room; MinimumWorkingDays ensures that a lecture is spread over a minimum number
of days specified in the data, where a penalty is paid for each day not used, and finally,
CurriculumCompactness, where a penalty is paid if a lecture from a curriculum is not
scheduled next to a course from the same curriculum. To create our models, we define
the following sets:

C: Set of courses

CU : Set of curricula

P: Set of timeslots across the week

D = {PMo, PTu, PWe, PTh, PFr}, set of timeslots belonging to each day of the week e.g.
PMo is all the timeslots on Mondays.

R: Set of rooms

We then have the following parameters:

l(c): The number of lectures for course c ∈ C

mnd(c): The minimum number of weekdays on which there must be a lecture for course
c ∈ C

dem(c): The demand for course c ∈ C, i.e. the number of students in that course.

cap(r): The capacity of room r ∈ R

We also define helper sets that are used to formulate the model:

S = {cap(r) : r ∈ R} ∪ {0}, set of unique room capacities, including zero

S≥s = {s′ ∈ S : s′ ≥ s}, set of room capacities larger than or equal to s ∈ S

C≥s = {c ∈ C : dem(c) ≥ s}, set of courses with a demand larger than or equal to s ∈ S

R≥s = {r ∈ R : cap(r) ≥ s}, set of rooms with a capacity larger than or equal to s ∈ S
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8.2.1 Quality Problem

The quality problem is the standard problem in timetabling where the goal is to create a
feasible timetable of high quality. A number of soft constraints are defined, and the quality
is measured by the number of violations of these. Compared to the original description
of CB-CCT we make two changes. Because we want to explore the trade-off between
the number of rooms, we turn RoomCapacity into a hard constraint, meaning that rooms
cannot be overbooked with more students than there can be seated. The second change
is that the soft objective RoomStability is removed. This is to reduce the computational
complexity, because, as shown in Lach and Lübbecke [2012], preventing lectures from being
assigned to specific rooms can reduce the number of decision variables significantly. The
penalty for RoomStability is also the smallest of the soft constraints and contributes the
least to the objective. Note that this simplification does not alter the general applicability
of our method.

min fqual =
∑
c∈C

5 · wc +
∑

cu∈CU,p∈P
2 · vcu,p (9a)

s. t.
∑

c∈C≥s

xc,p ≤ |R≥s| ∀s ∈ S, p ∈ P (9b)

∑
p∈P

xc,p = L(c) ∀c ∈ C (9c)

∑
p∈d

xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D (9d)

∑
d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C (9e)∑
c∈CU

xc,p − qcu,p = 0 ∀cu ∈ CU , p ∈ P (9f)

− qcu,p−1 + qcu,p − qcu,p+1 − vcu,p ≤ 0 ∀cu ∈ CU , p ∈ P (9g)∑
c∈C(t)

xc,p ≤ 1 ∀t ∈ T , p ∈ P (9h)

xc,p ∈ B ∀c ∈ C, p ∈ P (9i)

wc ∈ R+ ∀c ∈ C (9j)

zc,d ∈ [0, 1] ∀c ∈ C, d ∈ Pd (9k)

qcu,p ∈ [0, 1] ∀cu ∈ CU , p ∈ P (9l)

vcu,p ∈ [0, 1] ∀cu ∈ CU , p ∈ P (9m)

Model 9: The MIP model for the Quality Problem.

The mixed integer model we use is based on the one proposed in Lach and Lübbecke
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[2012] and is seen in Model 9. It includes the following variables and constraints: The
decision variable is the binary xc,p that indicates if course c ∈ C is planned in timeslot
p ∈ P. Constraint (9c) ensures that all lectures are planned. The constraint (9b) ensures
that the rooms are able to accommodate all students in each course.

The two objective terms in (9a) are calculated the following way: To calculate Minimum-
WorkingDays we introduce a positive variable zc,d which takes the value 1 if course c ∈ C
is planned on day d ∈ D and otherwise zero. This is ensured by constraint (9d) and the
objective pressure that pushes zc,d to one, if possible. The violation is then calculated by
constraint (9e) and the variable wc. To calculate CurriculumCompactness we introduce
the positive variable qcu,p, which takes the value 1 if curriculum cu ∈ CU is planned in
timeslot p ∈ P and otherwise zero. The positive variable vcu,p then takes the value 1 if
there is a violation in curriculum cu ∈ CU in timeslot p ∈ P.

8.2.2 Room Planning Problem

The second problem we will consider is the Room Planning Problem where the objective
is to find the minimum number of rooms to use to accommodate all courses to be taught.
In this section we will introduce the simplest form of this problem, as given in Model 10.

min fseats =
∑
s∈S

s · rs (10a)

s. t. |P|
∑

s∈S≥s

rs ≥
∑

c∈C≥s

l(c) ∀s ∈ S (10b)

rs ∈ Z+ ∀s ∈ S (10c)

Model 10: Set covering MIP-Model for the Room Planning Problem.

Instead of having a fixed set of rooms we introduce a decision variable rs ∈ Z+ that
determines the number of rooms of size s that should be used. The capacity of a room is
correlated with the physical size, and therefore, also with the cost of a room. Thus, we
will seek to minimize the total number of seats as defined in Equation (10a).

It should be noticed that minimizing this metric is the same as maximizing the uti-
lization, a commonly used metric, defined in Beyrouthy et al. [2007] as:

Utilization =

∑
c∈C l(c) · dem(c)

|P|
∑

s∈S s · rs
We need to decide which room sizes the model should be able to choose from, i.e. sizes

included in the set S. In an optimal room profile, a room will always have the same size
as the largest course assigned to it, otherwise it would be wasted capacity. Therefore S
should include the sizes of all courses. Because the number of variables, and thus the
complexity, is depending on the size of S, it is desirable to keep this set small. In a
practical setting it is unlikely that a manager would distinguish between a room of 22 or
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25 seats. Consequently, to make the set smaller, we define a parameter δ and only use
room sizes that are multiples of the value of this parameter. The largest room will have
the size of the largest course rounded up to the nearest multiple of δ. The set S can
subsequently be generated in the two following ways:

Soptimal = {dem(c) : c ∈ C}

Sapprox. =

{
δ ·
⌈
dem(c)

δ

⌉
: c ∈ C

}
When we decide to use a room, we can plan as many lectures in it as we have timeslots

(|P|). To have enough rooms to plan all lectures we define the set covering constraint
(10b). The resulting model of the Room Planning Problem provides the same solutions
as the one obtained in the single scenario case in Beyrouthy et al. [2007]. They prove that
this model can easily be solved to optimality in linear time by using the following greedy
algorithm:

1. Sort lectures according to their size, dem(c).

2. While lectures are unassigned to rooms:

Take the largest unassigned lecture and assign it to a room with free timeslots.
If no such room exists, add the smallest room that fits the lecture.

8.2.3 Teaching Periods Problem

Another important factor that impacts on the capacity of a university is the number of
timeslots that are available for teaching; this is explored in the Teaching Period problem,
shown in Model 11, which decides how many time slots there should be.

min ftime =
∑
p∈P

tp (11a)

s. t. |R≥s|
∑
p∈P

tp ≥
∑

c∈C≥s

l(c) ∀s ∈ S (11b)

tp+1 − tp ≤ 0 ∀p ∈ P (11c)

tp ∈ B ∀p ∈ P (11d)

Model 11: MIP-model Teaching Periods problem.

The mixed-integer model is seen in Model 11. A binary variable, tp determines if
timeslot p ∈ P is allowed. We then define the new objective ftime to be the total number
of used timeslots as defined in (11a).
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Similar to the previous model we have a set-covering constraint (11b) which ensures
there is enough timeslots, that there is a timeslot and a room of matching size for each
lecture.

In practice, timeslots, are chosen so that they are consecutive, as empty timeslots in
the middle of the day are unwanted (except for other events like lunch breaks, meetings
etc.). Constraint (11c) ensures that a new timeslot can only be used if the previous one
is also used. Timeslots are ordered starting from Monday morning with the addition of a
new timeslot each day, and then back to Monday; this order is illustrated in Table 8.1.

Mon Tue Wed Thu Fri
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

...

Table 8.1: The indexing order of the timeslots.

8.2.4 Room Planning vs. Quality

The previous Room Planning model does not consider if it is possible to create a feasible
timetable as no timeslots are assigned. Neither does it take the quality of the resulting
timetable into account. We will do this in the Room Planning vs. Quality model. Because
the available rooms restrict the quality model, it is necessary to take this into account
when deciding what rooms to use, otherwise, it might result in a timetable of unacceptable
poor quality. To analyze this, we use bi-objective optimization. Bi-objective optimization
is a way to explore the trade-off between two objectives by generating multiple so-called
pareto-optimal solutions. A pareto-optimal solution is a solution where one of the objec-
tives cannot be improved without making the other worse; for further reading see Ehrgott
[2000].

Model 12 is made by merging Model 9 and Model 10. The two models are connected by
constraint (12c) which ensures that there can not be more lectures planned in a timeslot
than rooms available. The r+ variables have been added, because experiments show that
they help the solver make stronger branches during the branch-and-bound search.

8.2.5 Teaching Periods vs. Quality

Similar to the previous problem, we want to explore the trade off between teaching periods
and quality, as it is expected that more timeslots will give more freedom in the planning
process. We do this by merging Model 9 and Model 11, which results in Model 13. The two
models are connected by constraint (13c) which states that lectures only can be assigned
to a timeslot available for use.
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min fseats : (10a) (12a)

fqual : (9a) (12b)

s. t.
∑

c∈C≥s

xc,p − r+
s ≤ 0 ∀s ∈ S, p ∈ P (12c)

r+
s −

∑
s′∈S≥s

rs′ = 0 ∀s ∈ S (12d)

(9c)− (9m) (12e)

(10b)− (10c) (12f)

Model 12: MIP-model for the Room Planning vs. Quality Problem.

8.2.6 Room Planning vs. Teaching Periods

When universities want to increase the number of courses above their current capacity,
they can either build more rooms or increase the number of timeslots. In the Room
Planning vs. Teaching Periods problem we investigate how these two objectives influence
each other. This is done by merging Model 9, Model 12 and Model 13 into the new
Model 14.

8.3 Solution Methods

In this section, we propose an algorithm for solving our three bi-objective models. The
original quality problem in Model 9 is still hard to solve, and at this time 4 out of the
21 datasets are still not solved to proved optimality; for the current status of this see
http://satt.diegm.uniud.it/ctt/. The hardness also shows in Cacchiani et al. [2013]
where six hours of running time are used for each instance to find good lower bounds.
Because of this, we do not expect to solve these problems to optimality when making
them bi-objective.

min ftime : (11a) (13a)

fqual : (9a) (13b)

s. t. xc,p − tp ≤ 0 ∀p ∈ P, c ∈ C (13c)

(9b)− (9m) (13d)

(11c)− (11d) (13e)

Model 13: MIP-model for the Teaching Periods vs. Quality Problem.

http://satt.diegm.uniud.it/ctt/
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min fseats : (10a) (14a)

ftime : (11a) (14b)

s. t. (9c)− (9m) (14c)

(11c)− (11d) (14d)

(12c)− (12d) (14e)

(13c) (14f)

Model 14: MIP-model for the Rooms vs. Teaching Periods problem.

Many methods exist for solving bi-objective methods. A popular one is the ε-method
from Haimes et al. [1971] that has been applied to many different problems.

Both fseats and ftime can only take discrete integer values and fseats can only take
values that depend on the size of potential rooms. From experiments, we have seen that
the span between the minimum and maximum value is relatively small and only a limited
set of values of fseats and ftime exists. We, therefore, choose to use the ε method, where an
artificial constraint is put on one of the objectives while minimizing the other. Because of
the small set of potential values we only have to solve a small number of MIP’s to explore
all potential values of interest.

Let fx be the objective with a limited discrete set of values, in our case fseats or
ftime, and let fy be the other objective. The algorithm for solving objective fx vs. fy
is shown on Algorithm 8.3.1 and illustrated in Figure 8.2. The algorithm first calculates
one lexicographic solution and use this to put a feasibility limit on each objective. This
done by first finding a lower limit on fy and then uses it to calculate an upper feasibility
limit for fx. Afterward, the algorithm starts with setting the ε-constraint to the minimum
value of fx and then repeatedly steps it up by the amount ∆. These two limits are used
to terminate the algorithm when one of them are exceeded. The reason for also having a
limit on fx and not only fy is that we enforce a timelimit and do not expect to solve each
problem to optimality. As shown in Lodi [2013], modern MIP solvers are heuristic and
use randomness. Because of this, the algorithm can turn out in a lucky way and find a
close to optimal value for miny, which it would then not be able to find later due to this
randomness.

This method is generic for hard bi-objective problems where there is a limited set of
values for one objective. Therefore, it can be used with different timetable constraints and
quality measures. It should also be noted that if each subproblem is solved to optimality,
this method will produce the optimal pareto-front.

8.4 Results

To show the results obtained by the proposed models and solution methods we use the
instances from ITC2007 based on real-world examples from the University of Udine. All
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Algorithm 8.3.1 ε-method - fx vs. fy

1: Parameters: ∆ . Discretization of fx
2: miny ←Minimize(fy) . Lower limit on fy
3: Add constraint: fy = miny
4: maxx ←Minimize(fx) . Upper limit on fx
5: Remove constraint: fy = miny
6: ε←Minimize(fx)
7: Add ε-constraint: fx ≤ ε
8: repeat
9: (f̂x, f̂y)←Minimize(fy) . Find pareto-solution

10: ε← ε+ ∆
11: Update ε-constraint: fx ≤ ε
12: until ∆ < maxx ∧ f̂y > miny . Only continue inside limits

0 ∆ 2∆ 3∆ 4∆ 5∆ 6∆ 7∆ 8∆ 9∆ 10∆

f
x

f y

min
y

max
x

ǫ-constraint

Solutions

Lexicographic

 

Figure 8.2: An illustration of Algorithm 8.3.1, where the ε-constraint moves in steps of
∆. The algorithm terminates when it finds a solution where f̂x > maxx or f̂y < miny.

data sets are available from tabu.diegm.uniud.it/ctt/. The complete source-code to
make the computations are available on github.com/miclindahl/UniTimetabling. All
computations are made on a 64 bit Windows machine with a 4 GHz Intel Core i7 CPU
and 32 GB of memory. To solve the integer programs, we use Gurobi 6.5 with standard
settings.

Because this is a strategic problem not often solved and not require in any, urgency
the timelimit for each iteration is set to 15 minutes. To generate the set S in the Room
Planning problem, we use δ = 25.

As stated, each course is associated with a number of timeslots in which they cannot
be taught. In the Teaching Periods Problem we want to explore what happens when
additional timeslots are added. To mark some of these timeslots as unavailable for courses
we simulate it by using the following model: The probability that a course is unavailable
in a new timeslot is equal to the fraction of timeslots that the course already is unavailable

tabu.diegm.uniud.it/ctt/
github.com/miclindahl/UniTimetabling
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in. This way we ensure that the new timeslots are realistic and have properties similar to
the real data.

In this section, we will first discuss some attributes of the problem that makes it
computational difficult and afterward we show results for the three different problems.
The trade-offs between the objectives will be reported with plots of the pareto-solutions
including bounds and a table with the lexicographic solutions.

8.4.1 Computational Difficulties

Solving the Mixed-Integer programs, shows that the problems are difficult to solve. Two
contributors for this is LP solutions and the impact of the ε-constraint.

LP-Bound MIP solvers start by relaxing the integer and binary constraints and solving
the resulting LP-problem that it uses to find integer solutions. In Figure 8.3 is shown a
plot of the solutions for the continuous LP problem and the integer solutions for Model 12.
It is seen that there is a large gap between these two solutions. A weak LP relaxation
makes it more difficult to find good integer solutions, as the relaxed solutions are used to
guide the solver.
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Figure 8.3: Example from comp18 where it can be seen that the gap between the solution-
frontier and the LP-bound is large and does therefore not give much help to the solver.

In Figure 8.3 we observe that for all integer-feasible solutions the LP solution is zero,
which implies that the ε-constraint does not influence the LP-bound. This is seen in
Figure 8.4, where Gurobi’s current lower bound on fqual is plotted over time for different
ε-constraints on fseats. For every value of the ε-constraint, the lower bound starts at zero,
and it is not until after thirty seconds that the bound differs between the different values
of the constraint. This behavior helps explain the long run times we observed.

Threshold Behaviour Another issue which creates difficulties is the so called ”thresh-
old behaviour”. An example of this is seen in Table 8.2, where comp18 is solved with three
different ε-constraints on froom. The original problem with 405 seats available is easy and
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Figure 8.4: Example from comp18 that shows the bounds improvement over time for
different ε-constraints. It seen that it starts at zero, and it takes 30 seconds before the
ε-constraint has a effect on the lower bound.

can be solved to optimality in 33 seconds. We define the critical number of seats, f̃room,
as the minimum number of seats that are needed for the problem to be feasible; this can
easily be found by minimizing froom in Model 12. If the number of seats is reduced to
the critical number, it becomes a lot more difficult and after 30 minutes of run time the
gap is still 81%. If the number of available seats is then reduced by only one seat, the
problem becomes infeasible and this can be proved in less than a second.

Problem froom Time Gap Difficulty
Original 405 33s 0% Easy

f̃room 300 30m 81% =⇒ Hard
Infeasible 299 0s - Easy

Table 8.2: Example of how the threshold effect shows on comp18. In the base case the
optimal solution can be found in 33 seconds. When setting the maximum number of seats
to the critical value, the problem gets difficult and the gap is still 81% after 30 minutes.
If one seat is subtracted, the problem is proved infeasible instantly.

This easy-hard-easy behaviour in timetabling is described in Beyrouthy et al. [2008]
and is also seen in many other problem types. Beyrouthy et al. [2008] encounters this
phase shift when the utilization has a critical value, and, as shown in section 8.2.2, this is
directly correlated with fseats. The behaviour is illustrated in Table 8.3. If the number of
seats is significant bigger than the critical number of seats, this gives an under-constrained
problem that is relatively easy to solve. Usually, heuristics can find good solutions to this
problem because there is a lot of freedom to move lectures around without the problem
becoming infeasible. In the other case, where the number of seats is smaller than the
critical number, the problem is infeasible. This is also an easy problem, as a MIP-solver can
prove this infeasibility fast in the pre-solve stage. The last case is the critical-constrained,
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which can be seen as almost infeasible problems. These are the difficult cases, as heuristics
have difficulties in finding good solutions, and MIP-solvers will have trouble with large
branch-and-bound trees.

froom Case Difficulty Strategy

> f̃room Under-Constrained Easy Heuristics

≈ f̃room Critical-Constrained Hard ?

< f̃room Over-Constrained Easy Prove Infeasibility

Table 8.3: The three cases of behaviour around the threshold described in Beyrouthy
et al. [2008]. This shows how the difficulty depends on the ε-constraint on froom.

8.4.2 Room Planning vs. Quality

To solve the bi-objective fseats vs. fqual optimization problem we use Model 12 and solve
it by using Algorithm 8.3.1 where fx = fseats is the objective with a limited set of values.
To explore all combinations of the given rooms we set ∆ = 25. The pareto fronts we
generated for all 21 ITC datasets are shown in Figure 8.5 together with the lower bounds
returned by the solver; and the two lexicographic solutions are shown in Table 8.4. The
total running time of generating the pareto front in minutes is also given.

It is seen that comp01, comp04 and comp11 only have one solution meaning that there is
no benefit from adding extra seats. The other instances only have little quality improve-
ment from adding additional seats. But it can also be seen that the datasets comp02,
comp03, comp15 and comp18 have a big trade-off between seats and quality.

The lower bounds from the solver are also shown. It can be seen that the gap is large
due to the reasons discussed in section 8.4.1.

Which rooms To get more insights into why a certain solution is chosen as the optimal
room configuration we analyze the solutions. A metric for the overcapacity can be deduced
from Constraint (10b), allowing us to calculate the overcapacitys for a given size s ∈ S
as follows:

overcapacitys =
|P|
∑

s∈S≥s
rs∑

c∈C≥s
l(c)

− 1

This metric gives the average number of empty timeslots with available rooms for each
lecture. A negative number will violate Constraint (10b) and, will therefore, be infeasible.
A positive number indicates how much freedom there is to move lectures around. An
example of the overcapacity for the solutions is seen in Table 8.5. It is seen that the solver
finds solutions that add additional room capacity where the overcapacity is smallest. This
metric can be used as a rule of thumb for managers to give them an indication about what
rooms to add to increase quality.
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Figure 8.5: The solution frontier for the Room Planning vs. Quality problem. The x-axis
is fseats and the y-axis is fqual. In general, the gaps are large. Notice that three of the
problems only have one solution.
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instance runtime fewest seats best Quality
min. fseat fqual fseat fqual

comp01 0 350 0 350 0
comp02 165 1350 170 1550 49
comp03 120 1175 167 1325 72
comp04 7 925 35 925 35
comp05 226 850 502 1175 358
comp06 120 1225 73 1375 29
comp07 31 1300 24 1325 6
comp08 45 950 44 1000 37
comp09 60 1050 106 1100 96
comp10 75 1075 15 1150 4
comp11 0 200 0 200 0
comp12 105 475 1193 600 458
comp13 33 1150 75 1175 59
comp14 83 900 109 1000 51
comp15 120 1175 167 1325 72
comp16 96 1125 67 1250 18
comp17 60 1125 101 1175 68
comp18 180 300 221 550 59
comp19 91 1125 67 1225 57
comp20 90 1350 37 1450 6
comp21 190 1250 132 1400 84

Table 8.4: The two lexicographic solutions for the Room Planning vs. Quality problem.

overcapacitys summary
fseats s = 0 25 50 75 100 125 avg. min1 min2

300 0.30 0.33 0.24 1.57 11.00 11.00 4.07 0.24 0.30
325 0.30 0.33 1.48 1.57 11.00 11.00 4.28 0.30 0.33
350 0.83 0.33 0.24 1.57 11.00 11.00 4.16 0.24 0.33
375 0.57 0.78 1.48 1.57 11.00 11.00 4.40 0.57 0.78
400 0.57 1.22 1.48 1.57 11.00 11.00 4.47 0.57 1.22
450 0.83 1.67 1.48 1.57 11.00 11.00 4.59 0.83 1.48
475 0.83 1.67 2.72 1.57 11.00 11.00 4.80 0.83 1.57
500 1.09 2.11 1.48 1.57 11.00 11.00 4.71 1.09 1.48
525 1.09 2.11 2.72 1.57 11.00 11.00 4.92 1.09 1.57
550 1.35 2.11 2.72 1.57 11.00 11.00 4.96 1.35 1.57
575 1.35 2.11 2.72 4.14 11.00 11.00 5.39 1.35 2.11

Table 8.5: The overcapacity for different solutions to Comp18. It can be seen that average
overcapacity (avg.) increases by increasing fseats. min1 and min2 denote the smallest and
second smallest value. It is seen that, in general, when more seats are added the minimum
overcapacity is also increased.
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8.4.3 Teaching Periods vs. Quality

To analyze the trade-off between ftime and fqual we use Model 13 and solve it with
Algorithm 8.3.1. We apply the ε-constraint on ftime and use ∆ = 1 so that we add only
one timeslot in each iteration to investigate all possibilities. Pareto plots showing the
trade-off between ftime and fqual for all 21 ITC data sets are shown in Figure 8.6. The
two lexicographic solutions are given in Table 8.6 together with the running time. Similar
to the previous results, it can be seen that seven of the datasets do not benefit from
getting extra timeslots. On the other datasets there are significant quality improvements
generated by adding extra timeslots. The lower bounds are closer to the solutions and
seven problems are solved to optimality. Some of the instances do, however, still have
large gaps.

instance runtime fewest timeslots best quality
min. ftime fqual ftime fqual

comp01 0 32 8 36 0
comp02 255 22 49 36 30
comp03 45 23 80 23 80
comp04 22 20 48 44 32
comp05 75 33 369 35 344
comp06 315 21 48 39 25
comp07 35 22 6 22 6
comp08 21 21 45 45 32
comp09 58 23 100 24 96
comp10 28 21 8 25 4
comp11 0 40 0 40 0
comp12 180 27 553 36 385
comp13 128 19 70 45 48
comp14 343 20 53 44 43
comp15 45 23 80 23 80
comp16 95 19 48 24 18
comp17 45 23 65 23 65
comp18 195 17 192 27 72
comp19 150 23 58 45 42
comp20 90 24 12 27 8
comp21 45 24 97 24 97

Table 8.6: The lexicographic solutions for the Teaching Periods vs. Quality problem.
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Figure 8.6: The solution frontiers for the Teaching Periods vs. Quality problem. The
x-axis is ftime and the y-axis is fqual. The gaps are smaller than in the Room Planning
vs. Quality problem. Six of the instances only have one pareto-optimal solution.
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8.4.4 Teaching Periods vs. Room Planning

To analyze how the two objectives, ftime and fseats affect each other we show the trade-off
by using the Model 14.

Figure 8.7 shows the pareto front and the two lexicographic solutions, and the running
time is shown in Table 8.7. It is seen that this problem is faster to solver, and that optimal
pareto frontiers can be generated in less than a minute for all instances. This also shows
that the soft constraints has the biggest impact on the difficulty of solving these problems.

The trade-off between ftime and fseats is significant on all datasets. Because the
utilization U is linear proportional with |P|

∑
r∈R cap(r) the trade-off is almost linear.

instance runtime fewest timeslots fewest seats
min. ftime fseat ftime fseat

comp01 0 24 400 54 250
comp02 0 22 1550 49 775
comp03 0 23 1250 50 700
comp04 0 20 1125 48 525
comp05 0 33 850 54 600
comp06 0 18 1625 48 675
comp07 0 20 1575 50 675
comp08 0 21 1125 48 550
comp09 0 23 1100 47 575
comp10 0 19 1375 47 625
comp11 0 28 275 55 150
comp12 0 27 575 59 300
comp13 0 18 1525 50 650
comp14 0 20 1100 46 525
comp15 0 23 1250 50 700
comp16 0 19 1475 46 625
comp17 0 23 1200 49 625
comp18 0 17 475 53 225
comp19 0 23 1175 47 625
comp20 0 18 1800 49 750
comp21 0 24 1250 48 700

Table 8.7: The lexicographic solutions of the results of the Teaching Periods vs. Room
Planning Problem.
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Figure 8.7: The solution frontiers for the Teaching Periods vs. Room Planning Problem.
The x-axis is ftime and the y-axis is fseats. Notice that all of these solutions are optimal.
There is an almost linear relationship between these two objectives.



106 A Strategic View on University Timetabling

8.5 Conclusions

University management needs to continuously manage their resources efficiently. Re-
sources like teachers, rooms and teaching periods cannot be increased or decreased on
short notice. These management decisions have a high impact on the cost of running a
university and also on how good the resulting timetables will be.

Analyzing how strategic decisions affect timetabling quality is both important to help
make these high-impact decisions better and to get a better understanding of the structure
of the timetabling problem and see how the availability of these resources affects the
solution.
This paper presents the first try to investigate these trade-offs. We propose a method
that can potentially solve these problems to optimality and create the entire frontier. Our
method is applicable to most timetabling problems.

Finally, we have shown how the three objectives - rooms, teaching periods, and qual-
ity - have an impact on one another, and we have shown that this interaction between
competing objectives varies between the different instances. We have analyzed optimal
room profiles to give managers a rule of thumb that can be used to help make decisions
better.

Future research This paper explored two soft constraints as quality metrics that both
focused on the timeslots in which lectures were planned. Exploring these trade-offs with
other metrics could be interesting. Another simplification is that all rooms are consid-
ered to be identical except for capacity. In practice, rooms often have certain attributes
requested by some courses. Many campuses are so large that the location of the rooms
matters; this would give some different trade-offs that would be of interest.

The authors hope that this paper can generate interest in finding and answering more
of the strategic questions that are occurring in timetabling.
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