
0018-9162/01/$10.00 © 2001 IEEE30 Computer

Software
Component
Certification

M ost current methods for certifying software are process-based and
require—according to Jeffrey Voas—that software publishers
“take oaths concerning which development standards and
processes they will use.”1 Voas, among others, has suggested that
independent agencies—software certification laboratories

(SCLs)—should take on a product certification role. He believes that “completely
independent product certification offers the only approach that consumers can
trust.” In Voas’s scheme, SCLs would

• accept instrumented software from developers,
• pass the instrumented software along to prequalified users,
• gather information from user sites,
• use data gathered from several sites to generate statistics on use and per-

formance in the field, and
• provide limited warranties for the software based on these statistics.

Thus, the SCLs assume the role of independent auditors that monitor the
processes developers follow and provide statistics about how their clients’ prod-
ucts perform. Additionally, the SCLs could, by continuing to collect data over
time, broaden the warranty as the software’s operational profile broadens.

We accept that using SCLs may work well for certain software distribution
models, but we also observe that it cannot be applied to all software develop-
ment. As the “Software Certification Laboratory Limitations” sidebar indicates,
this approach has several drawbacks. For example, an SCL may work well for
larger software houses that ship mass-marketed software applications to the
public, but it is less satisfactory for smaller developers who make reusable com-
ponents or safety-critical software or for developers who belong to the freeware
community.

DEVELOPER SELF-CERTIFICATION
We propose an entirely different model for software component certification,

one based on test certificates that developers supply in a standard portable form
so that purchasers can, in short order, determine the quality and suitability of
purchased software. For our test specifications, the term component refers to
any piece of software with a well-defined interface. This meaning thus encom-
passes components that satisfy any of the term’s many definitions found in the
literature,2 as well as simple functions or procedures such as those found in a
mathematical library.

Some early proponents of component software based their ideas on the suc-

Although the stringent
requirements of some
critical applications
may require independent
certification, the authors
see developer self-
certification as a viable
alternative in many
other cases.

John Morris
Gareth Lee
Kris Parker
Gary A. Bundell
University of Western Australia

Chiou Peng Lam
Murdoch University

P E R S P E C T I V E S

cessful integrated-circuit market—even referring to
components as software ICs. When describing an inte-
grated circuit’s capabilities, manufacturers have
adopted a fairly standard format: Most data sheets are
structurally similar, divided into AC and DC charac-
teristics. The AC sections report propagation delays,
the DC sections specify voltage levels and power con-
sumption: All manufacturers use similar notations and
structures in both sections. This de facto standardiza-

tion offers great benefit to design engineers: Having a
standard structure for data sheets from different man-
ufacturers makes them generally quick and easy to
comprehend.

Our approach lets developers employ software
process models, but does not require it. Clearly, adopt-
ing process models—such as those developed by the
Software Engineering Institute at Carnegie Mellon
University—can enhance the resulting products’ qual-

September 2001 31

Using software certification libraries brings with it several lim-
itations in the areas of cost, liability, developer resources needed
to access SCLs, and applicability to safety-critical systems.

Cost
Of necessity, SCLs add significantly to the certified product’s

overall cost. Part of that cost is for insurance—necessary for the
certifiers to provide any form of guarantee to purchasers. The
only benefit to a purchaser is that insurers may be prepared, pre-
sumably after some sufficiently long interval, to factor the
amount of operational data available into their calculation of
risk and, therefore, the premium.

Liability
To be effective, third-party certifiers must provide some form

of precisely stated warranty: Purchasers cannot be expected to
pay a premium for their services without additional value. While
testing a component certainly adds value, we doubt whether test-
ing alone—without some form of guarantee of its complete-
ness—will add sufficient value to make an SCL viable. User-based
testing essentially amounts to random testing, albeit biased to
some operational profile. Such testing exposes an SCL that pro-
vides a warranty to significant damage claims from time bombs
embedded in code that has never been exercised. SCLs thus may
occupy an even more invidious position than developers. Devel-
opers simply disclaim liability; SCLs provide professional advice
to clients on the risk of using a component. Courts have not been
kind when such advice has been proven faulty.

Developer resources
Much successful, widely used software—such as Linux and

Free Software Foundation software—is written by single pro-
grammers or small programming groups working independently.
We would expect their products to become a vital part of any
thriving component market. However, since these individuals or
groups are generally self-financed, it is unreasonable to expect
that many of them would

• initially have the funds to pay for SCL services,
• be inclined to give away a sufficient share of their efforts in

the early stages to attract the capital to pay for SCL ser-
vices,

• have the time to invest in negotiations with an SCL, or

• be prepared to instrument their products for residual test-
ing if they employed other formal methods for testing.

Lacking a viable alternative to SCLs, many developers will for-
go using software developed by these small independents.

Safety-critical systems
Voas notes that safety-critical systems present an area of spe-

cial challenge, recognizing that SCLs will have some difficulty
persuading testers to “fly uncertified software-controlled aircraft
or use uncertified software-controlled medical devices.” His solu-
tion is to certify the software in noncritical environments first: He
suggests that, once a product achieves noncritical certification,
it could be used with confidence in safety-critical applications
that mirror the certification environment.

This approach manifests several problems. First, many key
components of safety-critical systems will have no application
in noncritical systems. Second, the operational profiles collected
from users are unlikely to satisfy the software product standards
used in this area. For example, they would not be expected to
satisfy coverage criteria required for airborne1 or defense sys-
tems.2 Thus, we still need testing to satisfy the applicable stan-
dard. Further, such testing will likely consume the major part of
any testing budget, as even ensuring statement coverage requires
the construction of test cases for many rare situations unlikely to
be covered in any reasonable period of actual use.

Testing alternatives
Our model clearly targets small components and does not

eclipse all uses of the SCL model. For example, in the many appli-
cations where the cost of software failure is high, third-party cer-
tification by specialist testing organizations provides the only
acceptable model. Further, SCL certification may be the only
practical alternative for large software systems.

References
1. Radio Technical Commission for Aeronautics, Software Consid-

erations in Airborne Systems and Equipment Certification: DO-
178B, RCTA, Washington, D.C., 1992.

2. British Ministry of Defense Directorate of Standardisation,
Defense Standard 00-55: The Procurement of Safety Critical Soft-
ware in Defense Equipment, 1997; http://wheelie.tees.ac.uk/
hazop/standards/55/mainpage.htm (current 6 Aug. 2001).

Software Certification Laboratory Limitations

32 Computer

ity. We must balance against that benefit, however, the
increased staff training costs and overhead that imple-
menting the process incurs.

STANDARD TEST SPECIFICATIONS
If developers are to supply test sets to purchasers,

they will need a standard, portable way of specifying
tests so that a component user can assess how much
testing the component has undergone. Potential cus-
tomers can then make an informed judgment about
the likely risk of the component failing in their appli-
cation, keeping in mind the nature of the tests and the
intended application.3

To fill this role, we designed a test specification that
aims to be

• standard and portable;
• simple and easy to learn;
• devoid of language-specific features;
• equally able to work with object-oriented sys-

tems, simple functions, and complex components
such as distributed objects or Enterprise
JavaBeans;

• efficient at handling the repetitive nature of many
test sets;

• capable of offering widely available and easily
produced test-generation tools that do not require
proprietary software;

• free of proprietary-software requirements for
interpreting and running the tests; and

• able to support regression testing.

We based our test pattern document format on the
W3C’s Extensible Markup Language, which satisfies
most of our requirements.4 XML is a widely adopted
general-purpose markup language for representing
hierarchical data items. We have defined an XML
grammar, specialized for representing test specifica-
tions, published in the form of a document type defi-
nition (DTD) that can be downloaded from our Web
site.5 Figure 1 depicts, in tree form, the elements within
our grammar.

XML is well suited to representing test specifica-
tions because it adheres to a standard developed by an
independent organization responsible for several other

widely accepted standards. It has achieved broad
acceptance across the industry, leading to the devel-
opment of editors and parsers for a variety of plat-
forms and operating systems. Further, XML’s
developers designed the language to provide struc-
tured documents, which support our test specifica-
tions well.

XML documents—laid out with some simple
rules—can be read and interpreted easily. Several read-
ily available editors make understanding the language
easier by highlighting its structure and providing var-
ious logical views.

To keep the test specification simple and easy to use,
we defined a minimal number of elements for it. Rather
than adding elements to support high-level require-
ments, we allow testers to write helper classes in the
language of the system they are testing. This approach
gives testers all the power of a programming language
they presumably already know and avoids forcing them
to learn an additional language solely for testing.

SPECIFICATION DOCUMENT FORMAT
The specification uses the terminology of object-ori-

ented designs and targets a class’s individual methods.
However, it can describe test sets for functions written
using non-OO languages such as C or Ada equally
well. As long as a well-defined interface exists, a tester
can construct MethodCall elements.

An operation’s prefix attribute lets a tester specify
an operation that creates a common initial environ-
ment for multiple tests, then invoke it by name as
needed in other operations. The Invariant element lets
a tester specify a method that the system will invoke
when he modifies or constructs any object of a class.
The tester can specify invariants at any level, and the
usual scope rules apply: A local invariant for a par-
ticular class may be specified to override a global one.
The test pattern verifier automatically invokes the
invariants every time the tests are run after a devel-
oper changes a class’s methods, thereby sparing testers
the tedium of explicitly adding invariant checks at
many points. This invocation contributes to robust
testing—which calls for detecting errors at the earliest
possible point in an operation—by automatically
invoking checks at every relevant point where a tester
might be tempted to omit them in favor of a single
check at the end of an operation.

A single test specification contains a hierarchy of
elements designed to make regression testing after
minor maintenance exercises simple and efficient. A
test specification itself can contain several TestSet ele-
ments, which can contain either TestGroup or
Operation elements. Further, TestGroup elements can
contain Operation elements or nested TestGroup ele-
ments. An Operation defines a single test and can con-
sist of several Constructor or MethodCall elements.

<Operation Name="..." Pre=" ">*op_name

<TestGroup>*

<Invariant DataType="...">*

<Invariant>*

<Constructor>*

<MethodCall Target="...">*

<Operation>

<Invariant>

<TestSpecification>

<TestGroup Name="...">*

<TestSet Name="...">+

Figure 1. Elements of
an XML test-specifi-
cation grammar, dis-
played in tree form.
A test specification
can contain several
TestSet elements,
which contain either
TestGroup or Opera-
tion elements.
Further, TestGroup
elements can contain
Operation elements
or nested TestGroup
elements.

We make the distinction between constructors and
other methods to simplify specifying tests for OO lan-
guages such as Java and C++. For other languages, we
can ignore the distinction. Figure 2 shows the elements
of our grammar associated with method invocation.

We suggest that a TestGroup should contain
Operation elements that target a single method of a
class, whereas a TestSet could contain the tests for a
single class. This would allow a maintenance pro-
grammer, having made changes to one method of a
class, to immediately verify that the changes were cor-
rect by selecting a TestGroup targeting the modified
method and running all the tests in it. Having obtained
passes for all the tests in the TestGroup most likely to
be sensitive to the changes, all the remaining TestSet
elements can be run with lower priority in the back-
ground or on a machine set aside for long batch runs.
However, our association of TestSet with a class and
TestGroup with a method is a recommendation only.
The tester can use the hierarchy in any way appropri-
ate to the system being verified.

Each constructor or method call can have arguments
and return a result. The test harness can check the
results against expected values or store them for veri-
fication by helper methods. The ability to call helper
methods means that the test specification itself can be
kept simple and portable: It isn’t necessary to add any
language-specific features. An additional benefit is that
implementations of the same function in different lan-
guages can use the same test specification, which reuses
the significant effort invested in test set generation.

The “Sample Test Document” sidebar contains a
sample test specification that can be applied to the
Vector class, which Sun Microsystems supplies as
part of the Java API. We have built a test-pattern
verifier application to interpret and process a test
specification, but because the specification is open
and standard, other testers can readily build equiv-
alent tools.

TEST RESULTS
The specification can use the results from method

invocations—either return values or an altered object
state—in various ways. It can pass the results to other
methods that check their correctness, in which case
the specification assigns them a name in the Result ele-
ment; or it can compare the results against an expected
value stored in an Exp element, in which case dis-
crepancies will be reported as test failures.

Expected values themselves can have different
sources. They can be derived from

• the specification;
• an automatic test pattern generator (ATPG), such

as our symbolic execution system,6 which gener-
ates an input test pattern to execute the method

under test, producing a result that the ATPG has
checked for compliance with the specification;

• an ATPG-generated input used to produce a
result that passed cursory checks for correctness,
meaning that it generated no exceptions, and a
value within a plausible range; or

• an ATPG-generated input that produced a result
that has not been checked.

Method invocations can return either specified or
calculated values. Specified results derive directly from
a component’s specification—which can contain an
exact value or a method for computing the value—
and are stored in the test specification’s Exp elements.
Executing the component’s code determines the cal-
culated results and stores them in the separate
ResultSet documents that accompany a test specifica-
tion. In both cases, when the testers run the tests, the
test-pattern verifier flags discrepancies between spec-
ified or calculated results as errors or potential errors.

TEST-PATTERN VERIFIER
Component users must be able to run the tests that

a test specification describes. We have developed a
lightweight, portable program—the test-pattern ver-
ifier (TPV)—that reads XML test specifications,
applies the tests to a component, and checks results
against those in Exp elements or that the TPV pre-
viously stored in ResultSet documents. Written in
Java, the TPV is small enough to avoid placing an
undue burden on a system when downloaded as part
of a code, documentation, and test-certificate pack-
age. The TPV amounts to 136 Kbytes of Java byte-
code, but a SAX (Simple API for XML) parser
requires an additional ~451 Kbytes, both delivered
as compressed files. The quoted size applies to
Oracle’s SAX parser,7 but smaller parsers are now
available. If many component developers adopt a
standard test specification, this overhead only occurs
once on a developer’s system.

Using our TPV limits neither developer nor pur-
chaser. XML parsers are readily available, and either
party can easily construct a TPV program to meet its
own requirements.

IMPLICATIONS
Our approach, which requires that developers pro-

vide their own test data to component purchasers, has
many advantages over the certification laboratory
approach.

September 2001 33

<Exp>?

<Result Name="..." DataType="...">*

<Exp>?

<Exception Name="..." DataType="...">*

<Arg Name="..." Source="..." DataType="...">*

<MethodCall Name="..." Target="..." Static="Y/N">

Figure 2. Grammar
elements associated
with method invoca-
tion. Each constructor
or method call can
have arguments and
return a result. The
test harness can
check results against
expected values or
store them for verifi-
cation by helper
methods.

34 Computer

• Reduced costs. The incremental cost to develop-
ers is small because they have produced exten-
sive tests as part of their own verification
procedures. Without such tests, they cannot make
any claim for component reliability.

• Guaranteed trust. Purchasers receive the test data
and the means to interpret it: Most XML editors
can use the XML DTD to display the test specifi-
cation’s structure and content. Further, purchasers
receive a means for running the tests and verify-
ing that the developer’s claims for correctness are
sustainable.

• Confirmed conformance. To confirm developer
claims regarding a given product’s testing level,
purchasers can review the tests to judge how well
they conform to their understanding of the spec-
ification.

• Augmented functional requirements. The test spec-
ifications augment the functional requirements,
which are usually natural language and therefore
laden with potential ambiguities. The specifica-
tions and accompanying actual results provide a
precise if voluminous specification of actual com-
ponent behavior.

• Added value. The test specifications add consid-
erable value to a software component. In many
cases they already exist in collections of test pro-
grams, scripts, and test procedures—requiring
only a standard format for packaging and sup-
plying them with a component to a purchaser.

Voas’s examples imply that his proposal targets large
application software suites. We designed our proposal,
on the other hand, for component-level software,

As a simple example of our test specification, we created a heavily abridged test of the java.util.Vector class
within the standard Java API. The DocHeader, Implementation, and Interface elements provide information about
the attribution of the test set, the specific implementation being tested, and the interface to which that implemen-
tation adheres and through which the test should be conducted. The body of the XML test specification follows:

<?xml version=”1.0”?>
<Component Name=”Vector”>

<DocHeader Name=”vector.xml”>
<Author Name=”Kris Parker” Org=”CIIPS”>KP</Author>
<Copyright>2001, CIIPS</Copyright>
<Created Date=”04-07-2001” Who=”KP” Ver=”1.0”/>

</DocHeader>
<Implementation Name=”Java” Environ=”any_java” Lang=”java”

IntName=”java.util.Vector”/>
<Interface Name=”java.util.Vector” TestSetName=”add_tests”/>

<TestSet Name=”add_tests”>
<TestGroup Name=”Simple tests”>

<Operation Name=”New”>
<Constructor Name=”java.util.Vector”>

<Result Name=”vect” DataType=”java.util.Vector”/>
</Constructor>
<MethodCall Name=”size” Target=”vect”>

<Result Name=”size” DataType=”int”>
<Exp>0</Exp>

</Result>
</MethodCall>

</Operation>
<Operation Name=”Add” Pre=”New”>

<Constructor Name=”java.lang.Object”>
<Result Name=”obj” DataType=”java.lang.Object”/>

</Constructor>
<MethodCall Name=”add” Target=”vect”>

<Arg Source=”obj” DataType=”java.lang.Object”/>

Sample Test Document

which we define as encompassing all the definitions
Nilesh Sampat collected.2 We find that complete test
specifications are usually several times as large as the
components they test. For example, the test specifica-
tions for a small component in Java, a Heap, require
15.3 Kbytes, whereas the fully commented source code
requires 9.2 Kbytes, a 1.7 to 1 ratio. This ratio in-
creases as a component’s size increases. Thus, the vol-
ume of the test specification necessary to accompany
a large application, and that approaches any definition
of complete, would be impractically large. The amount
of operational data an SCL requires to issue a certifi-
cate would have a similar complexity. Using code
instrumented for residual testing8 only helps reduce
the constant factor. Further, the test specifications also
provide a valuable input to an SCL preparing to certify
a component, so either approach requires them.

In addition to reliability, component-based soft-
ware engineering (CBSE) will need economical
component sources. Component software presents

an opportunity for many small developers to produce
and market high-quality software. These developers
can compete efficiently by operating with low over-
heads, specializing in certain application domains, or
otherwise leveraging particular skills or knowledge.

Because predicting whether any one component will
become popular with developers will always be diffi-
cult, small developers will be reluctant to incur addi-
tional costs by speculating that one component will
actually achieve some reasonable sales volume. Third-
party SCLs will only add to costs unnecessarily, and
they are impractical for small developers. If CBSE
practitioners see that they can obtain reliable compo-
nents only by using those that SCLs certify, the indus-

September 2001 35

The body of the document defines a single TestSet, named add_tests, which contains a single TestGroup
element, Simple tests. The group then defines an operation entitled New that constructs a new instance of
a Vector object and tests that its initial size is 0. The subsequent operation uses the New operation as a pre-
fix to create an initial test environment, then executes a sequence of tests that

• creates a Java object, storing it as the environment variable obj;
• invokes the add method on the Vector to add the object to the data structure;
• invokes the Vector’s size method to ensure that this value is now 1; and
• invokes the get method to ensure the 0th element can be retrieved from the Vector.

Typically, testers will use a testing tool to generate such documents automatically, but this example
demonstrates that our test specifications are human-readable so that, if necessary, testers can use a sim-
ple text editor to read or modify it.

</MethodCall>
<MethodCall Name=”size” Target=”vect”>

<Result Name=”size” DataType=”int”>
<Exp>1</Exp>

</Result>
</MethodCall>
<MethodCall Name=”get” Target=”vect”>

<Arg DataType=”int”>0</Arg>
<Result Name=”x” DataType=”java.lang.Object”/>

</MethodCall>
<MethodCall Name=”equals” Target=”obj”>

<Arg Source=”x” DataType=”java.lang.Object”/>
<Result Name=”equal” DataType=”boolean”>

<Exp>true</Exp>
</Result>

</MethodCall>
</Operation>

</TestGroup>
</TestSet>

</Component>

36 Computer

try could stifle itself before developing its full poten-
tial.

However, if component authors generate complete
or substantially complete test sets and supply them with
components, they incur little additional cost because
they must generate the tests in the first place. Any extra
effort also adds value to a component—as a tested com-
ponent is certainly a more marketable commodity—
while demanding a relatively small investment of
additional time. SCL certification would also add value
to a component, but it is likely that recovering the cost
of generating the additional value in this way would
require many more sales. The test specifications we pro-
pose resemble the data sheets that integrated-circuit
manufacturers supply—a well-established market and
thus a good indicator of successful practices.

We believe that SCLs do have a place: Complex or
valuable components destined for systems that require
reliability will economically justify third-party certifi-
cation. Yet we believe that because there will always
be commercial software developments for which fail-
ure represents a moderate cost, only a small premium
for reliability—the cost of generating tests and inspect-
ing them—can be justified in such cases. ✸

Acknowledgments
This work was supported by a grant from Software

Engineering Australia (Western Australia) through the
Software Engineering Quality Centres Program of the
Department of Communications, Information Tech-
nology, and the Arts of the Commonwealth Govern-
ment of Australia.

References
1. J. Voas, “Developing a Usage-Based Software Certifica-

tion Process,” Computer, Aug. 2000, pp. 32-37.
2. N. Sampat, “Components and Component-Ware Devel-

opment: A Collection of Component Definitions,” 1998;
http://www.cse.dmu.ac.uk/~nmsampat/research/subject/
reuse/components/main_index.html (current Aug. 2001).

3. P. Frankl et al., “Evaluating Testing Methods by Deliv-
ered Reliability,” IEEE Trans. Software Eng., Aug. 1998,
pp. 586-602.

4. World Wide Web Consortium, Extensible Markup Lan-
guage 1.0, 1998; http://www.w3.org/TR/2000/REC-
xml- 20001006 (current Aug. 2001).

5. Centre for Intelligent Information Processing Systems,
Software Component Laboratory, 2001; http://ciips.ee.
uwa.edu.au/Research/SCL/SCL.html (current Aug. 2001)
and our test pattern DTD http://ciips.ee.uwa.edu.au/
Research/SCL/Docs/Component.dtd (current Aug. 2001).

6. G. Lee et al., “Using Symbolic Execution to Guide Test
Generation,” Software Component Laboratory Techni-
cal Report, University of Western Australia, 2001; http://
ciips.ee.uwa.edu.au/Research/SCL/Docs/SymbolicExec.
dvi (current Aug. 2001).

7. Oracle Technology Network, Oracle’s XML Parser for
Java, Version 2, 2000; http://technet.oracle.com/tech/
xml/ (current Aug. 2001).

8. C. Pavlopoulou and M. Young, “Residual Test Coverage
Monitoring,” Proc. Int’l Conf. Software Eng., IEEE CS
Press, Los Alamitos, Calif., 1999, pp. 277-284.

John Morris is a senior lecturer in the Centre for Intel-
ligent Information Processing Systems, University of
Western Australia, and director of the Centre’s Soft-
ware Component Laboratory. His research interests
include computer architectures and software verifi-
cation. He received a PhD in optical spectroscopy
from the Australian National University. Contact him
at morris@ee.uwa.edu.au.

Gareth Lee is a senior research fellow in the Depart-
ment of Electrical and Electronic Engineering, Uni-
versity of Western Australia. His research interests
include speech and pattern recognition, artificial neural
networks, and software engineering. He received a
PhD in electronic engineering from the University of
East Anglia. Contact him at gareth@ee.uwa.edu.au.

Kris Parker is a research associate with the Australian
Research Centre for Medical Engineering, University
of Western Australia. His research interests include
client-server architectures. He received a BE in electronic
engineering from the University of Western Australia.
Contact him at kaypy@ee.uwa.edu.au.

Gary A. Bundell is a senior lecturer in the Department
of Electrical and Electronic Engineering, University of
Western Australia. His research interests include soft-
ware engineering, in particular, real-time distributed
information systems design and analysis. Bundell re-
ceived a PhD in control engineering from Cambridge
University. Contact him at bundell@ee. uwa.edu.au.

Chiou Peng Lam is a senior lecturer in software engineer-
ing in the School of Engineering at Murdoch University.
Her research interests include component-based software
engineering, functional reasoning and representation, and
intelligent process operation management. She received a
PhD in active vision from Curtin University of Technol-
ogy. Contact her at peng@eng.murdoch.edu.au.

