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Abstract 

We have developed a 125I-radiolabeled injectable fiducial tissue marker with the potential to replace 

current methods used for surgical guidance of non-palpable breast tumors. Methods in routine clinical 

use today such as radioactive seed localization, radio-guided occult lesion localization and wire-

guided localization suffers from limitations that this injectable fiducial tissue marker offers solutions 

to. The developed 125I-radiolabeled injectable fiducial tissue marker is based on highly viscous 

sucrose acetate isobutyrate. The marker was readily inserted in NMRI mice and proved to be spatially 

well-defined and stable over a seven day period with excellent CT contrast (>1500 HU), enabling 

fluoroscopic visualization of markers during placement. The radioactivity remains strongly 

associated with the marker during the implantation period, which limits exposure to healthy tissue. 

Biodistribution studies show that there is negligible radioactivity in all non-tumor tissues sampled, 

with the exception of the thyroid gland, where limited accumulation was observed (0.06% of injected 

dose after 7 days). Based on the excellent performance of the marker and the fact that it can be 

delivered through thin hypodermic needles (≥27G), the marker holds great promise for clinical 

application, since patient discomfort is reduced significantly compared to current methods. 

 

 

Keywords: breast-conserving surgical procedures; radioiodination; CT contrast; radiopaque fiducial 

marker 
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1. Introduction 

With the increasing quality of mammographic imaging and the introduction of wide-ranging 

screening campaigns for breast cancer, non-palpable tumors are detected earlier and to a higher degree 

[1–3]. Consequently, breast conserving surgery (lumpectomy) has become an attractive option 

compared to whole-breast surgery (mastectomy) [3]. Lumpectomy shows similar long-term survival 

rates, but unfortunately, recurrence rates from lumpectomy are still higher than for mastectomy [4,5]. 

This can be explained by the excision procedure of non-palpable tumors, which is highly dependent 

on accurate target delineation (pre-localization) needed for surgical guidance [1,2,5]. There is a clear 

need for improved preoperative image-guided localization in order to improve resection and 

recurrence rates [1,5]. The present technologies for surgical guidance of non-palpable tumors within 

breast cancer are radioactive seed localization (RSL), where a 125I-coated titanium seed (usually 4.5 

× 0.8 mm) is inserted in the tumor; radio-guided occult lesion localization (ROLL), where technetium 

(99mTc)-labeled particles are injected intratumorally; and wire-guided localization (WGL), where a 

hooked wire is inserted in the breast pointing to the site of the tumor [1–3,6–11]. The first two 

methods allow surgical localization of radioactive material, whereas the latter relies on the physical 

localization of the wire tip. Each of these methods have drawbacks: RSL seeds are inserted with wide-

gauge (17 G) hypodermic needles. WGL is perceived as unpleasant, painful and even traumatic to 

patients [1,3] and associated with high rates of remaining tumor tissue post-surgery [3]. ROLL has a 

short window for surgery after insertion due to the 6 h physical half-life of 99mTc and furthermore 

cannot be visualized by computed tomography (CT) scanning [2]. Consequently, the development of 

functional biomaterials, which enable surgical guidance with high fidelity, reduced patient discomfort 

and good CT contrast properties, is highly desired. To align with current clinical practice, these 

materials should be based on radioactivity, which is used extensively due to the ease of detection. A 

radioactive liquid fiducial tissue marker enables easy tuning of the radioactivity, including dose and 
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choice of isotope e.g. of iodine (I-123, I-124, I-125 and I-131), depending on the application. The 

fine-tuning of radioactivity further facilitates to account for Compton scattering of 99mTc, and thereby 

provide improved distinction between 125I and 99mTc, in those cases where Sentinel Lymph Node 

(SLN) biopsies are needed. The difficulty in making clear distinction of 125I and 99mTc due to Compton 

scattering is highlighted by Pouw et al. and supported by other studies [11–13]. 

A promising biomaterial is sucrose acetate isobutyrate (SAIB), which is a highly viscous liquid (100 

Pa·s) [14]. SAIB is generally-recognized-as-safe (GRAS) by the FDA and when diluted with ethanol 

(20% v/v), the viscosity is dramatically reduced (to 0.1 Pa·s [14]). This enables injection through 

hypodermic needles (≥27G) at ambient temperature [14–17]. Deposition in soft tissue results in 

ethanol efflux and the formation of a highly viscous, gel-like implant due to a non-solvent induced 

phase separation (NIPS) [14,17]. SAIB formulations have among other applications been exploited 

recently in the development of radiopaque fiducial markers, as a matrix for hosting well-defined gold 

nanoparticles as well as a highly iodinated SAIB-derivative (BioXmark®) [17–20]. BioXmark® was 

recently CE-marked and approved for clinical use as soft tissue marker for surgical procedures 

including radiotherapy in the EU. In order to develop a radiolabeled tissue marker for surgical 

guidance with radiopaque properties, a radioactive component is needed. I-125 is the preferred iodine 

isotope in RSL due to its attractive half-life (59 days) and low energy gamma and X-ray emissions 

(27-35 keV), making it well suited for radioactive detection with low exposure to the surrounding 

tissue [11]. This study presents the synthesis of a 125I-radiolabeled SAIB derivative ([125I]2, – Figure 

1 and Scheme 1) in combination with BioXmark® as a radioactive tumor marker for surgical 

guidance. The study includes evaluation of biodistribution, dosimetry and CT contrast properties of 

the formulation in a NMRI mouse model. The concept is illustrated in Figure 1. 
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Fig. 1. The concept of the 125I-labeled tissue marker for surgical guidance. The 125I-labeled SAIB-

tracer [125I]2 and BioXmark® together constitute the radioactive fiducial tissue marker for surgical 

guidance. It is injectable through thin hypodermic needles (≥ 27G) and forms a gel-like implant upon 

injection into soft tissue based on the mechanism of NIPS.  

 

2. Materials and Methods 

2.1 Synthesis 

For details of the synthesis and characterization of compound 1–4, please see Supporting Information.  

 

2.2 Radioiodination and formulation of [125I]2 

Precursor 1 in CH3CN (9.62 mM, 120 µL, 1.15 µmol) was transferred to a vial containing 

Tl(OOCCF3)3 in TFA/CH3CN (5 mM, 380 µL, 1.9 µmol) and the resulting solution was stirred at 

20 ⁰C for 105 min. Na[125I]I (20 µL, 77 MBq, iodide: 0.9 nmol) in aqueous NaOH (0.01 mM) was 

added and stirring was continued. Aqueous NaI (0.2 M, 12 µL, 2.4 µmol) was added after 15 min and 
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again after 90 min (6 µL, 1.2 µmol). The reaction mixture was stirred for another 30 min and then 

diluted with H2O (500 µL). The mixture was loaded onto a SEP-PAK C18 Plus cartridge (360 mg 

sorbent, 55-105 µm particle size, WAT020515, Milford, MA, USA) and eluted with aqueous 

diethylenetriaminepentaacetic acid (DTPA, pH 7), followed by water/EtOH mixtures, with the 

product [125I]2 eluting in pure EtOH. The thallium content and radioactivity in all fractions was 

measured using ICP-OES (ICAP 6000, Thermo Scientific) and well-counting, respectively (see 

Supporting Information, Table S3). The radiochemical yield (RCY, non decay-corrected) was 

64 MBq (83%) and the radiochemical purity (RCP) was >95% by radio-TLC (see Supporting 

Information, Figure S1).  

Formulation of [125I]2 was carried out by evaporation to dryness of 1.7 mL of the combined [125I]2 

fractions (60 min at 40 ⁰C using a stream of argon). The dry residue was mixed with BioXmark® 

(Nanovi Radiotherapy A/S, Kgs. Lyngby, Denmark) (1.7 mL) affording the desired tissue marker 

(38 MBq ∙ mL-1). The radiolabeled tissue marker was stored at room temperature and used the day of 

the radiolabeling.    

 

2.3 In vivo experiments 

Immunocompetent eight weeks old female NMRI mice (n = 12, Taconic, Borup, Denmark) were 

injected subcutaneously in the right flank with 50 μL of the 125I-radiolabeled marker using 1 mL 

syringes and 27G hypodermic needles. Injections were performed under general anesthesia (3-4% 

sevoflurane in 40% O2 and 60 medical grade air). Mice were randomized into three groups. Group 

one (n = 4) was euthanized 1 h after injection of the marker and sectioned for biodistribution analysis 

of 125I. Group two (n = 4) had CT scans performed  1, 3 and 24 hours after injection of the marker 

and euthanized directly after the 24 h scan for bio-distribution analysis of 125I. Group three (n = 4) 
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had CT scans performed 1 and 24 hours after injection and again 168 h after injection directly before 

being euthanized and sectioned for biodistribution analysis of 125I.  

 

2.4 Imaging 

CT scans were performed on a dedicated small animal CT scanner (75 kV, 500 mA, 280 msec rotation 

steps, Siemens MicroCAT, Erlangen, Germany) and the CT scans were analyzed in Inveon software 

(Inveon Research Workplace 3.0, Siemens Medical Solutions, Erlangen, Germany). The marker was 

readily identified on all CT scans and a manual volume of interest (VOI) was placed around each 

marker, taking care not to include bone structures. The threshold of the VOI was set to include only 

the sub volume comprising voxel with a Hounsfield unit (HU) value above 1500 HU to define the 

marker volume and determine the CT contrast [17,21]. 

 

2.5 Biodistribution study 

Mice were anesthetized and blood drawn by cardiac puncture followed by terminal perfusion with 

saline. Tissue-samples of the following organs and tissues were collected at 1 h, 24 h and 168 h 

respectively, and transferred into pre-weighed gamma counter tubes: muscle, liver, kidney, lung, 

heart, thyroid gland (complete larynx), blood, spleen, brain and small intestines. The marker was 

easily identified as a transparent, gel-like implant and this was carefully removed and transferred to 

a gamma counter tube. All tubes were well-counted for 10 min using a 125I-setup and decay correction 

(Wizard gamma counter, Perkin Elmer, Waltham, MA. USA). The activity of the thyroid gland was 

determined from the overall activity in the larynx with the overlying thyroid gland, which was not 

further dissected to avoid damaging the thyroid and thereby risk underestimating activity. The weight 

of the thyroid gland was set at a fixed value of 16.5 mg. 

 



8 
 

 

2.6 Dosimetry 

Dosimetry was performed using the OLINDA software (Organ Internal Dose Assessment Code, 

version 1.1, Vanderbilt University, 2007) based on data from well-counted organs and tissues. 

 

2.7 Statistical evaluation  

The statistical evaluation and the corresponding graphical representation of data were performed 

using GraphPad Prism 7.03® and Excel®. Data illustrated in Fig. 3 and Fig. 4 are reported as their 

respective mean ± SEM (n = 4). A Kruskal-Wallis comparison of the three groups in Fig. 4 was 

conducted in GraphPad Prism 7.03® in order to reveal significant difference between the groups 

(please see Results, section 3.3 and the corresponding discussion). 

 

3. Results 

3.1 Synthesis & radiolabeling 

Precursor 1 was synthesized in four steps from p-bromophenol 3, see Scheme 1. Metal-halogen 

exchange of 3 followed by treatment with TMSCl introduced the TMS-group. Phenol alkylation and 

ester hydrolysis afforded intermediate 4, which was coupled with 1’,2,3,3’,4,4’,6-hepta-O-isobutyryl 

sucrose S3 [17] using EDC∙HCl to provide precursor 1. Different iodination conditions were 

investigated (see Supporting Information, Table S1 and S2) and a thallation-iodination protocol was 

found to be most efficient [22]. The use of thallium is a well-established, mild protocol for 

electrophilic iodination, but does require rigorous removal of residual thallium during purification. 

Non-radioactive iodination afforded 2 in 97% yield while [125I]2 was obtained in 83% RCY with 

RCP >95%. Interestingly, the radioiodination reaction took place under carrier-free conditions before 

non-radioactive NaI was added, at which point the RCY was already in excess of 80%. Purification 
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using reverse-phase chromatography removed >98% of all thallium through pre-elution with DTPA 

(Table S3) and enabled the elution of thallium-free [125I]2 (<10 ppb, ICP-OES). 
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Scheme 1. The synthesis of [125I]2 from p-bromophenol 3. 

 3.2 Imaging 

The radiolabeled marker was injected subcutaneously in the upper left flank of NMRI mice (V = 50 

μL, n = 3 × 4). The injected markers were clearly visible by micro-CT imaging acquired 1 h, 24 h and 

168 h post injection (Fig. 2). As can be seen from both the axial (Fig. 2A, 2C and 2E) and coronal 

(Fig 2B, 2D and 2F) plane, excellent positional stability of the marker was observed throughout the 

time of investigation and the marker was clearly identified due to the high radiopacity of the 

BioXmark® formulation. The observed positional stability of the radiolabeled marker is consistent 

with what has been previously reported for BioXmark® [23].   
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Fig. 2. Representative micro-CT images of mouse with the 125I-radiolabeled fiducial tissue marker 

[125I]2. Axial (A, C, E) and coronal (B, D, F) planes of micro-CT scans recorded 1, 24 and 168 h post 

injection, respectively. Contrast scale in HU (G). The white arrows indicate the position of the tissue 

marker. 

 

The marker volume and CT contrast change were evaluated by VOI-analysis of the micro-CT scans 

and the developments over time are depicted in Fig. 3. As can be seen, markers were found to be 

stable and the observed reduction in marker volume (Fig. 3A) and increase in CT contrast (Fig. 3B 

and 3C) were consistent with ethanol efflux [17,21]. 
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Fig. 3. Volume and CT contrast changes of tissue marker as a function of time. A) fiducial marker 

volume vs time, B) the mean CT contrast, and C) the maximum CT contrast of the tissue marker vs 

time.  

 

3.3 Biodistribution study 

In order to evaluate the leakage of radioactivity from the tissue marker, a biodistrubution study was 

performed. Tissue samples of organs of interest were weighed and well-counted after 1 h, 24 h and 

168 h of implantation and standardized to the initial activity injected. The well-counting activities 

were reported in %ID/g. 

The results are shown in Fig. 4 (and Table S4) and clearly supports that the majority of the activity 

(>99%) remained within the markers. A slight increase in radioactive density (%ID/g) is observed 

over time from 204.3±64.5 to 309±53.8 %ID/g for the tissue marker. A Kruskal-Wallis comparison 

of the three groups was conducted in order to reveal significant difference between the groups. The 

result was non-significant (p = 0.37). Therefore, no further post-test between the three groups were 

conducted. Trace amounts of 125I activity were detected in the thyroid gland 1 h post injection and 

0.06% (3.5 % ID/g) of the total injected dose was detected in that organ 7 days post injection. For all 

other organs studied, very low levels of radioactivity (<0.1 %ID/g) were detected. 
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Fig. 4. Well counting of tissue/organs samples of the organs of interest at different times (decay 

corrected). The well-counted activities are reported in %ID/g (See Material and Methods, section 

2.5). The %ID/g values for the tissue marker are; 1 h = 204.3±64.5 %ID/g; 24 h = 267.4±73.7 %ID/g 

and 168 h = 309±53.8 %ID/g. (n =4, mean ± SEM).  

 

3.4 Dosimetry 

In order to evaluate whether the 125I-radiolabeled marker is suitable for use in breast cancer patients, 

a projection of the animal biodistribution to a human subject was performed employing the model 

derived in [24] using an anthropomorphic female phantom (see Supporting Information, Table S6). 

The model showed that after 7 days, the patient would have received an effective dose equivalent of 

1.63 mSv/MBq. The Olinda/EXM model [25] was also used to simulate the absorbed dose to the 

surrounding tissue and how the absorbed dose decays as a function of size of the implant (see 

Supporting Information, Table S5 and Figure S2).  

 

4. Discussion 
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This paper presents the development of a 125I-radiolabeled injectable fiducial tissue marker for 

surgical guidance of non-palpable tumors in breast cancer. The 125I-radiolabeled injectable fiducial 

tissue marker is expected to be compatible with preceding neoadjuvant therapy, as the tissue marker 

advantageously can be placed 5–7 days prior to excision guided by the mammographic imaging. The 

high radiopacity of the developed tissue marker means that injection can be monitored in real-time 

using fluoroscopy and that the marker position can be confirmed by mammography or CT imaging 

prior to surgery. The gel-like implant was readily inserted using 27G hypodermic needles, which is 

expected to decrease patient discomfort. 

The radioactive tracer [125I]2 was prepared via the synthetic route depicted in Scheme 1. The 

radioiodination of 1 was designed so no thallium intermediates were part of the final product. The 

radioiodination itself took place under carrier-free conditions in accordance with the observation of 

McKillop et al. where aryl iodides were formed stoichiometrically from aryl-Tl(III)-(OOCCF3)2 using 

≤ 1 equiv. of NaI [26].  

 

From the biodistribution analysis (Fig. 4), it is evident that the radioactivity is constant over time and 

retained within the tissue marker. The observed increase in radioactive density of the tissue marker 

over time could be explained by the slight reduction in volume of the tissue marker due to the ethanol 

efflux (Fig. 3A). This reduction in volume is further substantiated by the observed increase in mean 

and maximum CT contrast (Fig. 3B and 3C) (HU signal) of the tissue marker during the scanning 

period. However, no statistically significant difference (p = 0.37) between the radioactivity densities 

was found. The variance observed within each group could be explained by difficulty in sampling the 

tissue marker due to differences in texture at different time-points. This is explained by the efflux of 

ethanol leading to hardening of the gel-implant, which, at 1 h and 24 h, is still on-going. 
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The only measurable uptake was limited accumulation in the thyroid gland. This was expected to 

originate from small amounts of iodine not bound to the marker (see Supporting Information, Figure 

S1). It is worth emphasizing that the marker itself is removed surgically, minimizing exposure to non-

tumor tissue. The thyroid uptake was expected, as the gland is considered a risk organ when using 

radioactive iodide. One well-established way to lower the uptake is to saturate the thyroid gland by 

prescribing dietary iodine tablets prior to and during treatment [27].  

The activity administered in this experiment is 1.9 MBq (injection of 50 μL of marker formulation 

with 38 MBq mL-1). With surgical removal of the tissue marker after seven days, the equivalent dose 

is 3.1 mSv (0.05 mSv for the thyroid gland). Implantation of the marker seven days prior to surgery 

can be considered an extreme case compared to practice in the clinic. Despite this, the exposure level 

is low – 3 times less than the dose received from a whole body CT scan, which is 10 mSv/scan [28]. 

As recently highlighted by Langhans et al., the optimal activity of a 125I radioactive seed is 0.5–1 

MBq, in order to assure detection in the breast up to a depth of 8 cm, as long as SLN mapping is not 

planned. If SLN is desired, an activity of 3 MBq is recommended [13] . 

From the absorbed dose calculated as a function of radius of the marker via the Olinda/EXM model 

(See Supporting Information, Figure S2), it is evident that high doses are administered locally when 

using small sizes of the tissue markers. A 50 μL spherical tissue marker (radius of 2.3 mm) would 

give a radiation exposure in the range of 80 Gy ∙ MBq-1 locally to the surrounding tissue which with 

an activity administered of 1.9 MBq would give a total amount of absorbed dose of 152 Gy. This 

opens for the potential use of the material within the field of interstitial brachytherapy as high doses 

are absorbed locally to the surrounding tissue with less irradiation to healthy tissue [29]. For example, 

typically absorbed dose used in interstitial low-dose rate brachytherapy in prostate cancer is in the 

range of 145 Gy [30,31]. Additionally, the insertion using thin needles and the biocompatibility of 

the material offer clear advantages over the metal seeds currently used in brachytherapy. The need 
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for novel biomaterials that are applicable in brachytherapy while being biocompatible and 

biodegradable has been highlighted in Puente et al. [32].  

  

5. Conclusions 

We have developed a short synthetic route to a precursor (1) that can be radioiodinated in good yields 

with high radiochemical purity. The 125I-radiolabeled injectable fiducial tissue marker comprising of 

[125I]2 and BioXmark®, was injected (50 µL)  in the right flank of mice and was clearly visible by 

micro-CT imaging after 7 days, when the experiment was terminated. The gel-like implant was stable 

over this time and showed a good biodistribution profile. Based on the results presented here, it will 

be feasible to develop a 125I-radiolabeled injectable fiducial tissue marker for non-palpable breast 

cancer to the benefit of surgeons and patients.  
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