
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

63

Manuscript received November 5, 2010
Manuscript revised November 20, 2010

QSRED, An Algorithm To Solve The Mismatch Between The
Microscopic and Macroscopic Behavior of RED Gateways

Nabhan Hamadneh†, David Murray††, Michael Dixon††† and Peter Cole††††

†School of IT, Murdoch University, ECL 2.057, South Street, Murdoch , WA 6150, Mob: +61 449096732

††School of IT, Murdoch University, ECL 3.048, South Street, Murdoch, WA 6150, Phone: +61 8 9360 2723
†††School of IT, Murdoch university, ECL 3.047, South Street, Murdoch, WA 6150, Phone: +61 8 9360 6086
††††School of IT, Murdoch University, ECL 3.041 South Street, Murdoch, WA 6150, Phone: +61 8 9360 2918

Summary
Network congestion is a phenomenon caused by the extreme
demand of restricted network resources. Various congestion
control strategies have been proposed to increase network
performance. This study suggests that there is a mismatch
between the microscopic and macroscopic behavior in (Random
Early Detection) RED’s queue management mechanism. This
work investigates this problem and propose QSRED (Queue
Sectors RED) to avoid unsatisfactory performance. QSRED is
simulated against RED and ERED (Effective RED) by
measuring: throughput, link utilization, packets loss and average
delay using the NS2 simulator. The results suggest that Queue
Sectors RED (QSRED) helps RED overcome the mismatch
between microscopic and macroscopic behavior of queue length
dynamics.
Key words:
TCP , Congestion, RED, AQM, QSRED.

1. Introduction

Congestion control is subject to design strategies and
algorithms that can dynamically control traffic sources
when demand exceeds the available capacity. Random
packet dropping is one of the earliest techniques used for
congestion handling [1]. Current Internet congestion
handling strategies are used to improve performance.
Many congestion control approaches have been proposed
in the literature [2]. Active Queue Management (AQM) is
an algorithm executed by network components, such as
routers, to detect and inform senders of congestion. In
AQM, routers will actively drop packets from queues to
signal that the sender should slow down [3]. Random
Early Detection (RED) is an AQM strategy which was
initially designed to minimize packets loss and queuing
delays. AQM strategies should also maintain high link
utilization and remove biases against bursty traffic [4, 5].
This work discusses the mismatch between the
microscopic and macroscopic behavior of queue length
dynamics in AQM strategies, particularly RED-based
strategies. The macroscopic behavior of a queue is the
average queue size. The average queue size is not the
mean of the actual queue size. Rather, it is a function of a

weighted parameter wq which illustrated in Eq.(1). Smaller
wq parameters exacerbate the mismatch problem.
The microscopic behavior of a queue reflects the actual
queue size. AQM strategies work in conjunction with the
TCP protocol to control congestion. In some scenarios,
actual queue sizes exceed the available buffer size, causing
packets to be dropped. Packet loss is a congestion
indicator used by TCP, not by the AQM strategy.
At the same time, the AQM strategy in some situations
could not realize the problem because it is working with
the average queue size. It does not recognize the current
peak in the actual queue size.
In this work we add an algorithm to the traditional RED
implementation to minimize the problems associated with
this mismatch. Our proposal is tested with the four
network performance parameters which are: throughput,
link utilization, packets loss and average delay.
This paper is organized as follows: firstly, we survey TCP
congestion control in section 2. In sections 3 and 4, we
describe RED’s and ERED’s implementations respectively.
Section 5 describes the mismatch problem between queue
length dynamics. Then we propose the QSRED algorithm
in section 6. Section 7 present the network topology of our
simulator. In section 8, we present the network
performance parameters for our algorithm. Section 9
concludes our paper.

2. Background

2.1 Transport Control Protocol (TCP)

TCP is the transport control protocol which is responsible
for end-to-end data transmission between nodes in current
networks. It was originally established by the Internet
Engineering Task Force (IETF) organization. The TCP
protocol is the most widely used protocol in real networks.
About 90% of the current networks rely on this protocol
for data delivery [6].

Some of the TCP objectives are:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/11237205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

64

(i) Network congestion control.
(ii) Retransmission of lost packets.
(iii) Adapt data transmission to the available network

bandwidth.
In TCP, each transmitted packet has a sequence number.
For every successfully delivered data packet, the receiver
sends an ACK signal with the packet sequence number to
acknowledge that the packet has been received intact.
Rather than sending packets one by one, TCP protocol
sends packets in groups. The maximum number of packets
allowed in each group is called the congestion window
size cwnd. This number should not exceed the available
bandwidth of the network. In the steady state, the rate of
sending packets will match the rate of ACKs received by
the sender. Acknowledgments regulate the sending rate.
They also provide reliability by informing the sender of
lost packets enabling retransmission.

2.2 TCP Congestion Control

The ACK informs the source about the sequence number
of the next packet which is expected to be received. There
are two methods to warn the sender of lost packet.
The first method is the Implicit Congestion Notification
ICN. Suppose a sender with n+2 packets to be sent. When

the destination node receives the nth
 packet it sends an

Implicit ACK that it is expecting the packet number n+1.
If this packet has been lost in the network and the packet
number n+2 has arrived, then the receiver sends a
duplicate ACK to inform the sender that packet n+1 is still
missing. If three duplicate ACKs arrive at the source
which is called the triple acknowledgment, then the packet
is considered lost. Another approach to indicate lost packet
is the timeout signal. In this approach, the source has a
timer for every sent packet, if the ACK does not come
back from the receiver within time T then the packet
considered lost. These are both forms of Implicit
Congestion Notification.
The second method for congestion notification is the
Explicit Congestion Notification (ECN). When a gateway
becomes congested, it can send a packet to the TCP sender
with the ECN bit set. This informs the sender that it should
slow down [7].
The TCP source node adjusts the congestion window
based on these congestion signals. It decreases the
congestion window when the level of congestion goes up
and increases the congestion window when the level of
congestion goes down. Altogether, the mechanism is
commonly called additive-increase/multiplicative-decrease
[2, 8].
Slow start is a mechanism to prevent immediate
congestion state. It sets the cwnd parameter to 2 and starts
increasing the congestion window size exponentially every
time an ACK arrives to the source. When source stops

receiving ACKs this indicates congestion and the cwnd
parameter goes back to 2 [9].
Packet retransmission after a triple acknowledgment is
called fast retransmit because the node does not wait for a
time out signal to retransmit the lost packet. In case of
congestion, rather than reducing the cwnd to 2 in slow
start phase, it is better idea to halve the cwnd to increase
the network throughput. This mechanism is called fast
recovery. The preceding mechanisms are called fast
retransmit and fast recovery or Reno [10].

2.3 Active Queue Management (AQM) Approach

All TCP variants are congestion recovery mechanisms.
More specifically, They come into play after congestion
occurs and the buffer is already overflowed. There is
another approach for handling congestion which is the
Active Queue Management AQM [11].
Accordingly, the design of a congestion control strategy
consists of two parts: a network algorithm such as RED
and a source algorithm such as Reno. The network
algorithm is responsible for preemptively detecting
congestion and informing the source of the congestion. In
response, the source algorithm adjusts the sending rate by
reducing the congestion window size [6, 12]. The network
algorithms, such as RED, operate on the intermediate
routers between the source and the destination. The source
algorithms, such as TCP, operate at the source and
destinations of the traffic flow. This study proposes an
improvement to RED.

3. Random Early Detection (RED) Strategy

3.1 RED Design Objectives

RED maintains an Exponentially Weighted Moving
Average (EWMA) of the buffer size on internet routers [5].
Equations 1, 2 and 3 illustrate how the drop rates of
packets are calculated.

q*wavg*)w1(avg qq +−= (1)

)
minmax

minavg
(maxP

thth

th
pb −

−
= (2)

)
p*count1

1(pp
b

ba −
= (3)

where:

:avg average queue size

wq : a weight parameter, 1w0 q ≤≤

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

65

q : the current queue size

pb : immediately marking probability

maxp : maximum value of pb

minth : minimum threshold

maxth : maximum threshold
pa : accumulative probability

count: packets since last marked packet
The RED gateway has two preset threshold values which
are the maximum and the minimum thresholds. Every time
a new packet arrives at the gateway, the avg value is
calculated. If this value is greater than the maximum
threshold, then all incoming packets must be marked or
dropped. If it is less than the minimum threshold, the
arriving packet enters the queue without marking or
dropping. When this avg value is in between the minimum
and the maximum thresholds, then incoming packets will

be dropped or marked with probability ap [4].
In this way, RED achieves the following:
(i) Connections with higher input rates receive

proportionally more drops (or marks) of packets than
connections with lower input rate.

(ii) Maintains an equal rate allocation.
(iii) Removes biases against bursty traffic.
(iv) Eliminates global synchronization.

For more details in RED design principles see [13, 14]

3.2 Issues with RED Parameter Configuration

One of the simplest implementations of congestion
detection is the Tail Drop (TD) strategy. It defines a drop
level. Whenever a queue size exceeds this drop level, the
gateway starts dropping packets in the order they arrive
which is a First-In First-Out queue management. This
implementation has numerous disadvantages. A complete
study of these problems is outside the scope of this work
but we mention two of the major problems associated with
this implementation. The first is the lock out problem. This
occurs when a few nodes monopolize the whole network
bandwidth [6]. The second problem is the full queue
problem. This occurs when a gateway continually sends
full queue signals to sources for an extended period of
time [6].
AQM strategies, such as RED, were proposed to overcome
TD drawbacks. RED maintains two drop levels which are
the maximum and minimum thresholds. In order to control
congestion efficiently, these two drop levels work in
conjunction with the RED parameters described in section
3.1.

Parameter configuration in RED is very difficult[15]. For
example, if the difference between the maximum and
minimum threshold is too small then the strategy is
approaching the TD implementation. In the same manner
if this difference is too big, RED cannot recognize the
queue dynamics, which can cause the queue to overflow.
Parameter setting also depends on the number of active
connections, buffer space limitations and the severity of
congestion.

It is the same for wq parameter. Small values for this
parameter lead to a mismatch between microscopic and
macroscopic behavior of queue length dynamics.

The drop probability pa is a function of the maxp

parameter. The maxp parameter is a constant in the

traditional RED implementation. The bigger maxp value

the higher pa parameter. Resulting in more packet drops.
Many RED variants have proposed to use a dynamic
maxp parameter [6, 16].

3.3 RED Variants

Many RED-based based strategies have been proposed
since the original RED proposal. These strategies are:
ARED, Blue-RED and ERED.

ARED dynamically adjusts the maxp parameter in Eq.(2)

[16]. It increases maxp when avg exceeds thmax and

decreases maxp when avg goes below thmin .
BLUE-RED increases the packet drop probability in
response to buffer overflow and decreases the packet drop
probability when the link becomes idle [17].
ERED strategy is a modification of RED. In this strategy,

thmax and thmin parameters are subject to change during
network operation. In this work we compare QSRED with
ERED and traditional RED [18].

4. Effective RED (ERED) Strategy

The recently proposed ERED strategy adjusts thmax and

thmin parameters. Eq.(4) and Eq.(5) illustrate how ERED
sets those parameters.

thth max*2max' = (4)

th
thth

th min
2

minmaxmin' +
+

=

(5)

If)max'avg(min' thth << &)min'qlen(th> , ERED
drops arriving packets with probability ap . That is to
match the current queue size with the average queue size.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

66

If)min'avg(th< &)max75.1qlen(th> the strategy
drops arriving packets with probability bp . If)Kavg(>
&)Tqlen(< then ththth min3/)min(max*2avg ++= . K
and T evaluated by Eq.(6) and Eq.(7).

th
thth min

2
minmax

K +
−

= (6)

th
thth max

2
minmax

T +
+

= (7)

5. The Mismatch Between Microscopic and
Macroscopic behavior of RED

In RED gateways, we refer to the average queue size as
the macroscopic behavior of that queue because it reflects
the long term dynamics of the queue. Conversely, the
microscopic behavior of queue reflects the short term
dynamics of queue. Prior research has shown large
differences between the average and the actual queue
dynamics [19-21].
Problems occur when a burst of traffic arrives at already

congested gateway. If RED maintains a small wq
parameter then the average queue size will be slightly
increased. As a result, the gateway buffer overflows and
packets are dropped. Congestion will be detected by TCP.
After congestion returns to normal levels, average queue
sizes will increase. This can lead to unnecessary packet
drops. These unnecessary drops cause the congestion
window to be reduced far below the optimal level. Fig. 1
depicts this problem.

Fig. 1 The mismatch between macroscopic and microscopic of queue
length dynamics

6. QSRED Algorithm

Our approach in QSRED is to divide the gateway buffer
into six equal sectors. The drop probability and

pmax parameters are to be adjusted when the actual and
average queue sizes traverse between these sectors. In this
section, we show how this approach improves network
performance and stability.

ERED added adjustable thmax and thmin parameters;
which matches the microscopic and macroscopic
behaviors of the queue in two serious situations. However,
ERED still has some drawbacks:

(i) ERED is using the normal parameters of original
RED. It is clear from Eq.(4) and Eq.(5) that thmax'
and thmin' are functions of the normal thmax and

thmin and those parameters have the same
configuration problem as RED [15].

(ii) The strategy would be more powerful if the thmax
and thmin are adjustable during the simulation run
time in response to the traffic load dynamics.

(iii) ERED proposed to keep low loss rate values but does
not make any calculation for the other three
performance factors: throughput, link utilization and
delay.

(iv) If inequality 1 is satisfied, ERED uses the immediate
marking probability, which is a function of avg and

pmax . The value of pmax in this case, is minimally
smaller, resulting in a lower dropping rate. Hence, the
risk of buffer overflows is high. In such a serious
situation, congestion control strategy should increase
the dropping probability to a value approaching 1.
This will allow the buffer to be drained before it
becomes overloaded.

(v) Equally, if the queue length is greater than the drop
level (1.75 thmax) then it drops the arriving packets
with probability bP . It is also clear from the previous
literature that there are no suggestions about the
optimal setting of this drop level. Consequently, we
propose the following parameter configuration to
enhance ERED's functionality:

Table 1: QSRED algorithm

** for every arriving packet

if (q_size >= Sec.5 and avg <= Sec.2) Then

maxp = 2* maxp

 Else

Go To: Traditional RED Implementation

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

67

Firstly, one of the best ways to avoid using thmax' and

thmin' as functions of the actual thmax and thmin is to
choose some parameters related to the buffer size. There is
no adequate way to set the thmax and the thmin of a
queue. However, if we are intending to use ERED, it is
advantageous to use smaller thmin and thmax parameters
to avoid exceeding the buffer size when calculating thmax'
and thmin' parameters.
Secondly, we have an option to divide the buffer into 6
equal sectors. Then, a reasonable value for the thmax'
could be 4/6 buffer size, keeping the remaining 2/6 buffer
size for short lived bursty traffic. thmax can be equal to 3/6
(half the buffer size). thmin' and thmin can be 2/6 and 1/6
buffer size respectively.
Finally, to avoid the drawbacks (iv) and (v) of ERED, it is
advisable to increase the drop probability to help the
gateway drop the overloading packets. If the inequalities 1
and 2 are satisfied then we set pmax to 2* pmax . In
addition, we replace inequality 1 by inequality 3 to execute
the actual queue size check. Consequently, we are
replacing the parameter 1.75 thmax in inequality 2 of
ERED by the parameter SizeBuffer*6/5 − . Also, we
use the normal dropping probability ap rather than using
the current small dropping probability bp . This has the
effect of speeding up the queue drain process in case of
congestion. Table 1 shows the algorithm of QSRED.

)max75.1qlen(th> (1)

)min'avg(th< (2)

)SizeBuffer*6/5QueueERED(−>− (3)
Consider, as an example, a buffer with size 90 packets.
Suppose that, avg=25, qlen=80 and the initial pmax =0.01.
Then, both of the inequalities 1 and 2 are satisfied. ERED's
parameter configuration will be as in Table 2. In this
situation, the queue is rapidly accumulating and the buffer
is about to be overloaded while ERED keeps a small

pmax value. This pmax value is not big enough to
regulate the queue size. For better queue management
performance, we have to increase the drop probability
parameter by a value that allows the queue to return to the
normal level (see bP , for the QSRED) .
QSRED monitors the actual and the average queue size
values. If the actual queue size is below sector five and the
average queue size still below sector two, we duplicate the

pmax parameter and use the accumulative drop
probability ap rather than using the current drop

probability bP to drop the arriving packets. In this scenario,

ap is the best drop probability because its value is higher
than bP . This helps to shrink the queue quickly.

Table 2: Parameter configuration for ERED and SQRED
 ERED QSRED

thmin 20 15

thmax 40 45

thmin' 50 30

thmax' 80 60

bP max25.0 p max67.0 p

Pa 0.0025 0.00745

7. Network Topology

Fig. 2 illustrates the network topology used to test QSRED
with four network performance parameters. In this
topology, six sources send packets with a maximum
window size equal to 2000 Bytes. The TCP version used
here is TCP-Reno. A sink immediately sends an
acknowledgment packet when it receives a data packet.
Arrivals of sessions follow a Poisson process.

A connection between each node and the gateway has 1ms
delay time. The bottleneck link between the gateway and
the sink has a 1ms delay time for delivering the packet to
the sink. Exponential distribution is used for the start time
of packets transfers.

The following section describes our simulation results over
the three introduced strategies with respect to four network
performance parameters.

Fig. 2 The simulator network topology

Gateway

Sink

100Mb, 1ms

2Mb,
1ms

Sending nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

68

8. Simulation Results

Figures 3 to 6, depict four network performance
parameters for RED, ERED and QSRED strategies of
congestion handling. These four parameters are the
network throughput, link utilization, packets loss rate and
average delay time. In addition, Fig. 7 shows network
jitters. The simulation results are performed using the NS2
simulator [22].
QSRED shows better throughput, which is indicative of
higher performance over the other two strategies.
Additionally, QSRED shows a higher level of stability
over RED and ERED. In the same manner, QSRED
continued to reduce the packets loss rate when RED and
ERED curves depicted higher loss rates.
With respect to the average delay time parameter, there
were a few intersections in the curves of the three
strategies. Despite these intersections, QSRED had a
conservative delay time curve and it achieved lower delay
time values during the simulation. This has been reflected
in Fig. 7. QSRED appears the most stable whereas RED
and ERED results show greater variance.
Fig. 3 shows the throughput parameter for RED, ERED
and QSRED in bytes per second (Bps). The QSRED
strategy has shown the best throughput values. It is clear
that RED achieved the lowest throughput values,
particularly at the end of the simulation when throughputs
reached 207,000 Bps. It was observed that ERED
throughput is higher than RED but it is still smaller than
QSRED.
Fig. 4 plots the link utilization parameter. It demonstrates
that QSRED link utilization is almost stable with the
number of connections. In contrast, ERED and RED link
utilization fluctuate dramatically. It is also noticeable that
QSRED shows the highest link utilizations with variant
number of connections.
Another important performance parameter, demonstrated
in Fig. 5, is the packet loss rate. QSRED reduced the
packet loss rate to 4% of the total number of packets
propagated at time 30s. For RED, the loss rate was very
high and reached 30% of the total propagated packets at
the end of the simulation.
Fig. 6 illustrates the average network delay. Despite the
oscillations with increasing number of connections, the
results suggest that QSRED adds the lowest amount of
delay. This suggests that QSRED maintains shorter
average queue sizes. The figure shows that the maximum
delay of RED exceeds 0.019s. For ERED this value
exceeds 0.013s but with QSRED this value did not exceed
0.007s. Furthermore, QSRED delay time has been kept
below 0.001s for the majority of simulation time.
Fig. 7 shows the amount of jitter introduced by the AQM
strategies. Although the results appear similar, QSRED
expressed the best network jitter results. The results, show
that the minimum value for QSRED approaches -0.35ms

and the maximum value is close to 0.13ms. Conversely,
the values for ERED and RED ranged between -0.7ms to
0.33ms and -0.31ms to 0.33ms respectively. A qualitative
analysis shows that the QSRED curve is the least erratic.

Fig. 3 Network throughput

Fig. 4 Network link utilization

Fig. 5 Average network delay

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

69

Fig. 6 Packet loss rate

Fig. 7 Network jitter

9. Conclusions

This work introduces an efficient way to overcome the
mismatch between the microscopic and macroscopic
behaviors of queue length dynamics in RED gateways. We
propose a new algorithm that enhances the implementation
of the original RED strategy. RED has difficulties
detecting this mismatch. This can result in RED
continuing to drop packets after the congestion event has
subsided. This work provides a new technique that helps
the gateway manage network congestion and increase TCP
performance.
Our algorithm, Queue Sectors RED (QSRED), divides the
buffer into six equal sectors. These sectors represent new
dropping levels added to the original RED implementation.
It used the actual and the average queue size parameters to
help RED absorb short lived bursty traffic and control TCP
congestion efficiently.
Since RED uses probabilistic packet dropping, QSRED

dynamically adjusts the pmax value of RED to maintain
network stability and smooth traffic. We compared

QSRED with ERED and RED strategies in NS2. The
results show that QSRED offers higher throughput and
link utilization with lower packet loss and lower delays.

References
[1] E. S. Hashem, "Analysis of Random Drop for Gateway

Congestion Control," Massachusetts Institute of
Technology1989.

[2] V. Jacobson, "Congestion avoidance and control,"
SIGCOMM Comput. Commun. Rev., vol. 25, pp. 157-187,
1995.

[3] V. Firoiv and M. Borden, "A Study of Active Queue
Management for Congestion Control," IEEE INFOCOM,
2000.

[4] S. Floyd. (2002, RED (Random Early Detection) Queue
Management. Available: http://www.icir.org/floyd/red.html

[5] S. Floyd and V. Jacobson, "Random early detection
gateways for congestion avoidance," IEEE/ACM Trans.
Netw., vol. 1, pp. 397-413, 1993.

[6] S. Ryu, et al., "Advances in Internet Congestion Control,"
IEEE Communications Surveys and Tutorials, vol. 5, 2003.

[7] T. Sheldon and B. Sur, "Congestion Control Mechanisms,"
2005.

[8] V. Dumas, et al., "A Markovian Analysis of Additive-
increase Multiplicative-decrease algorithms " JSTOR, vol.
34, pp. 85-111, 2002.

[9] V. Jacobson, "Congestion Avoidance and Control," in ACM
SIGCOMM 1988, pp. 314-29.

[10] W. Stevens, "TCP Slow-Start, Congestion Avoidance, Fast
Retransmit and Fast Recovery Algorithms," IETF
RFC2001, 1997.

[11] W. Feng, "BLUE: A New Class of Active Queue
Management Algorithms," University of Michigan, 1999.

[12] J. Mo and J. Walrand, "Fair end-to-end window-based
congestion control," IEEE/ACM Trans. Netw., vol. 8, pp.
556-567, 2000.

[13] S. Floyd, "Congestion Control Principles," IETF RFC2309,
1999.

[14] S. Floyd and K. Fall, "Promoting the use of end-to-end
congestion control in the Internet," IEEE/ACM Trans.
Netw., vol. 7, pp. 458-472, 1999.

[15] M. May , et al., "Reasons Not to Deploy RED," in
IEEE/IFIP IWQoS, London , UK 1999, pp. 260-262.

[16] W. Feng, et al., "A Self-Configuring RED Gateway."
[17] W. Feng, et al., "The BLUE Active Queue Management

Algorithms," IEEE/ACM Transactions on Networking
(TON), vol. 10, pp. 513-528, 2002.

[18] B. Abbasov and S. Korukouglu, "Effective RED: An
Algorithm to Improve RED's Performance by Reducing
Packets Loss Rate," Journal of Network and Computer
Applications, vol. 32, pp. 703-709, May 2009.

[19] M. Christiansen, "Tuning RED for Web Traffic,"
IEEE/ACM Trans. Netw., vol. 9, pp. 249-64, 2001.

[20] M. May, "Influence of Active Queue Parameters on
Aggregate Traffic Performance," INRIA, Sophia Antipolis,
France, 2000.

[21] T. J. Ott, et al., "SRED: Stabilized RED," in IEEE
INFOCOM '99, 1999.

[22] ISI. The Network Simulator - ns-2. Available:
http://www.isi.edu/nsnam/ns/

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

70

Nabhan Hamadneh received the BSc.
and MSc. degrees, from Irbid Uni. and
Albalqa’a Applied Uni. in 2003 and 2005,
respectively. He worked as IT teacher in
the period 2004-2008. Since 2008, he is a
full time PhD student (school of IT,
Murdoch Uni.). His research interest is in
networking especially TCP congestion
control strategies and he had some of his
work published in this area.

David Murray studied Inter-networking
and Security at Murdoch University where
he received his BSc in 2005. In 2007 he
achieved a first class Honours in Computer
Science. He has recently submitted his
PhD in the area of wireless multi-hop ad-
hoc networks. He has published numerous
papers in this area. He is currently a
lecturer at Murdoch University. His
research interests include multi hop

wireless architectures, cloud computing, routing and congestion
control.

 Michael Dixon received the BSc,
“management information system” from
California State Uni. in 1987, MBA
Golden Gate Uni. in 1989 and PhD,
Murdoch Uni. in 1999. He is a senior
lecturer in telecommunications
management at Murdoch Uni. His
research interests include wireless
communications, mobile computing, ad-
hoc networks and congestion control in

TCP networks.

Peter Cole is an associate professor and
the Dean of the School of Information
Technology, Murdoch University. He
began his association with Murdoch
University 23 years ago as a student and
has been teaching in the IT faculty at
Murdoch for over 17 years. Peter is the
President of the Australian Council of
Deans of ICT, a fellow of the Australian
Computer Society and is actively

involved on many industry initiatives both locally and nationally.
Peter has been heavily involved with the development of
international programs in Information Technology at Murdoch
University.

