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COMMENT

SOLID-SOLUTION AQUEOUS-SOLUTION EQUILIBRIA:
THERMODYNAMIC THEORY AND REPRESENTATION

ERICH KONIGSBERGER and HEINZ GAMS]AGER

Abteilung fiir Physikalische Chemie, Montanuniversitit Leoben,
A-8700 Leoben, Austria

INTRODUCTION

Glynn and Reardon (1990) presented a thermodynamic derivation
of equilibrium, stoichiometric saturation, and primary saturation states
in binary solid-solution aqueous-solution systems.

We agree with the results of this paper but would like to clarify and
extend some of the concepts involved. The present comment discusses
the following topics:

1. The thermodynamic properties of equilibrium and stoichiomet-
ric saturation states can be derived in a unifying way, since they corre-
spond to global or constrained minima of the total Gibbs function of the
system.

2. Stoichiometric saturation is a constrained metastable equilibrium
state characterized by equal molar Gibbs functions of solid and solute
species.

3. Tests for thermodynamic consistency and the attainment of the
various equilibria are reviewed.

4. Graphical representations of solid-solute phase equilibria in
Lippmann and ¢2m diagrams are discussed.

THERMODYNAMIC BASIS OF SOLID-SOLUTE PHASE EQUILIBRIA

The thermodynamic propertiés of equilibrium and stoichiometric
saturation states can be derived from a unifying point of view (Kénigs-
berger and Gamsjiger, 1987). Consider the dissolution reaction of n
moles B,_, ,C, A with m moles H,O

nB(l—xO)CxUA(s) m_Hi)) (n = &)B,_y)C A,
L =) - - 61 - x)BY,
+ nx, ~ (n — Ex]Cly + EAL, (1)
In eq (1) §, x, and x, denote the extent of reaction, the mole fraction, and
the initial mole fraction of CA in the solid phase. Solid-solute phase

equilibria can be calculated if the total Gibbs function G of the system 1is
known. If £ and x are chosen as independent variables, G will read

G=n—- 81 —x)pis + xpgs]
[l = x) = (1 = x)(n — gt + [nxg — x(n — §pE + Eud
+ Mpey,00 (2)

°
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It is a general equilibrium condition that G remains unchanged during
any infinitesimal process occurring at constant temperature and pres-
sure, that s,

dG = (G/0E),dE + (9G/dx),dx = 0. (3)

Condition (3) can be satisfied in four different ways, and two of them are
important for the present discussion, namely,

(0G/3€), =0 (IA) and (3G/ox), =0, (IB)
(3G/3E), = 0 (IIA) and dx = 0. (IIB)
From this unified approach the properties of the system can be derived in
a thermodynamically rigorous way for:
(I) thermodynamic equilibrium, where both £ and x are free to
vary, and
(1I) stoichiometric saturation, where x will remain constant because
diffusion in the solid phase, precipitation of a secondary solid
solution, and recrystallization from the aqueous solution are
kinetically inhihited.
If the Gibbs-Duhem equation is taken into account a standard procedure
(for example, Acree, 1986) will yield

(0G/08), = [(1 — x)ppt + aped + pid] — [(1 — x)pha + xpgal 4)
and
(0G/dx)y = (1 — E)(ia — Bpa — M + W), 5)

Combining egs (4) and '(5) with conditions (IA) and (IB) leads to the
well-known simultaneous equality of chemical potentials of correspond-
ing solid and solute species

Ria = Bpt + il and  pg, = pd + pd. (6)
Conditions (1IA) and (1I1B) result in
(I =x)pgl +xpgd + pd = (1 —x)pha +xpe, and dx=0.  (7)

With the usual definitions of solubility products and activities (aqueous
activities are indicated by braces), condition (IA) as well as (ITA) results in

def
(BHA D (CHA D = (Kuptpa) " ™ (Kentica) = Koy(x). (8)

Condition (IB) leads to an expression for the distribution coeflicient D

x/(1 —x)  KpafoaYer
p=t-—Y_ , 9

[CTV[B*] KeafeaYe:
where f; and v, denote activity coefficients of componentj in the solid and
aqueous phase, respectively. Eq (6) as well as egs (8) and (9) results in the
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basic conditions defining thermodynamic equilibrium in the system
BA-CA-H,O:

[B+HA_} = Kytss
[C+HA7] = Kcattca-

Whereas conditions (IA) and (IIA) which lead to eq (8) are equal for
equilibrium and stoichiometric saturation, in the latter case condition
(IIB), that is constant composition of the solid phase during the dissolu-
tion process, is essential. Statements like ““an aqueous-solution at equilib-
rium with respect to a solid B,_,CA will also be at stoichiometric
saturation with respect to same solid” (Glynn and others, 1990) may be
misleading. They refer to eq (8); but condition (IIB) is in general not
satisfied for equilibrium states. Note in addition that for equilibrium
states constant K (x) values cannot be observed when the initial condi-
tions are varied. In this case, “K,,(x)” serves, however, as a shorthand
notation of the left side of eq (8).

From eq (8) the molar Gibbs energy of mixing of the solid phase
follows immediately

A G/RT = (1 —=x)Inay, + x In ag,
=Iln K, (x) = (1 —x)In Ky, — xIn K, (11)

(10)

Provided thermodynamic equilibrium or stoichiometric saturation can
be experimentally demonstrated, A G and derived thermodynamic
properties (activities) of the solid solution are unequivocally determined.

It should be mentioned that an expression equivalent to eq (11) was
already employed by McCoy and Wallace (1956) for the calculation of
A,.G of KCI-KBr solid solutions from solubility and isopiestic data.

Note that in our derivation as opposed to Glynn and Reardon (1990)
it is not necessary to define standard chemical potentials and activities of
solid solutions reacting with fixed composition.

If experimental K, (x) values are available, the integral quantity
A,G can be determined directly (Gamsjiger, 1985; Glynn and Reardon,
1990). The estimation® of 9 In K, (x)/dx for the calculation of partial
quantities a, as proposed by Thorstenson and Plummer (1977) may
unnecessarily introduce numerical errors. Because activity coefficients f,
obtained in this way are derived from the same A_, G function, they must
pass a necessary, though not sufficient, criterion for thermodynamic
consistency.

CONSISTENCY TESTS

Test I.—Consider the Gibbs-Duhem equation of a binary phase in the
following form

(1 —x)d In fy, + xd In f,, = 0. (12)
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Rearrangement and integration of eq (12) results in

[ 0 (feas fuor) dx = 0. (13)

Eq (13) is the basis of the so-called “equal-area” test for separately
determined activity coeflicients (McGlashan, 1979). It should be noted
that the integral (13) may be close to zero even when the data are grossly
inconsistent thermodynamically; for example, if Inf;, = ax and Inf, =
a(l — x) the integral is zero in spite of those functions failing to satisfy the
Gibbs-Duhem eq (12).

From the definition of the excess Gibbs energy of mixing G*¥ of the
solid phase

G"™/RT = (1 —x)Infy, +xInfe, (14
one obtains
O R o (fond fu) (15)
0x
and hence
19G™Y
S e = 6 = 1) - 6 = 0) = 0, (16)

which is an alternative derivation of the equal-area test.

In their discussion gf Thorstenson and Plummer’s (1977) equations
for the calculation of solid-phase activities, Glynn and Reardon (1990)
noted in their eq (30) that A

AG™ - d In K (x) | Kia | 1 —x 17
ax 0x + " Kea Tn X . an
Then, eq (18) follows
110 In K, (x) KBA -
f Sl o R dx = 0. (18)

In their experimental study of aragenite-strontianite solubilities, Plum-
mer and Busenberg (1987) presented estimated values of  log K (x)/dx
at 25° and 76°C. Numerical evaluation of the integral (18) can be
performed, for example, with the NAG subroutine DO1GAF (NAG: see
references) and yields with the 25°C data of Plummer and Busenberg
(1987) a value of fo In (fea/ fan)dx = 0.025. In figure 1 these data are
shown along with the corresponding smoothed function that must satisfy
the equal-area test in any case, becduse it has been derived from the
subregular mixing model

G*/RT = x(1 — x)[a, + a,(2x — 1)] (19)
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Fig. 1. “Equal-area” test of solid-phase activity coefficient ratios for aragonite—
strontianite solid solutions. Solid line was calculated with G*¥ parameters a, = 3.43 and a, =
—1.82 of eq (19) and satisfies the condition Al = A2 exactly. Excess parameters and
dlog K, (x)/0x data valid for 25°C were taken from Plummer an Busenberg (1987).

with Plummer and Busenberg’s (1987) parameters a, = 3.42 and a, =
~1.82.

This test could have been used by Plummer and Busenberg (1987) to
check the reliability of their 3 log K, (x)/dx estimation. However, experi-
mental errors in log K, (x) values cannot be detected by this test because a
thermodynamically consistent G*® function (that is, G must vanish at
x = 0 and x = 1) can always be fitted to these data. As mentioned above,
the direct determination of the integral quantity G *® from log K., (x) data
seems to be preferable.

Test II.—In their Reply to this Comment, Glynn and Reardon (1992)
present an elegant evaluation of G* from experimentally determined
distribution coefficients D. In order to derive a consistency test, we obtain
with expression (9)

Kyave-

1 1
S mpax+ [ in(fors frdx = In Ko

; (20)

provided that the ratio of aqueous activity coefficients can be copsidered
constant. If f(', In (fou/fea)dx satisfies the equal-area test (13), f(’) In Ddx
will be equal to the right-hand side of eq (20). An analogous test for
volatility ratios was proposed by Herrington (1947).

Alternatively, Glynn and Reardon (1992) substituted a thermodynam-
ically consistent function for In (f.,/ fu), that is, a(G*®/RT)/ax with
G™/RT from eq (19) and determined the parameters a, and a, by linear
regression. The computed intercept corresponded excellently to the
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right-hand side of eq (20), thus confirming the conjecture that the
distribution coeflicients of Durham, Rock, and Frayn (1953) were thermo-
dynamically consistent.

Test 111.—Plummer (1986) suggested the following consistency test,
which can be deduced from conditions (IA) and (IB), to check the
establishment of equilibrium in the system KCl-KBr—H,O at 25°C: First,
eq (11) can be employed to calculate G** which is converted to activity
coefhicients f,. Then eq (9) is used to compute distribution coefficients D
which are compared with experimental values. Obviously Plummer
(1986) miscalculated aqueous molalities and arrived at the conclusion
that equilibrium was not established. Since equilibrium was approached
experimentally from two directions, providing strong evidence that it was
indeed attained (Durham, Rock, and Frayn, 1953), we have recalculated
D values according to the method proposed in the next section and
present them in table 1A and B. Good agreement between experimental
and calculated results was obtained as also shown in figure (6) of Glynn
and Reardon (1990).

Thus, Plummer’s (1986) test is based on the fact that conditions (IA)
and (IB) must be simultaneously satisfied at equilibrium. It can also be
visualized in Lippmann diagrams: both tie-lines and corresponding K
values must be derivable from one, thermodynamically consistent G**
function.

TABLE 1
A. The system KCI-KBr—H,0 at 25°C; calculated values
No.' x, Xoq log 3K m,/mol kg™ D
2 0.050 0.234 1.006 5.278 0.172
3 0.179 0.456 1.120 5.832 0.260
4 0.261 0.514 1.149 5.980 0.334
5 0.479 0.592 1179 6.129 0.634
6 0.732 0.686 1.185 6.139 1.250
7 0.894 0.819 - 1167 5.998 1.860

'No. refers to table 1 of Durham, Rock; and Frayn (1953).

B. The system KCl-KBr—H 20‘.azf 25°C; experimental values

2 =1

No. X, Xog log 3K m,,/mol kg D
1 0.000 0.000 0.904 4.816 o
2 0.048 0.234 1.006 5.275 0.165
3 0.188 0.452 1.118 5.822 0.281
4 0.274 0.508 1.146 5.965 0.366
5 0.484 0.589 1.178 6.127 0.655
6 0.729 0.687 1.185 6.136 1.230
7 0.891 0.821 1.167 5.997 1.780
8 1.000 1.000 1.129 5.737 o

*Average values of A and B runs of Dufham, Rock, and Frayn (1953, table 1) are given.

L)
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Test IV.—Stoichiometric saturation can be demonstrated only exper-
imentally, for example, by arriving at the same K__after variation of initial
conditions. For carbonate systems, the pH variation method (Schindler,
1963) has been employed to determine *K,,(x)’s of Co,,_,, Mn CO; solid
solutions (Gamsjiger, 1985) and the metastable compound huntite
Ca,,;Mg,,,CO, (Konisberger and Gamsjiger, 1987). Equilibration with
“spiked” solutions, as suggested by Garrels and Wollast (1978), resulted
in constant K (x) values for magnesian calcites of composition x (Walter
and Morse, 1984) and in a constant *K,, for huntite (Kénigsberger and
Gamsjiger, 1987).

Again, it is the only consistency criterion that G* must vanish atx =
Oandx = 1.

CALCULATION OF EQUILIBRIUM STATES

Thermodynamic equilibrium.—The values of § and x at equilibrium can
be calculated by minimizing the total Gibbs function given by

G =G, + G+ Gy, (21)
where
G/RT=mn—-8[(1-x)In(1—x)+xlnx+ G*/RT], (22)
G.o/RT = [n(1 —x,) = (1 = x)(n — §)]

1000
ln[ [(1 = x0) = (1 = x)(n = )]s

mMy o
1000
+ [ = (0= ) In b o i, = (0= Bl
1000°
+ Eln mMHzogyA;
— [l —x) — (n — (1 — x)] In Ky,
=[x — (n — E)x] In K, (23)
GHYO/RT = —2¢b. (24)

It should be emphasized that constant terms (mp%o) and common
constant factors (RT') are irrelevant for G minimization.

The osmotic coefficient & and the activity coefhcients y, may be
calculated from the Pitzer equation (Harvie, Mgller, and Weare, 1984).
In eqs (22-24) M,;, = 18.015 g mol™'; n, m, & x, and x, are defined by
reaction (1). The minimum of G can be easily computed with a simple
FORTRAN program employing, for example, the NAG subroutine
EO04JAF (NAG: see references). Equilibrium states of KCI-KBr-H,O at
25°C with total compositions given by Durham, Rock, and Frayn (1953)
were calculated with Pitzer coefficients B,, 8,, and C* from Pitzer and

L]
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Mayorga (1973), and the G*¥ function (19) of the solid phase, where the
parameters ¢, = 1.396 £ 0.005 and ¢, = —0.083 = 0.012 were obtained
via eq (11). Calculated and experimental values are given in table 1A and
B, respectively.

Stoichiometric saturation.—The value of ¢ at stoichiometic saturation
can be calculated by minimizing the total Gibbs function (21) under the
constraint x = x,, that s, .

G,/RT =(n - )[(1 —x)In (1 —x,)
+x,Inx, + G*/RT], (25)
1000
mMy, o

1000
mMHQ() (%E)Yc-

G./RT =[(1 — x,)§] In

(1 —x, )g]"/ml

+ (%,&) In

1000

+‘§' In m Eva-

—[(1 = x,)§] In Ky, — (x,€) In Ky, (26)
Guo/RT = —2&d. (27)

Again, the minimum of this function with respect to £ can be calculated by
a simple computer program.

GRAPHICAL REPRESENTATION
Lippmann diagrams.—To describe the aqueous solubility of binary
mineral systems Lippmann (1980) introduced a new kind of solid-solute
phase diagrams and defined the total solubility product
K= (B )+ [CDAT] = (1= ) furkios + 5 ferkes  (28)

.

and activity fractions _
%o = {CH/(BT] +{CT) = [CAT)/ZK = x fouKen /3K, (29)

Homogeneous equilibria in the aqueous phase are not taken into account
by reaction (1); hence, activity fractions will be equal to relative mole
fractions

x,, = [CT1/([B*] + [C*]) (30)

if and only if y;+ = vy, ([ ] denotes molality). It is neither essential nor
always convenient to use solubility products in Lippmann diagrams; any
other solubility variable such as *K,,, = M2 ]pco2 H*| 2 serves the same
purpose, and the respective equations can be modified accordingly.
Although 2K was intended to depict the states of thermodynamic equilib-

rium it is useful for a representation of stoichiometric saturation as well ,
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(Gamsjdger, 1985; Konigsberger and Gamsjiger, 1987, 1990a,b; Glynn
and Reardon, 1990; Glynn and others, 1990).

The equal-G curve.—In the experimental investigation of
Co,;_,Mn,CO; solid solutions (Gamsjiger, 1985), it was shown that stoi-
chiometric saturation corresponds to equal molar G functions of solid
and solutes.

This result follows indeed from eq (7) when x = x,, (Konigsberger
and Gamsjiger, 1990b). Stoichiometric saturation was identified as a
metastable equilibrium state and recognized as a further example of
Oonk’s (1981) equal-G approach to diffusionless phase transitions (Kénigs-
berger and Gamsjiger, 1987). Under the constraint of constant composi-
tion of the solid phase the two-phase area referring to thermodynamic
equilibrium of, for example, In 2K — x phase diagrams shrinks to a one
dimensional two-phase equal-G curve (EGC). In a general discussion of
phase diagrams Hillert (1985) recently stressed the phenomenon of
constrained equilibria.

Egs (8) and (29) resultin eq (31)

ch (x)

(1 = 2,)" %5

act

3K, = (31)
which defines soluti of congruently soluble solid solutions or compounds
at stoichiometric saturation. Eq (31) which corresponds to Glynn and
Reardon’s (1990) eq (56) was already employed by Kénigsberger and
Gamsjiger (1987) for the graphical representation of “spiked” solutions
stoichiometrically saturated with huntite. Lippmann (1980) previously
derived eq (31) for stoichiometric compounds, that is, cases in which
(1 — x)/x or its reciprocal are small integer numbers or can be converted
to integers by multiplication with small integer numbers.

Eq (11) and the condition x = x,, result in eq (32) which relates £K
unambiguously to the excess Gibbs energy of mixing of the solid phase
G™, ifx = x,, = x,., since in this case it equals the EGC,

aq?
In 2K;;.(x) = (1 —x)In Ky, + xIn K,
+ G™/RT. (32)

Even when x,, # x,, equal-G states can be represented by Lippmann
diagrams to a very good approximation if 3K;.(x) is plotted versus the
mole fraction x of the solid phase. For the system KCI-KBr-H,O hypothet-
ical 3K,..(x) values have been calculated from G minimization con-
strained to the condition x = «x,, as well as from eq (32) where the
condition x = x, is valid. Although x,_ and x,,, differ by 0.02 units in x, the
difference in 2K, (x) is negligible because of the shallow minimum of
function (31).

G minimization provides a direct proof that stoichiometric satura-
tion is a metastable equiltbrium state, since for the same initial conditions
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equilibrium states correspond to a lower G value than stoichiometric
saturation states (fig. 2).

Eq (32) is equivalent to Glynn and Reardon’s (1990) “minimum
stoichiometric saturation curve” and was already used by Gamsjiger
(1985) to calculate G** ofCO<1 oMn,CO, solid solutions which are actually
stoichiometrically saturated in aqueous acidic media at 323K for at least
one week. Eq (82) is also fundamental for the application of a chemical
potentiometer described elsewhere (Konigsberger, Bugajski, and Gams-
Jjager, 1989; Konigsberger and Gamsjager, 1990a).

As can be seen from eq (32), in In 3K (or log 2K) — x (but not in
3K — x) diagrams the deviation of In 3K,.(x) (or log ZK,.(x)) from the
straight line connecting the solubility constants of the endmembers is
proportional to G*.

If'in the general case (X,q * X,o) the activity fraction is introduced as
the independent variable as in eq (33)

G’dq/RT = ln EK - (1 O xar[) ln KBA - act ln KCA
(1= %) In (1 = x,0) + %, I, (33)

a(l

1t can be seen that G/, agrees formally with the molar G function of an
ideal, binary phase. Since the solid phase in the present case is also a
binary mixture, the method of common tangents to molar G, and G',
functions leads to equilibrium values of x and «x,, (Komgsberger and
Gamsjdger, 1990b), although Lippmann diagrams actually refer to ter-
nary systems. Therefore, Lippmann diagrams can in general be envis-
aged as quasi- bmary phdse dlagrams

Due to this “quasi-idealization” of the aqueous phase, eq (32) as well
as the respective solidus and solutus curves depend on the excess Gibbs
energy G of only the solid phase and can be represented by explicit
functions (Lippmann, 1980; Kénigsberger and Gamsjéger, 1987; Glynn
and Reardon, 1990). However, experimentally determined mole frac-
tions x,, cannot be deplcted directly in Lippmann diagrams, they must be
converted to activity fractions x,, with the corresponding activity coeffi-
cients v,

Analysis of Lippmann diagrams.—The following example indicates that
unreliable results for G*¥ may be obtained from eq (11).

Makarov and Evstrop’ev (1960) investigated the system KBr—KI—
H,O at 25°C and provided x — my,, ~ m,, as well as y,,,, and y_,, data,
where the latter were obtained by the isopiestic method. From these data
we have calculated x — x,, — 2K values and present them in a Lippmann
diagram. The observed miscibility gap 0.16 < x < 0.89 (Makarov and
Evstrop’ev, 1960) results in the parameters a, = 2.54 and a, = 0.165 of
the excess G function (19). ‘

Evaluation of G* from eq (11) yields a, = 2.20 + 0.06, a, = 0.08 =
0.07, and miscibility limits of 0.268 and 0.774 which due to the large
uncertainty of x do not agree with the experimental results cited above.*
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Recently, Konigsberger and Gamsjiger (1990c) applied Bayesian
parameter estimation to the analysis of phase diagrams. A modification of
this method for the analysis of Lippmann diagrams uses log %K as
independent and x and x,, as dependent variables. With the experimental
miscibility limits as ¢ priori information the excess parameters a, = 2.46 =
0.05,a, = 0.14 = 0.07, and calculated miscibility limits 0o 0.178 and 0.870
are obtained. Experimental data and the calculated phase diagram are
shown in figure 3.

However, it should be mentioned that other experimental studies of
this system (reviewed by Sangster and Pelton, 1987) as well as a recent
semiempirical model (Konigsberger and Schrunner, 1989; Koénigs-
berger, 1990) suggest a region of demixing skewed toward the KBr side.

A new solid-solute phase diagram.——According to Schmalzried and
Pelton’s (1973) topological classification, the common basis of phase
diagrams are generalized Gibbs-Duhem equations

X, dY, + X, . dY, + X dY; + ...+ X, ,dY, =0, (34)

where at equilibrium the potentia{ls Y (T, — P, n,) must have the same
value in all parts of the system. Furthermore, all the conjugate molar

2

log ZK

0 02 04 06 08 1
KBr X OF Xact Kl

Fig. 3. Lippmann diagram of the system KBr—KI-H,O at 25°C (solid lines); + solidus,
o solutus points (Makarov and Evstrop’ev, 1960). G parameters of eq (19) are ¢, = 2.46 and
a, = 0.14. The solidus inside the miscibility gap (dashed line) is unobservable.

@
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quantities X,,; = X;/n (S, V,,, x,) have to be defined in the same way, that
is, with the same definition of the amount n (Hillert, 1985).

Schmalzried and Pelton (1973) pointed out that three types of
equilibrium phase diagrams can be topologically distinguished, provided
the potentials Y,, Y;, . . . , ¥, are kept constant:

1. Type I: ¥, — ¥, diagrams,

2. Typell: Y, — X, ,and X, — ¥, diagrams,

3. Type II: X, . — X, , diagrams.

Type Lis also termed potential phase diagram, whereas types I1 and 111 are
referred to as molar phase diagrams (Hillert, 1985). Unary P—T diagrams
are of type I, whereas the Gibbs triangle is a type II1 diagram. Binary
T—x and P—x diagrams are of type II, where points of extremum are
characterized by equal compositions of both phases (azeotropic or congru-
ent points) and a horizontal common tangent to the one-phase fields
(Konovalov rule).

As was emphasized by Hillert (1985), the Konovalov rule does not
apply only to composition: Suppose that a linear two-phase field in a
Y,—~Y, diagram shows a ¥, extremum; at this point the two phases must
have the same value of X, ; (generalized Konovalov rule).

According to these general considerations, Kénigsberger and Gams-
Jjager (1991) derived three types of solid-solute phase diagrams from
Gibbs-Duhem equations for binary, ionic solids and the corresponding
ternary aqueous solutions. Moreover, they proposed a new, convenient
graphical representation of the corresponding solid-solute phase equilib-
ria.

When the osmotic coefficient ¢ of the solvent is introduced, the
Gibbs-Duhem equation of the aqueous phase can be written as eq (35)

(1 —x,)dIn{BJA} + x,dIn{C A} - ;m d(dZm) = 0.  (3b)

Therefore, d2m — x — x,, diagrams are of type 11, extrema are indicative
for alyotropic states, and the original Konovalov rule referring to compo-
sitions is satisfied. The numerical value of the variable $3m is often close
to the solubility 2m of the mixed crystals. Recall that in a ternary system
(homo-) alyotropism corresponds to a two-phase equilibrium character-
ized by equal relative mole fractions, that is, in this case x = X,q (Schu-
berth, 1977).
On the other hand, a “generalized Gibbs-Duhem equation” of the
aqueous phase can formally be derived from definitions (28) and (29)
(I-x)dln{BJA ) +x,dIn{C* A} -dInSK=0.  (36)

act

Note, however, that x,, is not a molar quantity in the sense of X,

m,*

Together with the Gibbs-Duhem equation of the solid phase and the
equilibrium conditions of equal chemical potentials of solid and solute

L]
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Fig. 4. ¢Zm—x—x,, diagram (A) and Lippmann ZK-x—x,, diagram (B) of the system

KI-RbI-H,O at 25°C. + solidus, © solutus points (Makarov and Stupin, 1961). Bl indifferent
point. G*¥ parameters of eq (19) are a, = 1.00 and ¢, = —0.15. G** from Pitzer and

Mayorga (1973) where the parameters C§, and C},; have been adjusted to —0.00311 and,
—0.00189, respectively.
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components it follows (Konigsberger and Gamsjiger, 1991)
x=x,<dn3K =0, (37)

that is, in In 2K — x — x,, diagrams there will be a horizontal tangent to
solidus and solutus when the mole fraction in the solid phase and the
activity fraction in the aqueous phase are equal. Thus, the “generalized
Konovalov rule” applies to this extremum in accordance with eq (36);
hence Lippmann diagrams are topologically of type 11. However, Lipp-
mann’s (1980) original generalization that coinciding solidus and solutus
curves in his diagrams indicate alyotropic states is not strictly valid.

In the system KI-RbI-H,O the Pitzer model predicts vy« /vy = 0.5
(the C* parameters were slightly adjusted in order to represent measured
activities of water up to saturation, compare Makarov and Stupin, 1961).
Consequently, x,, — x,, = 0.15 at x,, = 0.5. As shown in figure 4, the
d3m — x diagram exhibits an alyotropic maximum and hence a restric-
tion to the separability of the components by fractional crystallization,
whereas in the Lippmann diagram no maximum occurs.

A special situation arises when measurements are carried out in a
medium of high, constant ionic strength. In this case the v,’s and hence ¢
do not depend on m and x,, at all. Then the ionic medium can be chosen
as reference system, and the species of interest are forced to behave
ideally, that is, concentrations and mole fractions can be employed
instead of activities and activity fractions. In these cases, Lippmann
diagrams are equivalent to d2m — x diagrams. Eq (32) is valid at x = x,

q
and represents the equal-G curve.
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