

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Cache-mesh, a Dynamics Data Structure for Performance Optimization

Nguyen Trung, Tuan; Dahl, Vedrana Andersen; Bærentzen, Jakob Andreas

Published in:
Procedia Engineering

Link to article, DOI:
10.1016/j.proeng.2017.09.807

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nguyen, T. T., Dahl, V. A., & Bærentzen, J. A. (2017). Cache-mesh, a Dynamics Data Structure for Performance
Optimization. Procedia Engineering, 203, 193-205. DOI: 10.1016/j.proeng.2017.09.807

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/112373401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.proeng.2017.09.807
http://orbit.dtu.dk/en/publications/cachemesh-a-dynamics-data-structure-for-performance-optimization(3bebb3e7-5eee-4605-a3ac-4fccc4e4eff5).html

ScienceDirect

Available online at www.sciencedirect.com

Procedia Engineering 203 (2017) 193–205

1877-7058 © 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.
10.1016/j.proeng.2017.09.807

10.1016/j.proeng.2017.09.807

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

1877-7058

Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

26th International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain

Cache-mesh, a Dynamics Data Structure for Performance
Optimization

Tuan T. Nguyena,∗, Vedrana A. Dahla, J. Andreas Bærentzena

aTechnical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs. Lyngby, Denmark

Abstract

This paper proposes the cache-mesh, a dynamic mesh data structure in 3D that allows modifications of stored topological
relations effortlessly. The cache-mesh can adapt to arbitrary problems and provide fast retrieval to the most-referred-to topological
relations. This adaptation requires trivial extra effort in implementation with the cache-mesh, whereas it may require tremendous
effort using traditional meshes. The cache-mesh also gives a further boost to the performance with parallel mesh processing by
caching the partition of the mesh into independent sets. This is an additional advantage of the cache-mesh, and the extra work for
caching is also trivial. Though it appears that it takes effort for initial implementation, building the cache-mesh is comparable to a
traditional mesh in terms of implementation.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Keywords: cache, geometry processing, dynamics structure, data structure, performance optimization

1. Introduction

3D meshes are an essential part of computational geometry processing, with applications in finite element methods,
deformable bodies, fluid simulation, topology optimization, visualization, etc. For mesh processing, we are generally
concerned about mesh quality, memory usage and performance. All of these factors are important, but for dynamic
meshes where geometry and topology change frequently, performance is often a very high priority. This paper dis-
cusses performance optimizations for 3D meshes which do not compromise the quality and add just a small increase
in memory usage.

A mesh consists of entities, e.g. vertices, edges, faces and tetrahedra in a tetrahedral mesh. It also consists of a
topology that describes the relations between these elements. There are many different types of topological relations,
although, typically, only a few such relations are stored to ensure memory efficiency and simplify the implementation.
The other relations must be calculated, and the complexity of this operation depends on the number of indirections
from one mesh entity to the set of entities that we need. It can be time-consuming, especially in high-dimension
meshes. To be more specific, we define R(k) as the mapping from an entity k to the set of entities R that we seek.
An analysis of the performance of R(k) in ten common mesh data structures can be found in [20]. Fig. 1 shows

∗ Corresponding author. Tel.: +45-4525-5984
E-mail address: tntr@dtu.dk

1877-7058 c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

26th International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain

Cache-mesh, a Dynamics Data Structure for Performance
Optimization

Tuan T. Nguyena,∗, Vedrana A. Dahla, J. Andreas Bærentzena

aTechnical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs. Lyngby, Denmark

Abstract

This paper proposes the cache-mesh, a dynamic mesh data structure in 3D that allows modifications of stored topological
relations effortlessly. The cache-mesh can adapt to arbitrary problems and provide fast retrieval to the most-referred-to topological
relations. This adaptation requires trivial extra effort in implementation with the cache-mesh, whereas it may require tremendous
effort using traditional meshes. The cache-mesh also gives a further boost to the performance with parallel mesh processing by
caching the partition of the mesh into independent sets. This is an additional advantage of the cache-mesh, and the extra work for
caching is also trivial. Though it appears that it takes effort for initial implementation, building the cache-mesh is comparable to a
traditional mesh in terms of implementation.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Keywords: cache, geometry processing, dynamics structure, data structure, performance optimization

1. Introduction

3D meshes are an essential part of computational geometry processing, with applications in finite element methods,
deformable bodies, fluid simulation, topology optimization, visualization, etc. For mesh processing, we are generally
concerned about mesh quality, memory usage and performance. All of these factors are important, but for dynamic
meshes where geometry and topology change frequently, performance is often a very high priority. This paper dis-
cusses performance optimizations for 3D meshes which do not compromise the quality and add just a small increase
in memory usage.

A mesh consists of entities, e.g. vertices, edges, faces and tetrahedra in a tetrahedral mesh. It also consists of a
topology that describes the relations between these elements. There are many different types of topological relations,
although, typically, only a few such relations are stored to ensure memory efficiency and simplify the implementation.
The other relations must be calculated, and the complexity of this operation depends on the number of indirections
from one mesh entity to the set of entities that we need. It can be time-consuming, especially in high-dimension
meshes. To be more specific, we define R(k) as the mapping from an entity k to the set of entities R that we seek.
An analysis of the performance of R(k) in ten common mesh data structures can be found in [20]. Fig. 1 shows

∗ Corresponding author. Tel.: +45-4525-5984
E-mail address: tntr@dtu.dk

1877-7058 c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.807&domain=pdf

194 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205
2 Nguyen et al. / Procedia Engineering 00 (2017) 000–000

three examples from [20], namely F1, F3 and R1, and Tab. 1 shows the memory operation counts (storage, retrieval,
assignment and comparison of topological relations) of topology retrieval for these three meshes. We can see that the
memory operation counts are significantly different, even though we only consider a subset of relations. In general
cases, topology relations are more complex and memory operations vary even more.

Tetrahedron

Face

Edge

Vertex

(a) F1 mesh representation

Tetrahedron

Face

Edge

Vertex

(b) F3 mesh representation

Tetrahedron

Face

Edge

Vertex

(c) R1 mesh representation

Fig. 1. Three data structures analysed in [20]. The arrow denotes stored adjacent relations. (a) Full one-level upward and downward adjacencies.
(b) Full downward adjacencies and upward adjacencies from vertices to faces and faces to tetrahedra. (c) Reduced representation: Only vertices,
tetrahedron and their adjacent relations in both ways are stored.

Table 1. Comparison of topology retrival in memory operation count for three mesh data structures in Fig. 1, adopted from [20]. The notations V,
E, F, T denote vertex, edge, face and tetrahedron, respectively.

Type F(T) E(T) V(T) T(F) E(F) V(F) T(E) F(E) V(E) T(V) F(V) E(V)

F1 4 36 30 2 3 13 50 5 2 619 399 14
F3 4 36 30 2 3 13 297 252 2 360 35 840
R1 72 58 4 302 24 3 214 721 2 23 3462 1969

We discuss the topology retrieval because it is one of the main factors that affect the performance. As mesh
processing mainly deals with the topology, including inquiries, evaluation and modification, it leads to a large number
of references to topological relations. Consequently, the data structure should provide fast retrieval of the most
commonly used relations for a given problem. Unfortunately, this is not a straightforward process because the statistics
of the topology retrievals differ greatly from one problem to another.

Generally, one avoids modifying the data structure of a mesh, because adding or removing one type of topological
relation requires the modifications in all topological functions (functions that include topology changes). For this
reason, the common approach for performance optimization is to select a suitable data structure, and this includes two
steps: 1) profile the data references in the problem; and 2) then select a suitable data structure based on that statistic.
There are limitations in this approach. First, because we are looking for something very specific, it may not exist, and
often creating a bespoke data structure is not an option. Second, in order to profile the data reference, we need the
problem to be implemented in advance. This means we solve and profile the problem with a pilot data structure, and
then exchange it with an optimized data structure in the final phase. However, the extra effort for this replacement is
also not negligible.

This paper proposes the cache-mesh; a dynamic mesh data structure that can be modified with trivial effort. The
cache-mesh consists of a core mesh and a cache layer that stores extra topological relations. Our compelling advantage
is the ability to change the types of stored topological relations at minor additional cost, which makes data structure
optimization straightforward. Furthermore, the use of caching does not add much complexity if we decide to cache
one more entity type.

Finally, yet importantly, we can store uncommon data, which rarely appears in a mesh data structure. We will
demonstrate an example in which caching entity attributes helps in enabling parallel mesh processing for 3D meshes.
Though the cache-mesh may sound complicated to implement, it can be achieved with little effort using an existing
mesh framework as the core mesh.

 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205 195
Nguyen et al. / Procedia Engineering 00 (2017) 000–000 3

2. Related work

2.1. Mesh data structures

Meshes differ mainly in the types of topological relations they store. Based on this difference, the authors in [15]
categorize general mesh data structures into three groups: incidence-based, which stores incident relations, including
boundary and co-boundary entities; adjacency-based, which stores adjacent relations, including close, adjoining or
neighboring entities; and edge-based, which considers edges primary and store their relations with other entities.
However, possible data structures are much more varied, with many proposals from previous research. The reader
can refer to [15] for a data structure for simplicial complex, [20] for a data structure of finite element analysis (FEA)
applications, and [1] for common index-based representation. In this section, we will discuss some typical data
structures that store different amounts of topological relations.

The most fundamental mesh structure consists of vertices, and the highest order elements with their vertices, as
in Fig. 1(c). For example, in a tetrahedral mesh we store the vertices, the tetrahedra and a topology that defines four
vertices for each tetrahedron [37]. This data structure is compact, simple and suitable for finite element analysis which
only queries the tetrahedra. Clearly, it is not optimal for problems that need topological relations, since these need to
be inferred.

It is true that the higher the amount of stored topological relations, the better the performance [20]. However, this
also raises the complexity in implementation as well as the memory usage. For this reason, mesh structures commonly
stop short of storing all intermediate relations. Another example is the simplicial complex mesh [12], an incidence-
based mesh that stores all boundaries and co-boundaries of the entities, as in Fig. 1(a). Such simplicial complex mesh
can be considered the top-performance data structure in practice. Between this representation and the fundamental
representation, there are several proposals that store different entities and topological relations: Primarily downward
adjacencies [24], reduced incidence-based [14], only downward adjacency [9], etc.

Another approach is edge-centered representation that stores the edges and their relations to other entities. As
vertices and faces are directly related to edges, this approach allows constant time adjacencies retrieval in 2D meshes.
Several edge-centered data structures have been proposed: Winged-edge [3], half-edge [5], quad-edge [21], etc. For
higher dimension, edge-based meshes are known for the advantages of oriented navigation, flexible modification, and
the ability to generalize meshes in any dimension (e.g. Linear Cell Complex in CGAL [10,11]). Unfortunately, the
performance becomes a huge drawback because there is no direct connection from the low-order entities to the high-
order entities. Some researchers try to overcome this problem by combining edge-centered, face-centered structures
with additional incidence relations [1,6,26]. Again, this raises the question of which relation sets should be stored.

In [4], the authors provide a memory comparison of different data structures. The comparison covers a wide
range of different methods, although there is a lack of consideration for the problems that utilize the mesh. For this
reason, they do not have criteria for measuring the overall performance and are not able to provide a performance
comparison. In [20], the authors try to put the comparison into a real use case. They estimate the computation time
using the statistic of topology references from one problem in the MEGA software [39]. One certain limitation is that
their conclusion may not hold true for other problems.

One idea to make the data-structure optimization straightforward is a dynamic structure that can change its data
effortlessly. This has appeared in the literature. In [27], the authors propose a multiple adjacency data set that allows
users to choose between four different levels. The higher level uses more memory but improves the performance. The
limitation of this approach is inflexibility, as users cannot choose the other data set they would like.

2.2. CPU cache and geometry processing

Caching is a technique that stores data for faster re-retrieval. The early idea of caching appeared in CPU architecture
[13], when the gap between virtual memory access and register access increased. At software level, the CPU cache is
utilized efficiently with compiler optimization [8] and cache-efficient algorithms [42].

Much research has considered CPU cache optimization for geometry processing with fixed meshes. The popular
approach is to sort the data for optimal memory access. In [43–45], the authors propose a data layout for rendering and
a boundary volume hierarchy for collision detection. In [7,22,29], CPU caches are mentioned for optimal rendering.
In [35], the authors propose edge traverse for cache optimization, and also for rendering. Generally, a space-filling

196 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205
4 Nguyen et al. / Procedia Engineering 00 (2017) 000–000

curve [34,36] is utilized to store a cache-friendly layout. The limitation is that this can only be used for a fixed mesh.
For a mesh that is dynamic, it is difficult to utilize such a low-level CPU cache.

For a dynamic mesh, caching appears at a higher level and serves as precomputed data. Examples are the precom-
puted polygon surface of NURB in [28] for collision detection; and the precomputed distance field in [41], also for
collision detection. However, they do not include the ability to change the topology of the mesh. Not as much research
contains cache for mesh with topological changes, as this raises the complexity in implementation. In summary, a
CPU cache-efficient geometry-processing algorithm is only available for fixed meshes. For dynamic meshes, cache
appears as precomputed data and is limited to its specific problem.

3. Some terminologies

This paper is concerned with 3D meshes, and our experiments utilize a tetrahedral mesh. As discussed above, a
meshM contains entities linked by a topology. In geometry processing, we often refer to star and link in topology. For
a single entity x, the star of x comprises all the entities that contain x. The closed star of x is the smallest subcomplex
that contains the star of x. The link of x is the subtraction of the closed star and the star of x (Fig. 2).

a b c d

Fig. 2. A vertex (a), its star (b), its closed star (c), and its link (d)

Table 2. Complete list of first-order adjacencies (Ordered edges and ordered faces mean the entities are stored by a specific orientation)

Entity First-order adjacencices

Vertex (V) faces, edges, tetrahedra
Edge (E) vertices, faces, tetrahedra
Face (F) vertices, edges, ordered edges, tetrahedra
Tetrahedron (T) vertices, edges, faces, ordered faces

Commonly used topological relations are incidence and adjacency relations. Incidences are boundary and co-
boundary: boundary of an entity x is the set of one-level-lower entities that belong to x; co-boundary of x is the set
of one-level-higher entities whose boundaries contain x. Adjacencies are more general relations to entities which are
close, adjoining or neighboring. For simplicity, meshes often store only first-order adjacencies (entities within the
star of an entity, Tab. 2). In this paper, these commonly stored topological relations are called regular. In contrast,
irregular relations are more complex and rarely appear in general mesh data structure.

4. The cache-mesh

In the following, we focus on the application of caching to 3D tetrahedral meshes. While e.g. triangle meshes might
also benefit from caching, the utility is larger for 3D simplicial complexes since the number of possible relations is
larger making it more expensive to maintain the full set of possible relations.

A mesh basically provides two functionalities: querying and modifying. Normally, query of un-stored topological
relations leads to the computations of that data in every query, see Fig. 3(a). The cache-mesh has the same purposes
but provides a cache query, where the data is kept for later access. The caching data can be any topology-related data,
i.e. it may change when a topological event occurs. The cache-mesh is, in fact, a normal mesh with a cache layer that
consists of the caching data and two functions: invalidation and storage, see Fig. 3(b). Sec. 4.1 will describe how the
data is stored and how the storage function works; Sec. 4.2 will describe the invalidation process.

 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205 197
4 Nguyen et al. / Procedia Engineering 00 (2017) 000–000

curve [34,36] is utilized to store a cache-friendly layout. The limitation is that this can only be used for a fixed mesh.
For a mesh that is dynamic, it is difficult to utilize such a low-level CPU cache.

For a dynamic mesh, caching appears at a higher level and serves as precomputed data. Examples are the precom-
puted polygon surface of NURB in [28] for collision detection; and the precomputed distance field in [41], also for
collision detection. However, they do not include the ability to change the topology of the mesh. Not as much research
contains cache for mesh with topological changes, as this raises the complexity in implementation. In summary, a
CPU cache-efficient geometry-processing algorithm is only available for fixed meshes. For dynamic meshes, cache
appears as precomputed data and is limited to its specific problem.

3. Some terminologies

This paper is concerned with 3D meshes, and our experiments utilize a tetrahedral mesh. As discussed above, a
meshM contains entities linked by a topology. In geometry processing, we often refer to star and link in topology. For
a single entity x, the star of x comprises all the entities that contain x. The closed star of x is the smallest subcomplex
that contains the star of x. The link of x is the subtraction of the closed star and the star of x (Fig. 2).

a b c d

Fig. 2. A vertex (a), its star (b), its closed star (c), and its link (d)

Table 2. Complete list of first-order adjacencies (Ordered edges and ordered faces mean the entities are stored by a specific orientation)

Entity First-order adjacencices

Vertex (V) faces, edges, tetrahedra
Edge (E) vertices, faces, tetrahedra
Face (F) vertices, edges, ordered edges, tetrahedra
Tetrahedron (T) vertices, edges, faces, ordered faces

Commonly used topological relations are incidence and adjacency relations. Incidences are boundary and co-
boundary: boundary of an entity x is the set of one-level-lower entities that belong to x; co-boundary of x is the set
of one-level-higher entities whose boundaries contain x. Adjacencies are more general relations to entities which are
close, adjoining or neighboring. For simplicity, meshes often store only first-order adjacencies (entities within the
star of an entity, Tab. 2). In this paper, these commonly stored topological relations are called regular. In contrast,
irregular relations are more complex and rarely appear in general mesh data structure.

4. The cache-mesh

In the following, we focus on the application of caching to 3D tetrahedral meshes. While e.g. triangle meshes might
also benefit from caching, the utility is larger for 3D simplicial complexes since the number of possible relations is
larger making it more expensive to maintain the full set of possible relations.

A mesh basically provides two functionalities: querying and modifying. Normally, query of un-stored topological
relations leads to the computations of that data in every query, see Fig. 3(a). The cache-mesh has the same purposes
but provides a cache query, where the data is kept for later access. The caching data can be any topology-related data,
i.e. it may change when a topological event occurs. The cache-mesh is, in fact, a normal mesh with a cache layer that
consists of the caching data and two functions: invalidation and storage, see Fig. 3(b). Sec. 4.1 will describe how the
data is stored and how the storage function works; Sec. 4.2 will describe the invalidation process.

Nguyen et al. / Procedia Engineering 00 (2017) 000–000 5

Mesh kernel Application

Compute
topology

Edit mesh
Modify

Query

(a) Normal mesh

Mesh kernel Cache Application

Cache Query
Query

Store

Modify

Invalidate
Edit mesh

Compute
topology

If not exist

(b) Cache-mesh

Fig. 3. Components of a normal mesh and the cache-mesh

4.1. The cache component

A mesh data structure often stores mesh entities in arrays for optimal memory and performance. Any mesh entity
is accessed by its array index, and this index is used as the unique ID for the entity. The mesh kernel must be able to
provide topology references of any type, and we call this topology-retrieval function: get data〈data type〉(ID). Here,
〈data type〉 denotes a template which can change to any type of topological relations, and ID is the index of an entity.
The 〈data type〉 can also be a topology-related attribute that changes when the topology is modified.

Cache component

map:(data_type) - (data array)

get_data_cache<data_type >(ID)

Invalidate(ID)

Fig. 4. Data structure of the cache component

Algorithm 1: get data cache function
Input: MeshM, cache C, data type, ID

1 if C.map[data type] does not exist then
2 Allocate C.map[data type]

3 if C.map[data type][ID] does not exist then
4 C.map[data type][ID] =

M.get data〈data type〉(ID)
Output: C.map[data type][ID]

The cache component is an independent component, and it replaces some get data functions. The structure of the
cache component is shown in Fig. 4. We utilize a map to manage the caching relations, and the map is empty in the
beginning. If a new type of topological relation is requested, we allocate a corresponding data type and data array in
the map.

The cache component has two functions: get data cache() that replaces the normal get data() function; and inval-
idate() to clean the outdated cache. As mentioned above, the get data cache function is an upgrade from the normal
get data function as shown in Alg. 1. The reference locality (miss/hit rate of the second if-then instruction) determines
the performance gain, and it will be analyzed in Sec. 5.3.

The effort to implement this function is trivial as only little code is added to give the priority to the cached relations
and to call the get data function if the data has not been cached. In fact, get data cache functions differ only in the
data type of the caching relations. By utilizing template, we only need one template function, and other get data
functions can be upgraded to get data cache with one line of code. A sample implementation of the cache component
in C++ can be found in Github [33].

4.2. Invalidate cache in common meshing procedures

Cache validation aims to maintain the accuracy of the caching topological relations. When a topology event occurs
and changes the mesh, the cached relations may be different from the true data, hence the invalid cached data must
be removed. The cache invalidation process is to find the affected entities in all topological functions. Though it may
sound as if cache invalidation involves a lot of work, most geometry algorithms are the combinations of a few basic
procedures, hence we only need to invalidate the cache in these basic functions.

To find the affected entities, we find the affected tetrahedra in the meshing procedure. The affected entities are all
entities inside these tetrahedra (including vertices, edges, faces and the tetrahedra themselves). We limit the caching

198 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205
6 Nguyen et al. / Procedia Engineering 00 (2017) 000–000

topology relations to the closed star of the key entity. Note that knowing the deleted/added entities is required in
these procedures in order to update the stored relations in the kernel mesh, we can utilize this information to find the
affected tetrahedra.

v1

v2 v2

v1

(a) (b) (c)

multi-face
to remove {f}

(d)

Fig. 5. Common topological algorithms. (a) Collapse edge by merging vertices. (b) Collapse edge with minimal topological change. (c) Edge split.
(d) Multi-face removal.

Common and basic 3D meshing procedures are edge collapse, edge split, and face flip [18,25,32]. The 3D face flip
algorithm is the generalization of the 2D edge flip, and it is called the multi-face removal algorithm [40]. Demonstra-
tions of these algorithms are shown in Fig. 5. The affected tetrahedra in the four algorithms in Fig. 5 are described in
Tab. 3.

Table 3. Affected tetrahedra of common meshing algorithm in Fig. 5

Procedure Merging vertices Collapse edge Edge split Multi-face removal

Affected tetrahedra Tetrahedra in the intersection Tetrahedra in the star Tetrahedra in the star Co-boundary tetrahedra of the
of stars of v1 and v2 of the collapsing edge of the splitting edge faces that are being removed

4.3. Utilizing the cache-mesh and profiling the references of topological relations

The utilization of the cache-mesh depends on whether the user-implemented functions contain topological changes
in the mesh. The two situations will be described in two examples in Sec. 5.2 and Sec. 5.3. Generally, we follow three
steps: integrate the cache component to the kernel mesh (omit this step if the cache-mesh is already integrated); profile
the topology references; and update the get data functions of bottleneck topological relations to get data cache.

For profiling, our criteria are the number of calls and the computation time of the topology retrieval functions –
one example is in Tab. 6. Of these two, the computation time has greater influence on deciding which topological
relations are the bottleneck.

Another criterion for profiling is theoretical analysis of the algorithm, which is efficient for finding irregular topo-
logical relations references. These irregular relations should be within the closed star of the key entity since we limit
the cache invalidation in the closed star.

5. Some practical examples

This section describes three examples of using the cache-mesh: quantitative information measurements (Sec. 5.2),
where no topological event occurs; mesh processing (Sec. 5.3), where topological events occur; and parallel mesh
processing (Sec. 5.4). This section will only shows methods and results, explanation of the results and discussion will
be carried out in Sec. 6.

5.1. Experiment set-up

In all experiments, we utilize a tetrahedral mesh representing an armadillo. The specifications of the mesh are
shown in Tab. 4. The kernel mesh is a simplicial complex mesh [12] that stores boundary and co-boundary of the
entities as shown in Fig. 1(a). When needed, the deformation and topology changes of the test object are handled by

 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205 199
Nguyen et al. / Procedia Engineering 00 (2017) 000–000 7

(a) (b) (c)

Fig. 6. The Deformable Simplicial Complex (DSC) labels the tetrahedra to represent different objects. (a) The DSC interface, which represents an
armadillo, in its domain. (b) The interface and a cross-section of the DSC domain. (c) A cross-section of the whole mesh.

Deformable Simplicial Complex (DSC [31]), an explicit interface tracking method. See Fig. 6 for armadillo in DSC
domain. In Sec. 5.3 we optimize performance of DSC, and there we describe the DSC algorithm in more detail. We
use rotation and averaging motion for the experiments, see Fig. 7.

The specification of the mesh is shown in Tab. 4. The specification of the experimenting computer: Scientific
Linux release 6.4 (Carbon) with 4 cores 2.5GHz CPU; 16GB of RAM; CPU cache: 32K L1d-cache, 32K L1i-cache,
256K L2-cache and 30M L3-cache. We use the gcc 7.1 compiler with -Wall -O3 flags. We utilize “Oracle studio
12.5 performance analyzer” for all measurements. We perform each experiment three times, and we always observe
consistent results.

(a) Initial mesh (b) Averaging iteration 20 (c) Averaging iteration 50 (d) Averaging iteration 130

(e) Initial mesh (f) Rotation iteration 20 (g) Rotation iteration 70 (h) Rotation iteration 110

Fig. 7. Averaging motion (top row) and rotation motion (bottom row). The figures show a cross-section of the tetrahedral mesh that represent an
armadillo.

5.2. Example 1: Extracting measurements with the cache-mesh

We first demonstrates optimizing the performance of operations which do not involve topological changes. In
this example we measure quantitative information from the mesh: object volume; surface curvature; gradient of

200 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205
8 Nguyen et al. / Procedia Engineering 00 (2017) 000–000

Table 4. Mesh specification of the armadillo model. Interface vertices and interface faces are the entities on the armadillo surface.

vertices # interface vertices # edges # faces # interface faces # tetrahedra

4,872 2,164 33,738 57,518 4,324 28,651

volume with respect to the displacement of the interface vertices; and energy change due to vertices displacements
(the energy requires the information of the region around the vertex). These 4 measures are collected in between the
(not-optimized) DSC-handled deformations of the object under an averaging motion and a rotation motion, resulting
in 8 experiments.

To utilize the cache-mesh, we follow three steps in Alg. 2 (whereas there are four steps with traditional meshes in
Alg. 3). In the Alg. 3, though the cache-mesh is not utilized, profiling is still necessary in order to select/build a data
structure that fits the problem. In the current examples, the algorithms are known in advance, therefore we can analyze
the set of the bottleneck topological relations theoretically. Tab. 5 shows the most-referred-to topological relations for
each procedure. By storing these relations, we achieve up to 80% reduction in the computation time (Fig. 8).

To compare the effort in optimization between the cache-mesh and traditional meshes, we shall discuss the Alg. 2
and Alg. 3. Utilizing the cache-mesh requires mainly two steps, and they are similar to the first two steps of optimizing
a traditional mesh. On the other hand, optimizing a traditional mesh requires two additional steps, and these steps are
not trivial since implementing a mesh data structure includes a lot of work.

Table 5. Caching topological relations in the four measurements in the example 1

Quantitative information Key entity (k) Referent relations (R)

Compute volume Tetrahedron Vertices in the link
Compute surface curvature Vertex Interface vertices on the link
Compute volume gradient Vertex Interface edges on the link
Compute energy change Vertex

Vertex
Adjacent tetrahedra
Faces on the link

Algorithm 2: Optimize the performance for a problem
with the cache-mesh
1 Solve the problem with the cache-mesh
2 Profile the topology references
3 Update get data of bottleneck topological relations to

get data cache /* trivial */

Algorithm 3: Select / build a traditional mesh that op-
timizes performance for a problem

1 Solve the problem with a pilot mesh
2 Profile the topology references
3 Select / build an optimal mesh
4 Replace the pilot mesh with the optimal mesh

Rotation Averaging
0

20

40

60

80

100

C
om

pu
ta

tio
n

tim
e

re
du

ct
io

n
[%

]

Compute volume
curvature normal
volume gradient
shape optimization

Fig. 8. Performance gain in quantitative information measurements by caching topological relations

As the statistic of the topology references is known in advance, one may question the necessity of the cache-
mesh. In fact, the quantitative measurements vary, and it is not possible to store all topological relations that they

 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205 201
Nguyen et al. / Procedia Engineering 00 (2017) 000–000 9

need. Furthermore, problems commonly do not utilize a single procedure but combine several procedures, and, in our
experience, this fact leads to the differences in analytical profiling and practical profiling. To optimize the performance
with a traditional mesh, we commonly need a pilot mesh (Alg. 3). On the other hand, the cache-mesh could adapt the
cache to store different topological relation, and the effort for applying the cache is trivial. This case is useful for a
public mesh framework that aims to serve many users with different requirements.

5.3. Example 2: Tuning mesh processing with the cache-mesh

This example demonstrates optimizing performance of meshing procedures that involve topological changes. Here
we optimize the performance of the interface tracking method, Deformable Simplicial Complex (DSC). The DSC
tracks the deformable interfaces by iteratively moving the interface vertices without making inverted tetrahedra. Be-
tween displacement phases, the DSC applies a mesh refinement procedure to maximize the mesh quality. The DSC
algorithm is described in Alg. 4. The implementation of the DSC in C++ can be found in Github [2].

Algorithm 4: The DSC interface tracking
Input: MeshM, displacements of interface vertices

1 begin
2 while Not all vertices are moved to their destination do
3 Move interface vertices as far as posible
4 Mesh refinement
5 Smooth
6 Topological edge removal
7 Multi-face removal
8 Short edge collapse
9 Long edge split

Because the DSC contains topological changes, the process to apply the cache-mesh is a bit different from Alg. 2
in the first step. To apply the cache-mesh for the DSC, we follow three steps:

1. Update topological functions to invalidate the cache: There are five functions in Alg. 4, fortunately they are the
combinations of only three basic functions: edge split, edge collapse and multi-face removal. Finding affected
tetrahedra in these three functions is described in Sec. 4.2.

2. Profile the topology references: We measure reference count and computation time (as described in Sec. 4.3) of
first order adjacency retrieval functions (Tab. 6). We also analyze the DSC algorithm theoretically to find the
irregular topology references (Tab. 7).

3. Apply cache: We upgrade the retrieval functions of the relations (get data) from the above step to the cached
version (get data cache in Alg. 1). The effort for this step is trivial.

Table 6. First-order adjacency references in the Deformable Simplical Complex. The * denotes the stored topological relations in the kernel mesh.

Adjacent entities(key entities) F(T)* E(T) V(T) T(F)* E(F)* V(F) T(E) F(E)* V(E)* T(V) F(V) E(V)*

Queries count (millions) 37.8 0.25 16.7 62.5 80.4 75.7 0.35 24 165 0.95 0.81 5.6
Computation time (seconds) 14.6 0.8 78.6 20.7 28.5 136.6 0.1 8.4 57.2 39 6.7 2.1
Caching relations � � �

Table 7. Irregular topology relations in DSC for caching. V, E, F denote vertex, edge and face.
Key entity (k) V V E
Referent relations (R) F in link V in link Sorted opposite E

The effort for invalidating cache is probably similar to adding one type of topological relations to the data structure,
but we then add six types of topological relations with trivial extra effort. Fig. 9(a) show the results with performance

202 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205
10 Nguyen et al. / Procedia Engineering 00 (2017) 000–000

improvement and other factors including: the CPU cache miss in Fig. 9(b); memory usage overhead in Fig. 9(c); reuse
statistic of the caching topological relations in Fig. 9(d); and the overhead of the computation time for the invalidating
cache. The overhead includes the time for finding affected elements and the time for memory allocating, storing and
retrieving the cache data; Fig. 9(e). Generally, we observe five times in performance gain with 50% memory overhead.
We discuss these results in detail in Sec. 6.

0 5 10 15 20 25
iteration

0

20

40

60

80

100

tim
e

[s
ec

]

Rotation w/o cache
Rotation with cache
Averaging w/o cache
Averaging with cache

(a) Computation time comparison

CPU cache level 1 Level 2 Level 3
0

20

40

60

80

100

Rotation w/o cache
Rotation with cache
Average w/o cache
Average with cache

(b) Cache miss in system cache (CPU cache) (%)

Original Cached

61

44

(c) Memory (MB) comparison

87%

13%

Re-compute Reuse

88%

12%

Average motion Rotation motion
(d) Cache-mesh re-computation statistic (miss/hit
rate of the second if-then instruciton in Alg. 1)

95%

5%

Over head
Mesh processing

97%

3%

Average motion Rotation motion
(e) Caching overhead time

Fig. 9. Results for applying caching for the DSC. a) The computation time by iterations. b) The CPU cache statistic. c) Memory utilization. d)
Re-computation and reuse of cached topological relations. e) The computation time for invalidating the cache.

5.4. Example 3: Parallel mesh processing with the cache-mesh

Parallel algorithms can be categorized into two groups: Distributed memory, in which a mesh is partitioned into
parts that are independent in both memory and processing [38]; and shared memory, in which the partition only needs
to be independent in processing. This section discusses a shared memory parallelism for mesh processing, and we
employ the popular coloring method [17]. This method assigns different colors to independent entities (E.g. the
independent colors of the vertices and the independent colors of the edges in Fig. 10(b) and 10(c)) so that entities with
the same color can be processed in parallel. Though finding optimal colors is an NP-hard problem [19], independent
sets can be defined by an efficient heuristic function [23,30], and it works well for 2D meshes. For general 3D dynamic
meshes, it is still not possible to color the mesh iteratively as the time overhead for coloring is higher than the time
for normal serial processing.

The cache-mesh enables coloring method for 3D dynamic meshes by caching the colors of the entities, and it
reduces the overhead of coloring significantly. Define the color as an integer number, the algorithm of coloring
method is shown in Alg. 5, and the algorithm for getting color of an entity is shown in Alg. 6. We apply caching for
the colors for two meshing procedures: mesh smoothing [16] (the related entities are the neighbor vertices); and edge
removal [40] (the related entities are the same as the affected edges for the cache invalidation in Fig. 5(b)).

The performance gain is shown in Fig. 11. Because of the limitation of the testing computer, we perform the
experiment with up to four cores, and the computation time reduces up to 50%. About the scalability: the performance
scales almost linear from one to two threads. However, the speed up reduces with more threads, and one reason is
that full four cores could not be utilized by a single process. For a concrete number of parallel efficiency, we plan to
experiment the cache-mesh with large data and better hardware in our future work.

 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205 203
Nguyen et al. / Procedia Engineering 00 (2017) 000–000 11

Valid element Reservation

Delete elements

Add elements

(a) Kernel container for parallel processing (b) Vertices colors for parallel smoothing (c) Edges colors for parallel edge removal

Fig. 10. Parallel mesh processing by coloring method

1 2 3 4
Number of threads

0

20

40

60

80

C
om

pu
ta

tio
n

tim
e

in
 1

 it
er

at
io

n
[m

s]

Serial smooth

Parallel smooth
Over head for coloring with mesh-cache

(a) Parallel smooth

1 2 3 4
Number of threads

0

50

100

150

C
om

pu
ta

tio
n

tim
e

in
 1

 it
er

at
io

n
[m

s]

Serial edge removal

Parallel w/o cached color

Parallel edge removal
Over head to get color

(b) Parallel edge removal

Fig. 11. Computation time of parallel edge removal and parallel smooth [ms]. In figure (a), we do not plot the computation time of parallel smooth
w/o cached color as it is significantly larger (≈ 451ms) than that of serial smooth (≈ 70ms).

Algorithm 5: Coloring method

1 Get colors of all processing entities
2 S = {si}, si is the set of entities with same color
3 for each si ∈ S do
4 Start a thread to process si

5 Wait for all threads to stop

Algorithm 6: Get color of entity
Input: MeshM, entity x

1 array S = Get color of related entities of x /* The

related entities depend on the actual

procedures */

2 if S is empty then
3 color←− 1
4 else
5 color←− min number which is not contained in S

Output: color

Note that in order to make it possible for parallel processing, the mesh kernel must allow simultaneous modifica-
tions. For index-based mesh, the container is often an array, and it may not be able to add or remove elements at the
same time. We slightly modify the array so that the container includes a reservation buffer, as described in Fig. 10(a).
When we remove elements, the memory is not deleted but changes the state to buffer. When we add elements, the
memory will be allocated in the reservation area. This modification is necessary for parallel mesh processing even
with or without the cache-mesh, and, in fact, it is not rare in implementation of dynamic meshes.

6. Discussion and conclusion

Our experiments show that if we store the topological relations, which are the most time-consuming to compute,
we can reduce the computation time by up to 80%. This fact affirms that topology retrieving consumes the major
computation resource in our testing cases. However, the references of topological relations differ greatly from one

204 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205
12 Nguyen et al. / Procedia Engineering 00 (2017) 000–000

problem to another. Furthermore, they are not always regular for storing in a data structure. These two reasons make
it difficult to optimize performance by fitting the data structure to the problem.

The cache-mesh provides a dynamic data structure that can adapt to arbitrary problems effortlessly. The advantages
of the cache-mesh include:

• Straightforward performance optimization: Building an optimal mesh includes three steps with the cache-
mesh, and the last step is trivial; whereas it takes four steps with traditional meshes, and none of them is trivial
(Sec. 5.2).
• Storing additional topological relations without increasing the complexity in implementation: Since adding data

is effortless with the cache-mesh, we can store additional topological relations for a better performance.
• Storing irregular relations: Some topological relations, e.g. opposite edges or some user-defined relations, are

not stored in traditional meshes, otherwise the mesh data structures would be highly specific.
• Parallel mesh processing: Sec. 5.4 demonstrates the example where storing entity colors helps enable parallel

mesh processing with minor extra effort.

The other facts of the cache-mesh, which can be considered advantages, are memory overhead and effort to imple-
ment from scratch that are comparable to a traditional mesh. The correlation of the cache-mesh and the CPU cache is
also an interesting fact that we would like to discuss. In Fig. 9(b), the L3 cache seems to reflect the performance gain
of the cache-mesh, which means it is not the instruction counter, but the latency in RAM has stronger influence on the
computation time of the meshing procedures.

Regarding the performance gain, this depends on the portion of the affected entities during topological events. In
our experiments of an deforming mesh, this portion is less than 15% (Fig. 9(d)), and caching reduces the computation
time by around 80%. We also notice that the cache-mesh may not be as fast as traditional meshes that store the same
topological relations because the caching data is not utilized inside the mesh kernel. Fortunately, this difference only
manifests itself when the topological relations are recomputed (the 15% in our experiments). For dynamic meshes,
the number of topological events should be controlled not only to reduce the number of entities affected by topology
changes but also to increase the quality and accuracy of the mesh.

In conclusion, the cache-mesh provides a dynamic mesh data structure for convenient and effortless modification,
which makes the performance optimization process straightforward. The cache-mesh boosts the performance in three
ways: faster topological relations retrieval, as the relations are cached; possibility to store more relations, as adding
topological relations does not raise the complexity; and parallel processing, which is difficult for traditional meshes.

For further study, we plan to experiment the cache-mesh with more types of kernel mesh as well as providing a
stand-alone cache-mesh that has an optimal kernel mesh. We also intended to analyze the parallel efficiency with large
data and better hardware.

References

[1] T. J. Alumbaugh and X. Jiao. Compact Array-Based Mesh Data Structures. In Proceedings of the 14th International Meshing Roundtable,
pages 485–503. Springer Berlin Heidelberg, 2005.

[2] J. A. Bærentzen. Deformable Simplicial Complex. https://github.com/janba/2D-DSC.
[3] B. G. Baumgart. Winged edge polyhedron representation. Technical report, DTIC Document, 1972.
[4] M. W. Beall and M. S. Shephard. A general topology-based mesh data structure. International Journal for Numerical Methods in Engineering,

40(9):1573–1596, 1997.
[5] S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed edges-A scalable representation for triangle meshes. Journal of Graphics tools, 3(4):1–11,

1998.
[6] W. Celes, G. H. Paulino, and R. Espinha. A compact adjacency-based topological data structure for finite element mesh representation.

International Journal for Numerical Methods in Engineering, 64(11):1529–1556, 2005.
[7] J. Chhugani and S. Kumar. Geometry engine optimization: cache friendly compressed representation of geometry. In Proceedings of the 2007

symposium on Interactive 3D graphics and games, pages 9–16. ACM, 2007.
[8] S. Coleman and K. S. McKinley. Tile size selection using cache organization and data layout. ACM SIGPLAN Notices, 30(6):279–290, 1995.
[9] S. D. Connell and D. G. Holmes. Three-dimensional unstructured adaptive multigrid scheme for the Euler equations. AIAA Journal, 32(8):1626–

1632, 1994.
[10] G. Damiand. Combinatorial Maps. In {CGAL} User and Reference Manual. CGAL Editorial Board, 4.9 edition, 2016.
[11] G. Damiand. Linear Cell Complex. In {CGAL} User and Reference Manual. CGAL Editorial Board, 4.9 edition, 2016.

 Tuan T. Nguyen et al. / Procedia Engineering 203 (2017) 193–205 205
Nguyen et al. / Procedia Engineering 00 (2017) 000–000 13

[12] L. De Floriani, A. Hui, D. Panozzo, and D. Canino. A dimension-independent data structure for simplicial complexes. In Proceedings of the
19th International Meshing Roundtable, pages 403–420. Springer, 2010.

[13] P. J. Denning. Virtual Memory. ACM Computing Surveys (CSUR), 2(3):153–189, 1970.
[14] M. Field, M. Field, R. Biswas, and R. C. Strawn. A new procedure for dynamic adaption of three-dimensional unstructured grids. Applied

Numerical Mathematics, 13(6):437–452, 1994.
[15] L. D. Floriani and A. Hui. Data Structures for Simplicial Complexes: An Analysis And A Comparison. Symposium on Geometry Processing,

2005.
[16] L. Freitag, M. Jones, and P. Plassmann. An Efficient Parallel Algorithm for Mesh Smoothing. INTERNATIONAL MESHING ROUNDTABLE,

pages 1–14, 1995.
[17] L. Freitag, M. Jones, and P. Plassmann. A Parallel Algorithm for Mesh Smoothing. SIAM Journal on Scientific Computing, 20(6):2023–2040,

jan 1999.
[18] L. Freitag and C. Ollivier-Gooch. Tetrahedral Mesh improvement using swaping and smoothing. International Journal for Numerical . . . ,

40(November 1996):3979–4002, 1997.
[19] M. Garey and D. Johnson. Computer and intractability. W. H. Freeman, New York, 1979.
[20] R. V. Garimella. Mesh data structure selection for mesh generation and FEA applications. International Journal for Numerical Methods in

Engineering, 55(4):451–478, 2002.
[21] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi. ACM transactions on graphics

(TOG), 4(2):74–123, 1985.
[22] M. Jan and L. Kobbelt. OpenFlipper : An Open Source Geometry Processing and Rendering Framework. In International Conference on

Curves and Surfaces, pages 488–500, 2012.
[23] M. T. Jones and P. E. Plassmann. A Parallel Graph Coloring Heuristic. SIAM Journal on Scientific Computing, 14(3):654–669, may 1993.
[24] Y. KALLINDERIS and P. VIJAYAN. Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes. AIAA Journal,

31(8):1440–1447, 1993.
[25] B. M. Klingner and J. R. Shewchuk. Aggressive tetrahedral mesh improvement. Proceedings of the 16th International Meshing Roundtable,

IMR 2007, pages 3–23, 2008.
[26] M. Kremer, D. Bommes, and L. Kobbelt. Open VolumeMesh–A Versatile Index-Based Data Structure for 3D Polytopal Complexes. Proceed-

ings of the 21st International Meshing Roundtable, pages 531–548, 2013.
[27] M. Lage, T. Lewiner, H. Lopes, and L. Velho. CHF: a scalable topological data structure for tetrahedral meshes. Proceedings of the XVIII

Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’05), pages 1–6, 2005.
[28] R. W. Lau, R. W. Lau, O. Chan, O. Chan, M. Luk, M. Luk, F. W. Li, and F. W. Li. A collision detection framework for deformable objects.

Proceedings of the ACM symposium on Virtual reality software and technology - VRST ’02, page 113, 2002.
[29] J. Levenberg. Fast view-dependent level-of-detail rendering using cached geometry. VIS02 IEEE Visualization 2002, pages 259–265, 2002.
[30] M. Luby. A simple parallel algorithm for the maximal independent set problem. Annual ACM Symposium on Theory of Computing, page 1,

1985.
[31] M. K. Misztal and J. A. Bærentzen. Topology-adaptive interface tracking using the deformable simplicial complex. ACM Transactions on

Graphics, 31(3):1–12, may 2012.
[32] M. K. Misztal, J. A. Bærentzen, F. Anton, and K. Erleben. Tetrahedral mesh improvement using multi-face retriangulation. Proceedings of the

18th International Meshing Roundtable, IMR 2009, pages 539–555, 2009.
[33] T. Nguyen, V. A. Dahl, and J. A. Bærentzen. Template code for mesh cache: github.com/tuannt8/cache-template, 2016.
[34] H. Sagan. Space-filling curves. Springer Science & Business Media, 2012.
[35] P. V. Sander, D. Nehab, E. Chlamtac, and H. Hoppe. Efficient traversal of mesh edges using adjacency primitives. ACM Transactions on

Graphics, 27(5):1, 2008.
[36] S. P. Sastry, E. Kultursay, S. M. Shontz, and M. T. Kandemir. Improved cache utilization and preconditioner efficiency through use of a

space-filling curve mesh element- and vertex-reordering technique. Engineering with Computers, 30(4):535–547, 2014.
[37] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit. Kitware, 4 edition, 2006.
[38] E. S. Seol and M. S. Shephard. Efficient distributed mesh data structure for parallel automated adaptive analysis. Engineering with Computers,

22(3-4):197–213, 2006.
[39] M. S. Shephard. Meshing Environment for geometry based analysis. International Journal of Numerical Methods in Engineering, 47(1-3):169–

190, 2000.
[40] J. Shewchuk. Two discrete optimization algorithms for the topological improvement of tetrahedral meshes. Unpublished manuscript, pages

1–11, 2002.
[41] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann, M. P. Cani, F. Faure, N. Magnenat-Thalmann,

W. Strasser, and P. Volino. Collision detection for deformable objects. Computer Graphics Forum, 24(1):61–81, 2005.
[42] J. S. Vitter. External Memory Algorithms and Data Structures. ACM Computing Surveys (CSUR), 33(2):209–271, 2001.
[43] S. E. Yoon and P. Lindstrom. Mesh layouts for block-based caches. IEEE Transactions on Visualization and Computer Graphics, 12(5):1213–

1220, 2006.
[44] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious mesh layouts. ACM Transactions on Graphics, 24(3):886, 2005.
[45] S. E. Yoon and D. Manocha. Cache-efficient layouts of bounding volume hierarchies. Computer Graphics Forum, 25(3):507–516, 2006.

