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Abstract: Photon pair states and multiple-photon squeezed states have many applications 
in quantum information science. In this paper, Green functions are derived for spontaneous 
four-wave mixing in the low- and high-gain regimes. Nondegenerate four-wave mixing in a 
strongly-birefringent medium generates signal and idler photons that are associated with only 
one pair of temporal (Schmidt) modes, for a wide range of pump powers and arbitrary pump 
shapes. The Schmidt coefficients (expected photon numbers) depend sensitively on the pump 
powers, and the Schmidt functions (shapes of the photon wavepackets) depend sensitively on the 
pump powers and shapes, which can be controlled.
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1. Introduction

Photons are a key resource for quantum information science [1–4]. Pairs of signal and idler
photons can be generated by spontaneous three-wave mixing (TWM) in a second-order nonlinear
medium [5], which is driven by one pumpwave [6], and spontaneous four-wavemixing (FWM) in a
third-order nonlinear medium [7], which can be driven by one or two pump wave(s) [8]. Detecting
the idler photons heralds the existence of the associated signal photons, which subsequently can be
used in quantum information protocols. Many of these protocols are similar to Hong-Ou-Mandel
(HOM) interference [9], which requires the photons to be in pure indistinguishable states [10].

For many wave-mixing processes, the frequency bandwidths associated with wavenumber
matching are much broader than the pump bandwidths, so the emitted photons occupy many
spectral (temporal) modes. Heralding multiple-mode idler photons by direct detection leaves the
associated signal photons in mixed states, which are not suitable for interference. One can reduce
the numbers of modes and increase the heralded signal purities by using narrow-bandwidth
frequency filters, but doing so also reduces the emission probabilities significantly. Alternatively,
one can design sources based on wave mixing in such a way that the emitted photons occupy only
single pairs of temporal modes [11–14]. Such designs typically involve relations between the
inverse group speeds of the pump(s), signal and idler, the pump bandwidth(s) and the medium
length. Sources driven by low-power pumps emit photon pairs with low probabilities. One can
increase the emission probabilities by increasing the pump power(s), subject to the fundamental
constraints that the emitted photons continue to occupy single pairs of modes, and the relative
probabilities of quadruplet and pair states remain low.
Sources driven by high-power pumps produce two-continuous-mode squeezed states with

multiple-photon wavepackets [15,16]. Such states are entangled in the number-state basis (the
numbers of signal and idler photons are strongly correlated [17, 18]) and the quadrature basis
(if the signal and idler position quadratures are correlated, then their momentum quadratures
are anti-correlated). Squeezed states enable fundamental tests of quantum mechanics [19,20],
and can be used to make other interesting states, such as multiple-photon Fock states [21] and
Schrödinger cat states [22]. They also enable many aspects of continuous-variable (CV) quantum
information [23, 24], including quantum key-distribution [25, 26], quantum teleportation [27, 28]
and quantum-enhanced metrology [29, 30], which utilizes phase squeezing [31, 32], number
squeezing [33,34] and number-difference squeezing [35,36] to reduce measurement errors below
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the shot-noise limit. To work well, these applications also require the signal and idler photons
to occupy single pairs of temporal modes (wavepackets with specific shapes). In this paper, we
show theoretically that vector FWM in a strongly-birefringent medium (SBM) can satisfy this
requirement.

In Sec. 2, we review the mathematics and physics of two-continuous-mode squeezing, in both
the Heisenberg picture (HP) and the Schrödinger picture (SP). We also describe a temporal-
mode (Schmidt) decomposition [37–40], which allows this two-continuous-mode process to be
reformulated as a set of independent, two-discrete-mode processes, the properties of which are
known [41,42]. Although it is easy to establish the general properties of Schmidt decompositions,
it is often difficult to make specific decompositions. In Sec. 3, we review the generation of
photons by nondegenerate FWM in the low-gain regime, and show that processes in which the
first pump copropagates with the signal and the second pump copropagates with the idler enable
the generation of photons in single pairs of Schmidt modes [43, 44]. One such process is vector
FWM in a SBM [45–48]. In Sec. 4, we model the generation of multiple-photon wavepackets
by this process, in the high-gain regime. We determine the Green functions analytically and
decompose them numerically. The results show that single-mode operation is possible for a
wide variety of pump powers and arbitrary pump shapes. In Sec. 5, we discuss the effects of
nonlinear phase modulation (NPM) briefly. For moderate pump powers, NPM chirps the photon
wavepackets, but does not hinder the generation of single Schmidt-mode pairs. Finally, in Sec. 6
we summarize the main results of the paper.

2. Four-wave mixing

In nondegenerate FWM [8], two strong pump waves (p and q) drive weak signal (s) and idler
(r) waves (πp + πq → πr + πs, where πj represents a photon with carrier frequency ωj). In
stimulated FWM, the signal and idler (sideband) growth is seeded by an input signal pulse,
whereas in spontaneous FWM, the sideband growth is seeded by vacuum fluctuations (which one
can think of as virtual pulses). In classical mechanics, the signal and idler waves (modes) evolve
according to the coupled-mode equations (CMEs)

(∂z + βr∂t )Ar (t, z) = iγpq(t, z)A∗s(t, z), (1)
(∂z + βs∂t )As(t, z) = iγpq(t, z)A∗r (t, z), (2)

where Aj is a mode amplitude and βj is a group slowness (inverse group speed). The pump
function γpq(t, z) = γAp(t − βpz)Aq(t − βqz), where γ = γK ε(EpEq)1/2 is proportional to the
Kerr nonlinearity coefficient and the square roots of the pump energies. For parallel (perpendicular)
pumps, ε = 2 (2/3). Pump depletion is neglected, so the pump amplitudes Ap and Aq are specified
functions, which are normalized in such a way that

∫
dt |Aj(t)|2 = 1. These CMEs describe

pulses that interact (unstably) as they convect through the medium. In the Heisenberg picture
(HP) of quantum mechanics, one replaces the signal and idler amplitudes by the operators
as and ar , which satisfy the continuous commutation relations [aj(t, z), ak(t ′, z)] = 0 and
[aj(t, z), a†k(t

′, z)] = δjkδ(t − t ′), where δjk is the Kronecker delta and δ(t) is the Dirac delta
function [41,42]. (The strong pumps are still treated classically.) The simple relation between
the classical and quantum CMEs is not accidental: For systems with Hamiltonians that depend
quadratically on themode amplitudes (operators), the Heisenberg equations for the mode operators
are identical to the Hamilton equations for the mode amplitudes.
Because the CMEs are linear in the mode operators, their solutions can be written in the

input–output (IO) forms

br (t) =
∫

dt ′[µrr (t, t ′)ar (t ′) + νrs(t, t ′)a†s(t ′)], (3)

bs(t) =
∫

dt ′[µss(t, t ′)as(t ′) + νsr (t, t ′)a†r (t ′)], (4)
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where aj and bj denote input (z = 0) and output (z = l) operators, respectively. In these solutions,
the transfer (Green) functions µrr (t, t ′) and νrs(t, t ′) describe the effects on the output idler of
impulses applied to the input idler and signal, respectively. These impulses could represent
short input pulses or vacuum fluctuations. A similar statement applies to µss(t, t ′) and νsr (t, t ′).
Henceforth, we will state results mainly for the idler, because the corresponding signal results
can be deduced by interchanging subscripts (r ↔ s).
Because quantum evolution is unitary, the output mode operators must satisfy the same

commutation relations as the input operators. It follows from two of these relations that∫
dt ′[µrr (t1, t ′)µ∗rr (t2, t ′) − νrs(t1, t ′)ν∗rs(t2, t ′)] = δ(t1 − t2), (5)∫
dt ′[µrr (t1, t ′)νsr (t2, t ′) − νrs(t1, t ′)µss(t2, t ′)] = 0. (6)

Every complex kernel µ(t, t ′) has the Schmidt decomposition
∑

nvn(t)µnu∗n(t ′), where µn is a
Schmidt coefficient, and un(t ′) and vn(t) are input and output Schmidt functions, respectively.
The coefficients are real and non-negative, and the input (output) functions are orthonormal.
Constraints (5) and (6) cause the idler Green functions to have the related decompositions

µrr (t, t ′) =
∑

nvrn(t)µnu∗rn(t ′), νrs(t, t ′) =
∑

nvrn(t)νnusn(t ′), (7)

where n is the Schmidt-mode index and µ2
n − ν2

n = 1 [37–40]. The signal Green functions have
similar decompositions (which involve the same coefficients). In stimulated FWM, the input
functions are the natural shapes of the input pulses, the output functions are the shapes of the
associated output pulses and the squared coefficients µ2

n are the associated energy gains. In
spontaneous FWM, the input functions comprise a natural basis with which to describe the
vacuum fluctuations, the output functions are the shapes of the associated output wavepackets and
the squared coefficients ν2

n are the photon emission probabilities. The squared output functions
describe the relative probilities that photons leave the medium at specific output times. One can
interpret the squared input functions as the relative probabilities that photon generation was
initiated (seeded) by virtual photons that entered the medium at specific input times. The Schmidt
coefficients and functions depend on the physical parameters of the system, such as the pump
powers, durations and slownesses, the sideband slownesses and the medium length.

If the sideband operators are decomposed in terms of Schmidt modes [arn =
∫

dt ′u∗rn(t ′)ar (t ′)
and brn =

∫
dt ′v∗rn(t ′)br (t ′)], the Schmidt-mode operators satisfy the discrete commutation

relations [arm, arn] = 0 and [arm, a†rn] = δmn. Each pair of operators undergoes the two-mode
stretching (squeezing) transformation [49]

brn = µnarn + νna†sn, bsn = µnasn + νna†rn, (8)

the properties of which are known [41, 42]. In particular, if the input is a vacuum state, then the
output variances of the in-phase and out-of-phase quadratures are (µn + νn)2/2 and (µn − νn)2/2,
respectively. In the Schrödinger picture (SP), the two-Schmidt-mode output state

|ψn〉 =
∑

k(νn/µn)k |k, k〉/µn , (9)

where |k, k〉 denotes a substate with k signal photons and k idler photons [42]. For such a state,
which is pure and entangled, each photon-number mean is ν2

n. If one ignores the idler information
(by tracing out the idler degrees or freedom), one obtains a thermal signal state, which is mixed,
with number mean ν2

n. The complete state vector is the product of the two-mode state vectors.
Thus, the general properties of nondegenerate FWM are known, in both the HP and SP, for
arbitrary pump powers. The challenge is to determine the Schmidt coefficients and functions
efficiently, and use this knowledge to optimize the designs of experiments.
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3. Low-gain regime

Before considering the high-gain regime in detail, it is instructive to consider the low-gain regime,
in which only photon pairs are produced with significant probabilities. By using the time-domain
perturbation method [50,51], which is based on the approximation that the idler response to a
signal impulse is too weak to affect the signal, one obtains the HP Green functions [44]

µss(t, t ′) = δ(t − t ′ − βsl), νrs(t, t ′) = iγpq(tc, zc)/βrs, (10)

where l is the medium length, βrs = βr − βs > 0 is the relative slowness and the signal–idler
collision coordinates

tc = [βr t ′ − βs(t − βr l)]/βrs, zc = [t ′ − (t − βr l)]/βrs . (11)

The auxiliary condition t ′+ βsl < t < t ′+ βr l ensures that the collision occurs within the medium.
One can enforce this condition bymutiplying the cross-function νrs by H(t−t ′−βst)H(t ′+βr l−t),
where H(s) is a Heaviside step function. Formulas (10) are valid for arbitrary pump shapes and
slownesses.
By combining Eq. (6) with the first of Eqs. (10), one obtains the reciprocity relation

νrs(tr, ts − βsl) = νsr (tr − βr l, ts). (12)

Apart from time shifts, the effect of a signal impulse on the idler equals the effect of an idler
impulse on the signal. By combining Eqs. (7) and (12), one finds that vrn(t) = urn(t − βr l) and
vsn(t) = usn(t − βsl). Although the Schmidt functions are determined by the interaction of the
pumps and sidebands throughout the whole medium, the output signal (idler) functions are just
time-shifted versions of the input signal (idler) functions. There is no particular relation between
the signal and idler functions. The argument of the shape function Ap is

tc − βpzc = [βrpt ′ − βsp(t − βr l)]/βrs (13)

and the argument of Aq is similar (p→ q). In general, the pump function γpq is a nonseparable
function of the input and output times, so many Schmidt coefficients are nonzero and the Schmidt
functions depend on both pump shapes. However, if the pumps and sidebands copropagate in a
long medium (βp = βr and βq = βs), the arguments of the shape functions reduce to t − βr l and
t ′, and the auxiliary conditions can be ignored. In this case, the pump function is separable and
there is only one nonzero Schmidt coefficient (ν1 = γ/βrs = γ̄), so a heralded signal would have
a pure state [43, 44]. The idler Schmidt function is the shape function of pump p and the signal
Schmidt function is the shape function of pump q. (The signal and idler functions also include
the phase factors eiφr and eiφs , respectively, where φr + φs = π/2. Henceforth, we will ignore
these factors.) These shape functions can be chosen arbitrarily and independently, as required for
temporal-mode multiplexing [52]. Similar results were obtained recently for photon frequency
conversion by scalar nondegenerate FWM [50,51].
In the SP, the two-photon state vector

|ψ1〉 =
∫ ∫

dtrdts f (tr, ts)a†r (tr )a†s(ts)|vac〉, (14)

where the two-photon amplitude (TPA)

f (tr, ts) =
∫

dt ′µss(ts, t ′)νrs(tr, t ′) =
∫

dt ′µrr (tr, t ′)νsr (ts, t ′) (15)

is related to the HP Green functions [44]. Integrating the product of µj j(tj, t ′) and νi j(ti, t ′)
replaces the input Schmidt function u j(t ′) with the output function vj(tj) = u j(tj − βj l). Hence,
the TPA has the Schmidt decomposition

f (tr, ts) =
∑

nνnvrn(tr )vsn(ts), (16)
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which involves only the output functions (as it must do). In general, the output is the entangled
state

∑
nνn |φrn〉|φsn〉, where |φrn〉 =

∫
dtrvrn(tr )a†r (tr )|vac〉, but in the aforementioned special

case (copropagating pumps and sidebands), it reduces to the product state ν1 |φr1〉|φs1〉. Once
again, notice that the signal and idler Schmidt (basis) functions can be chosen arbitrarily in this
case.
To illustrate the low-gain results, it is convenient to choose the pump shapes from the

Hermite–Gauss (HG) functions

HGn(s) = Hn(s/τ) exp(−s2/2τ2)/π1/4(2nn!τ)1/2, (17)

where Hn(s) is a Hermite polynomial of order n and τ is a duration (temporal width). These
functions comprise a potential basis for temporal-mode multiplexing. For example, consider
photon generation driven by pumps whose (common) shape function is a Gauss (zeroth-order
HG) function (HG0). In Fig. 1, the cross-function νrs is plotted as a function of the input and
output times for two cases. In the first case, the pumps and sidebands copropagate (βr = βp and
βs = βq), but the medium is not long enough for a complete pump–pump collision. In the second
case, the medium is long enough for a complete collision, but the pumps and sidebands do not
copropagate (βr , βp and βs , βq). Both cases exhibit strong correlations between the input
and output times.
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Fig. 1. Contour plot of the Green function νrs for two cases in which the pump shapes
are Gauss (HG0) functions. (a) βp l/τ = βr l/τ = 1 and βq l/τ = βs l/τ = −1. (b)
βp l/τ = 4 = −βq l/τ and βr l/τ = 2 = −βs l/τ. Lighter shading represents higher values,
whereas darker shading represents lower values. Time is measured in units of τ. The input
and output times are correlated.

In Fig. 2, the normalized Schmidt coefficient ν/γ̄ is plotted as a function of the mode number
n. In both of the aforementioned cases, several Schmidt coefficients are nonzero, so heralded
signals have mixed states. The Schmidt functions (not shown) have widths that differ from the
(common) pump width τ. Some results for copropagating pumps and sidebands, which confirm
the prediction that heralded signals have pure states, were illustrated in [44]. More such results
will be illustrated shortly, as low-gain limits of arbitrary-gain results [Figs. 5(a), 7(a)–9(a) and
(10)].
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Fig. 2. The normalized Schmidt coefficient is plotted as a function of mode number for two
HG0 pumps. (a) βp l/τ = βr l/τ = 1 and βq l/τ = βs l/τ = −1. (b) βp l/τ = 4 = −βq l/τ
and βr l/τ = 2 = −βs l/τ. Several coefficients are nonzero.

4. Arbitrary-gain regime

Armed with the insight provided by the low-gain results, it is now appropriate to consider the
interaction of copropagating pumps and sidebands (βp = βr and βq = βs) in the arbitrary-gain
regime. Simultaneous slowness and wavenumber matching is exhibited by vector FWM in a
SBM, which is illustrated in Fig. 3. The pump frequencies can be varied independently.

Fig. 3. Frequency diagrams for vector four-wave mixing in a strongly-birefringent medium
[44]. Points on the blue (red) curves denote waves that are aligned with the fast (slow) axes
of the medium. The wavenumbers and slownesses (β1) are matched simultaneously for pump
frequencies that are (a) degenerate and (b) nondegenerate. Notice that the copropagating
waves have different polarizations. The pump and sideband frequencies can be interchanged
(p ↔ r and q ↔ s). The displayed diagrams pertain to the anomalous dispersion regime
and similar diagrams pertain to the normal dispersion regime.

The CMEs are partial differential equations with space- and time-varying coefficients. Nonethe-
less, by using standard mathematical methods [53,54], which are sketched in the appendix, one
can solve them analytically for arbitrary pump powers and shapes. The final results are

µss(t, t ′) = δ(t − t ′ − βsl) + γ̄Aq(t − βsl)(ξ/η)1/2I1[2γ̄(ξη)1/2]Aq(t ′)
×H(t − t ′ − βsl)H(t ′ + βr l − t), (18)

νrs(t, t ′) = iγ̄Ap(t − βr l)I0[2γ̄(ξη)1/2]Aq(t ′)H(t − t ′ − βsl)H(t ′ + βr l − t), (19)

where Im(s) is a modified Bessel function of order m and the interaction distances

ξ(t, t ′) =
∫ t′

t−βr l
ds |Ap(s)|2, η(t, t ′) =

∫ t−βs l
t′

ds |Aq(s)|2. (20)

The step functions enforce causality: For each input point (t ′, 0) they define the region of influence
and for each output point (t, l) they define the domain of dependence. The interaction distances
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are proportional to the pump energies contained within the interaction region, which is the
intersection of the aforementioned domain and region. The formulas for the other two Green
functions are similar (r ↔ s and ξ ↔ η).
Formulas (18)–(20) are complicated. Nonetheless, it is posssible to make some general

observations. According to the Schmidt formalism, which was described above, the Schmidt
coefficients and the four sets of Schmidt functions are specified completely by the cross-functions
νrs and νsr (or the self-functions µrr and µss). Consider the former pair of Green functions. The
input-signal Schmidt functions are eigenfunctions of the signal kernel

ks(ts, t ′s) =
∫

dtrν∗rs(tr, ts)νrs(tr, t ′s), (21)

whereas the output-idler Schmidt functions are eigenfunctions of the idler kernel

kr (tr, t ′r ) =
∫

dtsνrs(tr, ts)ν∗rs(t ′r, ts). (22)

It is easy to show that if us(ts) is an eigenfunction of the signal kernel, then vr (tr ) =∫
dtsνrs(tr, ts)us(ts) is an eigenfunction of the idler kernel and is associated with the same

eigenvalue. Conversely, if vr (tr ) is an eigenfunction of the idler kernel, then us(ts) =∫
dtrν∗rs(tr, ts)vr (tr ) is an eigenfunction of the idler kernel. Hence, the signal and idler ker-

nels have the same eigenvalues, which are non-negative. The (common) Schmidt coefficients are
the square roots of these eigenvalues. Similar statements can be made about the input-idler and
output-signal Schmidt functions. In general, the Green functions (interaction distances and step
functions) are nonseparable functions of the input and output times, so one should expect several
Schmidt coefficients to be nonzero and the Schmidt functions to depend on both pump shapes.

Fig. 4. Characteristic diagram for (a) idler generation and (b) signal generation. The horizontal
axis is distance and the vertical axis is time. The interaction is limited to the region in
which the pumps collide, which is the interior of the dashed diamond. The blue and red rays
(arrows) represent parts of the signal and idler that interact strongly.

For a complete collision, which is illustrated in Fig. 4, both step functions are equal to 1.
For the cross-function νrs, in the formula for ξ one can replace the upper limit t ′ by ∞ and in
the formula for η one can replace the upper limit t − βsl by ∞. With these replacements, the
input signal function is determined solely by Aq(t ′) and the output idler function is determined
solely by Ap(t − βr l). The Green function is proportional to γ̄I0{2γ̄[ξ(t − βr l)η(t ′)]1/2}. This
reduced function is separable in the low-gain regime and asymptotically separable in the high-gain
regime (as explained in the appendix), so the Schmidt decomposition of νrs involves only a
single nonzero Schmidt coefficient and a single pair of Schmidt functions in both regimes. For
νsr , in the formulas for ξ and η one can replace the lower limits t − βr l and t ′ by −∞. With
these replacements, the input idler function is determined solely by Ap(t ′) and the output signal
function is determined solely by Aq(t − βsl). The reduced function γ̄I0{2γ̄[ξ(t ′)η(t − βsl)]1/2}
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is also approximately separable in the low- and high-gain regimes, so the decomposition of νsr
also involves only a single nonzero coefficient and a single pair of functions in both regimes.
Notice that Ap and Aq are always paired with ξ and η, respectively. The results that follow all
pertain to complete collisions.

4.1. Schmidt coefficients

In Fig. 5, the first (largest) Schmidt coefficient ν1 is plotted as a function of the gain parameter
γ̄, for two different combinations of HG pump shapes. In the low-gain regime (γ̄ ≤ 0.5), the
coefficient is a linear function of gain and does not depend on the pump shapes, as predicted by
Eq. (10) and the corresponding limit of Eq. (19). In the high-gain regime (γ̄ ≥ 2), the coefficient
is a nearly-exponential function of gain and still does not depend on the pump shapes! The
formula stated in the caption was derived by using the high-gain limit of the modified Bessel
function. This derivation and an explanation of why the coefficient does not depend on the pump
shapes are provided in the appendix. In both regimes, the associated Schmidt state contains 2ν2

1
photons on average.
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Fig. 5. The first Schmidt coefficient is plotted as a function of the gain parameter γ̄. In
(a) the solid line is γ̄ and the vertical scale is linear, whereas in (b) the solid curve is
exp(2γ̄)/(16πγ̄)1/2 and the scale is logarithmic. Filled circles denote results for two HG0
pumps, whereas empty circles denote results for one HG0 and one HG1 pump. The Schmidt
coefficients do not depend on the pump shapes.

In Fig. 6, the ratio of the second Schmidt coefficient to the first (ν2/ν1) is plotted as a function
of gain, for two different combinations of pump shapes. For both combinations, this ratio starts
at zero, as predicted by perturbation theory, increases to its peak value of 0.1, then decreases
monotonically. The relative probability of the second mode pair, which is the square of this ratio,
does not exceed 1%. Thus, for all practical purposes, vector FWM produces a single pair of
Schmidt modes for arbitrary pump powers and shapes. Similar single-mode behavior is exhibited
by transient spontaneous Raman scattering (SRS) [55]. This behavior contrasts with the behavior
of frequency conversion, in which the number of active Schmidt modes is an increasing function
of the pump powers [50, 51].

Based on the preceding results for vector FWM and SRS, one might suspect that every unstable
two-sideband process exhibits single-mode operation. There is certainly a tendancy for unstable
processes to be dominated by the modes that grow most rapidly in space and time [56–58].
However, we made a preliminary anaysis of another (common) process, in which the signal
copropagates with a single pump (or two copropagating pumps), but the idler does not. In this
process the pump is always present (or the pumps always overlap) and several temporal modes,
with comparable Schmidt coefficients, are produced.
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Fig. 6. (a) The ratio of the second Schmidt coefficient to the first is plotted as a function
of the gain parameter γ̄. Filled circles denote results for two HG0 pumps, whereas empty
circles denote results for one HG0 and one HG1 pump. The relative probability of the second
mode, which is the square of the Schmidt ratio, never exceeds 1%. (b) The Schmidt ratio is
plotted as a function of mode number for the worst case, in which γ̄ = 1.76. The HG0-HG0
and HG0-HG1 results are indistinguishable.

4.2. Schmidt functions

The cross-function νrs [Eq. (19)] is illustrated in Fig. 7, for pump shapes that are Gauss functions,
and small and large gain values. In this figure and the ones that follow, time is measured in
units of the pump width τ [Eq. (17)]. In the low-gain regime, the cross-function is the symmetic
product of two Gauss functions, as predicted by perturbation theory [Eq. (10)]. In the high-gain
regime, it is compact, and skewed toward earlier input and output times [Eq. (19)].
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Fig. 7. Contour plots of the Green function νrs for the gain parameters (a) γ̄ = 0.3 and
(b) γ̄ = 3.0. Both pump shapes are Gauss (HG0) functions. Lighter shading represents
higher values, whereas darker shading represents lower values. High gain localizes the Green
function near early input and output times.

Because the pump shapes are identical, so also are the signal and idler Schmidt functions.
The (common) Schmidt function is illustrated in Fig. 8. In the low-gain regime, the Schmidt
function is approximately Gaussian. In the high-gain regime it is skewed toward earlier input
and output times, like the Green function with which it is associated. This phenomenon can be
explained. Idler generation is illustrated in Fig. 4(a). In physical terms, as the input signal ray
(shown) propagates to the lower right, it seeds idler rays that propagate to the upper right (not
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shown). In turn, these idler rays seed signal rays (not shown) that propagate to the lower left and
interact with the idler rays. Thus, the sidebands grow in the part of the collision region that is
above and to the right of the input signal ray. Earlier idler rays (one of which is shown) represent
parts of the idler that interact with stronger parts of the signal and grow more. In mathematical
terms, the argument of the modified Bessel function is proportional to the square root of the
area of the growth region, which is larger for signal and idler rays that correspond to earlier
input and output times. Similar skewing is exhibited by transient SRS [49]. This phenomenon
is characteristic of instabilities, in which the output is dominated by the source points (times)
associated with higher gains. For signal generation [Fig. 4(b)], the input idler and output signal
functions (not shown) are advanced relative to the previous ones, and are skewed toward later
times, for a reason similar to that stated above.
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Fig. 8. The (common) signal and idler Schmidt function (dots) is plotted as a function of
time for the gain parameters (a) γ̄ = 0.3 and (b) γ̄ = 3.0. Both pump shapes (solid curves)
are Gauss (HG0) functions. In the low-gain regime the Schmidt function is approximately
Gaussian, whereas in the high-gain regime it is a distorted Gaussian.

Similar behavior occurs for other pump shapes. The cross-function νrs is illustrated in Fig. 9,
for pumps that are zeroth- and first-order HG functions, and small and large gain values. The
associated input and output Schmidt functions are illustrated in Figs. 10 and 11, respectively.
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Fig. 9. Contour plots of the Green function νrs for the gain parameters (a) γ̄ = 0.3 and
(b) γ̄ = 3.0. The pump shapes are HG0 and HG1 functions. Lighter shading represents
higher values, whereas darker shading represents lower values. High gain localizes the Green
function near early input and output times.
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In the low-gain regime, the Green and Schmidt functions are approximately HG functions, as
predicted by perturbation theory. In the high-gain regime, all three functions are skewed toward
earlier input and output times.
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Fig. 10. The input signal (a) and output idler (b) Schmidt functions (dots) are plotted as
functions of time for the gain parameter γ̄ = 0.3. The pump shapes (solid curves) are HG0
and HG1 functions. In the low-gain regime both Schmidt functions are approximately HG
functions.
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Fig. 11. The input signal (a) and output idler (b) Schmidt functions (dots) are plotted as
functions of time for the gain parameter γ̄ = 3.0. The pump shapes (solid curves) are
HG0 and HG1 functions. In the high-gain regime both Schmidt functions are distorted HG
functions.

5. Nonlinear phase modulation

Equations (1) and (2) do not include the effects of NPM, which can chirp the pumps, signal and
idler, and dephase the interaction [44, 59–61]. To obtain a Green matrix, we solved the CMEs for
FWM and NPM numerically, for many HGn input signals, and decomposed the output idlers in
terms of the same basis functions. Subsequently, we decomposed this matrix numerically [62].
Some results of such simulations are shown in Figs. 12 and 13. In all the simulations, the

medium length l = 80 m, the relative slowness β1 = βrs = 0.5 ps/m, the second-order dispersion
coefficient β2 = 15 ps2/Km and the Kerr nonlinearity coefficient γK = 10/Km-W. The input
pumps have Gauss (HG0) shape functions with (common) width τ = 5 ps. The fast pump (q)
is delayed by 10 ps at the input and the slow pump (p) is advanced by 10 ps, so the pumps
overlap completely in the middle of the medium. These parameters are typical of silica fibers.
Experiments are also feasible in silicon chips, in which higher birefringence and nonlinearity
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compensate for shorter length [62]. The nonlinear effect of each pump on itself (self-phase
modulation) is a chirp, whereas the effect of each pump on the other (cross-phase modulation) is a
wavenumber shift. We chose to prechirp the input pumps so that they are approximately unchirped
in the middle of the medium, where their interaction with the signal and idler is strongest.

In Fig. 12, the ratio of the second Schmidt coefficient to the first (ν2/ν1) is plotted as a function
of the gain parameter γ̄. (For the chosen parameters, γ̄ = 1 corresponds to a peak pump power
of 5.6 W.) The numerical Schmidt ratios are higher than the semi-analytical ratios. However,
the numerical and semi-analytical curves are qualitatively similar and for no value of the gain
parameter (in the chosen range) does the numerical result exceed the semi-analytical result by
more than a factor of 2. In particular, the maximal value of the numerical ratio is 0.13, which
corresponds to a relative Schmidt-mode probability of only 1.7%. For the parameters chosen,
NPM does not increase the Schmidt ratio significantly, because most of the induced phase shifts
are chirps (separable functions of t and t ′). We also simulated photon generation by shorter
(1-ps) pulses, for which the effects of dispersion are stronger [62]. In these simulations, the
numerical and semi-analytical results were also comparable for small and medium values of
the gain parameter, but the numerical results started to diverge from the semi-analytical ones at
γ̄ = 4. This value corresponds to a gain of more than 40 dB (expected photon number larger than
104), so NPM does not prevent single-mode operation for a useful range of pump powers.
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Fig. 12. The ratio of the second Schmidt coefficient to the first is plotted as a function of
the gain parameter γ̄ for two Gauss (HG0) pumps. The solid curve denotes semi-analytical
results that omit nonlinear phase modulation, whereas crosses denote numerical results that
include nonlinear phase modulation. The results are qualitatively similar and quantitatively
comparable.

In Fig. 13, the amplitudes and phases of the input-signal and output-idler Schmidt functions
are plotted as functions of time for the gain parameter γ̄ = 1.55, which corresponds to expected
signal and idler photon numbers of 10. The amplitude profiles of the signal and idler are similar,
but not identical. Both pulses are skewed toward early times, as predicted by theory, but the idler
is skewed slightly more than the signal. The signal and idler are chirped in opposite ways and the
chirps are centered on the peaks of the copropagating pumps. The signal phase has a net negative
slope, which corresponds to a positive frequency shift, whereas the idler phase has a net positive
slope, which corresponds to a negative frequency shift. These shifts are measured relative to
the frequencies that correspond to wavenumber matching at zero pump power. The signal and
idler frequencies are shifted toward the pump frequencies, as required to achieve wavenumber
matching for nonzero power [44,48]. For reference, the input idler and output signal functions
(not shown) are time-reversed images of the displayed input and output functions.

A comprehensive set of simulation results will be described in a future publication. However,
the representative results described herein show that NPM is not a fundamental obstacle to the
generation of signal and idler photons in single pairs of Schmidt modes. If necessary, the signal
and idler chirps can be removed by propagation in a dispersive medium.
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Fig. 13. The amplitudes (blue curves) and phases (red curves) of the input signal (a) and
output idler (b) Schmidt functions are plotted as functions of time for the gain parameter
γ̄ = 1.55. Both pump shapes are Gauss (HG0) functions. Nonlinear phase modulation
imposes opposite chirps and frequency shifts on the signal and idler. The chirps are extremal
near the peaks of the copropagating pumps, relative to which the signal and idler are skewed
toward early times.

6. Summary

In summary, photon generation by vector four-wave mixing (FWM) in a strongly birefringent
medium was studied in detail. In this process, the signal copropagates with one pump, the
idler copropagates with the other, and the medium is long enough for a complete pump–pump
collision. This configuration enables the generation of signal and idler photons in a single pair of
temporal (Schmidt) modes. The shapes of the signal and idler wavepackets (Schmidt functions)
can be specified arbitrarily and indepedently by controlling the pump shapes, as required for
temporal-mode multiplexing [52]. For low pump powers, the Schmidt coefficients (square roots
of the photon probabilities) are less than 1 and increase linearly with the power parameter (square
root of the product of the pump energies). The Schmidt functions match the pump shapes closely
and the output functions (which describe the detection probabilities of emitted photons) are just
time-shifted versions of the input functions (which describe the seeding probabilities of virtual
input photons). For high pump powers, the Schmidt coefficients are greater than 1 and increase
nearly exponentially with power. The Schmidt functions are distorted versions of the pump
shapes. The input signal and output idler functions are skewed toward earlier times, whereas the
input idler and output signal functions are skewed toward later times. Such skewing maximizes
the gain experienced by the signal and idler during their spatial–temporal interaction. As the
pump powers increase, the relative probability of the second pair of Schmidt modes to the first
pair increases from 0 to 1%, then decreases. Nonlinear phase modulation does not increase the
modal diversity significantly for gains less than 40 dB. Thus, for all practical purposes, vector
FWM produces a single pair of temporal modes for a wide range of pump powers and arbitrary
pump shapes. We believe that these properties and frequency tunability [44] make vector FWM a
versatile tool for quantum information science.

Appendix: Derivation of the Green functions

In the undepleted-pump regime, the CMEs for the signal and idler amplitudes are

(∂z + βr∂t )Ar = iγpq A∗s + σrδ(z)δ(t), (∂z + βs∂t )As = iγpq A∗r + σsδ(z)δ(t), (23)

where the pump function γpq = γAp(t − βpz)Aq(t − βqz) and σj = 0 or 1, depending on which
mode is seeded by an impulse. The physical CMEs are difficult to solve, because they are partial
differential equations with coefficients that depend on distance and time. However, there is at
least one important case in which they can be solved.
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For vector FWM in a SBM [45–48], there exist pump, signal and idler frequencies for which
βp = βr and βq = βs. (Similar conditions facilitated the analysis of frequency conversion in
an isotropic fiber [50, 51].) Without loss of generality, suppose that βr > βs, and define the
characteristic variables x = βr z − t and y = t − βsz. Then the characteristic CMEs are

∂y Ar = iγ̄Ap(−x)Aq(y)A∗s + σrδ(x)δ(y), ∂x As = iγ̄Ap(−x)Aq(y)A∗r + σsδ(x)δ(y), (24)

where γ̄ = γ/βrs , βrs = βr − βs and δ(z)δ(t) = βrsδ(x)δ(y).
Now let Ar/Ap → Ar and As/Aq → As, and define the interaction distances ξ =∫ 0
−x |Ap(x ′)|2dx ′ and η =

∫ y

0 |Aq(y′)|2dy′. (The normalization factors Ap and Aq are evalu-
ated at −x and y, respectively.) Then the canonical CMEs are

∂ηAr = iγ̄A∗s + σr A∗pδ(ξ)δ(η), ∂ξ As = iγ̄A∗r + σsA∗qδ(ξ)δ(η), (25)

where δ(x) = |Ap |2δ(ξ) and δ(y) = |Aq |2δ(η). (The source strengths |Ap |2 and |Aq |2 are
evaluated at 0.) Notice that Eqs. (25) do not depend explicitly on the pump shapes. They are
mathematically equivalent to the CMEs for SBS and SRS, which involve only a single pump and
its associated interaction distance. Their solutions can be written in the IO forms of Eqs. (4). The
Green functions associated with a signal source of unit strength at the origin are [53, 54]

Grs(ξ, η) = iγ̄I0[2γ̄(ξη)1/2]H(ξ)H(η), (26)
Gss(ξ, η) = γ̄(ξ/η)1/2I1[2γ̄(ξη)1/2]H(ξ)H(η) + H(ξ)δ(η), (27)

where Im(s) is a modified Bessel function of order m and H(s) is a Heaviside step function. The
Green functions associated with an idler source are similar (r ↔ s and ξ ↔ η). In particular, the
cross functions satisfy the reciprocity relation Grs(ξ, η) = Gsr (ξ, η). To account for sources at
other locations, one makes the replacements ξ → ξ − ξ ′ and η→ η − η′.
For any parametric process, the Green functions all have Schmidt decompositions, which

involve Schmidt coefficients and functions. Because these decompositions are related, it is
sufficient to decompose the cross-functions Grs (which involves the input signal and output idler
functions) and Gsr (which involves the input idler and output signal functions). First, consider
Grs . For a complete collision, the effective (signal) input point is (0, η′) and the effective (idler)
output point is (ξ, 1). (For incomplete collisions, the formulas for the input and output points
can be complicated.) In the low-gain regime (γ̄ � 1), Grs ≈ γ̄. One can rewrite this result in
the Schmidt form Grs(ξ, η′) ≈ v(ξ)νu(η′), where ν = γ̄ and u(s) = v(s) = H(s)H(1 − s). In the
high-gain regime (γ̄ � 1), one can use the asymptotic formula I0(s) ∼ exp(s)/(2πs)1/2 to write

Grs(ξ, η′) ∼
γ̄ exp[2γ̄ξ1/2(1 − η′)1/2]

(4πγ̄)1/2
∼ γ̄ exp[2γ̄ − γ̄(1 − ξ) − γ̄η′)]

(4πγ̄)1/2
. (28)

Hence, Grs(ξ, η′) ∼ v(1 − ξ)νu(η′), where ν = exp(2γ̄)/(16πγ̄)1/2 and u(s) = v(s) = (2γ̄)1/2
exp(−γ̄s). The signal function is skewed toward smaller values of η′ and the idler function is
skewed toward larger values of ξ. In both the low- and high-gain regimes, the decomposition
involves only a single pair of Schmidt modes. Second, consider Gsr , for which the effective input
(idler) point is (ξ ′, 0) and the effective output (signal) point is (1, η). The decomposition of this
cross-function is similar to the previous decomposition, the only differences being that the idler
function is skewed toward smaller values of ξ ′ and the signal function is skewed toward larger
values of η. Apart from reflections in characteristic coordinates, the signal and idler Schmidt
functions are identical, as required by reciprocity.
To convert the canonical Green functions to physical functions, one multiplies Grr and Gsr

by A∗p(0), and Grs and Gss by A∗q(0). One also multiplies Grr and Grs by Ap(−x) and Gsr and
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Gss by Aq(y). Then one rewrites the characteristic variables in terms of the physical variables
(0→ t ′, −x → t − βr z and y → t − βsz.) The final results are

Grs(t, t ′) = γ̄Ap(t − βr l)I0[2γ̄(ξη)1/2]Aq(t ′)
×H(t − t ′ − βsl)H(t ′ + βr l − t), (29)

Gss(t, t ′) = δ(t − t ′ − βsl) + γ̄Aq(t − βsl)(ξ/η)1/2I1[2γ̄(ξη)1/2]Aq(t ′)
×H(t − t ′ − βsl)H(t ′ + βr l − t), (30)

where the interaction distances

ξ(t, t ′) =
∫ t′

t−βr l
ds |Ap(s)|2, η(t, t ′) =

∫ t−βs l
t′

ds |Aq(s)|2. (31)

The physical Schmidt coefficients equal the canonical coefficients, and the physical Schmidt
functions are the canonical functions multiplied by the appropriate pump-shape functions. (The
canonical functions skew the physical functions.) For a systemwith a Hamiltonian that is quadratic
in the mode amplitudes (operators), the Heisenberg equations for the mode operators are identical
to the Hamilton equations for the mode amplitudes. Hence, the quantum Green functions are
identical to the classical functions derived in this appendix.
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