Technical University of Denmark

Chords in longest cycles

Thomassen, Carsten

Published in:
Journal of Combinatorial Theory. Series B

Link to article, DOI:
10.1016/j.jctb.2017.09.008

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Thomassen, C. (2017). Chords in longest cycles. Journal of Combinatorial Theory. Series B. DOI: 10.1016/j.jctb.2017.09.008

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Chords in longest cycles

Carsten Thomassen ${ }^{1}$
Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Lyngby, Denmark

A R T I C L E I N F O

Article history:

Received 16 June 2016
Available online xxxx

Keywords:

Longest cycles
Chords
Connectivity

A B S T R A C T

If a graph G is 3-connected and has minimum degree at least 4 , then some longest cycle in G has a chord. If G is 2-connected and cubic, then every longest cycle in G has a chord.
© 2017 Published by Elsevier Inc.

1. Introduction

In 1976, when I was a graduate student at the University of Waterloo, I raised the question if every longest cycle in a 3-connected graph must have a chord, see [2], [4], [5]. A few years later, when I was convinced that the problem was not trivial, it was published as Conjecture 8.1 in [1] and as Conjecture 6 in [14].

Shortly after my chord-conjecture, Andrew Thomason [13] introduced his elegant and powerful so-called lollipop method. About 20 years later, I applied the lollipop method to bipartite graphs [15] and to a weakening of Sheehan's conjecture [17]. Then I realized that the method in [17] had a somewhat unexpected application, namely the chordconjecture restricted to cubic 3-connected graphs. (For planar cubic 3-connected graphs the conjecture was verified in [19].) Subsequently, the chord-conjecture was verified also

[^0]for other classes of graphs in [10], [11], [9], [3], [18]. As the conjecture is still open, it seems relevant to ask the weaker question: Does every 3 -connected graph contain some longest cycle which has a chord?

Sheehan's conjecture [12] says that every 4-regular Hamiltonian graph has a second Hamiltonian cycle. Using the lollipop method, it was proved in [17] that there is a second Hamiltonian cycle provided the graph has a red-independent and green-dominating set (where the red edges are the edges of the Hamiltonian cycle and the green edges are the remaining edges). While a 4-regular Hamiltonian graph need not have a red-independent and green-dominating set, it was proved in [17] that such a set exists if the graph is r-regular with $r>72$. In [8] this was extended to $r>22$. This idea was carried further in [16] where the chord-conjecture was verified for the class of cubic 3-connected graphs. In that proof a red-independent, green-dominating set (in an appropriate auxiliary graph) was found using the Fleischner-Stiebitz theorem [7] saying that every cycle-plus-triangles graph has chromatic number 3 .

The results of the present paper are based on a new application of the lollipop method to cycles containing a prescribed matching in a cubic graph. In the applications we again use the Fleischner-Stiebitz theorem, but we do not use the red-independent, greendominating sets as we do in [16]. In that paper it is important that the graphs are cubic and 3 -connected. The method in this paper also applies to 2 -connected cubic graphs.

All graphs in this paper are finite and without loops and multiple edges. The terminology and notation is standard, as [6], [4].

2. Long cycles containing a prescribed matching in a cubic graph

The key idea of the present paper is the following result on long cycles containing a prescribed matching in a cubic graph.

Theorem 1. Let G be a cubic graph such that $V(G)$ has a partition into sets A, B such that the induced graph $G(A)$ is a matching M, and $G(B)$ is a matching M^{\prime}. Let $|A|=$ $|B|=2 k$. Assume that G has a cycle C of length $3 k$ such that C contains each edge in M, and precisely one end of each edge in M^{\prime}.

Then G has a cycle of length $>3 k$ containing M.
Proof of Theorem 1. The proof is by induction on k. For $k=1$ the statement is trivial, so we proceed to the induction step.

Let the edges of M be denoted $x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{k} y_{k}$, let the edges of M^{\prime} be denoted $x_{1}^{\prime} y_{1}^{\prime}, x_{2}^{\prime} y_{2}^{\prime}, \ldots, x_{k}^{\prime} y_{k}^{\prime}$, and let $C: x_{1}^{\prime} x_{1} y_{1} x_{2}^{\prime} x_{2} y_{2} x_{3}^{\prime} \ldots x_{k} y_{k} x_{1}^{\prime}$. As in the lollipop argument, we consider an auxiliary graph H. A vertex in H is a path P in G which starts with the edge $x_{1}^{\prime} x_{1}$, contains all edges of M, has its last edge in M, and if it contains each of $x_{i}^{\prime}, y_{i}^{\prime}$, then it also contains the edge $x_{i}^{\prime} y_{i}^{\prime}$ for $i=1,2, \ldots, k$. In particular, P cannot contain the vertex y_{1}^{\prime}. Clearly, P contains one or two of $x_{i}^{\prime}, y_{i}^{\prime}$ for each $i=1,2, \ldots, k$. In particular, P has length at least $3 k-1$. Let z be the end in P distinct from x_{1}^{\prime}. If z^{\prime} is
a neighbor of z in B, then we may assume that $z^{\prime} \neq y_{1}^{\prime}$ since otherwise, there would be a cycle of length at least $3 k+1$ containing M. If $z^{\prime} \neq x_{1}^{\prime}$, and if e denotes the unique edge in M^{\prime} incident with z^{\prime}, then there is a unique path $P^{\prime} \neq P$ in $P \cup\left\{z z^{\prime}, e\right\}$ which is a vertex in the auxiliary graph H. We say that P, P^{\prime} are neighbors in H. Now, a vertex P in H has degree 1 if its end distinct from x_{1}^{\prime} is a neighbor of x_{1}^{\prime} in G. Otherwise, P has degree 2 in H. As $C-x_{1}^{\prime} y_{k}$ has degree 1 in H, there is another vertex P^{\prime} in H which has degree 1 in H. Let C^{\prime} denote the cycle obtained from P^{\prime} by adding an edge incident with x_{1}^{\prime}. As C^{\prime} contains M and at least one end of each edge in M^{\prime}, we may assume that C^{\prime} has length precisely $3 k$ and hence C^{\prime} contains precisely one vertex of each end of each edge in M^{\prime}.

We color the edges in G as follows: An edge in C but not in C^{\prime} is blue. An edge in C^{\prime} but not in C is yellow. An edge in both C and C^{\prime} is green. An edge in neither C nor C^{\prime} is black. Note that every edge in M is green, and also $x_{1}^{\prime} x_{1}$ is green. Since $C^{\prime} \neq C$, it follows that some edges are blue, and some edges are yellow. Every edge $x_{i}^{\prime} y_{i}^{\prime}$ in M^{\prime} is black. The other two edges incident with x_{i}^{\prime} (respectively y_{i}^{\prime}) have the same color, say $c\left(x_{i}^{\prime}\right)$ (respectively $\left.c\left(y_{i}^{\prime}\right)\right)$. The two colors $c\left(x_{i}^{\prime}\right), c\left(y_{i}^{\prime}\right)$ are either black, green or blue, yellow. Now consider a maximal green path Q. It starts and ends with an edge in M because of the above observations on the colors $c\left(x_{i}^{\prime}\right), c\left(y_{i}^{\prime}\right)$. All four edges joining the ends of Q to ends of M^{\prime} are blue or yellow by the maximality of Q. All other edges incident with Q are black. We now delete all those vertices in G which are incident with three black edges. In the resulting graph we suppress all vertices of degree 2, that is, we replace each path with endvertices of degree 3 and intermediate vertices of degree 2 by a single edge. This results in a cubic graph G_{1}. The maximal green paths in G become a green matching M_{1} with k_{1} edges, say, in G_{1}. Since $x_{1}^{\prime} x_{1}$ is green, we have $k_{1}<k$. The black edges that have not been deleted form a matching M_{1}^{\prime}. Now the cycle C in G corresponds to a cycle C_{1} in G_{1} containing M_{1} and precisely one end of each edge in M_{1}^{\prime}. By the induction hypothesis, G_{1} contains a cycle of length $>3 k_{1}$ containing M_{1}. This corresponds to a cycle of length $>3 k$ in G.

3. Chords in longest cycles in cubic 2-connected graphs

We first establish a variation of Thomason's lollipop theorem.
Theorem 2. Let G be a connected graph such that no two vertices of even degree are joined by an edge. Let C be a cycle in G such that all vertices in $G-V(C)$ have even degree. Then G has a cycle C^{\prime} distinct from C such that C^{\prime} contains all vertices of odd degree.

Proof of Theorem 2. We may assume that no vertex in $G-V(C)$ is joined to two consecutive vertices of C since otherwise, there exists a cycle containing $V(C)$ and one more vertex. Let $C: v_{1} v_{2} \ldots v_{n} v_{1}$ such that v_{n} has odd degree. As in the lollipop argument, we consider an auxiliary graph H. A vertex in H is a path P in G which starts with
the edge $v_{1} v_{2}$, contains all vertices of odd degree, and ends with a vertex of odd degree. Consider such a path P whose end distinct from v_{1} is denoted z. Consider an edge $z y$ or a path $z u y$ where y is in $P-v_{1}$ and u is in $G-V(P)$. If we add the edge $z y$ or the path $z u y$ to P and then delete the vertex succeeding y on P (if that vertex has even degree in G) or delete just the edge succeeding y on P otherwise, then the resulting path P^{\prime} is a vertex of H. We say that P, P^{\prime} are neighbors in H. If there is no edge between z, v_{1} and there is no path $z u v_{1}$ with u being a vertex in $G-V(P)$, then clearly P has even degree in H. The path $C-v_{1} v_{n}=v_{1} v_{2} \ldots v_{n}$ clearly has odd degree in H because there is no path $v_{n} u v_{1}$ with u being a vertex of $G-V(C)$. But then there is another vertex Q, say, of odd degree in H. If Q ends at z, and z, v_{1} are neighbors, then $Q \cup\left\{z v_{1}\right\}$ is a cycle distinct from C containing all vertices of odd degree. If there is a path $z u v_{1}$ where u is a vertex in $G-V(Q)$, then the union of Q and the path $z u v_{1}$ is a cycle containing all vertices of odd degree. This cycle is distinct from C because u, the predecessor of v_{1}, has even degree.

Theorem 3. Every longest cycle in a 2-connected cubic graph has a chord.

Proof of Theorem 3. Let G be a 2-connected cubic graph. Let C be a longest cycle in G. Assume (reductio ad absurdum) that C has no chord. We form a new graph G_{1} as follows: If H is a connected component of $G-V(C)$ joined to at least three vertices of C, then we contract H to a single vertex which we call a pleasant vertex. In particular, every component of $G-V(C)$ with precisely one vertex is a pleasant vertex. If H is joined to only two vertices x, y of C, then we replace H by an edge $x y$. This edge is called a pleasant edge. For each pleasant vertex in G_{1} we select three neighbors on C called pleasant neighbors of the pleasant vertex. For each pleasant vertex we call one of its pleasant neighbors very pleasant. By the Fleischner-Stiebitz theorem [7] we can select the very pleasant neighbors in such a way that no two of them are consecutive on C. To see that we form a so-called cycle-plus-triangles graph from the cycle C by adding a triangle consisting of the three pleasant neighbors of each pleasant vertex. The Fleischner-Stiebitz theorem implies that this graph is 3 -colorable, and we now let the very pleasant neighbors be the pleasant neighbors of color 1, say.

So far the present proof is similar to the proof in [16]. The proof in [16] then uses the method in [17]. However, this does not work if there are pleasant edges. Therefore the graphs in [16] are assumed to be 3-connected. Here we instead first use Theorem 2 and then Theorem 1.

A cycle C_{1} in G_{1} is called pleasant if it contains all vertices of C except possibly some very pleasant neighbors. We shall now investigate a cycle C_{1} which is pleasant in G_{1} and distinct from C. Let r be the number of vertices in C but not in C_{1}. Let p, q be the number of pleasant vertices and pleasant edges, respectively, in C_{1}. Clearly C_{1} can be transformed to a cycle in G by adding a path in each component of $G-V(C)$ which corresponds to a pleasant vertex or edge contained in C_{1}. With a slight abuse of notation we denote this cycle in G by C_{1}. In this way a pleasant edge in C_{1} corresponds to a path
with at least 3 edges in G. (In fact that path can be chosen such that it has at least 5 edges but we shall not need that.) So, the cycle C_{1} in G is at least as long as the cycle C_{1} in G_{1}, and if C_{1} in G_{1} contains a pleasant edge, then C_{1} in G is strictly longer. We claim that the length of C_{1} in G_{1} is at least (and hence equal to) the length of C in G.

To prove this claim we focus on C_{1} in G_{1}. Suppose x is one of the very pleasant neighbors not contained in C_{1}. Then C_{1} contains both neighbors of x on C. Let y be one of those two neighbors. Then C_{1} contains a pleasant edge $y z$ or a path $y u z$ where u is a pleasant vertex. We say that the edge $y z$ or the vertex u dominates x. Possibly, $y z$ or u also dominates a neighbor of z on C. The other neighbor y^{\prime} of x on C is also incident with a pleasant edge $y^{\prime} z^{\prime}$ or path $y^{\prime} u^{\prime} z^{\prime}$, and we say that the edge $y^{\prime} z^{\prime}$ or vertex u^{\prime} also dominates x. So there are precisely two elements dominating x. Since a pleasant vertex or edge dominates at most two vertices, it follows that $p+q \geq r$.

The number of edges in C_{1} in G_{1} is $|E(C)|+2 p+q-2 r$. The length of C_{1} in G is at least $|E(C)|+2 p+3 q-2 r$. As C is longest in G, it follows that $q=0$ and $p=r$. In other words, C^{\prime} contains no pleasant edge and has the same edges in G as in G_{1}, and each vertex in $C_{1}-V(C)$ dominates precisely two vertices.

We now describe a new graph G_{2} from G_{1}. If u is a pleasant vertex in G_{1}, and u^{\prime} is its very pleasant neighbor, then we contract the edge $u u^{\prime}$ into a vertex which we also call u^{\prime}. We apply Theorem 2 to the graph G_{2}. The resulting cycle distinct from C is called C_{2}. The edge set of the cycle C_{2} can be extended to the edge set of a cycle C_{1} in G_{1} by possibly adding some of the contracted edges of the form $u u^{\prime}$. Clearly, C_{1} is pleasant in G_{1}. This implies that C_{1} contains no edge of the form $u u^{\prime}$ where u is pleasant and u^{\prime} is a very pleasant neighbor because in that case u would not dominate a neighbor of u^{\prime} on C, and we know that u dominates two vertices. So C_{2}, C_{1} have the same edge set. If C_{1} contains the pleasant vertex u, then C^{\prime} does not contain its very pleasant neighbor u^{\prime}. Since $p=r$, the converse holds: If C^{\prime} does not contain the very pleasant neighbor u^{\prime} of u, then C_{1} contains u.

Now let Q denote the graph which is the union of C and C_{1} and all edges of the form $u u^{\prime}$ where u is a pleasant vertex in C_{1} and u^{\prime} is its very pleasant neighbor in C. These edges form a matching M^{\prime}. Let Q^{\prime} be obtained from Q by suppressing all vertices of degree 2. The maximal paths that C and C_{1} have in common each has length >0 (because G is cubic) and hence these paths form a matching M in Q^{\prime}. We now apply Theorem 1 to Q^{\prime}. By Theorem 1, Q^{\prime} has a cycle which contains all edges in M and which is longer that C. Then also G has such a longer cycle, a contradiction which proves Theorem 3.

4. Chords in longest cycles in 3-connected graphs of minimum degree at least 4

If x is a vertex in a graph G, we call the degree of x in G the G-degree. The following lemma is a well-known exercise.

Lemma 1. If A is an even vertex set in a connected G, then G has a spanning subgraph H such that every vertex in A has odd H-degree, and all other vertices have even H-degree.

Proposition 1. Let C be a chordless cycle in a graph G of minimum degree at least 3 such that the vertices in $G-V(C)$ form an independent set (that is, they are pairwise nonadjacent). Then G has a cycle C^{\prime} such that either C^{\prime} is longer than C, or C^{\prime} has the same length as C and has a chord.

Moreover, if G is minimal in the sense that every edge in $G-E(C)$ is incident with a vertex of G-degree 3 , then C^{\prime} can be chosen such that it has a chord incident with a vertex in $G-V(C)$ which has G-degree 3 .

Proof of Proposition 1. Assume without loss of generality that G is edge-minimal, that is, if we delete an edge in $G-E(C)$ or a vertex in $G-V(C)$, then we create a vertex of degree 2 in the resulting graph. So, if v is a vertex in $G-V(C)$, then v has a neighbor on C of degree 3 . If v has degree at least 4 , then all neighbors of v have degree 3 . For every component Q in $G-E(C)$ we select three vertices x_{Q}, y_{Q}, z_{Q} in $V(Q) \cap V(C)$ such that as many as possible have degree 3 in G. It is easy to see that all of x_{Q}, y_{Q}, z_{Q} have degree 3 unless Q has 6 vertices $x_{Q}, y_{Q}, z_{Q}, u, v, w$ such that x_{Q}, y_{Q}, z_{Q}, w are in C, u, v are outside C, u is joined to x_{Q}, y_{Q}, w, and v is joined to z_{Q}, y_{Q}, w. We now apply the Fleischner-Stiebitz theorem [7] to the cycle-plus-triangles graph obtained from C by adding the three edges $x_{Q} y_{Q}, x_{Q} z_{Q}, y_{Q} z_{Q}$ for each component Q of $G-E(C)$. The resulting graph is 3 -chromatic. We rename vertices such that all the vertices of the form x_{Q} have the same color. In particular, these vertices are independent. Now consider a component Q of $G-E(C)$. If Q has only one vertex u_{Q} outside C we contract the edge $u_{Q} x_{Q}$. If Q has more than one vertex outside C (and hence all vertices outside C have G-degree precisely 3), then we let Q^{\prime} be a spanning subgraph of Q such that all vertices in $V(C) \cap V(Q)$ (except possibly x_{Q}) have odd Q^{\prime}-degree and all other vertices in Q^{\prime} have even Q^{\prime}-degree. If all vertices in $V(C) \cap V(Q)$ have odd Q^{\prime}-degree, then we delete from G all edges in $E(Q) \backslash E\left(Q^{\prime}\right)$. If x_{Q} has even Q^{\prime}-degree, then Q is not the afore-mentioned component with 6 vertices (because that component has an even number of vertices in $C)$, and hence x_{Q} has a unique neighbor u_{Q} in Q and has Q^{\prime}-degree 0 . We contract the edge between x_{Q} and u_{Q} and we delete from G all other edges in $E(Q) \backslash E\left(Q^{\prime}\right)$. We call the resulting graph G^{\prime}, and we apply Theorem 2 to G^{\prime}. Let $C^{\prime \prime}$ be a cycle distinct from C and containing all vertices in C which have odd G^{\prime}-degree. Let C^{\prime} be the corresponding cycle in G. We now investigate C^{\prime} in the same way as we investigated C_{1} in the proof of Theorem 3. As pointed out by a referee, there may be a path $x_{1} u x_{2}$ in C and a path $y_{1} u y_{2}$ in C^{\prime} such that x_{1}, x_{2} are outside C^{\prime} and y_{1}, y_{2} are outside C, a situation that does not occur in Theorem 3. In that case we replace u by two vertices u_{1}, u_{2} and replace the paths $x_{1} u x_{2}$ and $y_{1} u y_{2}$ by $x_{1} u_{1} u_{2} x_{2}$ and $y_{1} u_{1} u_{2} y_{2}$, respectively. With a slight abuse of notation we still use G, C, C^{\prime} for the modified graphs. Then every vertex in $C \cup C^{\prime}$ has degree at most 3 which allows us to use Theorem 1 as shown below. Let r be the number
of vertices in C but not in C^{\prime}. Let p be the number of vertices in C^{\prime} but not in C. As in the proof of Theorem 3 we conclude that $p \geq r$. If $p>r$, then C^{\prime} is longer than C, so assume that $p=r$. Consider one of the p vertices in $C^{\prime}-V(C)$, say u. If each such u has a neighbor on C which is not in C^{\prime}, then, as in the proof of Theorem 3, we use Theorem 1 to conclude that G has a cycle which is longer than C. One the other hand, if some such u has the property that each of its neighbors on C is also in C^{\prime}, then no neighbor of u is of the form x_{Q}. Then u has G-degree 3 , and one of its three incident edges is a chord in C^{\prime}. This proves Proposition 1.

Corollary 1. Let C be a longest cycle in a 3-connected graph G. If C is chordless, then G has a longest cycle C^{\prime} distinct from C.

Proof of Corollary 1. Contract each component of $G-V(C)$ into a vertex. Then C is a longest cycle in the resulting graph. Now apply Proposition 1.

Theorem 4. Let C be a chordless cycle in a 3-connected graph G of minimum degree at least 4 . Then G has a cycle C^{\prime} such that either C^{\prime} is longer than C, or C^{\prime} has the same length as C and has a chord.

Proof of Theorem 4. The idea in the proof is to contract each component of $G-V(C)$ into a single vertex and then apply the method of Proposition 1. The problem is that a chord in the resulting graph need not be a chord in G in case the new cycle contains some of the contracted vertices. For example, the two edges in the new cycle incident with the contracted vertex v^{\prime} may also be incident with the same vertex v in G, and the chord may be incident with v^{\prime} but not with v.

To deal with that problem we need a technical investigation of the components of $G-V(C)$.

We may assume that some component of $G-V(C)$ has at least two vertices since otherwise, Theorem 4 follows from Proposition 1.

If a component of $G-V(C)$ has precisely two vertices, we delete the edge between them. (This is the only place where we use that vertices outside C have degree at least 4.) Note that each of these vertices has at least three neighbors on C. With a slight abuse of notation we also call the resulting graph G. If a component Q in $G-V(C)$ has more than one vertex, then it now has at least three vertices and hence the edges between Q and C contain a matching with at least 3 edges.

We shall delete edges between C and $G-V(C)$ in order to obtain a spanning subgraph G^{\prime} of (the new) G such that each vertex of C has G^{\prime}-degree at least 3 and such that, for each component Q in $G-V(C)$ with more than one vertex, the edges in G^{\prime} between Q and C contain a matching with at least 3 edges.

We say that a component Q in $G^{\prime}-V(C)=G-V(C)$ satisfying at least one of (i), (ii), (iii) below is a good component.
(i) Q has only one vertex, and there are precisely 3 edges between Q and C.
(ii) There are precisely 3 edges between Q and C, and they form a matching.
(iii) Q has at least 3 neighbors on C of G^{\prime}-degree precisely 3 , and, if Q has more than one vertex, then G^{\prime} has a matching with 3 edges between Q and C.

We choose G^{\prime} such that the number of non-good components is minimum, and subject to this G^{\prime} has as few edges as possible between C and $G-V(C)$.

We define a bad component of $G^{\prime}-V(C)$ as a component Q satisfying each of (iv), (v), (vi), (vii) below, where
(iv) there are precisely 4 edges between Q and C.
(v) Precisely two of them, say $z_{Q} x_{Q}, z_{Q} y_{Q}$ have an end z_{Q} in common, and that end is in Q.
(vi) x_{Q}, y_{Q} each has G^{\prime}-degree precisely 3 .
(vii) The two neighbors of Q on C distinct from x_{Q}, y_{Q} each has G^{\prime}-degree >3.

Clearly, a bad component is not good. We shall prove that every non-good component is bad.

If a component of $G-V(C)$ has precisely one vertex, and it has G^{\prime}-degree >3, then each neighbor has G^{\prime}-degree precisely 3 , since otherwise we can delete an edge and contradict the minimality of G^{\prime}. So, a component of $G-V(C)$ with precisely one vertex satisfies (i) or (iii). If a component Q in $G-V(C)$ has more than one vertex, then it has at least three vertices and hence the edges between Q and C contain a matching with at least 3 edges. Consider a maximum matching M between Q and C. Then M has at least 3 edges. If M has more than 3 edges, then each end of M in C has G^{\prime}-degree 3 , by the minimality of G^{\prime}, and hence Q satisfies (iii). So assume that M has precisely 3 edges $q_{1} c_{1}, q_{2} c_{2}, q_{3} c_{3}$ where q_{1}, q_{2}, q_{3} are in Q. If the edges of M are the only edges from Q to C, then (ii) holds. So assume there are more edges from Q to C. Each edge from Q to C not in M joins one of q_{1}, q_{2}, q_{3} with a vertex in C distinct from c_{1}, c_{2}, c_{3} and of G^{\prime}-degree 3 , by the minimality of G^{\prime}. Consider such an edge $q_{1} c_{4}$. Then c_{4} has degree 3 . Since $q_{1} c_{4}, q_{2} c_{2}, q_{3} c_{3}$ is also a matching, c_{1} has degree 3. If one (or both) of q_{2}, q_{3} is joined to more than one vertex of C, then Q has at least three neighbors on C of degree precisely 3 , and then Q satisfies (iii). So assume q_{2}, q_{3} each have only one neighbor on C. If one or both of c_{2}, c_{3} has degree 3 , then again, Q satisfies (iii). So, both of c_{2}, c_{3} have degree >3. Hence Q is bad.

This discussion proves:
Claim 1. If a component Q of $G^{\prime}-V(C)$ is not good, then it is bad.
Next we prove that all components of $G^{\prime}-V(C)$ are good.
Consider therefore a bad component Q in $G^{\prime}-V(C)$. Recall that Q has a vertex z_{Q} with G^{\prime}-neighbors x_{Q}, y_{Q} of Q^{\prime}-degree precisely 3 . But, they have G-degree at least 4 . (This is the only place where we use that vertices in C have G-degree at least 4.) Let x
be a neighbor of x_{Q} not in C and distinct from z_{Q}. If x is in Q, then we add to G^{\prime} the edge $x_{Q} x$ and delete the edge $z_{Q} x_{Q}$ and one more edge from Q to C so that the resulting graph has fewer edges than G^{\prime} and the new Q satisfies (ii) and is therefore good. So we may assume that x is in a component $Q_{1} \neq Q$. If we add $x_{Q} x$ and delete $x_{Q} z_{Q}$, then Q changes from bad to good. The minimality property of G^{\prime} implies that Q_{1} changes from good to not good and hence, by Claim 1, to bad. In other words, the vertex x is the unique vertex of Q_{1} with a G^{\prime}-neighbor x^{\prime} in C of G^{\prime}-degree 3 . If $q>1$ we obtain a contradiction by adding the red edges to Q_{q}, Q and deleting an edge from Q_{q} to C. So assume we must have $q=1$. We may assume that, for every bad component Q, there is a component Q_{1} satisfying (ii) such that there are red edges $z_{Q} x^{\prime}, x_{Q} x$ not in G^{\prime} and there is an edge $x x^{\prime}$ in G^{\prime} where x^{\prime} is the unique neighbor of Q_{1} with G^{\prime}-degree precisely 3. We call Q, Q_{1} a good pair. If there is a good pair Q^{\prime}, Q_{1} where Q^{\prime} is distinct from Q, we easily get a contradiction by making Q, Q^{\prime} satisfy (ii) and Q_{1} satisfy (iii). We now consider all good pairs one by one. We add the red edge from z_{Q} to C and delete all vertices of $Q-z_{Q}$. We also delete Q_{1}. We repeat this for any other good pair. (Note that some good pair may no longer be a good pair after the deletion of Q_{1} and $Q-z_{Q}$. In that case we can reduce the number of bad components as above.) This shows that we may assume:

Claim 2. If Q is a component of $G^{\prime}-V(C)$, then Q is good.
We now delete edges from the components Q satisfying (iii) to C such that all vertices on C still have degree at least 3 , and the following weaker statement (iii) ${ }^{\prime}$ is satisfied, where
(iii)' Q has at least 3 neighbors on C, and all neighbors of Q on C have degree precisely 3 .

With a slight abuse of notation we call the resulting graph G^{\prime}.
Now we contract each component Q of $G^{\prime}-V(C)$ into a vertex w_{Q}. We call the resulting graph H. Now we repeat the proof of Proposition 1 with H instead of G. As in the proof of Proposition 1 we assume that H is edge-minimal, that is, each vertex w_{Q} has a vertex on C of H-degree 3 , and if w_{Q} has H-degree >3, then all neighbors on C have H-degree 3 . Let C^{\prime} be the cycle of the same length as C obtained in the proof of Proposition 1. We may assume that G has no cycle of length greater than the length of C. Hence C^{\prime} contains a vertex $u=w_{Q}$ of H-degree 3 which is not in C and which has the property that each of its neighbors on C is also in C^{\prime}. So, C^{\prime} has a chord incident with $u=w_{Q}$. As the edge set of C^{\prime} can be extended to a cycle in G, and since C is a longest cycle in G we conclude that the edges of C^{\prime} form a cycle in G. We claim that the chord of C^{\prime} in H is also a chord of C^{\prime} in G. To see this we first observe that no neighbor of u is a vertex of the form x_{Q} found in the proof of Proposition 1 by the Fleischner-Stiebitz theorem (since u and that vertex x_{Q} would have been identified before we used Theorem 2 in the proof of Proposition 1). (Note that the Q in x_{Q} in Proposition 1 has a slightly different meaning than in the present proof.) So Q does not
satisfy (iii)'. Secondly, Q cannot satisfy (ii) because the edges of C^{\prime} form a cycle in G. As Q satisfies (i) or (ii) or (iii) ${ }^{\prime}$, by the choice of G^{\prime}, it follows that Q satisfies (i). Hence the chord of C^{\prime} in H is also a chord of C^{\prime} in G.

This proves Theorem 4.

References

[1] B.R. Alspach, C.D. Godsil, Cycles in graphs, Ann. Discrete Math. 27 (1985) 461-468.
[2] J. Bárat, M. Kriesell, What is on his mind?, Discrete Math. 310 (2010) 2573-2583.
[3] E. Birmele, Every longest circuit of a 3-connected, $K_{3,3}$-minor free graph has a chord, J. Graph Theory 58 (2008) 293-298.
[4] J.A. Bondy, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, NorthHolland, 1995, pp. 289-299.
[5] J.A. Bondy, Beautiful conjectures in graph theory, European J. Combin. 37 (2014) 4-23.
[6] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The MacMillan Press Ltd., 1976.
[7] H. Fleischner, M. Stiebitz, A solution to a colouring problem of P. Erdős, Discrete Math. 101 (1992) 39-48.
[8] P. Haxell, B. Seamone, J. Verstraete, Independent dominating sets and Hamiltonian cycles, J. Graph Theory 54 (2007) 233-244.
[9] K. Kawarabayashi, J. Niu, C.Q. Zhang, Chords of longest circuits in locally planar graphs, European J. Combin. 28 (2007) 315-321.
[10] X. Li, C.Q. Zhang, Chords of longest circuits in 3-connected graphs, Discrete Math. 268 (2003) 199-206.
[11] X. Li, C.Q. Zhang, Chords of longest circuits of graphs embedded in torus and Klein bottle, J. Graph Theory 43 (2003) 1-23.
[12] J. Sheehan, The multiplicity of Hamiltonian circuits in a graph, in: M. Fiedler (Ed.), Recent Advances in Graph Theory, Academia, Prague, 1975, pp. 447-480.
[13] A.G. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Ann. Discrete Math. 3 (1978) 259-268.
[14] C. Thomassen, Configurations in graphs of large minimum degree, connectivity, or chromatic number, in: Combinatorial Mathematics: Proceedings of the Third International Conference, New York, 1985, in: Ann. New York Acad. Sci., New York, vol. 555, 1989, pp. 402-412.
[15] C. Thomassen, On the number of Hamiltonian cycles in bipartite graphs, Combin. Probab. Comput. 5 (1996) 437-442.
[16] C. Thomassen, Chords of longest cycles in cubic graphs, J. Combin. Theory Ser. B 71 (1997) 211-214.
[17] C. Thomassen, Independent dominating sets and a second Hamiltonian cycle in regular graphs, J. Combin. Theory Ser. B 72 (1998) 104-109.
[18] J. Wu, H. Broersma, H. Kang, Removable edges and chords of longest cycles in 3-connected graphs, Graphs Combin. 30 (2014) 743-753.
[19] C.Q. Zhang, Longest cycles and their chords, J. Graph Theory 11 (1987) 521-529.

[^0]: E-mail address: ctho@dtu.dk.
 ${ }^{1}$ Research partly supported by ERC Advanced Grant GRACOL, project no. 320812.

