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Cyclic Plastic Hinges with Degradation
Effects for Frame Structures

Lasse Tidemann1,2 and Steen Krenk1

ABSTRACT

A model of cyclic plastic hinges in frame structures including degradation effects for stiffness

and strength is developed. The model is formulated via potentials in terms of section forces.

It consists of a yield surface, described in a generic format permitting representation of general

convex shapes including corners, and a set of evolution equations based on an internal energy

potential and a plastic flow potential. The form of these potentials is specified by five parameters

for each generalized stress-strain component describing: yield level, ultimate stress capacity,

elastic and elasto-plastic stiffness, and a shape parameter. The model permits gradual changes

in stiffness and strength parameters via damage-based degradation. The degradation effects are

introduced in the energy and flow potentials and result in additional evolution equations for the

corresponding strength and stiffness parameters. The cyclic plastic hinges are introduced into

a six-component equilibrium-based beam element, using additive element and hinge flexibilities.

When converted to stiffness format the plastic hinges are incorporated into the element stiffness

matrix. The cyclic plastic hinge model has been implemented in a computer program and used

for analysis of some simple structures illustrating the characteristic features of the cyclic response

and the accuracy of the proposed model.

Keywords: Cyclic plasticity; plastic hinges; frame structures; damage effects

INTRODUCTION

The concept of plastic hinges has been widely used for ultimate load carrying capacity

analysis with focus on monotonically varying loads (Powell and Chen 1986; Liew et al.

1993; Attalla et al. 1994; Krenk et al. 1999), but also to a more limited extent for analysis

with cyclic plasticity as e.g. earthquake response analysis, taking into account some kind

of degradation effect (Inglessis et al. 1999; Kaewkulchai and Williamson 2004). The theory

of plastic hinges was introduced in the late 1960’s for both monotonic loading (Ueda et al.

1968), and cyclic loading with large displacements (Ueda et al. 1969). The elastic tangent

stiffness matrix in a large displacement but small deformation theory was derived in (Oran

1973) with the use of an equilibrium format of the beam. The theory of concentrated yield

hinges in beams was further extended to a general plastic node method (Ueda and Yao

1982) with extensions to e.g. plate elements. Further works on plastic hinge theory for

beams include analysis of the effect of geometric nonlinearity (Liew et al. 2000), spread of

plasticity (Jiang et al. 2002), and plastic behaviour during fire (Iu and Chan 2004).
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Denmark

2Facilities & Projects Discipline Area, Maersk Oil A/S, DK-6700 Esbjerg, Denmark
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One of the early works on cyclic plasticity with degradation in relation to structures

(Baber and Wen 1981), focused on random vibrations, but emphasized the importance

of degradation mechanisms and the identification of these in the mathematical model as

well as the separation of the individual mechanisms in the model. Later works (Ibarra

et al. 2005; Lignos and Krawinkler 2011; Kamaris et al. 2013) have adopted the concept of

separation of the mechanisms by modelling each section force component separately with

predefined hysteresis and backbone curves and describing relevant model parameters sta-

tistically. Degradation mechanisms have also been introduced into beam elements via the

flexibility format, in which plasticity and degradation have been combined using specified

degradation functions, (Inglessis et al. 1999; Cipollina et al. 1995).

The degradation mechanisms typically include degradation of elastic stiffness, elasto-

plastic stiffness, the yield capacity of the different section force components, and the

ultimate capacity of the section force components. The effects are experimentally observed

in reinforced concrete structures, (Lu et al. 1999; Masi et al. 2013), where a substantial

part of the degradation originates from cracking in the concrete, and in steel structures,

(Popov et al. 1980; Mamaghani and Kajikawa 1998; Elchalakani et al. 2003; Elchalakani

2007), where the degradation mechanisms typically include fracture and local buckling.

Key ingredients in plasticity theories are the yield surface and the gradient of the flow

potential, that may be obtained for beam cross-sections using analytical expressions (Chen

and Atsuta 2008), or numerical estimates (Liu et al. 2009). However, for most practical

purposes it is of interest to use an approximate representation of the yield surface and the

flow potential, as most analytical yield surfaces describing beam cross-sections are based

on ideal plasticity and have corners with undefined gradients, (Chen and Atsuta 2008).

A multi-linear approximation of experimental yield surfaces also introduces corners, and

certain measures have to be taken to overcome the problem with undefined gradients at the

corners as described in e.g. (Krenk et al. 1993). Furthermore, a multi-linear representation

leads to multiple algorithmic checks for violation of the yield constraint, a complication

that may be circumvented by approximating the yield surface using a single-equation

approximation, see e.g. (Kitipornchai et al. 1991). To overcome problems with undefined

gradients at corners in a multi-linear approximation a single-equation representation of

the yield function as a sum of even powers of the generalized stress components was

proposed for I-beams in (Orbison et al. 1982). However, it turned out to be quite difficult

to guarantee convexity of yield surfaces of this format. In contrast, convexity is ensured

when using ellipsoids for approximation of the yield surface, and an early proposal (Willam

and Warnke 1974) for the use of an elliptical approximation of yield surfaces has been fairly

widely adopted, e.g. in (Folino et al. 2009). However, the determination of the necessary

gradients may be elaborate and the format has limited flexibility with regard to general
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geometric shapes.

In order to increase the flexibility of the representation various methods known from

isogeometric analysis have been proposed during recent years. A NURBS-based approach

was suggested in (Coombs et al. 2016), that can in principle accurately approximate any

yield surface, provided the control points can be chosen appropriately. Hardening may be

introduced via movement of the control points, providing an option of modifying the shape

of the yield surface locally during hardening. Depending on the number of control points

it may be cumbersome though and special care has to be taken to ensure convexity of the

surface. An alternative quite simple and flexible generic surface format using a Minkowski

sum of ellipsoids ensuring convexity, was suggested by (Bleyer and de Buhan 2013a; Bleyer

and de Buhan 2013b). The format has a high accuracy but the actual formation of the

Minkowski sum as well as derivation of the gradients may be difficult.

The present paper develops a cyclic plasticity formulation for plastic hinges in beam

elements. The basic evolution equations for cyclic plasticity with optional degradation of

stiffness and strength is presented in Section 2, generalizing the stress based von Mises

theory presented in (Krenk and Tidemann 2016) to a format in terms of normalized section

forces. In Section 3 a generic yield surface format, based on the sum of square roots of

quadratic forms, is introduced. This yield surface format plays a key role in representing

realistic convex yield surfaces for beam cross-sections, and includes the option of smoothing

sharp corners of the surface. In Section 4 the cyclic plasticity model is implemented in

the form of plastic hinges into a beam element via the flexibility format from (Krenk

et al. 1999), including the derivation of the consistent algorithmic tangent stiffness matrix.

Finally, examples illustrate the characteristic properties of the cyclic response and the

accuracy of the proposed model.

PLASTIC HINGE MODEL

A plastic hinge in a beam is a local deformation mechanism located at a cross-section of

the beam in which local elongation and angle discontinuities are considered as generalized

plastic strains corresponding to generalized stresses defined in terms of the local section

forces. For beams the generalized stresses governing the behaviour of plastic hinges will

typically be the normal force and two bending moments as shown in Fig. 1. Other section

forces may also be included but are typically of minor influence.

Thus, the generalized stresses and strains used are defined as

τ = [N,My,Mz, ... ]
T , γ = [ εx, κy, κz, ... ]

T . (1)

These generalized stresses and strains are now used to define a cyclic plasticity model,
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FIG. 1. Beam cross-section with section forces as generalized stresses.

following the procedure developed in (Krenk and Tidemann 2016). The first step is to in-

troduce an internal energy function consisting of a sum of three contributions: a quadratic

function of the generalized elastic strains γe, a quadratic function of a correspondig set of

generalized internal strains γi, and an additive function of a set of generalized strains ξ

representing damage. The internal energy hereby takes the form

ϕ(γe,γi, ξ) = 1
2
γT
e De(ξ)γe +

1
2
γT
i Di(ξ)γi + ϕd(ξ) . (2)

The matrices De(ξ) and Di(ξ) representing the contributions from the elastic and the

internal strains may depend on the damage parameters ξ, thereby permitting changes

in stiffness due to degradation. The energy conjugate generalized stresses are found via

differentiation of the energy potential as

τ = ∂γe
ϕ = De(ξ)γe , (3)

τi = ∂γi
ϕ = Di(ξ)γi , (4)

η = ∂ξϕ . (5)

It is observed that the generalized stresses τ and the generalized internal stresses τi defined

via (3) and (4), respectively, have a Hooke’s law type relation to their energy conjugate

generalized strains.

Normalized yield surface and flow potential

In plasticity models like the present, based on generalized stresses representing different

quantities like forces and moments, plasticity parameters like yield and ultimate stress lev-

els may be different and also may develop differently during plastic loading. This suggests

the use of the normalized section forces [n,my, mz, ... ] = [N/Ny , My/M
y
y , Mz/M

y
z , ... ]

in the formulation of the yield surface and the flow potential. This corresponds to using

normalized generalized stresses τ̃ and normalized internal stresses τ̃i defined by

τ̃ (η) = B
−1
y τ , τ̃i(η) = B

−1
y τi , (6)
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where the normalization coefficients are arranged in the diagonal matrix

By(η) =















Ny(η)

My
y (η)

My
z (η)

. . .















. (7)

It is convenient to choose the normalization coefficients as the current yield level for the

corresponding single component load.

In cyclic plasticity the yield surface moves in stress space, and the simplest format

consists of a translation of the yield surface described by the generalized internal stresses

τi, the so-called kinematic hardening. This is conveniently represented by the generic yield

function format

F (τ , τi,η) =
∥

∥τ̃ (η)− τ̃i(η)
∥

∥− 1 , (8)

where ‖ ‖ is a suitable norm of the generalized stresses. It is well known from von Mises

plasticity that a particularly simple formulation is obtained when the yield condition is

expressed via the equivalent stress σe, which is a homogeneous form of degree one in the

stress components. This concept is extended to a more general yield function of degree

one in Section 3.

The basic form of the flow potential is constructed in a way similar to the flow potential

in the stress-based model in (Krenk and Tidemann 2016), where a quadratic term of the

normalized internal generalized stresses τ̃i is added to the yield function along with an

unspecified function of the stress-like damage parameters, η, giving the flow potential

G(τ , τi,η) = F (τ , τi,η) +
1
2
τ̃ T
i B

−1
β τ̃i +Gd(η) , (9)

where τ̃i = τ̃i(η) and the coefficient matrix Bβ is defined as

Bβ(η) =















βN(η)

βMy
(η)

βMz
(η)

. . .















. (10)

In the yielding process the yield surface moves as described by the normalized center stress

τ̃i. The first term in the flow potential (9) is of degree one, while the second term is of

degree two. Hereby the parameters in the array β = [βN , βMy
, βMz

, ...]T determine the

limits on the normalized center stress components τ̃i, thereby defining the ultimate stress

capacity. In the von Mises stress-based model, (Krenk and Tidemann 2016), the ratio

between ultimate and initial yield level, is given by a single parameter corresponding to

1 + β, while in the present model the additional capacity is defined individually for each

generalized stress component.
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Generalized stress evolution matrix

The evolution equations for external stresses, internal stresses and damage parameters

are derived from the assumption of maximum dissipation rate. The dissipation rate is

expressed as the rate of externally supplied energy τ γ̇ minus the change in the internal

energy represented by ϕ̇,

Ḋ = τ γ̇ − ϕ̇(γe,γi, ξ) ≥ 0 . (11)

It is assumed that the observable generalized strain γ is the sum of the generalized elastic

strain γe and the generalized plastic strain γp. The evolution equations for the generalized

stresses and damage parameters are derived by maximizing the dissipation rate, under the

constraint that the material can be described by the flow potential, G(τ , τi,η), and the

consistency condition Ḟ (τ , τi,η) = 0. A more detailed derivation is given in (Krenk and

Tidemann 2016). The elasto-plastic stiffness matrix is represented in a very compact form

by introduction of the combined external, internal and damage evolution matrix

Deid(ξ) =









De(ξ) 0 ∂T
ξ τ

0 Di(ξ) ∂T
ξ τi

(∂T
ξ τ )

T (∂T
ξ τi)

T ∂T
ξ η









, (12)

Ded(ξ) =
[

De(ξ) 0 ∂T
ξ τ

]T

, (13)

where Ded represents the stiffness relating an increment in the generalized external strains

γ̇e to increments in the generalized external stresses τ̇ , internal stresses τ̇i and damage

stresses, η̇. The matrix Ded corresponds to the first column of Deid in the definition (12).

The gradients of the yield surface and the flow potential are a key part of the de-

termination of the elasto-plastic stiffness matrix, and these are defined in vector form

as

∂F = [ ∂T
τ F , ∂T

τi
F , ∂T

ηF ]T , (14)

∂G = [ ∂T
τ G , ∂T

τi
G , ∂T

ηG ]T . (15)

Hereby the evolution equations of the generalized stresses and stress-like parameters take

the form








τ̇

τ̇i

η̇









=
[

Ded −
Deid (∂G) (∂F )T Ded

(∂F )T Deid (∂G)

]

γ̇ . (16)

From (16) the elasto-plastic stiffness is identified as

D
ep

eid = Ded −
Deid (∂G) (∂F )T Ded

(∂F )T Deid (∂G)
, (17)
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where the subscript ‘eid’ indicates that the elasto-plastic stiffness matrix relates to the

generalized external, internal and damage stresses, and the superscript ‘ep’ indicates the

elasto-plastic stiffness matrix. With this formulation De describes the elastic stiffness, Di

describes the tangent stiffness at initial yield, and the β-parameters describe the relative

value of the ultimate capacity of the respective generalized stress components.

Plastic straining and enhanced flow potential

The elastic stiffness is described by the stiffness matrix De. At initial yield additive plastic

strains appear, and if disregarding possible damage effects in this particular context, the

initial elasto-plastic stress-strain relation follows from (16) in the form

τ̇ = Deγ̇ − De(∂τG)
(∂T

τ F )Deγ̇

(∂T
τ F )De(∂τG) + (∂T

τi
F )Di(∂τiG)

. (18)

In general, the elastic and the plastic strain rates may have different direction. However, if

assuming that the directions are identical, amounting to proportionality between the strain

rate and the stress gradient of the flow potential, γ̇ ∝ ∂τG, the stress-strain evolution

relation (18) can be expressed in the form

τ̇ =
Deγ̇

1 +
(∂T

τ F )De(∂τG)

(∂T
τi
F )Di(∂τiG)

. (19)

In this formula the second term in the denominator represents the relative increase in

flexibility due to the additional plastic straining. It is seen that this term depends on the

ratio of the internal stiffness Di to the external stiffness De. The effect of the relative mag-

nitude of the internal stiffness is illustrated in Fig. 2(a), in which the relative magnitude

of the internal stiffness is 2.0, 1.0 and 0.5, respectively. It is seen that for a large value of

the relative internal stiffness the kink in the stress-strain curve at beginning yield becomes

small, and conversely.

While the initial inclination of the stress-strain relation at initial yield is governed by

the relative magnitude of the internal stiffness parameters, the subsequent development of

plastic straining, and thereby the generalized stress-strain relation, between initial yield

and the ultimate capacity is governed by the gradient of the internal stress term in the

flow potential. With the flow potential of the basic form indicated in (9) the gradient with

respect to the (normalized) internal stress components is given by the partial derivatives,

∂τ̃ i
j
G = ∂τ̃ i

j
F +

τ̃ ij
βj

. (20)

This form leads to a development of the plastic straining determined by the yield and

ultimate stress levels and the initial slope at first yield. As demonstrated in (Krenk
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FIG. 2. Influence of parameters on stress-strain relation: (a) relative internal stiffness

Di = (−)De, (b) modification of flow potential G via the shape parameter αj.

and Tidemann 2016) for the von Mises stress-based model, it is possible to enhance the

flow potential, making it possible to control the development of plastic straining between

the point of initial yield and ultimate stress level. In the present context the hysteresis

curves for the individual generalized stress components may be different, and thus must

be defined by parameters each associated with a specific generalized stress component. A

quite flexible format is obtained by replacing the denominator βj by a weighted average of

the parameter βj and the current absolute value of the corresponding normalized internal

stress component τ̃ ij . Hereby the components of the flow potential gradient take the form

∂τ̃ i
j
G = ∂τ̃ i

j
F +

τ̃ ij
(1− αj)βj + αj|τ̃ ij |

, (21)

where αj is the weight parameter for component j. This formulation enables different α

parameters for each generalized stress component. Integration of the gradient components

defined in (21) leads to the following form of the flow potential,

G(τ , τi,η) =F (τ , τi,η) +Gd(η)

+
∑

j

1

αj

{

∣

∣τ̃ ij
∣

∣−
1− αj

αj

βj ln
(

1 +
αj

1− αj

|τ̃ ij|

βj

)

}

,
(22)

where αj = αj(η), βj = βj(η) and τ̃ ij = τ̃ ij(η). The basic potential from (9) corresponds

to the limit αj = 0, while as demonstrated in (Krenk and Tidemann 2016) more represen-

tative values for von Mises plasticity were found to be in the order of αj = 0.7− 0.9. The

effect of the shape parameter αj is illustrated in Fig. 2(b) showing stress-strain curves for

αj = −1.5, 0.0 and 0.5. Appropriate combination of the parameter(s) αj and the relative

magnitude of the internal stiffness gives a very versatile representation of the shape of the

elastic-plastic stress-strain curve with only two parameters per generalized stress compo-

nent. The representation of the cyclic behavior is illustrated and discussed in connection

with specific examples in Section 5.
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GENERIC YIELD SURFACE

The gradients of the yield surface and the flow potential are of central importance, as

they determine the basic properties of the elasto-plastic evolution matrix (16), as well

as the algorithmic properties used in return algorithms in the numerical computations.

In the case of materials that can be represented by the von Mises yield criterion the

gradients are well-defined over the entire yield surface, whereas that may not be the case

for yield surfaces representing beam cross-sections, as these may typically have corners.

This problem can be overcome in various ways, e.g. with use of a locally modified yield

function for tubular beam cross-sections, (Krenk et al. 1999). However, most techniques

of that type require individual extensions for different types of cross-sections and hence a

study of a proper extension of the yield function is necessary for each type of cross-section.

Additionally, return algorithms and consistent tangent operators have to be derived for

each individual yield surface, an undesirable feature in a space frame program where

multiple different beam cross-sections may be needed. In order to circumvent the corner

problem and the need for a library of different yield function formats a generic yield surface

representation is proposed in the following.

A simple approach

The simplest form of a guaranteed convex representation, excluding the degenerate case

of straight lines or planes, is an ellipsoid (in 2D an ellipse but the term ellipsoid will be

used about the general n-dimensional version in the following). In (Skordeli and Bisbos

2010) the use of approximating yield surfaces for frame structures in the form of a single

ellipsoid was suggested. However, this approximation is not very flexible, and degenerates

to a sphere when expressed in terms of the normalized generalized stresses. There are two

logical possibilities for a next step in the line of simple suggestions: make use of a ‘super

ellipsoid’, where the exponent is larger than 2; or make use of the convexity guaranteed by

the mathematical representation of an ellipsoid and add several of these together, leading

to a convex surface. The latter approach is the more general and is chosen here.

A single ellipsoid can be represented as a homogeneous form of degree one

√

x′TAx′ = 1 , (23)

when A is a symmetric, positive definite matrix and x′ are the local coordinates of the

ellipsoid, which may be translated and rotated relative to the global coordinate system,

x. The homogeneous form of degree one is desirable as the von Mises yield function

with equivalent stress σe is homogeneous of degree one, suggesting that an ellipsoidal

representation in the form (23) qualitatively has the same properties as the von Mises

yield surface. An addition of terms of the type (23) with different matrices A1, A2,
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· · · does not reduce to an ellipsoid, even if the centres are the same, and thus a format

represented as a sum of terms of the type (23) offers the possibility of representing more

general shapes. The suggested format is therefore

√

x′

1
T
A1x

′

1 +

√

x′

2
T
A2x

′

2 + · · · = 1 , (24)

which is guaranteed convex because of the convexity of each of the terms, and where (23)

represents a single ellipsoid, the sum (24) represents a combination of ellipsoids. The ratio

of the axes of an ellipsoid is given by the matrix A whereas the finite size of the ellipsoid

is given by the right-hand side in (23). As the combination of ellipsoidal terms (24) does

not identify the finite size of the individual terms an infinity of combinations of finite sized

ellipsoids exist. Assigning each ellipsoid a finite size, i.e. equalling each ellipsoidal term

to a value less than 1, the intersection of the individual ellipsoids - being points in 2D and

curves in 3D - will be points on the resulting surface described by (24). The concept is

illustrated in Fig. 3 in a format with two ellipsoidal terms, where different combinations

of finite sized ellipsoids result in a convex but non-ellipsoidal surface.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x1

x
2

(a)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x1

x
2

(b)

FIG. 3. Intersections of finite ellipsoids, (– · –) and (– –), are points, (•), on the

resulting surface, (—).

Figure 3 illustrates that the suggested format can approximate both symmetric sur-

faces, Fig. 3(a), and non-symmetric surfaces, Fig. 3(b). Symmetric yield surfaces are

typical for symmetric beam cross-sections, while non-symmetric yield surfaces are typ-

ical for non-symmetrical beam cross-sections or beams of materials with different yield

strengths in tension and compression as e.g. concrete. It is furthermore observed from

Fig. 3 that there is a high degree of flexibility in the approximation despite only using two

terms. Including more terms than two will naturally lead to a higher degree of flexibility,

but also a higher degree of complexity when determining the ratios of the semi-principal
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axes of the ellipsoids and the rotation of each ellipsoid. Because of the high degree of flexi-

bility, the ensured convexity and the elimination of corners (the gradient of each ellipsoidal

term is defined everywhere) the following generic yield surface format is suggested

F (τ , τi,η) =
√

τ̄ T
1 A1τ̄1 +

√

τ̄ T
2 A2τ̄2 + · · · − 1 , (25)

where Ak is a positive definite, symmetric matrix for k = 1, 2, · · · and

τ̄k(η) = τ̃ (η)− τ̃i(η)− τ̂k . (26)

Here τ̂k is a constant offset in the normalized stress space. The number of terms as well as

including offset are both options to increase the accuracy of the representation. However,

for most symmetric beam cross-sections it is sufficient with two or three terms where the

matrices Ak are diagonal matrices and τ̂k = 0, i.e. the ellipsoids are centered at origo and

are not rotated. For reinforced concrete cross-sections though it is typically advantageous

to include an offset that is the same for all terms and only offsets the yield surface on the

axis of the normal force.

Choosing parameters for simple yield surfaces

Yield surfaces for typical steel beam cross-sections are symmetric and centered around

origo with contour lines in the (n,my, 0), (n, 0, mz) and (0, my, mz)-planes resembling

shapes that are interpolations between a rhombus and a circle. Such shapes can be rep-

resented rather accurately with the suggested format using two ellipsoidal terms with

diagonal matrices, A1 and A2, and with zero offsets, τ̂1 = τ̂2 = 0. Generating a proper

representation of a simple, symmetric yield surface with the format (25) is most often

eased by prescribing the matrix A1 and defining A2 by the intersection of the yield sur-

face and the n-, my- and mz-axes denoted by n0, m0
y and m0

z respectively. The diagonal

matrix A2 is defined via the constraints

√

A1
1,1 +

√

A2
1,1 =

1

|n0|
,

√

A1
2,2 +

√

A2
2,2 =

1

|m0
y|
,

√

A1
3,3 +

√

A2
3,3 =

1

|m0
z|
. (27)

Typically, the values of n0 = m0
y = m0

z = 1 in order to permit full yield capacity of each

section force, but values may be subject to change in order to change geometric properties

of the yield surface representation.

The shape of the yield surface is governed by the ratios of A1
1,1, A2

1,1, · · · , leading

to a fairly simple method of choosing the values of A1. In the (n,my, 0), (n, 0, mz) and

(0, my, mz)-planes the shape is governed by two types of ratios with different effects; ratios

of type Ak
1,1/A

k
2,2 and ratios of type A1

1,1/A
2
1,1. The first ratio type is most important, as

it controls whether the shape between the intersections of the yield surface and the axes

is more rhombic or circular. If the ratio is close to one, the shape will be circular whereas

11



a ratio very different from one will be rhombic. The second type of ratio controls how

rounded the yield surface is close to the intersections with the axes. In the (n,my, 0)-plane

the shape around the intersection with the my-axis will be rounded compared to the shape

around the intersection with the n-axis when A1
1,1/A

2
1,1 ≫ A1

2,2/A
2
2,2 and vice versa when

A1
1,1/A

1
2,2 > 1, i.e. for a very rhombic shape of the yield surface, there will be a corner

at the intersection with the n-axis when A1
1,1/A

2
1,1 ≫ A1

2,2/A
2
2,2. With this knowledge it is

fairly easy to choose the parameters A1, n
0, m0

y and m0
z to get a proper representation of a

simple, symmetric yield surface. For non-symmetric yield surfaces the process of choosing

the number of terms to include in (25) may be more difficult and could potentially combine

with optimization routines as in (Bleyer and de Buhan 2013b).

Tubular beam yield surface

In order to illustrate the suggested method, a tubular steel cross-section is investigated.

The yield function for the axial stress component of the tubular cross-section is

F (n,my, mz) =
√

m2
y +m2

z − cos
(π

2
n
)

. (28)

At yield the function equals zero, which defines the yield surface. The yield surface is

symmetric and fairly simple as illustrated in Fig. 4, and thus it is assumed that it can be

accurately approximated using (25) with two terms, diagonal matrices, and without offsets,

i.e. τ̂1 = τ̂2 = 0, based on the above discussion. The constraints (27) are applied, effec-

tively reducing the problem to the determination of the three diagonal terms in A1, using

the normalization |n0| = |m0
y| = |m0

z| = 1. As the yield surface (28) in the (0, my, mz)-

plane is a circle it is chosen that A1
2,2 = A1

3,3 which gives a perfect circular representation.

In the two remaining planes the yield surface (28) is very rhombic and with a sharp cor-

ner at the intersection with the n-axis suggesting that A1
1,1/A

1
2,2 6= 1, A2

1,1/A
2
2,2 6= 1 and

A1
1,1/A

2
1,1 ≫ A1

2,2/A
2
2,2 to get a good representation of (28) with the format (25). Therefore

A1 is chosen to have the diagonal terms A1
1,1 = 1− 2 · 10−5 and A1

2,2 = A1
3,3 = 0.16 and A2

given by the constraints (27) has the diagonal terms A2
1,1 = 1 ·10−10 and A2

2,2 = A2
3,3 = 0.36

whereby A1
1,1/A

1
2,2 = 6.25 ≫ 1, A2

1,1/A
2
2,2 = 2.8 · 10−10 ≪ 1 and A1

1,1/A
2
1,1 = 1010 which is

far bigger than A1
2,2/A

2
2,2 = 0.44. The resulting approximation is shown in Fig. 4.

As observed from Fig. 4 the approximation is nearly indistinguishable from the original

analytically determined surface. However, there are slight differences because the approx-

imation is a smooth surface with a unique gradient everywhere, whereas the theoretical

surface has singularities at the points (n,my, mz) = (±1, 0, 0). Thus, for this particular

yield surface it is quite easy to determine an accurate representation of the yield surface

within the proposed generic yield surface format (25).

12
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FIG. 4. Theoretical yield surface for tubular steel beam and approximation, (—).

Contour lines are plotted in various planes.

Exterior surfaces

One issue that arises with the very accurate approximation is that even though the gradient

is defined, where the theoretical yield surface has corners, the yield surface and the exterior

surfaces still have a very large curvature in that region. The exterior surfaces are used for

the return to the yield surface and especially for large load steps the return may be difficult

in regions with high curvature. Due to the mathematical formulation of the yield surface

(25) the exterior surfaces will simply be scaled versions of the yield surface, whereby the

curvature of the exterior surfaces will be similar to that of the yield surface. Hence it

may be advantageous to adjust the local curvature to facilitate the ensuing iterations. An

example of how this is achieved is shown in Fig. 5 where the parameters are |n0| = 0.95,

|m0
y| = |m0

z| = 1, A1
1,1 = 0.865, A1

2,2 = A1
3,3 = 0.0961 and A2 is a diagonal matrix given by

the constraints (27). The parameters are chosen such that the shape of the yield surface

in the (n,my, 0)- and (n, 0, mz)-plane is still rather rhombic, suggesting A1
1,1/A

1
2,2 6= 1,

A2
1,1/A

2
2,2 6= 1 but the shape at the intersection with the n-axis should be more rounded

than in the accurate representation, but still somewhat resembling corners, suggesting

A1
1,1/A

2
1,1 ≫ A1

2,2/A
2
2,2 but with a smaller factor compared to the accurate representation.

It is observed from Fig. 5 that although the slight change in the parameters does not

change the representation of the analytical yield surface much, the curvature is reduced

dramatically in the critical regions, thereby improving the iteration convergence rate. The

fact that the generic yield surface is guaranteed convex without singularities, has gradients

that are easy to determine, has a high degree of flexibility and accuracy, and can create

exterior surfaces with relatively low curvature indicate that it is a suitable generic method

to model yield surfaces for beam cross-sections.
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FIG. 5. Outer surfaces for accurate approximation, (—), and for rounded approxi-

mation, (—).

BEAM MODEL WITH DEGRADING PLASTIC HINGES

In principle, the plastic hinge model presented in Section 2 can be implemented for any

type of element, where the generalized strains can be assumed to be the sum of elastic

and plastic generalized strains. Many frame structures have loads leading to maximum

load at joints or at specific cross-sections in the spans, and it is therefore of interest

to use the theory for representing plastic deformation in the form of local yield hinges.

In the following it will be demonstrated how the present cyclic plasticity model can be

implemented in the form of a plastic hinge that is incorporated into the formulation of the

element, leading to an explicit elasto-plastic tangent stiffness matrix including degradation

effects. This beam element can then be used in a co-rotating element formulation for large

displacements if needed. The formulation is an extension of that presented in (Krenk et al.

1999) to include the internal variable and damage features of the present plasticity model.

The beam element is formulated in terms of six equilibrium states and the conjugate

states of deformation. It is assumed that the plastic deformation is concentrated at the

nodes at the ends of the element in the form of yield hinges. With the choice of deformation

measures for a beam shown in Fig. 6 the generalized elastic strains and the conjugate

generalized stresses within the beam element between the plastic hinges are defined as

ũe = [u, ϕx, ϕz1, ϕz2, ϕy1, ϕy2]
T , (29)

q̃e = [N, T,Mz1,Mz2,My1,My2]
T , (30)

where the tilde indicates reference to the six-component element equilibrium format. For

the equilibrium beam element the generalized strains are the axial deformation and the

rotations about the different axes, rather than the axial strain and the curvatures about
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FIG. 6. Equilibrium format of beam element. (a) Element deformations, (b) section

forces.

the different axes, in order to be conjugate to the section forces defined in (30). It is

observed that in the equilibrium element the normal force and torsion moment are of

equal magnitude but opposite at the two ends of the beam, and that the shear forces

follow from the bending moments by equilibrium.

Elasto-plastic tangent stiffness

In the derivation of the elasto-plastic tangent stiffness it is necessary to have a relation

between the elastic and the plastic deformations, which is particularly simple for small

deformation theories which was applied in Section 2 as well. For a beam the assumption

of small deformations, which can be combined with large displacements via e.g. the co-

rotational formulation, implies that the total deformations, ũt, can be split additively into

elastic deformation ũe and plastic deformation ũp,

ũt = ũe + ũp . (31)

The internal energy of the beam element is completely analogous to the general format of

the internal energy (2), with the only difference being the notation introduced to indicate

the relation to a beam element,

Φ (ũe, ũi, ũd) = 1
2
ũT
e Ke(ũd) ũe +

1
2
ũT
i Ki(ũd) ũi + Φd(ũd) . (32)

Whereas the original energy definition (2) was given per length the present energy applies

to the full beam element. The energy is denoted Φ rather than ϕ, and the stiffness matrices

are denoted Ke and Ki rather than De and Di, respectively. The energy conjugate section
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forces are found via differentiation as

q̃e = ∂ũe
Φ = Ke(ũd)ũe , (33)

q̃i = ∂ũi
Φ = Ki(ũd) ũi , (34)

q̃d = ∂ũd
Φ . (35)

The remaining steps of determining the elasto-plastic tangent stiffness matrix accounting

for degradation follow the steps (8)–(17) using the generic yield surface described in Sec-

tion 3. In order to retain a compact notation, the section forces q̃e, the internal section

forces q̃i, and the section force-like damage parameters, q̃d, are arranged in a common

vector q̃ that has the energy conjugate vector ũ,

q̃T = [ q̃T
e , q̃

T
i , q̃

T
d ] , ũT = [ ũT

e , ũ
T
i , ũ

T
d ] , (36)

which are defined to ease the notation, especially when deriving the return algorithm.

The main difference between a beam element and the hinge model described in Sec-

tion 2 is that plasticity may occur at each end of the beam individually, whereby the

maximisation of the dissipation rate (11) will involve two constraints, namely the plastic

flow potential at each end. The consistency condition for the yield surface at each end

will provide the other constraints, making it possible to derive the elasto-plastic tangent

stiffness. The plastic flow potentials and the yield functions are arranged in the vector

format

g(q̃) = [G1(q̃), G2(q̃) ]
T , fy(q̃) = [F1(q̃), F2(q̃) ]

T . (37)

With the use of the gradient of the plastic flow potential the increment in the total

deformations, dũt, internal deformations, dũi and deformation-like damage parameters,

dũd, can be expressed as








dũt

0

0









= dũ+ (∂T
q̃
g)T dλ , dλ =

[

dλ1

dλ2

]

. (38)

Here dλ is the vector containing the two plastic multipliers, which are determined using

the consistency condition at each end. The solution of the consistency condition is found in

a compact form with use of the combined external, internal and damage stiffness matrices

Ked =
[

Ke(ũd) , 0 , ∂T
ũd
q̃e

]T

, (39)

Keid =











Ke(ũd) 0 ∂T
ũd
q̃e

0 Ki(ũd) ∂T
ũd
q̃i

(∂T
ũd
q̃e)

T (∂T
ũd
q̃i)

T ∂T
ũd
q̃d











, (40)
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where Ked is analogous to Ded and Keid is analogous to Deid. The coupled evolution

equations for the section forces q̃e, the internal section forces q̃i and the section force-like

damage parameters q̃d can compactly be described by

dq̃ = Keid dũ , (41)

which is essential in formulating a return algorithm as well as in solving the consistency

conditions.

The solution of the consistency conditions gives the plastic multipliers

dλ =
[

(∂T
q̃
fy)Keid (∂

T
q̃
g)T

]

−1
(∂T

q̃
fy)Ked dũt , (42)

where it is noted that dλj ≥ 0 and the two equations reduce to one if the generalized stress

state is only located on one of the two yield surfaces. The matrix product to be inverted

is a 2× 2 matrix in the case of yield at both nodes and reduces to a scalar in the case of

yield at only one node. The increment in the section forces dq̃e, the internal section forces

dq̃i, and the section force-like damage parameters, dq̃d are expressed as

dq̃ =
[

dq̃T
e , dq̃T

i , dq̃T
d

]T

=
[

Ked −Keid (∂
T
q̃
g)T

[

(∂T
q̃
fy)Keid (∂

T
q̃
g)T

]

−1
(∂T

q̃
fy)Ked

]

dũt .
(43)

The tangent stiffness matrix relating only to the increment in the section forces, which is

needed in the equilibrium iterations in a finite element code, is identified as

Kep = Ke −KT
ed (∂

T
q̃
g)T

[

(∂T
q̃
fy)Keid (∂

T
q̃
g)T

]

−1
(∂T

q̃
fy)Ked . (44)

In the case without degradation of the elastic stiffness, the matrixKed reduces to [Ke , 0 ]
T

and the elasto-plastic tangent stiffness is only affected by degradation in the hardening

term, i.e. the matrix
[

(∂T
q̃
fy)Keid (∂

T
q̃
g)T

]

−1
.

Full-format beam element

The 6 × 6 equilibrium format of the beam is not sufficient for an implementation in a

finite element program as all rigid body displacements are absent. In order to be able to

implement it in a finite element code the equilibrium beam element needs to be embedded

in a general 12×12 3D beam element as shown in Fig. 7 with the classical sign convention

of the element displacements and the energy conjugate element forces.

Just as the deformations and section forces of the equilibrium element shown in Fig. 6

are arranged in the vectors ũt and q̃e, the element displacements and forces of the full

format beam element shown in Fig. 7 are sorted in the vectors

uT = [uT
1 ,u

T
2 ] , uj = [ux, uy, uz, θyz, θxz, θxy]

T
j , (45)

qT = [qT
1 ,q

T
2 ] , qj = [Qx, Qy, Qz,Myz,Mxz,Mxy]

T
j . (46)
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FIG. 7. Full format of beam element. (a) Element displacements, (b) element forces.

In order for the two elements to be equivalent the corresponding generalized strains and

stresses of the two formulations must satisfy the incremental virtual work relation

qT du = q̃T
e dũt , (47)

providing a link between the two formulations. Via the equilibrium conditions of the beam

the element forces q can be expressed in terms of the equilibrium section forces q̃e via a

transformation matrix T,

q =

[

q1

q2

]

=

[

T1

T2

]

q̃e = T q̃e . (48)

With this relation it is realised that the total deformations ũt of the equilibrium format

can be expressed via the nodal displacements u and the transformation matrix T, using

the work increment (47),

dũt = TT du . (49)

With the use of (48) and (49) it is possible to derive the elasto-plastic tangent stiffness

matrix for a beam element with 12 degrees of freedom as shown in Fig. 7. An increment

in the element forces, dq, can be expressed as

dq = T dq̃e + dT q̃e = TKepT
T du+ dT q̃e . (50)

The last term dT q̃e relates to the geometric effects of rotation and length change of the

element. While the second effect is small it contributes to the symmetry of the element

stiffness matrix. The second term may be rearranged into the form of an additional
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stiffness matrix Kr, see e.g. (Krenk et al. 1999; Krenk 2009),

dq =
(

TKepT
T +Kr

)

du , (51)

which has a form suitable for a finite element implementation, as it relates increments in

the element forces directly to increments in the element displacements.

Return algorithm

In a finite element setting the use of the elastic or the elasto-plastic tangent stiffness

matrix (44) will often lead to a violation of the yield criterion in the predicted state for

finite load/deformation increments. In order to enable the use of larger increments, a

return algorithm is developed which returns the predicted section force state to the yield

surface taking into account kinematic hardening as well as the degradation mechanisms.

The return algorithm is developed with the use of a Newton-Raphson solution scheme for

the deformation evolution equation (38), using finite increments giving the residual

rũ =









∆ũt

0

0









−∆ũ− (∂T
q̃
g)T ∆λ , ∆λ =

[

∆λ1

∆λ2

]

. (52)

The variation of the residual is needed in the Newton-Raphson solution procedure and

because the yield function and the flow potential is defined via q̃ it is desirable to formulate

the return algorithm in terms of the subincrement of the section forces, δq̃, rather than

the subincrement of the deformations, δũ. However, the variation of the residual (52) is

initially expressed via the subincrements δũ, δq̃ and δλ

δrũ = −δũ− ∂T
q̃

(

(∂T
q̃
g)T ∆λ

)

δq̃− (∂T
q̃
g)T δλ , (53)

because δũ is rather conveniently expressed by δq̃ via the variation of the evolution equa-

tion of q̃, (41), yielding

δq̃ =
[

Keid + ∂T
ũ

(

Keid∆ũ
)

]

δũ . (54)

In the Newton-Raphson scheme the increments ∆ũ and ∆λ are considered constants in

each iteration and hence they are only placed inside the derivatives in (53) and (54) to

give the correct dimension of vectors. Combining (52)–(54) with the consistency condition

that the yield functions must be equal to zero, the following equation system defining the

return algorithm is found,
[

(

KA
eid

)

−1
(∂T

q̃
g)T

∂T
q̃
fy 0

][

δq̃

δλ

]

=

[

rũ

−fy

]

, (55)

where the algorithmic stiffness matrix is defined via its inverse

(

KA
eid

)

−1
=

[

Keid + ∂T
ũ

(

Keid ∆ũ
)]

−1
+ ∂T

q̃

(

(∂T
q̃
g)T ∆λ

)

. (56)
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The two derivatives needed in the algorithmic stiffness matrix are obtained as

∂T
q̃

(

(∂T
q̃
g)T ∆λ

)

=
∂2G1

∂q̃ ∂q̃T
∆λ1 +

∂2G2

∂q̃ ∂q̃T
∆λ2 , (57)

and

∂T
ũ

(

Keid∆ũ
)

=



















∂2(q̃T
d ∆ũd)

∂ũe ∂ũT
e

0
∂2(q̃T

e ∆ũe + q̃T
d ∆ũd)

∂ũd ∂ũT
e

∂2(q̃T
d ∆ũd)

∂ũi ∂ũ
T
i

∂2(q̃T
i ∆ũi + q̃T

d ∆ũd)

∂ũd ∂ũ
T
i

Sym.
∂2(q̃T

e ∆ũe + q̃T
i ∆ũi + q̃T

d ∆ũd)

∂ũd ∂ũT
d



















. (58)

∂T
ũ

(

Keid ∆ũ
)

is composed of three diagonal blocks, which themselves are symmetric ma-

trices, as well as two off-diagonal blocks which are not symmetric. Because of the differ-

entiation procedure the full matrix ∂T
ũ

(

Keid ∆ũ
)

is symmetric though, as the off-diagonal

blocks are transposed on the other side of the diagonal blocks.

Because both Keid and ∂T
ũ

(

Keid ∆ũ
)

have a structure with three symmetric diagonal

blocks and two off-diagonal non-symmetric blocks it is possible to invert the first term,
[

Keid + ∂T
ũ

(

Keid∆ũ
)]

−1
, of the inverse algorithmic stiffness matrix in a simple way as

the sum Keid + ∂T
ũ

(

Keid∆ũ
)

has a block structure similar to Keid and ∂T
ũ

(

Keid ∆ũ
)

.

The inverse
[

Keid + ∂T
ũ

(

Keid ∆ũ
)]

−1
can be determined using only the inverse of the

two first diagonal blocks of the sum and the inverse of the difference between the third

diagonal block of the sum and the matrix products of the off-diagonal blocks of the sum

and the inverse of the corresponding diagonal block of the sum. The remaining part of

inverting the first term of the inverse algorithmic stiffness matrix will then be simple

matrix multiplication. The algorithmic stiffness matrix can therefore be determined by

numerical inversion of one matrix which size depends on the amount of internal variables,

ũi, and damage variables, ũd, used in the element, along with inversion of three smaller

matrices and a series of matrix multiplications. The two first block diagonal terms in the

sum Keid + ∂T
ũ

(

Keid ∆ũ
)

are most likely possible to invert analytically as they involve the

elastic and internal stiffness matrices, which themselves tend to be block diagonal. It is

furthermore noted that the algorithmic stiffness matrix is symmetric.

Using the algorithmic stiffness matrix (56) makes it possible to solve the equation sys-

tem (55) in a relatively compact form without having to solve the full system numerically.

Initially the force sub-increment δq̃ is solved for in the first row of equations in (55) and

subsequently substituted into the second row, making it possible to solve for δλ, giving
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TABLE 1. Return algorithm.

Calculate elastic increment in forces, ∆q̃0 = Ked∆ũt.

1. Calculate value of yield functions, fky , using q̃ = q̃0 +∆q̃k.

If F 0
1 ≤ 0 and F 0

2 ≤ 0, accept q̃ = q̃0 +∆q̃0

and exit algorithm.

2. Calculate ∆λ0 using (42) and ∆ũt

or update ∆λk = ∆λk−1 + δλk−1.

3. Determine ∂T
q̃
g, ∂T

q̃
fy and rk

ũ
using q̃ = q̃0 +∆q̃k.

If ‖rk
ũ
‖ < ǫtol, accept q̃ = q̃0 +∆q̃k and exit algorithm.

4. Calculate KA
eid by (56) and determine δλk by (59).

5. Determine subincrements δq̃k and δũk by (60) and (54).

6. Update ∆q̃k+1 = ∆q̃k + δq̃k and ∆ũk+1 = ∆ũk + δũk

and go to 1 using k = k + 1.

the relations

δλ =
[

(∂T
q̃
fy)K

A
eid (∂

T
q̃
g)T

]

−1 (

(∂T
q̃
fy)K

A
eid rũ + fy

)

, (59)

δq̃ = KA
eid

(

rũ − (∂T
q̃
g)T δλ

)

. (60)

The return algorithm described by (52) and (56)–(60) is shown as pseudo-code in Table 1.

The return algorithm is based on a fixed deformation increment for each element, ∆ũt,

which is obtained via a displacement increment found in a global finite element analysis

which is subsequently transformed into a deformation increment for each element via (49).

Additionally, the section forces prior to the deformation increment q̃0 is known. Initially

an elastic prediction step of ∆q̃ is made and if the new stress state is located on or

inside the yield surface, the elastic prediction step is accepted as an elastic change has

taken place, because of the convexity of the yield surface. Subsequently the increment in

the plastic multipliers ∆λ0 is calculated, based on the finite increment in deformations

∆ũt, followed by determination of the gradients of the plastic flow potential and the yield

surface, ∂T
q̃
g and ∂T

q̃
fy, respectively, along with the current value of the residual rk

ũ
based

on the predicted final value of q̃. If the residual is sufficiently small, the iteration procedure

is ended, while otherwise the algorithmic stiffness matrix KA
eid is recalculated via (56) and

the sub-increment in the plastic multipliers is calculated, δλk. There are limitations on
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the values δλk, as ∆λj ≥ 0 for j = 1, 2. The subincrements δq̃k and δũk are determined

via (60) and (54) respectively, whereby the increments ∆q̃k and ∆ũk can be updated and

the iteration procedure repeated until convergence.

A simple damage formulation

A very simple damage formulation is implemented in the beam element to illustrate the

concept of degradation. The damage functions used for the different parameters are chosen

because of the ability to model increase as well as decrease of a parameter with a prescribed

asymptotic saturation level, and because of their simple format. In total 9 different damage

variables are introduced, one relating to the elastic stiffness and two relating to the inelastic

stiffness, the yield capacity, the βj values and the αj values, respectively. The deformation-

like damage parameters are arranged in the vector

ũd = [ ũe
d, ũ

i,1
d , ũi,2

d , ũy,1
d , ũy,2

d , ũβ,1
d , ũβ,2

d , ũα,1
d , ũα,2

d ]T , (61)

where the superscript indicates what parameter type and node number the damage variable

relates to. The elastic stiffness is degraded via the function

Ke(ũd) =
1 + ηeũ

e
d/ũ

e
d,0

1 + ũe
d/ũ

e
d,0

K0
e , (62)

where K0
e is the elastic stiffness matrix without damage. ηe is the saturation level and ũe

d,0

is a factor accounting for how fast the saturation level is reached. Similarly, the stiffness

matrix relating to the deformation-like internal parameters is degraded via the function

Ki(ũd) =

[

K1
i (ũd) 0

0 K2
i (ũd)

]

, K
j
i (ũd) =

1 + ηi,jũ
i,j
d /ũi,j

d,0

1 + ũi,j
d /ũi,j

d,0

K0
i,j , (63)

where K
j
i is the part of the internal stiffness matrix relating to node j with the corre-

sponding undamaged internal stiffness matrix K0
i,j. The remaining material parameters

are functions of the section force-like damage parameters q̃d, and each of these are defined

as

q̃kd =
1 + ηk,jũ

k,j
d /ũk,j

d,0

1 + ũk,j
d /ũk,j

d,0

, (64)

where the index k may be y, β or α. The relation between the material parameters and

the section force-like damage parameters are defined as

By,j(q̃d) = q̃y,jd B
0
y,j , βj(q̃d) = q̃β,jd β0

j , αj(q̃d) = q̃α,jd α0
j , (65)

where B0
y,j is the undamaged yield capacity matrix for node j, β0

j is the array of undamaged

β-values for node j, and α0
j is the array of undamaged α-values for node j. The damage

functions described above are used in the following examples.
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EXAMPLES

The element described in Section 4 combined with the plastic hinge presented in Sec-

tion 2 and the generic yield surface described in Section 3 is implemented in a Matlab

toolbox, CycPlasFrame. The toolbox has linear geometry and does not at the present

stage include the stiffness contribution from normal forces, making it non-suitable for

frame structures dominated by buckling failure but highly suitable for frame structures

dominated by plastic deformation.

Cantilevered I-beams

Estimates of the model parameters can be found by use of experimental results and most

easily with displacement controlled experiments of cantilevered beams. Displacement con-

trolled bending of a cantilevered beam activates only one hinge, eliminating the coupling

between hinges and subsequently simplifying the calibration procedure. Cantilevered I-

beams with various cross-sections subjected to cyclic displacement controlled bending have

been tested in (D’Aniello et al. 2012), where a significant degradation of the parameters is

observed, primarily because of local buckling. In the test a cantilever of length L = 1.875m

is subjected to 12 symmetric cycles with approximate tip displacement 2 · 10−3L followed

by six symmetric cycles of approximate tip displacement 3.5 · 10−3L, four symmetric cy-

cles of approximate tip displacement 5 · 10−3L and subsequently by sets of two symmetric

cycles where the tip displacement increased by approximately 10−2 L per set until failure.

Test results for an IPE 300 cross-section and a HEB 240 cross-section are here used for

calibration of the present model. The IPE 300 and HEB 240 have approximately the same

slenderness of the flanges but the web of the IPE 300 is substantially more slender than

the web of the HEB 240, suggesting that local buckling and thereby degradation will occur

earlier in the bending of the IPE 300 than the HEB 240. The model parameters for the

non-degraded system are presented in Table 2.

TABLE 2. Initial model parameters.

Cross-section (EIy)e [MNm2 ]
(EIy)i
(EIy)e

[− ] My
y [ kNm ] βMy

[− ] αMy
[− ]

IPE 300 15.9 4.5 175.8 0.20 0.80

HEB 240 21.4 2.0 295.1 0.03 0.80

It is observed in Table 2 that aside from being more slender, the IPE 300 also has a

smaller elastic stiffness and a smaller yield capacity than the HEB 240 profile. The model

parameters relating to degradation of stiffness is shown in Table 3.

The higher slenderness of the IPE 300 profile compared to the HEB 240 profile shows

in the degradation parameters in Table 3 as ue
d,0 and ui,1

d,0 are significantly lower for the
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TABLE 3. Model parameters for stiffness degradation.

Cross-section ue

d,0 [ kJ ] ηe [− ] u
i,1
d,0 [ kJ ] ηi,1 [− ]

IPE 300 60 0.2 28 0.3

HEB 240 400 0.2 70 0.4

TABLE 4. Model parameters for capacity degradation.

Cross-section u
y,1
d,0 [ kJ ] ηy,1 [− ] u

β,1
d,0 [ kJ ] ηβ,1 [− ] u

α,1
d,0 [ kJ ] ηα,1 [− ]

IPE 300 70 0.3 0.30 7.8 -70 1.10

HEB 240 700 0.2 0.80 95 -100 1.06

IPE 300 profile, indicating that the degradation process develops in a faster rate. The

increment in the deformation-like damage parameters ue
d and ui,1

d are proportional to dλ1

and thus have dimension of energy and relate to the dissipated energy. This suggests

that the reference values ue
d,0 and ui,1

d,0 may be scaled with the size of a characteristic

hysteresis loop for cross-sections of similar type. The model parameters for degradation of

the capacity parameters and α are shown in Table 4. Similar to Table 3 it is observed that

the reference energy levels, uy,1
d,0, u

β,1
d,0 and uα,1

d,0 are lower for the IPE 300 profile compared

to the HEB 240 profile.
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FIG. 8. Cyclic bending of cantilevered IPE 300 beam: experiment (D’Aniello et al.

2012): (—). Present model (– –). (a) First 38 cycles. (b) All 40 cycles.

Both the experimental and the modelled results of the tip displacement and reaction

moment of the IPE 300 is plotted in Fig. 8. In Fig. 8 (a) the first 38 cycles are shown, to

illustrate that the accuracy of the model is fairly high for most of the response despite the

very simple damage functions used. In Fig. 8 (b) the remaining 2 cycles are also included,
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and it is observed that the last two cycles are not modelled very accurately compared to

the previous cycles. In the experiment torsional buckling took place after the local plastic

buckling (D’Aniello et al. 2012), which lead to failure of the beam, and it is expected that

this mechanism is the cause of the non-smooth change in the response in the last two

cycles compared to the initial ∼38 cycles.
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FIG. 9. Cyclic bending of cantilevered HEB 240 beam: experiment (D’Aniello et al.

2012): (—). Present model (– –). (a) First 38 cycles. (b) First 47 cycles. (c) First

50 cycles. (d) All 54 cycles.

The response of the HEB 240 profile is shown in Fig. 9. It is observed in Fig. 9 (a)

that the first 38 cycles are modelled almost perfectly with a very little difference between

the experimental and modelled result. In the first 38 cycles very little degradation takes

place, suggesting that the model without degradation is sufficiently accurate. Compar-

ing Fig. 9 (b) to (a) it is observed that after an additional nine cycles, during which

a significant amount of degradation has occurred, the modelled response still represents

the experimental response with good accuracy, despite the simple damage functions used.

When observing Fig. 9 (c) and (d) it is found that once the degradation process progresses

further the modelled response is not as accurate as for the first cycles. Torsional buck-

25



ling also occurred in the final stages of the experimental testing of the HEB 240 profile

(D’Aniello et al. 2012), which might explain the discrepancy between the experimental

and modelled response as in the case of the IPE 300 profile.

Tubular offshore frame

The plastic hinge model has been implemented as an extension of the computer code

RONJA (Rambøll Offshore Nonlinear Jacket Analysis) using a finite displacement co-

rotational beam-column formulation, (Krenk et al. 1999). This implementation is here

used to model cyclic loading on a plane offshore frame structure shown in Fig. 10 and

tested by (Zayas et al. 1980). This structure is geometrically similar to that analyzed

in (Krenk et al. 1999) for monotonic loading by a linear hardening plasticity model, but

representation of the response to cyclic loading is a considerably more challenging task.

The jacket structure is a one-to-six model, representative of offshore jacket structures

located in the Mexican Gulf. The jacket has equal bay heights and width of 3.05m

and is simply supported at the bottom of the legs and loaded by an in-plane horizontal

compression force P at the top right corner. Each part of the bracing is modelled by two

beam-column elements. Plastic hinges develop in the lower left brace of the upper bay, and

in order to capture the column effect a suitable imperfection is introduced in this brace

by a center node offset in the transverse direction of 56mm, corresponding to 2.6%. The

remaining members do not buckle and are initially straight. The legs of the jacket have

an outer diameter of 324 mm and a thickness of 9.53mm, while all horizontal bracing and

the upper bay bracing has outer diameter 102mm and thickness 3.05mm. The lower bay

bracing have outer diameter 114mm and thickness 4.78mm, while the top half bracing

has outer diameter 152mm and thickness 4.60mm.

FIG. 10. Plane offshore frame structure geometry.
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The steel in the bracing has yield stress 180MPa and the legs have yield stress 300MPa.

All members are modelled with βN = βMy
= βMz

= 0.700 and αN = αMy
= αMz

= 0.90.

The relative internal stiffness of the bracing is (EA)i/(EA)e = 0.6 and (EI)i/(EI)e = 2.0.

The legs have sufficient strength to avoid the formation of plastic hinges. As the D/t–ratio

of all members are relatively low, local buckling is not expected and degradation effects

are not included in the model. The horizontal load-displacement, P–∆u, curve of the

loaded top right corner is shown in Fig. 11(a,b,c), with each sub-figure showing five cycles

for clarity.
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FIG. 11. Plane offshore frame: experiment (Zayas et al. 1980) (—). Present model

(– –). (a) Cycle 1–5, (b) Cycle 6–10, (c) Cycle 11–15.

The figure shows good agreement between the experiment and the results of the model,

and the characteristic load levels and shapes of the hysteresis curves of the model replicate

the experimental results fairly well. It is noted that a degradation of the ultimate capacity

of the structure is observed, caused by the permanent deformation of the geometry of the

structure originating from elasto-plastic deformation and column-buckling.

CONCLUSIONS

A model of cyclic plastic hinges based on generalized stresses in the form of section forces
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has been presented. The model has the ability to degrade stiffness and strength to account

for the effects of local buckling, fracture etc. in frame structures. The model is based on

a yield surface and a plastic flow potential which have the same gradient with respect to

the section forces. For beams typical analytical yield surfaces have corners which are nu-

merically difficult to handle and a generic, smooth and convex yield surface representation

is suggested. The present yield surface is formulated in terms of normalized generalized

stresses and is homogeneous of degree one which in combination with the plastic flow

potential ensures the desired plastic behaviour.

The plastic hinge model is described by five parameters for each generalized stress

component; the elastic and elasto-plastic stiffness, the yield and ultimate capacity and

a parameter controlling the shape of the hysteresis curve between yield and ultimate

capacity. The plastic hinge model has been implemented in an elasto-plastic beam element

formulated via an equilibrium format whereby the stiffness format can be inverted to the

flexibility format which is additive. A return algorithm is formulated for the beam element

via the flexibility format whereby the consistent algorithmic tangent stiffness matrix is

derived. The algorithmic tangent stiffness matrix accounts for change in stiffness during

yielding as well as change of stiffness and capacity parameters leading to an efficient return

algorithm.

The element has been used to model cyclic bending of cantilevered steel beams utilizing

very simple damage functions. In the final stages of the experiment degradation included

local instability effects, the representation of which will need further refinement of the

specific damage model. The computed results compare well with the experimental results.

The model has also been used to model and calculate the response of a tubular offshore

frame to cyclic loading. Also in this case the model captures the response well and clearly

represents the experimentally observed increased displacements in continued cycling.
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