

Fishing profiles of Danish seiners and bottom trawlers in relation to current EU management regulations

Noack, Thomas; Frandsen, Rikke; Wieland, Kai; Krag, Ludvig Ahm; Berg, F.; Madsen, Niels

Published in: Fisheries Management and Ecology

Link to article, DOI: 10.1111/fme.12244

Publication date: 2017

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Noack, T., Frandsen, R. P., Wieland, K., Krag, L. A., Berg, F., & Madsen, N. (2017). Fishing profiles of Danish seiners and bottom trawlers in relation to current EU management regulations. Fisheries Management and Ecology, 24(6), 436-445. DOI: 10.1111/fme.12244

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Fishing profiles of Danish seiners and bottom trawlers in relation to current EU management regulations

3 Abstract

4 Danish seines and bottom trawls operate differently and have different catching processes. Both gears 5 belong to the same legislative category in European fisheries, but different management strategies in 6 other countries and critics by fishers on grouping Danish seines and trawls together indicate disagreement 7 on current gear classification. The present study compared both gears in terms of their fishing 8 characteristics and their catches of commercial species based on 16 years of observer data. Danish 9 seining is a specialized fishing method that targeted few species, but with higher total catch rates than 10 bottom trawlers. Bottom trawling is a more all-purpose fishing method that targets a larger number of 11 species and bottom trawlers use larger engines than Danish seiners. A generalized additive mixed model 12 indicated that catch rates of flatfish are generally higher for Danish seines and catch rates of roundfish species are higher for trawlers. The results do not directly suggest a separation of the gears in terms of 13 14 legislation as the quantities of fish below current minimum size were similar, but for example future 15 survival studies may reach different conclusions. Additional factors were found to be important in 16 determining catches of both gears.

17 KEYWORDS

18 Common Fisheries Policy, demersal fishery, discard ban, generalized additive mixed modelling,

19 landing obligation, observer data

20 1 INTRODUCTION

21 Both Danish anchor seines and demersal otter trawls (hereafter referred to as seines and trawls, 22 respectively) are widely-used fishing gears in Denmark (total landings in 2016 by trawlers: 155917 t, by 23 seiners: 6403 t; Ministry of Environment and Food of Denmark, Danish Agrifish Agency) and many 24 other countries. Although different fishing gears are treated separately under European Union (EU) 25 regulations (e.g. beam trawls and otter trawls), seines and trawls belong to the same legislative category 26 (Council Regulation (EC) 850/98). In contrast to the EU regulations, Norwegian regulations distinguish 27 these two gears (Regulations governing the sea-fishing activities J-125-2016; Norwegian Directorate of 28 Fisheries). Owing to the differences between gear designs (e.g. lighter ground gear of seines) and 29 particularly the fishing procedures (Eigaard et al., 2016a; Herrmann, Krag, Feekings & Noack, 2016), 30 this grouping of seines and trawls has been brought into question by fishers and other stakeholders in the 31 EU. Fishers that operate seines claim a loss of more marketable fish than those using trawls when legal 32 mesh sizes are used (see Herrmann et al., 2016). This highlights the need for more detailed information 33 about the two gear types and their catches.

34 Initially, the seine was developed by a Danish fisherman specifically to catch flatfish, whereas 35 trawls are more opportunistic gears in terms of the species that they target. Today, Norway lobster (a.k.a 36 langoustine) Nephrops norvegicus (L.) and several fish species (roundfish and flatfish) are targeted by 37 trawlers. However, a significant proportion of the catches of both gears is discarded (Kelleher, 2005). 38 This happens for several reasons including minimum landing sizes (MLS), quota restrictions and high-39 grading (Catchpole et al., 2013; Feekings, Bartolino, Madsen & Catchpole, 2012; Kelleher, 2005). In an 40 effort to eliminate discards, a central part of the new Common Fisheries Policy in Europe is a landing 41 obligation, which is being introduced on a fishery-by-fishery basis from 2016 to 2019 (Council Regulations (EU) 1380/2013 and 2016/72). It applies to all species that "define the fisheries", i.e. species 42 43 subject to catch limits should be landed. The landing obligation further introduces minimum conservation reference sizes (MCRS, usually equal to current MLS) where fish below this size are not allowed to be 44 45 sold directly for human consumption (Council Regulation (EU) 1380/2013). The objective of this 46 landing-obligation system is to make fishers be more selective (Condie, Grant & Catchpole, 2013) and 47 to reduce by catch instead of utilizing quota for less commercial catches (Borges, Cocas & Nielsen, 2016). 48 However, as previous studies found indications of differences in the selectivity characteristics of seines 49 and trawls as well as larger L_{50} values (length at which 50% of the fish are retained) for seines for species 50 like cod Gadus morhua L. (Herrmann et al., 2016; Noack, Frandsen, Krag, Mieske & Madsen, 2017), 51 proportions of fish below MCRS are likely different. Furthermore, differences in gear constructions (e.g. 52 lighter ground gears for seiners) might cause differences in the catches of Danish seines and bottom 53 trawls.

54 The aim of the present study was to use data from a perennial monitoring programme of 55 commercial vessels to establish a comprehensive dataset for describing and comparing the seine and 56 trawl fishery including their catches of commercial species, i.e. quota restricted species and/or species 57 that were directly targeted (for quotas and annual landings in Denmark in 2016, see Table S1). The specific objectives were to: 1) provide an insight into whether the legal grouping of seines and trawls, in 58 59 terms of catches, is appropriate; 2) assess the two fishing methods in relation to the new management 60 strategies; and 3) identify catch-related problems and challenges with which the fisheries will be 61 confronted under the new landing-obligation system.

62 2 MATERIALS AND METHODS

63 2.1 Data collection and selection

Data for the current study originated from a national observer program (1997–2002) and a European discard sampling programme (from 2002) in accordance with the European Data Directive (Council Regulation (EC) 1639/2001). Data were collected during regular fishing trips (i.e. seiners were sampled at daytime, trawlers were sampled at daytime and nighttime) onboard commercial fishing vessels participating in the discard sampling programmes in the period from 1997 to 2012. All fishes were measured for total length (TL), with Norway lobster measured for carapace length, and cephalopods measured for mantle length. In cases where representative sub-samples needed to be taken, individual numbers were raised to haul level following the sampling programme's standard procedure. Fishing practice was assumed to be unaffected by the presence of an observer and the chosen vessels and trips were assumed to be representative for the fishery in the area (Feekings et al., 2012). Further details about the Danish discard sampling programme, including sampling strategy and data collection have been described in Feekings et al. (2012) and in Storr-Paulsen, Birch Håkansson, Egekvist, Degel and Dalskov (2010).

77 The study area focused on Skagerrak and a small area in northern Kattegat (Fig. 1). Both areas 78 represent a relatively restricted region of large commercial importance where trawlers and seiners fish 79 under similar technical regulations. These regulations have changed several times in the past, including 80 the observed period, though the changes applied to codends in seines as well as in trawls and differences 81 between legislations in Skagerrak and Kattegat were small. Before 1989, 60 mm was the minimum 82 codend mesh size in both areas but increased to 70 mm in 1989 (Kirkegaard, Nielsen & Bagge, 1989), and a mandatory square mesh panel (SMP) was introduced in 2000 (Council Regulation (EC) 850/98). 83 84 From 2005, the minimum mesh size in codends was 90 mm (diamond mesh) or 70 mm (square mesh 85 codend including a grid), respectively (Council Regulation (EC) 27/2005). Optionally, fishers were 86 encouraged to use a 120 mm SMP, which has been rewarded by extra sea days (Council Regulation (EC)) 87 27/2005). In 2011, the SELTRA panel comprising of either a 270 mm diamond mesh panel or a 180 88 SMP was made mandatory for codend mesh sizes of 90–119 mm in Kattegat (Vinther & Eero, 2013). In 89 Skagerrak, it was introduced in 2013, but with a 140 mm SMP (BEK No. 1423 of 12/12/2013) instead of 120 mm. Regardless of the changes in technical regulations during the period of the sampling 90 91 programme, hauls with mesh sizes < 90 mm were excluded to use only comparable mesh sizes in the 92 analyses. Seiners never fished with these small mesh sizes, but trawlers did until the prohibition in 2005. 93 Since codend mesh size was expected to influence catches, the dataset was divided into two equalized 94 categories (90–109 mm and \geq 110 mm). Regulations and technical measures for towed gears did not 95 only prescribe specific mesh sizes, but also additional selectivity devices like escape windows (Council Regulation (EC) 850/98). As the specification of these devices was not sufficiently documented in the
dataset, the effects of device specification have not been taken into account in the analyses.

98 **2.2 Description and comparison of fishing characteristics and catches**

99 The first part of the analysis was a general comparison of both fisheries including observation 100 information (years of observation, number of observed vessels and number of observed hauls), 101 characteristics of the fisheries (engine power, haul duration, fishing depth and target species) and general 102 catch information (catch per haul, catch per hour). Where appropriate, values were calculated as mean 103 values \pm SD and a two-way analysis of variance (ANOVA) with gear and mesh size as fixed factors 104 followed by a Tukey-HSD test was used to test for significant differences between categories 105 (significance level $\alpha \le 0.05$).

This looked, at the species level, into the catches of commercial species i.e. species with quota in 2016 and/or explicitly targeted by the vessels considered within the dataset. After providing general information about the potential existence of quota in 2016 and potential minimum size (MS as either MLS or MCRS), information is provided about occurrence (observation frequency as number of hauls with observation divided by the number of hauls in total) and total number of caught individuals.

111 In addition, catch rates (number per hour) were calculated and a MS ratio (number of individuals 112 below current MLS or potentially coming MCRS/total number of individuals per haul) was estimated 113 for all species that have a MS. Both measures were calculated as mean values \pm SD. Testing for 114 significant differences between the categories was done using a two-way analysis of variance (ANOVA) 115 with gear and mesh size as fixed factors followed by a Tukey-HSD test (significance level $\alpha \leq 0.05$). 116 This approach detected several significant differences between gear and mesh size categories, but R² 117 values were very low (Table S2, Table S3), which indicated a high unexplained deviance. To account 118 for this and to find out which other factors than gear type and mesh size determined catch rates and MS 119 ratios of the different species, both measurements were investigated in more detail. Models were 120 formulated that included all additional parameters that were available from the dataset, that might be of relevance in determining catch rates and MS ratios and that could affect catches of seiners and trawlers
differently, i.e. depth, haul duration, latitude, longitude, subsampling factor, target species, trip number,
vessel name, engine power, year and year quarter. Four of them (haul duration, longitude, engine power,
year) had to be excluded due to collinearity with other covariates (variance inflation factors > 3; Zuur,
Ieno & Elphick, 2010).

126 Generalized additive mixed models (GAMMs) were used to describe relationships between 127 catch rates or MS ratios and the explanatory variables to account for the unbalanced sampling design 128 between explanatory variables (e.g. different number of hauls for different gear categories). For the catch 129 rate models, a Poisson distribution was assumed because catch rate represents count data, i.e. number of 130 fish per unit of effort. Cases of over-dispersion (conditional variance exceeds the conditional mean 131 and/or presence of many zero observations) were handled using a negative binomial distribution (Zuur, 132 Ieno, Walker, Saveliev & Smith, 2009). Both distributions were applied, using a log-link function. Zero-133 observations were included into the analysis because they form an important part of the total 134 observations. Conditions on different vessels may have differed due to vessel type, vessel size, skipper 135 effects or vessel-specific sorting behaviors (Feekings, Lewy & Madsen, 2013; Poos & Rijnsdorp, 2007; Tschernij & Holst, 1999), but the data structure could be regarded as a hierarchical structure, i.e. vessel 136 137 - trip - haul. Therefore, vessel and trip were always included in the model, even if the model found them 138 to be non-significant. Furthermore, the subsampling factor was included as an offset in all models as the 139 ratio of individuals observed and individuals measured. It was the only variable which was transformed (log-transformation). 140

- 141 The following
 - The following was the GAMM for catch rates per haul i (Eq. 2):

142

Catch rate_{*i*} ~ Poisson / negative binomial(μ_i, σ), where

$$log(\mu_i) = \eta + \beta(gear_i) + \gamma(mesh_i) + \delta(quarter_i) + \zeta(target_i) + s(depth_i) + s(latitude_i) + random effect (vessel_i) + random effect (trip_i) + offset (log(subsampling factor_i)) + \varepsilon$$
(1)

144 Fixed effects are the nominal covariate "gear" representing either trawl or seine, the continuous 145 covariate "mesh" for the used numerical mesh size, the nominal covariate "quarter" for the quarters of a 146 year, the nominal covariate "target" for the targeted species and the continuous covariates "depth" and 147 "latitude" representing the fishing depth and the respective north-south position. "Vessel" and "trip" as 148 nominal covariates are random effects that represent the respective fishing vessel and trip number. η 149 describes the intercept, which represents seines that fished in quarter one and targeted cod, s is an 150 isotropic smoothing function that was used to define smooth terms (thin-plate regression spline; Wood, 151 2003), and ε is an error term.

For MS ratios, the procedures explained for the catch rate models were followed, but since ratios can take values between 0 and 1, a binomial distribution was used. Cases of over-dispersion were handled by using a quasi-binomial distribution. For both distributions, a logit-link function was applied.

155 The GAMM for MS ratios per haul i (Eq. 2) was:

156

MS ratio_i ~ binomial / quasibinomial (μ_i , σ), where

$$logit(\frac{\mu_i}{1-\mu_i}) = \eta + \beta(gear_i) + \gamma(mesh_i) + \delta(quarter_i) + \zeta(target_i) +$$

$$s(depth_i) + s(latitude_i) + random effect (vessel_i) + random effect (trip_i) +$$

$$offset (log(subsampling factor_i)) + \varepsilon$$
(2)

157

158 The following steps of model selection and model validation were the same for both models. 159 After estimating the model, the least significant covariate with largest *P*-value was removed and the new 160 model was applied again. If there were non-significant results in the categorical terms (quarter, target), 161 then levels were combined and the model was refitted. This was done until all remaining covariates 162 except vessel and trip were statistically significant (P < 0.05). The final model was validated by checking residuals for linearity and normality (scatterplot of residuals vs. fitted values and histogram), spatial 163 164 independence (scatter plot of residuals vs. position as spatial factor) and still existing patterns in relation 165 to covariates (scatter plot of residuals vs. remaining covariates). Outliers were identified in the original data and further examined, but no observations were removed since no oddities were found. Results areshown for all models, which passed all steps of the validation process.

All analyses were done in R Statistical Software (R Core Team, 2015), using the package
"mgcv" (Wood, 2011) to conduct generalized additive mixed modelling.

170 3 RESULTS

171 3.1 Fishing characteristics

172 The dataset consisted of 285 and 460 fully-commercial hauls for seines and trawls, respectively (Table 1, Fig. 1). In relative terms, more hauls by seiners were conducted using large mesh sizes, whereas 173 174 trawlers used more often smaller mesh sizes (Table 1). Mean engine power was significantly lower for 175 seiners than for trawlers for both mesh size categories (Table 1) and mean haul duration for seiners was 176 less than half compared to trawlers (Table 1). Areas fished by trawlers and seiners overlapped in some cases (Fig. 1), but mean fishing depth for seiners using mesh sizes ≥ 110 mm ("a" in Table 1) was 177 178 significantly lower than for the other categories (Table 1). Mean fishing depth for seiners 90–109 mm 179 ("b" in Table 1) and trawlers 90–109 mm ("c" in Table 1) were also significantly different, but both were 180 not significantly different to the values for trawlers using a mesh size ≥ 110 mm ("bc" in Table 1). Mean 181 total catches per haul were significantly lower for seines than for trawls, but mean catch rate for seines 182 with mesh sizes ≥ 110 mm was significantly higher than for the three other categories. All target species 183 of seiners, including plaice *Pleuronectes platessa* L. as the main target species, could also be found on 184 the target list of trawlers. The list of target species for trawlers included five species that were not targeted 185 by seines; dab Limanda limanda (L.), lemon sole Microstomus kitt (Walbaum), Norway lobster, sole 186 Solea solea (L.) and turbot Scophthalmus maximus (L.).

187 **3.2 Catches**

Twelve species were considered (Table 2) of which three had no quota limits in 2016 (dab, lemon sole, witch flounder *Glyptocephalus cynoglossus* (L.)) in the study area, but were directly targeted by some vessels. Nine of these species are subject to MS regulations, but the MCRS of Norway lobster is different to the former MLS and the MS of witch flounder is only legal on a national level in some countries (Table 2). All species were observed in both gear types and mesh categories, but occurrences of herring *Clupea harengus* L., Norway lobster and Norway pout *Trisopterus esmarkii* Nilsson were low in seines (Table 2).

195 Mean catch rates ranged 0.0–971.2 individuals per hour (Norway lobster in both seine categories 196 and in trawls 90–109 mm, respectively; Table 3). Regarding fish species, catch rates ranged from 0.1 197 (Norway pout in both seine categories) to 481.1 individuals per hour (plaice in seines \geq 110 mm, Table 198 3). Catch rates for plaice and witch flounder were significantly higher in seines and for saithe *Pollachius* 199 virens (L.) and whiting Merlangius merlangus (L.) in trawls (Table 4). Catch rate was often significantly 200 affected when Norway lobster or plaice, as main target species of the fisheries, were the targeted species 201 (Table 4). In cases where Norway lobster was targeted, catch rates of Norway lobster and roundfish 202 increased, but catch rates of flatfish decreased. If plaice was targeted, then catch rates of Norway lobster 203 and roundfish decreased, but catch rates of flatfish increased. Mesh size was significant for four species 204 (Norway lobster, saithe, whiting, witch flounder), where catch rates decreased slightly with increasing 205 mesh size for three of them (Table 4). Season was significant for seven species (Table 4), but the 206 differences between the four seasons were species-dependent and no general pattern was found. Water 207 depth was found to be significant for all species and latitude was significant for seven of them (Table 4). 208 Since latitude and water depth were handled as smooth terms, a determination of the direction of impacts 209 has not been possible here. Vessel or trip or both random effects were significant for all species except Norway pout. 210

211 Mean values of the MS ratios ranged from 0% (hake *Merluccius merluccius* (L.): all categories
212 except trawls 90–109 mm, Norway lobster: trawls ≥ 110 mm, saithe: all categories except for trawls ≥

213 110 mm, witch flounder: seines 90-109 mm) to 50% (Norway lobster: seines 90-109 mm and trawls 214 90–109 mm, plaice: seines \geq 110 mm, whiting: both seine categories, Table 3) and differences between 215 the gear and mesh categories were small (Table 5). Gear was found to have a significant effect on the 216 MS ratio of whiting (lower for trawls), and mesh size had a negative effect on the ratios of haddock 217 Melanogrammus aeglefinus (L.). Season was significant for four species (cod, dab, plaice, whiting) 218 whereby season four was often the decisive season (lower ratios). Target species significantly affected 219 ratios of four species (cod, dab, haddock, Norway lobster), where Norway lobster significantly increased 220 the ratios of cod and haddock. The smooth terms depth and latitude were significant factors for five (cod, 221 haddock, hake, whiting, witch flounder) and one species (Norway lobster), respectively. Random effects 222 were also found to be of high importance; only cod did not show any significant effects of those (Table 223 5).

224 4 DISCUSSION

Fishing operation and catch profiles of commercial species for seiners and trawlers fishing in the Skagerrak and the northern Kattegat were compared based on 16 years of Danish observer coverage. This represents a comprehensive data source to evaluate and determine how specialized and flexible the two gears are in terms of target species and catches of fish below MS. The collected data is used to indicate how appropriate the legislative grouping of seines and trawls is and how challenged the two fisheries will be in meeting the objectives of the landing obligation.

Total catches per hour were larger for seiners using mesh sizes ≥ 110 mm than for trawlers. Translating those to catches per swept km² based on estimates of hourly swept area by Eigaard et al. (2016b) led to similar or even higher values for trawlers (seines 90–109 mm: 161.4 kg; seines ≥ 110 mm: 274.8 kg; trawls 90–109 mm: 267.1 kg; trawls ≥ 110 mm: 360.0 kg). In other words, seiners are able to fish on a larger area in shorter time, but trawling collects more fish from an area than seining does. Higher flatfish catch rates for seiners than for trawlers and lower engine power with an expected lower fuel consumption and CO₂ emission, as also reported by Thrane (2004), demonstrate that seining is an 238 energy efficient way of catching plaice and other flatfish species. Seiners generally fished in shallower 239 waters than trawlers and are more restricted to flat areas to avoid damage to the seine ropes and the 240 lighter ground gears. As a high proportion of the herding process of seines is made up by visual stimuli 241 (seine ropes and sediment re-suspended by those), seining requires daylight to be operated efficiently. 242 Contrary, trawlers can operate during day and night time, use sweeps which are much shorter than seine 243 ropes and trawls are often equipped with devices like bobbins or use rockhopper ground gear designs to 244 protect the netting from damage by rough bottoms (He & Winger, 2010). This makes trawlers more 245 flexible as they can operate on more diverse fishing grounds, which explains the longer list of target species for trawlers than for seiners. These differences highlight the disparity of seines and trawls. In 246 247 relation to the landing obligation, this means that seiners are more vulnerable in case quotas or stocks 248 for their few target species (mainly flatfish) are low. Contrary trawlers can shift to another target species 249 and continue fishing more easily.

Very low R² values in the ANOVA approach as well as the results of the GAMM approach 250 251 highlighted the importance of parameters other than gear and mesh size in determining catch rates and 252 the MS ratio. Conditional parameters such as latitude or season and random effects (vessel and/or trip) 253 were found to have significant effects on the catches of most species. This may indicate that it is primarily 254 not the gear or mesh size that is directly responsible for differences in MS ratios or catch rates between 255 the two fishing methods, but more likely the specific conditions in which the gears are used. As these 256 conditions include area and depth as factors of high importance in determining the catch rate and the proportion of fish below MLS or MCRS, differences in the catches are likely between different regions 257 258 and habitat types. Although this indicates that ecological factors are likely to be underrepresented in 259 current fishery management plans of the EU, adding more detailed area aspects and ecological conditions 260 to future management plans might be problematic due to the diverse and complex structure of marine 261 habitats. The unexpectedly weak effect of mesh size on catch rate and particularly MS ratio has also been 262 observed previously using similar observer collected data. Feekings et al. (2012) were inconclusive about 263 the importance of mesh size on the discard rates of plaice and suggested that the heterogeneity in the 264 sampling across mesh sizes and other factors was likely the cause of this phenomenon. The high 265 importance of vessel and/or trip as random effects in determining catches was also found by several other 266 studies (Feekings et al., 2013; Poos & Rijnsdorp, 2007; Tschernij & Holst, 1999). There may, however, 267 be other influential factors (e.g. selective devices, quota availability) that could affect catch rates or MS ratios. Although the regulations in the study area changed several times, potential effects on catches of 268 269 seines and trawls were considered to be similar because both belong to the same legislative category 270 (Council Regulation (EC) 850/98). Nevertheless, the quality of the data collected within the observer programmes could be improved by a more precise recording of additional factors like an accurate 271 272 description of used selective devices. The currently poor recording of the use of selective devices did not 273 allow inclusion of this factor in the analyses, and this may explain why only a weak impact of mesh size 274 was found in the present study. The relatively high number of zero observations in the dataset might be 275 reduced by increasing the sample size within the observer programme. As it could also be possible that 276 conditional factors are linked and interact, effects of gear or mesh size were maybe confounded or 277 masked in the present study. One way to investigate this would be studies that compare catches of seiners 278 and trawlers under more controlled conditions. This means that additional factors such as area, depth or 279 season should be the same for both gears and that same gear configurations (e.g. number of meshes 280 around codend, length of codend extension, selectivity devices) are used or that analyses account for 281 potential differences in those.

Despite the pronounced effects of conditional parameters, significant differences were found in catch rates between seines and trawls for several species. The results indicated that catch rates of flatfish were generally higher for seiners and catch rates for roundfish species were higher for trawlers. Significant differences in MS ratios were only found for whiting, which is not directly targeted. Thus, the results of the present study for fish below MS provide no clear findings to challenge the legislative grouping of seines and trawls into the same category. In the context of the landing-obligation system, the results indicate that both fisheries will be affected as catches of both gears were up to 50% individuals below MCRS, e.g. for the most important target species of both gears (Norway lobster and plaice,respectively).

291 Future studies that investigate survival of discards in the two fisheries may reach different 292 conclusions if, for example, survival rates are higher for seines than for trawls. Shorter haul durations, 293 shallower fishing grounds and smaller total catches were found in seines than in trawls. Besides the late 294 entry of fish into the net and the corresponding short time within the gear (Herrmann et al., 2016; Noack 295 et al., 2017), these are all factors that a have positive impact on the survivability of discarded fish (van 296 der Reijden et al., 2017). Previous studies on discard survival focused on different types of trawling like 297 beam trawling (Depestele, Desender, Benoît, Polet & Vincx, 2014; Uhlmann et al., 2016; van der Reijden 298 et al., 2017) and otter trawling (Methling, Skov & Madsen, 2017), but no studies have so far investigated 299 discard survival probabilities for Danish seines. Future discard survival studies should include these and 300 compare results to trawl studies. Because temperature, storage and handling time were also found to 301 affect survival (van der Reijden et al., 2017), these factors should be considered in such studies as well.

302 The minor differences in MS ratios between the gears indicate that if both gears will be grouped 303 together for the foreseeable future, challenges like the handling and storage (Sardà, Coll, Heymans & Stergiou, 2015) or the later sale of this less valuable part of the catch are probably similar for both. To 304 305 account for the mismatch in the size of caught Norway lobster and MLS (carapace length: 40 mm), the 306 MCRS is reduced to 32 mm carapace length. However, the approach of excluding mesh sizes < 90 mm 307 in the present study in order to compare only similar mesh sizes likely ignored considerable amounts of Norway lobster and fish below MS in trawl catches. The majority of the trawl fleet in the 308 309 Skagerrak/Kattegat area used mesh sizes below 90 mm until 2005 to fish for their main target Norway 310 lobster, which requires the use of small mesh sizes (Krag, Frandsen & Madsen, 2008). Today they use a 311 mesh size of 90 mm. The smaller fleet of seiners usually uses larger mesh sizes as they do not target 312 Norway lobster. Mesh sizes of 120 mm are normally used to avoid catches of smaller fish. For flatfish-313 targeting active fisheries (e.g. Danish seining), an obvious way to reduce the number of small individuals 314 in the catch could be an increase in the codend mesh size (Glass, 2000; Krag et al., 2008). As trawlers 315 target different species of fish, but also crustaceans, different options are needed and increases in mesh 316 size could be supported by selective devices (e.g. escape panels or grids) as an option to exclude 317 unwanted fish (Frandsen, Holst & Madsen, 2009; Valentinsson & Ulmestrand, 2008). However, research 318 is still needed to improve their selective properties. The present study reveals trawling to be an 319 opportunistic and flexible fishing method, able to target several different species on a variety of different 320 substrata, whereas seining is specialised on catching primarily flatfish efficiently. Highly specialized 321 fishing gear can be challenged in fast changing biological and management systems. Contrary to trawlers, 322 seiners will not have the opportunity to switch to other fisheries in the case of low market prices or low 323 quotas. Therefore, combining the advantages of trawlers and seiners could be a conceivable approach 324 which is already recognized by the industry as several of the new fishing vessels coming into the fleet 325 are combination vessels capable of both trawling and demersal seining (Scottish seining or fly-shooting). 326 Such combination vessels give the fishers high efficiency in accessing the available fisheries and a high 327 flexibility to continuously optimize the catch composition, as needed under the new landing obligation, 328 to optimize the vessel's quota capitalization.

329 Another relevant point in relation to the introduction of the landing obligation is the shift from 330 a landing quota regime to a catch quota management (CQM) regime in order to reduce discards. As fish 331 below MLS or MCRS are of lower value than larger individuals, fishing without discarding would result 332 in lower incomes for the fishers. An analysis of the results of CQM-trials from Denmark concluded, for 333 instance, that earnings of fishers following this system would be less compared to fishers harvesting 334 according to the conventional rules if no compensation would be given to them (Msomphora & Aanesen, 335 2015). Compensations like extra quota or more days at sea resulted, however, in a higher gross income 336 for fishers following the new system (Msomphora & Aanesen, 2015).

The present study found Danish seining to be an efficient fishing gear for catching flatfish, which is restricted to flat fishing grounds. Trawlers are more flexible in terms of fishing areas and target species and catch roundfish more efficiently. Numbers of fish below MS were similar for seines and trawls, but may have been different if mesh sizes < 90 mm would have been included in the study. Additional factors that are relevant in terms of comparing seines and trawls are the efficiency of selective devices and the
survivability of discards as both are likely affected by the differences (gear design, fishing procedure)
between both gears.

344 **References**

- Borges, L., Cocas, L., & Nielsen, K. N. (2016). Discard ban and balanced harvest: a contradiction? *ICES Journal of Marine Science*, *73*, 1632–1639. doi:10.1093/icesjms/fsw065
- 347 Catchpole, T. L., Feekings, J. P., Madsen, N., Palialexis, A., Vassilopoulou, V., Valeiras, J., Garcia, T.,
- Nikolic, N., & Rochet, M.-J. (2013). Using inferred drivers of discarding behaviour to evaluate
 discard mitigation measures. *ICES Journal of Marine Science*, *71*, 1277–1285.
- doi:10.1093/icesjms/fst170
- Condie, H. M., Grant, A., & Catchpole, T. L. (2013). Does banning discards in an otter trawler fishery
 create incentives for more selective fishing? *Fisheries Research*, *148*, 137–146.
- doi:10.1016/j.fishres.2013.09.011
- 354 Depestele, J., Desender, M., Benoît, H. P., Polet, H., & Vincx, M. (2014). Short-term survival of
- discarded target fish and non-target invertebrate species in the "eurocutter" beam trawl fishery
 of the southern North Sea. *Fisheries Research*, *154*, 82–92. doi:10.1016/j.fishres.2014.01.018
- 357 Eigaard, O. R., Bastardie, F., Breen, M., Dinesen, G. E., Hintzen, N. T., Laffargue, P., Mortensen, L.
- 358 O., Nielsen, J. R., Nilsson, H. C., O'Neill, F. G., Polet, H., Reid, D. G., Sala, A., Sköld, M.,
- 359 Smith, C., Sørensen, T. K., Tully, O., Zengin, M., & Rijnsdorp, A. D. (2016a). Estimating
- seabed pressure from demersal trawls, seines, and dredges based on gear design and
 dimensions. *ICES Journal of Marine Science*, *73*, i27–i43. doi:10.1093/icesjms/fsv099
- 362 Eigaard, O. R., Bastardie, F., Breen, M., Dinesen, G. E., Hintzen, N. T., Laffargue, P., Mortensen, L.
- 363 O., Rasmus Nielsen, J., Nilsson, H., O'Neill, F. G., Polet, H., Reid, D. G., Sala, A., Sköld, M.,
- 364 Smith, C., Sørensen, T. K., Tully, O., Zengin, M., & Rijnsdorp, A. D. (2016b). A correction to
- 365 "Estimating seabed pressure from demersal trawls, seines and dredges based on gear design

- and dimensions". *ICES Journal of Marine Science*, *73*, 2420–2423.
- **367** doi:10.1093/icesjms/fsw116
- Feekings, J., Bartolino, V., Madsen, N., & Catchpole, T. (2012). Fishery discards: Factors affecting
 their variability within a demersal trawl fishery. *PLoS ONE*, *7*, e36409.
- doi:10.1371/journal.pone.0036409
- Feekings, J., Lewy, P., & Madsen, N. (2013). The effect of regulation changes and influential factors
 on Atlantic cod discards in the Baltic Sea demersal trawl fishery. *Canadian Journal of Fisheries and Aquatic Sciences*, 70, 534–542. doi:10.1139/cjfas-2012-0273
- 374 Frandsen, R. P., Holst, R., & Madsen, N. (2009). Evaluation of three levels of selective devices
- 375 relevant to management of the Danish Kattegat-Skagerrak Nephrops fishery. *Fisheries*
- **376** *Research*, *97*, 243–252. doi:10.1016/j.fishres.2009.02.010
- Glass, C. W. (2000). Conservation of Fish Stocks through Bycatch Reduction: A Review. *Northeastern Naturalist*, 7, 395–410. doi:10.2307/3858520
- He, P., & Winger, P. D. (2010). Effect of trawling on the seabed and mitigation measures to reduce
- 380 impact. In P. He (Ed.), Behavior of marine fishes: Capture processes and conservation
- 381 *challenges* (pp. 295–314). Iowa: Wiley-Blackwell.
- 382 Herrmann, B., Krag, L. A., Feekings, J., & Noack, T. (2016). Understanding and predicting size
- selection in diamond-mesh cod ends for Danish seining: A study based on sea trials and

384 computer simulations. *Marine and Coastal Fisheries*, 8, 277–291.

- 385 doi:10.1080/19425120.2016.1161682
- 386 Kelleher, K. (2005). *Discards in the world's marine fisheries: An update*. Rome: Food and Agriculture
- **387** Organization of the United Nations.
- 388 Kirkegaard, E., Nielsen, N. A., & Bagge, O. (1989). *Mesh selection of Nephrops in 60 and 70 mm* 389 *Nephrops trawl*. Charlottenlund: Danmarks Fiskeri- og Havundersøgelser.
- 390 Krag, L. A., Frandsen, R. P., & Madsen, N. (2008). Evaluation of a simple means to reduce discard in
- 391 the Kattegat-Skagerrak Nephrops (*Nephrops norvegicus*) fishery: Commercial testing of

- different codends and square-mesh panels. *Fisheries Research*, *91*, 175–186.
- doi:10.1016/j.fishres.2007.11.022
- Methling, C., Skov, P. V., & Madsen, N. (2017). Reflex impairment, physiological stress, and discard
 mortality of European plaice *Pleuronectes platessa* in an otter trawl fishery. *ICES Journal of Marine Science*, *fsx004*. doi:10.1093/icesjms/fsx004
- 397 Msomphora, M. R., & Aanesen, M. (2015). Is the catch quota management (CQM) mechanism
- attractive to fishers? A preliminary analysis of the Danish 2011 CQM trial project. *Marine Policy*, 58, 78–87. doi:10.1016/j.marpol.2015.04.011
- 400 Noack, T., Frandsen, R. P., Krag, L. A., Mieske, B., & Madsen, N. (2017). Codend selectivity in a
- 401 commercial Danish anchor seine. *Fisheries Research*, *186*, *Part 1*, 283–291.
- doi:10.1016/j.fishres.2016.10.006
- 403 Poos, J.-J., & Rijnsdorp, A. D. (2007). An "experiment" on effort allocation of fishing vessels: the role
 404 of interference competition and area specialization. *Canadian Journal of Fisheries and Aquatic*405 *Sciences*, 64, 304–313. doi:10.1139/F06-177
- 406 R Core Team. (2015). R: A Language and Environment for Statistical Computing. R Foundation for
- 407 Statistical Computing. Vienna. Available at: <u>https://www.R-project.org/</u> (accessed 15
 408 December 2015).
- Sardà, F., Coll, M., Heymans, J. J., & Stergiou, K. I. (2015). Overlooked impacts and challenges of the
 new European discard ban. *Fish and Fisheries*, *16*, 175–180. doi:10.1111/faf.12060
- 411 Storr-Paulsen, M., Birch Håkansson, K., Egekvist, J., Degel, H., & Dalskov, J. (2010). Danish
- 412 Sampling of Commercial Fishery: Overview with special attention to discard 2010 data. DTU
- 413 *Aqua Report 250-2012, National Institute of Aquatic Resources, Charlottenlund.* Retrieved
 414 from
- Thrane, M. (2004). Energy consumption in the Danish fishery: Identification of key factors. *Journal of Industrial Ecology*, 8, 223–239. doi:10.1162/1088198041269427

- 417 Tschernij, V., & Holst, R. (1999). Evidence of factors at vessel-level affecting codend selectivity in
 418 Baltic cod demersal trawl fishery. ICES Document CM 1999/R:02. Retrieved from
- 419 Uhlmann, S. S., Theunynck, R., Ampe, B., Desender, M., Soetaert, M., & Depestele, J. (2016). Injury,
- reflex impairment, and survival of beam-trawled flatfish. *ICES Journal of Marine Science*, *73*,
 1244–1254. doi:10.1093/icesjms/fsv252
- Valentinsson, D., & Ulmestrand, M. (2008). Species-selective *Nephrops* trawling: Swedish grid
 experiments. *Fisheries Research*, *90*, 109–117. doi:10.1016/j.fishres.2007.10.011
- 424 van der Reijden, K. J., Molenaar, P., Chen, C., Uhlmann, S. S., Goudswaard, P. C., & van Marlen, B.
- 425 (2017). Survival of undersized plaice (*Pleuronectes platessa*), sole (*Solea solea*), and dab
- 426 (*Limanda limanda*) in North Sea pulse-trawl fisheries. *ICES Journal of Marine Science*.
- 427 doi:10.1093/icesjms/fsx019
- 428 Vinther, M., & Eero, M. (2013). Quantifying relative fishing impact on fish populations based on
- 429 spatio-temporal overlap of fishing effort and stock density. *ICES Journal of Marine Science*,
- 430 70, 618–627. doi:10.1093/icesjms/fst001
- Wood, S. N. (2003). Thin plate regression splines. *Journal of the Royal Statistical Society: Series B*(*Statistical Methodology*), 65, 95–114. doi:10.1111/1467-9868.00374
- 433 Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of
- 434 semiparametric generalized linear models. *Journal of the Royal Statistical Society: Series B*435 (*Statistical Methodology*), 73, 3–36. doi:10.1111/j.1467-9868.2010.00749.x
- Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common
 statistical problems. *Methods in Ecology and Evolution*, *1*, 3–14. doi:10.1111/j.2041-
- 438 210X.2009.00001.x
- Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). *Mixed effects models and extensions in ecology with R.* New York; London: Springer.
- 441

- 442 Figure 1. Study area and location of fishing operations separated by gear and mesh size category.
- 443 Danish seines 90–109 mm (black dots as anchor points, n = 80). Danish seines ≥ 110 mm (white dots as
- 444 anchor points, n = 205). Demersal otter trawls 90–109 mm (black lines as haul tracks, n = 381).
- 445 Demersal otter trawls ≥ 110 mm (white lines as haul tracks, n = 79). Grey shading notes bathymetry of
- the study area.

- 1 Table 1. General gear comparison using mean values \pm standard deviation including df (degrees of freedom) and
- 2 adjusted R^2 as measure of explained deviance. Mean values that are not sharing a letter (a, b, c) are significantly
- 3 different (two-way ANOVA and post-hoc Tukey-HSD test; $\alpha \le 0.05$). Target species (according to skipper) describe
- 4 species targeted by the different gear categories in descending order, number in parenthesis reflects number of hauls
- 5 targeting this species.

	90–109 mm		\geq 110 mm		10	1' D2
	Seine	Trawl	Seine	Trawl	dī	adj. R ²
Years	11	16	14	11	-	-
Vessels (no.)	11	55	22	19	-	-
Engine power (kW)	$214.9 \pm 90.0 a$	$404.4 \pm 194.1 \text{ b}$	169.6 ± 105.2 a	$457.2 \pm 265.5 b$	741	0.30
Hauls (no.)	80	381	205	79	205	-
Haul duration (min)	172.0 ± 23.9 a	369.7 ± 101.2 b	154.7 ± 35.9 a	$356.2 \pm 101.6 \mathrm{b}$	741	0.60
Fishing depth (m)	75.1 ± 39.2 b	$109.2 \pm 68.1 c$	52.4 ± 38.0 a	$92.3 \pm 67.5 \mathrm{bc}$	739	0.15
Catch per haul (kg)	464.9 ± 320.1 a	879.9 ± 589.6 b	700.5 ± 772.5 a	1151.4 ± 1527.3 c	741	0.05
Catch per hour (kg)	161.4 ± 111.2 a	146.9 ± 93.8 a	$274.8 \pm 294.6 \text{ b}$	$198.0 \pm 261.9 a$	741	0.07
Target species (No.	Plaice (60)	Norway lobster (222)	Plaice (103)	Plaice (37)		
of hauls)	Witch flounder (8)	Cod (59)	Cod (68)	Saithe (10)		
	Cod (7)	Saithe (32)	Haddock (21)	Cod (9)		
	Haddock (5)	Plaice (26)	Witch flounder (11)	Haddock (9)		
		Witch flounder (16)	Saithe (2)	Witch flounder (4)		
		Sole (13)		Lemon sole (3)		
		Haddock (11)		Norway lobster (3)		
		Lemon sole (2)		Dab (2)		
				Turbot (2)		

Table 2. Species overview including information about potential existence of quota in 2016, potentially
existing minimum size (cm), total number of observed individuals and occurrence (ratio of hauls with
observation to total number of hauls) separated by gear (seine (S) and trawl (T)) and mesh size categories (in

4 mm).

	Scientific name				Occurrence (%)			
Species		Quota	Minimum size (cm)	Individuals	90-109		≥ 110	
					S	Т	S	Т
Cod	Gadus morhua L.	yes	30	151964	98	96	88	91
Dab	Limanda limanda (L.)	no	-	174856	81	46	81	67
Haddock	Melanogrammus aeglefinus (L.)	yes	27	154929	78	84	53	72
Hake	Merluccius merluccius (L.)	yes	30	13215	70	64	30	41
Herring	Clupea harengus L.	yes	18	6399	9	37	6	22
Lemon sole	Microstomus kitt (Walbaum)	no	-	24794	91	67	64	62
Norway lobster	Nephrops norvegicus (L.)	yes	total: 13, carapace: 4	¹ 1910743	1	72	1	14
Norway pout	Trisopterus esmarkii (Nilsson)	yes	-	13425	4	30	6	9
Plaice	Pleuronectes platessa L.	yes	27	498873	96	85	99	82
Saithe	Pollachius virens (L.)	yes	30	54705	41	60	20	56
Whiting	Merlangius merlangus (L.)	yes	23	46714	35	70	21	48
Witch flounder	Glyptocephalus cynoglossus (L.)	no	_2	65207	79	80	47	52

¹ new: total length: 10.5; tail length: 5.9; carapace length: 3.2

² no Minimum Landing Size (MLS) on EU level, but local MLS of 28 cm in Germany, Denmark, Scotland, Sweden and parts of
 England

1 Table 3. Catch rates (ind./h) and minimum size (MS) ratios (individuals below minimum landing size (MLS) or

² minimum conservation reference size (MCRS)/total no. of individuals) \pm SD separated by gear and mesh size.

	Catch ra	te							MS ratio			
Species	90–109	mm			\geq 110 mm	≥ 110 mm			90–109 mm		≥ 110 mm	
	Seine	I	Trawl		Seine	,	Trawl		Seine	Trawl	Seine	Trawl
Cod	$47.7 \pm$	48.3	$38.3 \pm$	51.9	54.2 ± 10	9.2	$47.2 \pm$	64.4	0.2 ± 0.2	0.4 ± 0.3	0.3 ± 0.3	0.1 ± 0.2
Dab	$38.3 \pm$	75.8	$51.8 \pm$	127.2	74.6 ± 17	8.2	$40.9 \pm$	142.1	_	_	_	_
Haddock	$38.3 \pm$	47.5	$40.9 \pm$	82.8	33.1 ± 7	6.8	$62.2 \pm$	115.2	0.1 ± 0.2	0.4 ± 0.4	0.2 ± 0.3	0.1 ± 0.2
Hake	2.6 ±	5.6	5.0 ±	10.2	1.9 ±	8.0	1.1 ±	2.2	0.0 ± 0.0	0.2 ± 0.3	0.0 ± 0.0	0.0 ± 0.1
Herring	$0.2 \pm$	0.7	$2.5 \pm$	8.0	0.3 ±	2.1	$1.0 \pm$	4.1	0.2 ± 0.4	0.1 ± 0.3	0.4 ± 0.4	0.2 ± 0.3
Lemon sole	14.6 ±	14.5	6.4 ±	21.1	5.1 ± 1	2.3	$8.2 \pm$	14.6	_	_	_	_
Norway lobster	$0.0 \pm$	0.2	$971.2 \pm$	1952.0	$0.0 \pm$	0.0	$30.2 \pm$	153.5	0.5 ± 0.0	0.5 ± 0.3	0.0 ± 0.0	0.3 ± 0.3
Norway pout	0.1 ±	0.8	5.3 ±	27.1	0.1 ±	0.8	$0.5 \pm$	2.7	_	_	_	_
Plaice	$280.1 \pm$	689.7	$60.3 \pm$	148.4	481.1 ± 84	9.7	$146.1 \pm$	194.1	0.2 ± 0.2	0.4 ± 0.4	0.5 ± 0.4	0.3 ± 0.4
Saithe	2.7 ±	14.0	15.3 ±	49.1	3.9 ± 4	4.6	$22.5 \pm$	82.8	0.0 ± 0.1	0.0 ± 0.1	0.0 ± 0.2	0.1 ± 0.2
Whiting	0.9 ±	2.2	$20.8 \pm$	37.1	1.1 ±	4.3	4.1 ±	9.1	0.5 ± 0.4	0.4 ± 0.3	0.5 ± 0.4	0.1 ± 0.2
Witch flounder	33.2 ±	63.1	17.1 ±	30.7	17.4 ± 4	5.2	6.7 ±	11.5	0.0 ± 0.0	0.2 ± 0.3	0.1 ± 0.2	0.0 ± 0.1

- 1 Table 4. Model results for catch rates (log-transformed) including significance levels. Smooth terms and random terms given as estimated degrees of
- 2 freedom (edf).

3

		Predictors								Explained
Species	η	Categorical ter	Categorical term estimates					Random term (edf)		deviance
		Gear (trawl)	Mesh	Season	Target	Depth	Latitude	Vessel	Trip	(%)
Cod	2.3***				Plaice (-0.5)***	2.8***	7.6***	34.2***	128.8***	72.1
Dab	0.3*				Dab (5.3)**	2.9***	4.4***	36.1*	112.7**	88.9
Haddock	0.6***			4 (0.5) *		3.0***		38.3**	133.2**	87.0
Hake	-3.1***			2 (1.5)** 3 (1.9)*** 4 (1.8)***	Haddock (–0.6)** Norway lobster (1.1)***	1.0***	9.0**	58.7	128.9*	88.7
Herring	-1.9***			3 (-1.6)*	Plaice (-2.7)***	2.4**		25.7	83.1*	91.3
Lemon sole	0.1			2 (0.6) **	Dab (3.2)* Norway lobster (-1.4)*** Saithe (-1.3)*	2.8***	4.8**	21.9	93.5***	77.8
Norway lobster	14.7***		-0.1***		Haddock (–1.8)** Norway lobster (2.2)*** Plaice (–3.9)***	2.5***		50.3**	85.2**	97.7
Norway pout	-4.9***				Norway lobster (1.5)***	3.0***	7.8***	49.4	63.2	89.6
Plaice	2.9***	-0.9***	¢	4 (-0.6)***	Dab (3.7)*** Norway lobster (–0.7)*** Plaice (0.5)***	2.8***		34.3	127.3*	92.3
Saithe	-5.9***	1.1**	0.0*	2 (1.5)*** 3 (1.3)*** 4 (1.3)***		2.8***	1.4*	0.0	123.5***	92.6
Whiting	5.0**	1.2*	-0.0*	2 (-2.0)*** 3 (-1.3)*** 4 (-0.8) ***	Plaice (-1.7)***	2.7***		36.6	128.0*	89.8
Witch flounder	4.5***	-1.3***	• -0.0***		Witch flounder (0.5)*	2.9***	2.1*	13.6	111.3***	85.3

Significance levels: *P < 0.05, ** P < 0.01, *** P < 0.001; $\eta =$ intercept (gear: Danish seine, season: 1, target: cod)

1 Table 5. Model results for minimum size ratio (individuals below minimum landing size or minimum conservation reference size/total no. of

2	individuals, logit-transformed	including significance level	s. Smooth terms and random terms	s given as estimated	degrees of freedom (edf).
	, ,	00		0	0

		Predictors								Explained
Species	η	Categorical term estimates			Smooth term (edf)		Random term (edf)		deviance	
		Gear (trawl)	Mesh	Season	Target	Depth	Latitude	Vessel	Trip	(%)
Cod	-1.6***			4 (-1.1)***	Norway lobster (0.6)*	3.0***		80.3	117.2	72.0
Haddock	2.1		-0.0*	*	Norway lobster (1.2)*** Saithe (1.4)**	2.2***		24.0***	12.3	45.8
Hake	-5.3					2.0***		61.2	74.0*	89.9
Norway lobster	-0.7*				Haddock (-1.3)* Norway lobster (-1.2)*** Saithe (-0.9)* Witch flounder (-1.8)***		1.0**	35.7***	32.6	64.7
Plaice	-1.9***			4 (-1.2)**				80.6*	116.9**	78.6
Whiting	-1.0**	-1.0*		2 (1.0)** 4 (-1.1)**		1.2***		21.9	69.4*	67.7
Witch flounder	-3.9**					1.0**		69.1	113.1***	89.4

3 Significance levels: *P < 0.05, ** P < 0.01, *** P < 0.001, η = intercept (gear: Danish seine, season: 1, target: cod)

1 Supplementary material

2 Table S1. Quota in Skagerrak-Kattegat area (Ministry of Environment and Food of Denmark, Danish Agrifish

³ Agency) and total annual landings (t) of commercial species in Denmark for 2016.

<u>C</u>	$O_{\rm rest} = \frac{1}{10} \left[V_{\rm rest} + \frac{1}{10} \left(\frac{1}{10} + \frac{1}{10} \right) \right]$	Total annual landing	gs in Denmark	
Species	Quota in Kattegat/Skagerrak (t)	Bottom trawls	Danish seines	
Cod	Kattegat: 233; Skagerrak: 3747	15	584	941
Dab		-	779	294
Haddock	3400) 1	233	334
Hake	1334	- 1	739	109
Herring	16538	}	664	0
Lemon sole		- 1	122	35
Norway lobster	8513	3 4	088	0
Norway pout	99907*	· 19	627	0
Plaice	Kattegat: 2089; Skagerrak: 9234	15	356	4392
Saithe	4091*	÷ 3	238	7
Whiting	926	5	309	13
Witch flounder		- 1	239	164
*: 1) 7 1 0				

4 ^{*}incl. North Sea

5 Table S2. Catch rate (individuals/h) as mean value \pm standard deviation including df (degrees of freedom) and

6 adjusted R^2 as measure of explained deviance. Mean values that are not sharing a letter (a, b, c) are significantly

7 different (two-way ANOVA and post-hoc Tukey-HSD test; $\alpha \le 0.05$).

	Catch rate						
Species	90 - 109 mm		≥ 110 mm			R^2	
	Seine	Trawl	Seine	Trawl	-		
Cod	$47.7 \pm 48.3 \text{ a}$	38.3 ± 51.9 a	$54.2 \pm 109.2 \text{ a}$	$47.2 \pm 64.4 \text{ a}$	741	0.00	
Dab	38.3 ± 75.8 a	51.8 ± 127.2 a	74.6 ± 178.2 a	40.9 ± 142.1 a	741	0.00	
Haddock	$38.3 \pm 47.5 \text{ ab}$	$40.9 \pm 82.8 \text{ ab}$	33.1 ± 76.8 a	$62.2 \pm 115.2 \text{ b}$	741	0.01	
Hake	$2.6 \pm 5.6 \text{ ab}$	$5.0 \pm 10.2 \text{ b}$	1.9 ± 8.0 a	1.1 ± 2.2 a	741	0.03	
Herring	$0.2 \pm 0.7 a$	$2.5 \pm 8.0 \text{ b}$	$0.3 \pm 2.1 a$	$1.0 \pm 4.1 \text{ ab}$	741	0.03	
Lemon sole	$14.6 \pm 14.5 \text{ b}$	6.4 ± 21.1 a	5.1 ± 12.3 a	8.2 ± 14.6 ab	741	0.02	
Norway lobster	$0.0 \pm 0.2 a$	971.2 ± 1952.0 b	$0.0 \pm 0.0 a$	30.2 ± 153.5 a	741	0.10	
Norway pout	$0.1 \pm 0.8 \text{ ab}$	5.3 ± 27.1 a	$0.1\pm0.8~b$	$0.5 \pm 2.7 \text{ ab}$	741	0.01	
Plaice	$280.1 \pm 689.7 \text{ b}$	$60.3 \pm 148.4 \text{ a}$	$481.1 \pm 849.7 \text{ c}$	146.1 ± 194.1 ab	741	0.11	
Saithe	2.7 ± 14.0 ab	$15.3 \pm 49.1 \text{ b}$	$3.9 \pm 44.6 a$	$22.5\pm82.8b$	741	0.01	
Whiting	$0.9 \pm 2.2 a$	$20.8 \pm 37.1 \text{ b}$	1.1 ± 4.3 a	4.1 ± 9.1 a	741	0.11	
Witch flounder	$33.2 \pm 63.1 \text{ b}$	17.1 ± 30.7 a	17.4 ± 45.2 a	6.7 ± 11.5 a	741	0.02	

9 Table S3. Minimum size (MS) ratio (individuals below minimum landing size (MLS) or minimum conservation

10 reference size (MCRS)/total no. of individuals) ± standard deviation including df (degrees of freedom) and

11 adjusted R^2 as measure of explained deviance. Mean values that are not sharing a letter (a, b, c) are significantly

12 different (two-way ANOVA and post-hoc Tukey-HSD test; $\alpha \le 0.05$).

	MS ratio					
Species	90 - 109 mm		≥110 m	≥ 110 m		
	Seine	Trawl	Seine	Trawl	_	
Cod	0.2 ± 0.2 ab	$0.4 \pm 0.3 \text{ c}$	$0.3\pm0.3\ b$	0.1 ± 0.2 a	693	0.08
Haddock	0.1 ± 0.2 a	0.4 ± 0.4 b	0.2 ± 0.3 a	0.1 ± 0.2 a	543	0.17
Hake	$0.0 \pm 0.0 \text{ a}$	0.2 ± 0.3 b	$0.0 \pm 0.0 \ a$	$0.0 \pm 0.1 \ a$	388	0.11
Herring	0.2 ± 0.4 a	0.1 ± 0.3 a	0.4 ± 0.4 a	0.2 ± 0.3 a	173	0.02
Norway lobster	$0.5 \pm 0.0 \text{ ab}$	0.5 ± 0.3 b	$0.0 \pm 0.0 \text{ a}$	$0.3 \pm 0.3 a$	284	0.04
Plaice	0.2 ± 0.2 a	0.4 ± 0.4 bc	$0.5\pm0.4~\mathrm{c}$	$0.3 \pm 0.4 \text{ ab}$	664	0.05
Saithe	$0.0 \pm 0.1 \text{ a}$	$0.0 \pm 0.1 \ a$	$0.0 \pm 0.2 \text{ a}$	$0.1 \pm 0.2 \ a$	345	0.00
Whiting	$0.5 \pm 0.4 \text{ b}$	0.4 ± 0.3 b	0.5 ± 0.4 b	$0.1 \pm 0.2 a$	372	0.06
Witch flounder	$0.0 \pm 0.0 \text{ a}$	0.2 ± 0.3 b	0.1 ± 0.2 a	0.0 ± 0.1 a	501	0.14