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Abstract 

This study addresses coarsening mechanisms of Pt nanoparticles supported on carbon black in hydrogen. 

By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 

6 mbar 20 % H2/Ar while ramping up the temperature to almost 1000 °C. Time-resolved TEM images 

directly reveal that separated ca. 3 nm sized Pt nanoparticles in a hydrogen environment are stable up to 

ca. 800 °C at a heating rate of 10 °C/min. The coarsening above this temperature is dominated by the 

particle migration and coalescence mechanism. However, for agglomerated Pt nanoparticles, coalescence 

events were observed already above 200 °C. The temperature-dependency of particle sizes and the 

observed migration distances are described and found to be consistent with simple early models for the 

migration and coalescence. 

1. Introduction 

The control of sizes and shapes of nanostructures is of tremendous importance in a wide field of applications 

such as nanoelectronics, optics, electrochemistry and catalysis [1-4]. The use of nanoparticles in catalysis is for 

example a way of getting the most active surface area from the often expensive catalytic materials [1]. However, 

nanostructures often sinter to form coarser and more stable structures that may not have the intended 

physicochemical properties [5]. To advance synthesis methods for more stable nanostructures, it is crucial to 

understand the relevant coarsening mechanisms and parameters that influence the coarsening process. 

One mechanism for nanoparticle coarsening is Ostwald ripening where mass is transported by migration of 

atomic species between immobile nanoparticles [5,6]. An atom at one of the surface crystal planes of a particle, 

or so-called adatom, may escape the particle to the support material and migrate to another particle where it is 

adsorbed [6]. 

A different mechanism is particle migration and coalescence, where entire nanoparticles migrate randomly at the 

support surface followed by coalescence between migrating particles. Migration of entire particles is explained 

by thermally activated atom diffusion at the particle surfaces. Accumulation of diffusing atoms on one side of 

the particle will slightly shift the particle center and thereby lead to Brownian motion [6]. By considering non-

wetting spherical particles, the following relation between the particle diffusivity, Dp, the surface diffusion 

coefficient, Ds, atom diameter, a and particle radius, R has been suggested [6]:  
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  (eq. 1) 

 

By using eq. 1, it can be shown that at isothermal conditions the average particle migration distance Xp, for 

randomly migrating particles is equal to [6]: 

 

 , (eq. 2) 

 

where t is time. The surface diffusion coefficient, Ds depends via the Arrhenius equation exponentially on 

temperature [7]: 

 (eq. 3) 

where D0 is a pre-exponential factor, Ea the activation energy for self-diffusion, k Boltzmann’s constant and T 

the temperature. To illustrate the strong dependence of particle size on Xp, values for Ea and D0 for a Pt surface 

(2.89 eV and 0.22 cm
2
/s from reference [7]) are inserted and presented in Figure 1a. The figure shows a strong 

dependence on Xp from both temperature and the particle size. 

A coalescence event is characterized by three steps 1) neck growth, 2) neck elimination and 3) complete 

coalescence to form the equilibrium particle shape. An early kinetic model describes the duration time, τ of each 

step [6]: 

 

,   (eq. 4) 

 

where R0 is the initial particle radius, c = 2.92·10
-5

 for neck growth, c = 0.166 for neck elimination, c = 0.89 for 

complete coalescence and B is: 

 

,  (eq. 5) 

 

where N0 is the average density of surface sites on the particle, γ0 the average surface energy and Ω the atomic 

volume. To illustrate the difference in temperature dependence for the coalescence steps, Figure 1b presents τ for 
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the steps 1-3 of a coalescence event for Pt nanoparticles with a diameter = 3 nm. It can be seen that neck growth 

(dotted red line) is a rapid process compared to neck elimination (dashed red line) and complete coalescence 

(full red line). The figure also compares τ for coalescence (red lines) with the duration time for an average 

migration distance, Xp = 1 nm (blue line) for Pt nanoparticles with diameters = 3 nm. The figure illustrates that 

coalescence is generally a faster process that can be initiated and completed at lower temperatures compared to 

particle migration for identically sized particles. It should be noted that, the reported values for Ea and D0 differ 

significantly [7-11], and possible effects of the gas environment and the support material is not taken into 

account in the models presented in Figure 1. 

Pt is known to be a very active catalyst in several chemical reactions both in oxidizing and reducing 

environments. For example, carbon supported Pt nanoparticles are used as a catalyst in fuel cells [13,14]. 

Coarsening of supported Pt nanoparticles can take place in the reactive conditions or during high temperature 

pre-treatment as part of the catalyst synthesis [15].  

Both Ostwald ripening and particle migration/coalescence has been reported for Pt nanoparticles supported on 

amorphous carbon in vacuum [9]. However, the gas environment can highly influence the degree of coarsening 

and possibly also which coarsening mechanism that will dominate [16,17]. In an oxidizing environment, 

increasing metal dispersions are often reported for supported Pt nanoparticles at temperatures near 500 °C 

[5,16,18,19], while at higher temperatures O2 enhance coarsening compared with H2, N2, Ar or vacuum [5,16,17, 

20,21]. Recent studies have shown that coarsening of oxide supported Pt nanoparticles in oxygen is fully 

dominated by Ostwald ripening [22,23]. It is suggested that O2 enhance Ostwald ripening by formation of 

volatile Pt-oxygen species [24]. Similarly, an STM study showed that volatile Pt-hydrogen species form at Pt 

surfaces in a H2 environment to increase surface diffusion [25]. It is, however, not known whether the increased 

surface diffusion by H2 also leads to Ostwald ripening or, by increasing the value of Ds in eq. 2, to particle 

migration. A few studies have addressed the coarsening mechanism for supported Pt nanoparticles in H2, but 

conclude that Ostwald ripening and particle migration/coalescence cannot be distinguished from the data 

[21,26]. One study of Pt nanoparticles supported on Al2O3 in H2 concludes that particle migration and 

coalescence dominates based on observation of a log-normal type shape of the particle size distribution after 

coarsening [27]. Indeed, early studies have suggested that particle size distributions after particle 

migration/coalescence will have a log-normal type shape, while the distribution after Ostwald ripening can be 

statistically described by the so-called LSW model from Lifshitz and Slyozov [28] and Wagner [29]. However, 

the method of using the shape of particles size distributions to determine coarsening mechanism has been 

debated [30-32] and it has recently been shown that the shape of particle size distributions depend not only on 

the coarsening mechanism, but also on the morphology of the supported Pt nanoparticles [33]. Coarsening 

mechanisms can on the other hand be distinguished by using microscopy methods that allow for observations of 

the individual nanoparticles during heat treatment in the relevant gas environment. Several such in situ studies 

have successfully described nanoparticle coarsening mechanisms for different metals and gas environments by 

using scanning tunneling microscopy (STM) [34-36], low-energy electron microscopy (LEEM) [37] and 

transmission electron microscopy (TEM) [38-43]. 

In this study we use in situ TEM to monitor the coarsening of Pt nanoparticles supported on carbon black (CB) at 

elevated temperatures in H2. In situ TEM image series directly reveal the dominating coarsening mechanism and 

we compare the experimental observations with theoretical models. Furthermore, the present Pt/CB catalyst 
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contains two types of Pt nanoparticles; agglomerated and separated. The image analysis allows for a detailed 

comparison of the two types of Pt while ensuring the same coarsening conditions for both types. 

 

 

Figure 1. (a) Calculated average Pt nanoparticle migration distances, Xp as a function of temperature for four 

diameters indicated in the figure and a coarsening time, t = 10 min. The figure is calculated from eqs. 2-4 using 

Ea = 2.89 eV and D0 = 0.22 cm
2
/s from reference [7]. (b) Calculated duration for a coalescence event (eq. 4-5) 

and for migration (eq. 1-3) as a function of temperature for Pt particles with a diameter = 3 nm, γ0 = 3.28 eV/nm
2
 

from reference [12]. The duration times, τ for neck growth (dotted), neck elimination (dashed) and complete 
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coalescence (full) are presented by red lines. The time for migration for an average migration distance, Xp = 1 

nm is presented by a blue line.  

 

 

2. Experimental 

In situ TEM experiments were performed using a Titan 80-300 (FEI) electron microscope equipped with a 

differentially pumped environmental cell [44] operated at 300 keV. Heating was facilitated by a heating holder 

from DENS solutions which is a chip based heating holder with temperature feedback based on a 4-point-probe 

resistive measurement of the micro hotplate. The holder was plasma cleaned for 10 min before mounting the 

chip with the Pt/CB sample. The Pt/CB catalyst was HiSPEC 9100 purchased from Johnson Matthey, composed 

of 55.5 to 58.5 wt% Pt on high surface area carbon support. The Pt-CB was suspended in ethanol (99.9% purity) 

and agitated in an ultrasonic bath. A drop of the suspension was placed on the thermal chip followed by drying at 

60 °C on a hot plate. The in situ experiment was performed by exposing the sample to 6 mbar 20 % H2/Ar while 

constantly ramping the temperature by 10 °C/min and recording TEM images with 2 s total exposure time by 

summing and cross correlating 31 frames for each image by using a OneView camera (Gatan company). Another 

in situ TEM experiment were conducted for Pt/CB mixed with Polyvinylpyrrolidone (PVP) and electrospun into 

a nanofiber. The same H2/Ar gas composition and pressure as well as temperature ramping rate was applied. 

Since Ar is an inert gas, we do not consider it to have any important influence on the results presented in the 

following. The only reason for adding Ar was to make the experimental conditions directly comparable to results 

from a different study which is not reported here. 

From the TEM images, all Pt nanoparticle sizes were measured by manually outlining the particle edges using 

the software ImageJ. Particle diameters were calculated by using a circular approximation to their measured 

projected area. It should be noted that Pt nanoparticles that are agglomerated with other Pt nanoparticles often 

show projected shapes that deviate more from a circle than those of the individual Pt nanoparticle at the CB 

support. The estimated measuring error for the diameter is ± 0.2 nm for individual Pt nanoparticles and ± 0.4 nm 

for agglomerated Pt nanoparticles. The particle migration was measured manually by firstly aligning the position 

of the CB support in each frame to minimize the CB movement and secondly by estimating the centers of the Pt 

nanoparticles in each frame and calculating the projected particle displacement from the first frame. An error of 

ca 1 nm is estimated for projected particle migration measurements. 

To make sure that the observed dynamics were not dominated by artefacts induced by the electron beam, which 

had a beam current density of ca. 8000 e/nm
2
s, TEM images of sample regions monitored over the prolonged 

periods of the in situ experiment, were acquired only every fifth minute and the electron beam was removed 

from the region in the time between image acquisitions. During and after the experiment, regions monitored 

during the experiment were compared with regions that were previously unexposed to the electron beam. Similar 

Pt/CB structures were found in both types of regions. It is therefore concluded that the influence of the electron 

beam is not dominating the dynamics presented in this study.  
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3. Results and discussion 

Figure 2 presents an in situ TEM image series of the Pt/CB catalyst during temperature ramping at 10 °C/min 

from 50 °C to 960 °C in 6 mbar of 20% H2/Ar (a movie of the full images series is available in the 

supplementary information). Due to mass-thickness contrast, the Pt nanoparticles can be observed as small dark 

and almost circular areas on the larger and lighter grey CB particles. The smaller Pt particles scatter electrons 

less than the larger ones and therefore show lower contrast. The image contrast also depends on the focus 

settings which vary through the image series. The size and position of the smallest particles can therefore be 

difficult to follow in the image series. However, a number of particles with initial diameters around 3 nm can be 

followed as a function of temperature in the image series. 
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Figure 2. (a-i) In situ TEM images of Pt nanoparticles on a CB support during temperature ramping at 10°C/min 

and exposure of 6 mbar 20% H2/Ar. Temperatures are indicated in the images. Examples of two types of Pt 

nanoparticles are indicated by arrows: agglomerated (red) and separated (blue). 

Two types of Pt nanoparticles can be identified: Pt nanoparticles in agglomerates of Pt nanoparticles (for example 

particle no. 1 and 2 in Figure 2) and Pt nanoparticles that appear to be physically separated from other Pt 

nanoparticles and only have physical contact to the support (for example particle no. 3 and 4 in Figure 2). 

According to the figure, the separated Pt nanoparticles are stable up to ca. 800 °C during the time of the 

experiment (See for example particles no. 3 and 4 in Figure 2a-f). At higher temperatures the separated particles 

migrate and coalesce with other Pt particles (See for example particles no. 3 and 4 in Figure 2f-i). Contrary to 

this, the agglomerated Pt nanoparticles grow in size by coalescence with their neighbor Pt nanoparticles in the 

agglomerate at much lower temperatures (See for example particles no. 1 and 2 in Figure 2b-c). The coalescence 

process for particles 1 and 2 can be seen in more detail in the movie available in the supplementary information. 

Recent studies have shown that coalescence of Pt nanoparticle can be induced by the electron beam [22], and 

therefore it cannot be excluded that some of the observed coalescence events are at least partly induced by the 

electron beam. Images of regions that were previously unexposed to the electron beam, however, also showed 

that agglomerated Pt nanoparticles had coalesced, and that to a degree that was comparable to the regions that 

were exposed to the electron beam several times during the experiment. We therefore conclude that the observed 

coalescence of the agglomerated Pt nanoparticles is not dominated by effects of the electron beam. 

More and lager regions than the one presented in Figure 2 were observed and the behavior of the separated and 

agglomerated particles are representative for all the monitored areas. Also, the additional in situ TEM experiment 

performed for Pt/CB mixed with PVP electrospun into a nanofiber show the same trends as presented by Figure 2.  

Also for these samples, the separated Pt nanoparticles are stable up to ca. 800 °C during the time of the 

experiment and agglomerated Pt nanoparticles grow by coalescence with their neighbor Pt nanoparticles at lower 

temperatures. 

The diameters of the four particles no. 1-4 in Figure 2 are presented as a function of temperature for the full 

images series in Figure 3a. The two separated Pt nanoparticles (no. 3 and 4) have stable diameters up to 

temperatures slightly higher than 800 °C. The two particles coalesce at 900 °C (Figure 2h and Figure 3a). Until 

this coalescence event, no continuous growth or shrinkage is observed for the separated Pt nanoparticles. The 

inset in Figure 3a (blue) presents measured diameters for 8 additional randomly selected separated Pt 

nanoparticles and shows the same trend as observed for particle no. 3 and 4: no continuous shrinkage or growth is 

observed for the separated Pt nanoparticles and growth is only observed as coalescence events at temperatures 

above 800 °C. These results show that the coarsening of Pt nanoparticles supported on CB is fully dominated by 

the migration and coalescence mechanism when exposed to H2. The Ostwald ripening mechanism does not 

appear to play any role in this environment. These observations are contrary to the coarsening of supported Pt 

nanoparticles in an oxidizing environment which is fully dominated by Ostwald ripening [22,23]. This result 

indicates that although the surface self-diffusion of Pt atoms has been reported to be enhanced by H2 [25], the Pt-

hydrogen species are not escaping the Pt surface for atomic diffusion at the support. For carbon supported Pt 

nanoparticles in vacuum, a recent study concludes that coarsening is dominated by both Ostwald ripening and 

particle migration [9]. This could suggest that the presence of H2 enhances particle migration or represses 

Ostwald ripening, but a careful comparison between the two environments (H2 and vacuum) with otherwise 

identical experimental conditions will be necessary to fully support such conclusions.  
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The diameters of the agglomerated Pt nanoparticles increases in steps (particle no. 1 and 2 in Figure 3a) which is 

a typical growth pattern for individual nanoparticles that are coarsening by a coalescence mechanism [45]. This is 

because a coalescence event involves addition of many atoms to the particles in one step, contrary to an Ostwald 

ripening mechanism where growth of individual particles are characterized by smoother growth (or shrinkage) 

curve due to a continuous net addition (or loss) of atoms [22,23,34]. After each rapid increase in size, the 

diameters of particle no. 1 and 2 are relatively stable. Some variation in particle size is observed directly after the 

rapid increase which is a result the complete coalescence step where the equilibrium particle shape is formed. The 

inset in Figure 3a (red) shows that the step-wise growth at lower temperatures observed for particle no. 1 and 2 is 

a general trend for the agglomerated Pt nanoparticles. The agglomerated Pt particles are clearly less stable than 

the separated particles. This is also illustrated by Figure 3b presenting the mean particle diameter for 10 

agglomerated (red) and separated (blue) Pt nanoparticles. The agglomerated Pt particles start to coarsen at 

temperatures above 200 °C while separated particles as mentioned, start to coarsen at ca. 800 °C. It is important 

to note that this large difference in coarsening onset temperature for separated and agglomerated Pt particle 

cannot be explained by differences in the experimental conditions. It should also be noted that the initial particle 

sizes are approximately identical for the two types of Pt nanoparticles (Figure 3a-b). These observations are 

consistent with theoretical models which describe that for identically sized particles the three steps of coalescence 

can occur at lower temperatures compared to particle migration, as shown in Figure 1b. 
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Figure 3. (a) Measured diameters of the agglomerated (red) and separated (blue) particles indicated in  

Figure 2 presented as a function of temperature. Inset: Measured diameters for additional 8 separated and 8 

agglomerated Pt nanoparticles. (b) The measured mean diameter of 10 particles of each type: agglomerated 

particles (red) and separated particles (blue). For comparison with the theoretical model presented in Figure 1b, 

the model is re-plotted now using the experimental Ea, D0 values obtained from the Arrhenius analysis in (c). (c) 

The measured average apparent particle migration distance, Xp relative to their starting position at 50 °C as a 

function of temperature for 10 separated Pt particles (blue). The motion of the CB support, measured as the 

mean displacement for three different points at the CB surface relative to their starting position at 50 °C, is 

presented by green stars. For comparison, the model for Xp (Figure 1a) is shown now with experimental values 

for Ea, D0 from the Arrhenius analysis, R = 1.5 nm, a = 0.25 nm and t = 10 min (black line). Inset: Arrhenius 

analysis with a linear fit (black line) to the data (blue) for T = 760-950 °C. The apparent activation energy, Ea and 

pre-factor, D0 is indicated in the figure. 

The apparent particle migration distance was measured for 10 randomly selected separated Pt particles and the 

average apparent particle migration distance, Xp is presented as a function of temperature in Figure 3c (blue). We 

call it the apparent migration distance because TEM image are 2D projections of 3D objects and the Pt 

nanoparticle motion is therefore only presented in two dimensions. This means that the measured migration 

distance will always be smaller than or equal to the real migration distance. For comparison the motion of the CB 

support is shown Figure 3c (green stars). The presented CB support motion is the mean value of the apparent 

migration distance for three randomly chosen points at the CB surface. The slight increase in Xp for the Pt 

nanoparticles (from 0 to 1.3 nm) in the temperature interval from 50 °C to ca. 660 °C can be explained by small 

movements of the CB support since the alignment of the position of the CB support in the images was not perfect. 

For example small rotational movements could not be perfectly compensated for. Figure 3c therefore shows that 

particle migration of CB supported Pt nanoparticle with a diameter of ca. 3 nm in H2 is initiated at ca. 800 °C. 

This observation is consistent with Figure 3b which indirectly suggests that migration takes place above T = 800 

°C in order to allow for coalescence of the separated Pt nanoparticles.  

To further compare the theoretical models with the experimental measurements, an Arrhenius analysis was 

performed (inset in Figure 3c). A straight line (black) is fitted to the data in the high temperature range (760 °C - 

950 °C) where actual Pt migration is observed, giving an apparent activation energy barrier for self-diffusion, Ea 

= 1.4 eV and a pre-factor D0 = 1.0 · 10
-6

 cm
2
/s. By using these new values, Xp was again calculated (eq. 2) and 

compared to the measured Xp in Figure 3 (black line). It should be noted that eq. 2 assumes isothermal conditions, 

and that the comparison with the experimental data obtained during constant temperature ramping therefore has to 

assume that the temperature steps are small enough to approximate intervals with constant temperatures. Despite 

this precaution, we notice the surprisingly good agreement between the experiment and the relatively simple 

model, which as mentioned, does not take possible effects of the gas environment, degree of wetting and the 

support material into account. In addition, both models presented by Figure 1b were re-calculated by using the 

new values for Ea and D0 and the result is presented as lines in Figure 3b. In this figure the models describe the 

temperature ranges where Pt nanoparticles with diameters = 3 nm are expected to migrate (blue line) and coalesce 

(red lines) on a time scale of minutes. We notice that the temperatures where the simple models predict migration 

and coalescence are consistent with the temperatures where we observed coarsening events due to migration and 

coalescence (blue) or just coalescence (red). It should for example be noticed that coalescence is observed at the 

temperatures predicted by this model. The observed onset temperature for coarsening of agglomerated Pt in H2 

around 200 °C (Figure 3b) is also consistent with early studies of agglomerated Pt (so-called platinum-black) in 

H2 where coarsening is clearly observed at 350 °C and signs of sintering is observed already at 200 °C  [46,47].  
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For supported Pt nanoparticles in H2, the reported onset temperature for coarsening varies in different studies. In 

an early study from Fiedorow et al. an onset temperature of ca. 600 °C was determined by chemisorption for a 

commercial Pt/Al2O3 catalyst in H2 [21]. For a different Pt/Al2O3 catalyst with a higher dispersion the same study 

reports a higher onset temperature for Pt coarsening of ca. 700 °C. At first sight, this result may seem surprising 

since a higher dispersion indicates a smaller mean Pt particle size which should increase Xp (Figure 1a). The 

results in the present study, however, suggest a simple explanation for this apparent discrepancy. Figure 3b shows 

that separated Pt nanoparticles are more stable than agglomerated ones. A catalyst for which the ratio 

separated/agglomerated Pt nanoparticles is high, will therefore both be more stable and have a higher dispersion 

than a catalyst with a lower ratio. So generally, high dispersions achieved by separating the Pt particles should 

lead to high stability for supported Pt nanoparticles in H2.  

In a recent study by Matos et al. EXAFS results show that well-dispersed Pt nanoparticles on a γ-Al2O3 surface 

are stable in H2 at 650 °C, but coarsen at 800 °C [26]. Another recent study by Li et al. reports 3 nm sized Pt 

nanoparticles supported on zeolite (ZSM-5) to be stable in H2 at 750 °C [48]. These findings are in agreement 

with the present observations for separated Pt nanoparticles (Figure 3b). The study by Matos et al. also shows that 

a pre-treatment of their Pt/Al2O3 catalyst at 450 °C in oxygen can increase the Pt nanoparticle stability during 

treatment in H2 at 800 °C. In oxygen, the coarsening of supported Pt nanoparticles is fully dominated by Ostwald 

ripening [22,23], contrary to the migration and coalescence mechanism found in the present study for H2. It is 

often suggested that atomic Pt-oxygen species are more volatile than pure Pt atoms and that they can be 

distributed over the support by add-atom migration. This has been used as an explanation for the often reported 

re-dispersion of supported nanoparticles Pt nanoparticles when treated in oxygen at temperatures around 500 °C 

[5,16,18,19,49,50]. In the light of the present results we can explain the stabilizing effect of the pre-treatment in 

oxygen reported by Matos et. al [26]: increasing the dispersion of the Pt in oxygen leads to an increase in the ratio 

separated/agglomerated Pt and thereby increase the overall stability. 

Since it is well-known that the type of support can influence nanoparticle coarsening [6,16,51-53] a few 

comments should be added regarding the carbon support. Specifically, the stability of the support itself is here 

considered. Pure CB is reported to be stable at higher temperatures than the maximum of the current experiment 

although surface complexes decompose at temperatures above ca. 200 °C [54]. Despite this, morphology changes 

in the CB support can be observed (Figure 2). These observations can, at least partly, be explained by rotational 

and translational movements induced by the coarsening dynamics of the agglomerated Pt. However, it cannot be 

excluded that the observed changes in CB morphology, in particular that the highest temperatures (Figure 2h-i), is 

also due to changes within the structure of the primary CB particles. Such changes could also influence the 

observed Pt nanoparticle coarsening. 

The present in situ coarsening experiment covers a relatively broad range of temperatures from 50 °C to almost 

1000 °C and can therefore have relevance for various Pt nanoparticle applications. On the other hand, the ramping 

rate of 10 °C/min gives the Pt/CB system short time at each temperature when considering that nanoparticle 

coarsening is usually a long term degradation mechanism. The focus of the present work is therefore not to 

predict the coarsening behavior of carbon supported Pt catalysts at the specific practical operation conditions, but 

to determine the coarsening mechanism of supported Pt in hydrogen. The results show that simple models give 

good descriptions of the observed coarsening behavior, which paves a way to predict Pt coarsening over longer 

time scales at the relevant temperature. 

That the particle migration mechanism is dominating for supported Pt nanoparticles in H2 can be good news for 

researchers working on stabilizing supported Pt nanoparticles. For example it has been suggested that 

nanoparticles can be stabilized by encapsulation in zeolites with channels that allow for gas diffusion, but not for 
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transporting the entire nanoparticles [55]. Ostwald ripening cannot be completely hindered by this concept 

because the migrating atomic species have sizes comparable to the gas molecules, but the concept could 

efficiently inhibit Pt coarsening via particle migration. The approach has already been reported to show promising 

results for Pt nanoparticles [48] in zeolites and Pt alloy nanoparticles in silica [15]. 

4. Conclusions 

The coarsening of two types of CB supported Pt nanoparticles: separated and agglomerated was observed during 

the exposure to H2/Ar at constant temperature ramping up to 960 °C. The separated Pt nanoparticles were stable 

up to ca. 800 °C at a heating rate of 10 °C/min and the coarsening at higher temperatures was dominated by the 

particle migration and coalescence mechanism. The agglomerated Pt nanoparticles coarsened already above 200 

°C and this coarsening was dominated by coalescence without migration. The results show that separation of Pt 

nanoparticles is an efficient route for stabilizing supported Pt nanoparticles in a hydrogen environment. The 

temperature-dependency of the observed particle sizes and migration distances was found to be consistent with 

simple models for the migration and coalescence. 
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16 

Movie presenting an in situ TEM image series of Pt nanoparticles on carbon black support during temperature 

ramping at 10°C/min and exposure of 6 mbar 20% H2/Ar. Temperatures are indicated at the images in the movie. 
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