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ABSTRACT: Optical surface waves, highly localized modes bound to
the surface of media, enable manipulation of light at nanoscale, thus
impacting a wide range of areas in nanoscience. By applying
metamaterials, artificially designed optical materials, as contacting
media at the interface, we can significantly ameliorate surface wave
propagation and even generate new types of waves. Here, we
demonstrate that high aspect ratio (1:20) grating structures with
plasmonic lamellas in deep nanoscale trenches, whose pitch is 1/10−1/
35 of a wavelength, function as a versatile platform supporting both
surface and guided bulk infrared waves. The surface waves exhibit a
unique combination of properties: directionality, broadband existence
(from 4 μm to at least 14 μm and beyond) and high localization, making
them an attractive tool for effective control of light in an extended range
of infrared frequencies.

KEYWORDS: hyperbolic metamaterial, Dyakonov surface waves, plasmonics

Optical surface waves (SWs) arise at the interface of two
dissimilar media with different types of permittivity or

permeability, such as different polarities, anisotropies, and
periodic modulation of them.1,2 Research on SWs has
intensified in the past decade due to their unique properties
of surface sensitivity, field localization, unusual dispersion, and
polarization properties at the nanoscale, stimulating the
development of planar photonics,3 where light is manipulated
by directional surface waves on highly anisotropic metamate-
rials. The most studied SWs are the surface plasmon polaritons
(SPPs) supported at the interfaces between metals and
dielectrics,4 which enable effective nanophotonic devices for
sensing,5 nanoguiding,6 and imaging7 based on near-field
techniques. However, recently SWs based on a transparent
dielectric platform have also emerged as a lowloss alternative.
One example is the optical Tamm states8 or Bloch surface
waves,9−11 which are supported at the termination of periodic
dielectric multilayers. They do not have metal’s absorption
losses unlike SPPs, exhibit narrow resonances tuned by design,
and can be used for biochemical sensing applications.10

Another example of lossless surface waves are the Dyakonov
surface wave existing at the interfaces between anisotropic and

isotropic dielectrics.12−15 To date, various types of combined
SWs have been investigated such as Dyakonov−Tamm states,16

Tamm plasmons,17,18 which are essentially the mixture of two
different types of SWs. This is enabled by metamaterials,
artificially engineered materials and structures,19−21 because, to
combine different SWs, unprecedented and extreme optical
parameters are often required. In this manner, we can obtain
new features by combining traits from various types of surface
waves. Here, we focus on the other newly emerging combined
SWs on metamaterial structures, namely Dyakonov plasmons
(DPs),22,23 a combination of surface plasmons and Dyakonov
waves supported at the boundaries between dielectric and
hyperbolic metamaterials (HMMs).24 The diagonal compo-
nents of the HMMs’ permittivity tensors are of different signs,
giving rise to hyperbolic isofrequency contours in the k
(wavevector) space accompanied by singularities in the density
of optical states in an ideal lossless case. Natural material
equivalents of HMMs are often referred to as indefinite
media.25,26 Characteristically, HMMs and their two-dimen-
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sional analogues of metasurfaces possess a unique combination
of properties including large wavevectors available due to the
flat isofrequency contours, optical density of states, and
anisotropy. These features lead to a wide variety of HMMs’
potential applications, such as broadband enhancement in the
spontaneous emission for a single photon source,27,28

subwavelength imaging,29 sensing,30,31 thermal engineer-
ing,27,28,32 and steering of optical signals.33,34 To date, various
types of optical HMMs have been fabricated and characterized,
including LC circuit implementation for microwave fre-
quency,33 metal-dielectric multilayers,31,35−37 shallow metallic
gratings or metasurfaces,34,38,39 metallic pillar structures30,40,41

and fishnet structures.32 Most likely, HMMs will be employed
as the robust and versatile multifunctional photonic platform in
the broad range of operating wavelengths from visible34 to THz
regions42 and even in the microwave region.33

Here, we realize a hybrid bislab metamaterial platform for
midinfrared (mid-IR) surface photonics, providing flexible
engineering and adiabatic tuning of directivity and dispersion
of highly localized SWs, in particular DPs. Currently, infrared
(IR) light with wavelengths between 2.5 and 25 μm (4,000−
400 cm−1) is used for thermal imaging and molecular detection
(vibrational modes spectroscopy).43,44 In this wavelength range,
DPs with large wavevectors can enhance the sensitivity of the
sensing devices due to their ability to localize light at the
nanoscale. As noble metals are not suitable for confining light at
interfaces on mid-IR frequencies, the quest for alternative
materials has been ongoing, and a large variety of materials have
been proposed, such as transparent conductive oxides,43,45

doped III−V semiconductors,43 2D materials [graphene,
hexagonal boron nitride (hBN), etc.],46−48 and polar materials
such as large area patterned SiC.49−51

Directivity of SWs can be controlled by changing wave-
lengths and the dielectric environment on the interface of the

metamaterial platform, making it unique for the manipulation
of light on the surface. No conventional approaches for the
fabrication of HMM, including multilayer stacks31,35−37 and
wire medium,30,40,41 are able to provide a large area of the
working interface of the platform that supports DPs. Some of
the 2D materials, such as Bi2Se3

52 and hBN,53 are reported to
support a phonon polariton equivalent of DPs at the limited
space of their wedge for their phonon resonances in mid-IR
wavelengths. To attain such anisotropy, we base the platform
on a high aspect ratio (up to 1:20 and even more) trench
structures (Figure 1) fabricated using a combination of atomic
layer deposition (ALD) and dry etch techniques (see Figure S1
and related, Supporting Information). As a plasmonic material
required for the manifestation of effective hyperbolic
dispersion, we used aluminum-doped ZnO (AZO) exhibiting
the plasmonic response in the near and mid-IR wavelength
region.45,54,55 AZO can be deposited by the ALD techni-
que,56,57 allowing a conformal and uniform coating of deep
trenches. To the best of knowledge, only this fabrication
method can realize high aspect ratio plasmonic trench
structures, whereas silver metasurface structures with low
aspect ratio have been considered and realized.34 It can also
benefit from the tunability of plasmonic properties by means of
adjusting the doping concentration during the deposition to
optimize the loss for the wavelength region of interest.
The period of trenches (Λ = 0.4 μm) is deeply

subwavelength for the mid-IR wavelength range (Λ/λ = 1/
10−1/35 for λ= 4−14 μm), allowing introduction of effective
parameters. By controlling the etching time and rate accurately,
we can reach the desired Si etching depth. Thus, three principal
designs of HMMs can be obtained (Figure 1b−d): AZO
trenches embedded in Si (AZO/Si) or air (AZO/air) and a
hybrid bislab metamaterial of AZO/air on top of AZO/Si.
Consequently, the effective properties of the hybrid composite

Figure 1. Hybrid bislab plasmonic trench structure. (a) Illustration of an AZO trench structure in the Otto configuration based on a ZnSe prism for
the Fourier transform infrared (FTIR) spectrometer characterization. Note that there is an air gap between the ZnSe prism and the AZO trench
structure. The structure drawn is a bilayer of AZO/air trenches standing on AZO/Si ones on top of the Si substrate. Dyakonov plasmons and bulk
plasmon polaritons can be supported by such vertical trench structures in the hyperbolic dispersion range. The optical axis of the homogenized
metamaterial is perpendicular to the trenches. Scanning electron microscope (SEM) images of trench structures: (b) AZO/air, (c) AZO/air trench
on top of AZO/Si trench, and (d) AZO/Si. The structures have pitch Λ = 400 nm, the height of the entire trench structure H = 2.8−3.3 μm, the
height of AZO/air trench L, filling ratio of AZO layer, tAZO/Λ = 0.5 where tAZO is the thickness of the AZO layer. The trench structures are standing
on the Si substrate. Note that the height of the AZO/Si trench is H − L. The pitch of trenches is deeply subwavelength (λ/10 − λ/35) allowing
introduction of effective parameters in the mid-IR range. The scale bars are 1 μm for all figures. In this configuration, effective ordinary permittivity εo
and extraordinary permittivity εe are oriented along y- and z-axes and x-axis, respectively.

ACS Photonics Article

DOI: 10.1021/acsphotonics.7b00924
ACS Photonics XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.7b00924/suppl_file/ph7b00924_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.7b00924


structure can be accurately tuned to exhibit hyperbolic, elliptic,
or epsilon-near-zero (ENZ) dispersion regimes with a plethora
of ground-breaking applications including nonlinear optics.58,59

To the best of our knowledge, this is the first experimental
demonstration of directional surface (Dyakonov plasmons) and
guided (bulk plasmons polariton) waves in the mid-infrared
range on a metamaterial platform with a high degree of flexible
design parameters.

■ SURFACE AND BULK WAVES ON AIR-PLASMONIC
NANOTRENCH HYPERBOLIC METAMATERIALS

We start with the AZO/air nanotrench structures because they
are the simplest structure that supports both surface and bulk
waves. To find the wavelength range, where the existence
condition of DPs is met, we retrieve the effective permittivities
(ordinary εo and extraordinary εe) of the AZO/air structure
from the mid-IR reflection spectra (see Figure S2−4). As
shown in Figure 2a, the AZO/air trench structure has the zero
crossing wavelength for εo around λENZ = 2.5 μm and becomes
Type II HMM (εo < 0 and εe > 0)27 within an extremely wide
band at longer wavelengths. The existence condition for the
DPs is 0 < εc < |εo|,

23 where εc is the permittivity of the isotropic
media bordering with the HMM (in our case, εc = 1, air). As
highlighted in the inset of Figure 2a, the condition is satisfied
for λ > 4.0 μm.
One of the key assets of DPs is that they are hybrid

polarization waves. For that reason, therefore, they can be
excited by incident light of any polarization as opposed to
conventional SPPs, which are TM waves or Bloch surface wave

modes that are either transverse electric (TE) or transverse
magnetic (TM) depending on the specific design.11 We study
high in-plane directionality of surface waves in the AZO/air
trench structures in the mid-IR wavelength interval λ = 2.0−
14.0 μm (Figure 1a and Figure 2), upon mapping the
reflectance in the kx−ky space. The incident light reaches the
structure through a hemispherical ZnSe prism (Figure 1a)
arranged in the Otto configuration. Reflection spectra are
acquired under different angles of incidence and azimuthal
angles with respect to the structure orientation (see such maps
for λ = 6.0 μm in Figure 2b and c). The zones with low
reflectance outside the air light cone kx

2 + ky
2 = k0

2, where k0 = ω/
c, are potential candidates for SW bands because the SWs occur
beyond the light line. To elucidate the nature of the different
modes, we simulate the reflectance spectra of the AZO/air
structure in the Otto configuration (Figure 2e and f) and map
the field profiles as shown in Figure 2d. The reflectance spectra
maps (Figure 2b, c, e, and f) obtained in the hyperbolic regime
at λ = 6.0 μm clearly expose two bands. The profiles of the
electric field amplitudes plotted in three characteristic points
(A−C in Figure 2e) distinguish the surface and bulk waves
bands (Figure 2d). At point A, the fields are strongly confined
at the interface between air and the HMM featuring a SW
(Figure 2d, panel A). The confinement of the SW is changed at
higher in-plane wavenumbers (Figure 2d, panel B), suggesting
the unique feature to control the localization level of the fields
in the air via SWs without changing the wavelength. Plotting
the field map in point C (Figure 2d, panel C) enables us to
identify a bulk mode in the nanotrench layer with the energy
density concentrated predominantly inside the structure. The

Figure 2. Observation of surface and guided bulk waves in the AZO/air trench structure. (a) Fitted real parts of effective ordinary εo (blue) and
extraordinary εe permittivities (red) of an AZO/air trench metamaterial. The HMM range is marked in beige color. The inset shows in detail the
retrieved real permittivities in the wavelength range 2−5 μm. The vertical dashed line in the inset designates the boundary wavelength for the DPs
existence. (b,c) Experimental and (e,f) simulated reflectance in the wavevector space for λ = 6.0 μm with TM- and TE-polarized incident light. (d)
Corresponding numerical field profiles (absolute value of electric field) in points A−C from panel (e) and D from (f). The model includes the high
index prism, air gap (Hair = 0.5 μm), trench structure (L = 3.2 μm AZO/air on top of H − L = 0.1 μm AZO/Si), and Si substrate. Note that the light
line of the ZnSe prism is located in the external blue regions in (b,c,e,f). Wavenumber in vacuum is k0 = 2π/λ, where λ is the wavelength in vacuum.

ACS Photonics Article

DOI: 10.1021/acsphotonics.7b00924
ACS Photonics XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.7b00924/suppl_file/ph7b00924_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.7b00924


surface waves are definitely classified as DPs, and volume waves
correspond to guided bulk plasmon polaritons (BPPs),35 which
together represent the integral feature of the HMMs.24

Although the former band appears under both TM- and TE-
polarized incident light as expected for hybrid-polarized DPs
(see Figure 2d for field profile at point D in Figure 2f for TE
polarization), the latter appears only for TM light as expected
for SPPs and guided plasmonic modes.
The thickness of the air gap between the prism and trench

structure is evaluated by fitting the simulated reflection dips
with the experimental ones, giving the best matching for the
airgap of 0.5 μm (see details in Supporting Information, section
3 and Figure S5). Checking the wavelength dependency, we
observe that DPs emerge clearly after λ = 4.0 μm, exactly as
predicted by the effective parameters analysis in Figure 2a (the
condition is satisfied at λ > 4.0 μm) and extend to the high k-
region for longer wavelengths up to λ = 14.0 μm. Thus, their
broadband existence within the Type II hyperbolic region (see
Supporting Information, Figure S8 and Figure S9) is confirmed.
Importantly, the qualitatively good agreement between
simulated and experimental data (especially for TM polar-
ization) suggests a remarkable robustness of DPs and BPPs
against inevitable fabrication and characterization imperfec-
tions, such as the mixture of polarization.

■ SURFACE AND BULK WAVES ON HYBRID BISLAB
HYPERBOLIC METAMATERIALS

We now discuss the tunability of a nanotrench structure by
changing the vertical filling ratio of the air gaps with a residual
Si layer component. Indeed, the AZO/air trench structure
(Figure 1b) characterized above is the final product of the
complete etch of interstitial Si between the AZO layers. In
principle, the depth of Si etching L (or the AZO/air trench
height) is a free parameter, which defines the flexibility of the
initial AZO/Si template (Figure 1d) toward adjusting it to a
particular wavelength range. In Figure 1c, we show one
intermediate example of the controllable Si etch with L = 1.65
μm. Such a composite system can be interpreted as consisting
of two anisotropic trench structures of thicknesses L (AZO/air)
and H-L (AZO/Si) placed one above another. We will refer to
this configuration as the bislab model. Two extreme cases of the
composition are the pure AZO/Si slab (L = 0) together with
the pure AZO/air slab (L = H) discussed before. In general, the
bislab structure can be homogenized only with respect to each
of the slabs individually. Thus, it is modeled as a composition of
two serial homogeneous anisotropic slabs of thicknesses L and
H − L. In such a case, simulations of the bislab model can be
conducted again with a conventional transfer matrix method for

Figure 3. Transformation of band dispersion in the bislab structure for different etch depths of Si, L. Band dispersion in numerical reflectance maps
at λ = 3.0 μm for L = (a) 2.8, (b) 1.65, (c) 0.5, and (d) L = 0 μm; at λ = 5.0 μm for L = (e) 2.8, (f) 1.65, (g) 0.5, and (h) 0 μm, respectively. (j)
Definition of L and H (= 2.8 μm). Corresponding numerical field profiles (absolute value of electric field) in points A−C from panel (f). For the
purpose of clarity in bands presentation, losses in the AZO layers are reduced by 100-times. Colored quarter-circles designate the light cones for
ZnSe (green), Si (blue), and Ge (red).
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anisotropic structures (see Supporting Information, Figure S6
and Figure S7 for accuracy analysis).
We study the gradual changes in the properties of the bislab

structure upon tuning the etching depth of interstitial Si
between the AZO layers. We first show the evolution of the
guided BPP modes supported at λ = 3.0 μm with the gradual
filling of the trenches by silicon as shown in Figure 3a−d. We
also mark the light cone for ZnSe (green line), Si (blue), and
Ge (red) prisms, designating the areas within which modes can
be excited in our experimental setup. For better visualization of
the bands in Figure 3, the imaginary parts of effective
permittivities were reduced by 100-times, and data are
presented for the TM polarization because it can excite both
DPs and guided BPP modes. According to estimations, the
structure supports propagation of directional high-k DPs at λ >
4.0 μm, so we do not observe the signature of surface waves for
λ = 3.0 μm in the deep etch case with L = H (Figure 3a)
corresponding to the AZO/air structure (Figure 1b). Partial
filling of the interstitial voids with Si arranges better conditions
for guided bulk waves, as shown in Figure 3b (compare with
experimental result in Supporting Information, Figure S12b).
Further filling with Si up to L = 0.5 μm makes the isofrequency
contour remarkably flat (Figure 3c), leading to divergence-free
in-plane propagation.60 With L = 0 μm (Figure 3d), the case of
a pure AZO/Si slab (Figure 1d) is reached. The hyperbolic
modes become lossy due to the leakage into the substrate and
transit to the higher wavevectors range. Instead, the band with
an elliptic isofrequency contour manifests itself close to the
light cone.

We now show the evolution of the DP modes, which are
supported at hybrid bislab structures for λ = 5.0 μm (Figure
3e−h), where conditions for the DPs are satisfied for λ > 4.0
μm as discussed previously. The DP bands are clearly visible in
Figure 3e−g as the most intensive hyperbola-like curves (see
the corresponding experimental data in Supporting Informa-
tion, Figure S8d and Figure S12d). Because of the exponential
decay of the fields inside the structure for DPs, waves on the
upper slab do not feel the presence of the lower one for a rather
extended range of sizes L. It is remarkably exhibited in Figure 3f
with L = 1.65 μm, where the influence of the AZO/Si slab on
behavior of DPs is not significant, although we see the
drastically changed BPPs dispersion (see also Supporting
Information, Figure S7). When the exponential tail of the DP
fields reaches the lower high-index slab, it affects dispersion of
the SWs, distorting the band in Figure 3g for L = 0.5 μm.
Further filling with Si completely ruins conditions for the DPs
existence (Figure 3h).
To further confirm the bilayer system as a flexible platform

for directional high-k waves, we experimentally and theoret-
ically investigate the hybrid bislab (L = 1.65 μm) and single
AZO/Si (L = 0) samples (Figure 1c and d). The hybrid system
satisfies the existence condition for SWs in shorter wavelengths.
For λ = 5.0 μm (see Figure 4a, left row), the fields of SWs are
located mainly inside the AZO/air trench structure (Figure 4b,
panels A and B), thus exhibiting a hyperbolic dispersion.
However, at λ = 14.0 μm (Figure 4a, right row), confinement of
the fields worsen (Figure 4b, panel C), resulting in modification
of the dispersion and a more complex field profile. This

Figure 4. Surface waves on hybrid bislab trench structures. (a) Experimental and simulated reflectance in the wavevector space of the hybrid
structure composed from the AZO/air (L = 1.65 μm) layer on the AZO/Si layer (H − L = 1.15 μm) for TE-polarized incidence light at λ = 5.0 μm
(left row) and λ = 14.0 μm (right row). (b) Corresponding electric field profiles (absolute value of electric field) at points A−C. (c) Experimental
and simulated reflectance in the wavevector space of pure AZO/Si trenches (L = 0 μm, H = 3.2 μm) for TM-polarized light at λ = 5.0 μm (left row)
and λ = 14.0 μm (right row). (d) Fitted real and imaginary parts of the effective ordinary εo (blue) and extraordinary εe permittivities (red) for the
AZO/Si (L = 0 μm) trench structure. The vertical dashed line marks the boundary for the DP range.
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suggests that the DPs’ propagation direction can be controlled
efficiently over a large angular in-plane domain by varying the
wavelength. The mechanism of the surface wave’s dispersion
modification is that for longer wavelengths the tail of the
evanescent field of the SW residing on the AZO/air slab
protrudes through the slab and starts to interact with the AZO/
Si slab, thereby leading to elliptic dispersion. Hence, to support
DPs, we need a sufficiently deep trench structure, e.g., L = 1.65
μm for λ = 5.0 μm. In this regard, the hybrid bislab model
allows us to tailor the spectrally dependent directionality more
efficiently than single AZO/air or AZO/Si structures separately.
Such a system can exhibit Type I or Type II hyperbolic
dispersion, and transition points for the hyperbolic behavior
together with the relevant ENZ regime can be configured for
wavelengths in the range from 2.5 (Figure 2a) to 7.5 μm
(Figure 4d). The accuracy of the design-tuning properties is
granted by the mature technology of Si etching and
consequently precise control of the air-silicon filling fraction
in the interstitial spaces between AZO lamellas. In other words,
the effective properties can be accurately tuned by the height of
the AZO/air trench structure positioned directly on top of the
AZO/Si multilayer. Such tunability is the main benefit of our
hybrid bislab nanotrench structures.
In the case of the original pure AZO/Si trenches not

undergoing any Si etching (L = 0), the elliptic dispersion of TM
modes (Figure 4c) is completely different from what we
observed in the case of the AZO/air multilayer (see Figure 2b
and e). SWs exist for λ > 10.0 μm, where the structure is Type
II HMM (Figure 4d). The normalized wavevector or effective
mode index of the SWs on the AZO/Si structure must exceed
(Re(εe))

1/2 ∼ 5, which is higher than what can be reached with
assistance of a ZnSe (n = 2.4) or even a Ge (n = 4.0)13 prism.
Therefore, the bands visible in the reflection spectra mapping
(Figure 4a and c) are leaky bulk modes existing in anisotropic
dielectric (λ = 5.0 μm) or hyperbolic (λ = 14.0 μm)
metamaterials. Again, we would like to emphasize the good
qualitative correspondence of the experimental results in Figure
4 with numerical pictures from Figure 3e to 3h despite the
heavily reduced losses in modeling.
For the mid-IR wavelengths, some of two-dimensional

materials are known to support surface waves and bulk
modes, such as plasmons on graphene, hyperbolic phonon-
polaritons in hBN, and chiral plasmons on MoS2.

47,48 Recently,
hyperbolic surface phonon-polaritons, which are the phonon-
polariton equivalent of Dyakonov plasmons, have been
observed at the wedge of a topological insulator Bi2Se3 proven
by electron energy loss spectroscopy52 and hBN by scattering-
type scanning near-field optical microscope.53 However,
because of the resonance character of phonon-polaritons, the
existence of most of these modes is restricted to narrow bands
attributed to specific materials. On the contrary, the DPs on the
trench structures are shown to exhibit broadband existence
(from 4 μm to at least 14 μm and beyond) as well as unique
properties such as directionality and controllable localization.
Furthermore, our deep subwavelength nanotrenches offer the
possibility to tune the surface and bulk modes in the hybrid
bislab HMM platform upon tuning (1) the material properties
by adjusting the amount of doping Al concentration in ZnO
and (2) the effective (metamaterials) properties by controlling
the thickness of AZO/air slab on AZO/Si structures in the
hybrid bislab configuration. Such flexibility and broad para-
metric space in the optimization regime enable tuning (1) of
the operational wavelength from mid-IR to THz ranges and (2)

the direction of Dyakonov plasmon propagation. In principle,
further strong and fine-tuning of a given trench structure may
also be activated by electric gating of the AZO layers.61−63 The
demonstrated HMMs can be harnessed with 2D materials to
hybridize optical modes from both parts because the broadband
existence of DPs extends over all operating wavelengths of 2D
materials in the mid-infrared region.47,48 Moreover, highly
localized SWs may enhance nonlinearity of AZO layers.
In conclusion, we characterize directional surface waves

supported by the deep trench structures in the mid-infrared
wavelength range. The structures are based on multiple high-
aspect ratio (1:20) subwavelength AZO trenches embedded
into the supporting Si substrate. Well-established Si etching
technology is used to fabricate either a single slab with pure
AZO/air trenches or a hybrid bislab with AZO/air trenches on
top of AZO/Si trenches. All fabrication steps are supported by
the large-scale complementary metal oxide semiconductor
(CMOS)-compatible highly reproducible technological ap-
proaches. An AZO/air trench structure performs as a
broadband HMM. We observed two bands of directional
waves classified further as surface DPs and guided BPPs
according to the field confinement mapping. Existence
conditions for different regimes of such directional waves can
undergo very fine adjustment by tailoring the relative
thicknesses of the hybrid bislab structures. The broadband
hyperbolic behavior of the trench structure allows for the
wavelength sweeping regime, and electrical gating of the AZO
material can be an additional mechanism of the performance
tuning. Our demonstration of SW behavior in the deep trench
structured platform can be conceptually extended to other
wavelength regimes such as the near-infrared, THz, and even
the visible one by the choice of the relevant material platform.
This could enable, for instance, the use of DPs with controllable
dispersion for photonics applications as routing and switching
of optical signals. Indeed, optical nonlinearities are expected to
be high as well in the AZO-based metamaterial. Confinement of
light close to the interface can also be effectively used for mid-
IR spectroscopy to detect traces of analyte molecules via surface
wave-enhanced sensing.44,64 Furthermore, the open air volume
inside the hybrid nanotrenches would be free for infiltration of
analytes in gaseous and a solution environment, allowing for
both surface DP and guided BPP resonance shifts.65 In such a
perspective, functionalization of the AZO trench walls can be
proposed as a further step for label-free biosensing experiments.
Finally, fluorescence emitters could channel their radiation
directly in the high directional surface modes or allow for
strong-coupling of the nanotrench photonic modes with
embedded exciton modes.

■ SAMPLE FABRICATION
Al-doped ZnO (AZO) high aspect ratio trench structures were
prepared by combining atomic layer deposition (ALD) and dry
etch techniques. The use of ALD in combination with a
sacrificial Si template is a novel way to create high aspect ratio
structures of metal oxides. The process starts with the
fabrication of a silicon trench template using deep reactive
ion etching, and the template is conformal-coated with an AZO
film using ALD. The thickness of the coating should be at least
half of the maximum distance between the Si trenches to fill the
spacing between them. The top part of the AZO coatings can
be removed by dry etching using Ar+ ion sputtering. Then, the
silicon layers can be etched away selectively by a conventional
SF6-based isotropic Si dry etch process. Supporting Information
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Figure S1 shows a schematic of the described fabrication flow.
This approach enables us to fabricate high-quality optical
metamaterials with high aspect ratio (20:1) on 2 × 2 cm2 or
even larger areas.

■ FTIR SPECTROMETRY AND FITTING
The reflectance spectrum of a 100 nm thick AZO film
deposited on a double-sided polished silicon wafer is measured
at 12° incident angle using a VERTEX 70 FTIR spectrometer
from Bruker (Supporting Information, Figure S2). The
measurements were performed at five different points on the
sample to obtain averaged data. The reflectance from the
sample is calculated using the intensity transfer matrix
method66 and the Drude model for the permittivity of AZO.
The calculated reflectance spectrum is then fitted to the
measured one using an algorithm based on the Levenberg−
Marquardt method67 to find the parameters of the Drude
model (high-frequency dielectric constant, plasma frequency,
and damping) for AZO (Supporting Information, Table S4).
Our AZO films prepared by ALD deposition exhibit a zero
crossing wavelength of around 1.8−2.0 μm for highly doped
samples.57

A similar procedure is carried out for both AZO/Si and
AZO/air trench structures where samples are oriented so that
the electric field is parallel to the trenches when measuring the
reflectance of ordinary waves and perpendicular to the trenches
when measuring the reflectance of extraordinary waves
(Supporting Information, Figure S3). Considering the
Drude−Lorentz model for the ordinary permittivity and the
Lorentz model for the extraordinary permittivity, we obtained
the effective permittivities (Supporting Information, Table S5
and Figure S4).

■ THEORETICAL ANALYSIS
The reflectance maps in Figure 2−4, and Supporting
Information Figure S5−S7, are calculated using the transfer
matrix method for anisotropic media.68 The components of the
effective permittivity tensor are restored from the measurement
of the reflectance spectra for different polarizations of the
incident wave. The profiles of electric field intensity in Figures
2 and 4 are calculated using full-wave numerical simulations
with Comsol Multiphysics (COMSOL AB, Stockholm,
Sweden). Because of translation symmetry of the structures
along the trenches, we simulated the model in 2D geometry
(x−z plane in Figure 1a). The simulation domain consists of a
single unit cell with the Floquet boundary conditions. The
incident wave is set through the port boundary condition. The
infinite thickness of the substrate is simulated by adding a
perfectly matched layer.

■ PRISM COUPLING EXPERIMENT
Our experimental setup is based on the Otto configuration (see
Figure 1a) mounted on an FTIR spectrometer (VERTEX 70,
Bruker). We adopted the Otto configuration because the
Kretchmann configuration is not feasible due to the thick Si
substrate. A hemispherical ZnSe prism is placed on the sample
with an unavoidable air gap between the prism and the trench
structures. The ZnSe prism is used due to its high refractive
index and transparency in the mid-IR region (transparency
window is between 0.6 and 17.0 μm, and its refractive index
ranges from 2.60 to 2.35). The measurements were conducted
in the wavelength range of λ = 2.0−16.6 μm (5000−602 cm−1)

for both TE- and TM-polarized incident light for the three
different structures as shown in Supporting Information,
Figures S8−S13. A wire grid polarizer is used for controlling
the incident polarization. The input light from the thermal light
source of the FTIR spectrometer is linearly polarized in either
TM polarization, the magnetic field in the x−y plane, or in TE
polarization, the electric field in the x−y plane. The beam is
focused on the structure through a parabolic mirror and the
ZnSe prism.
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