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Abstract. Assessment of vegetation is an important part of evaluating wetland condition,
but it is complicated by the variety of plant communities that are naturally present in
freshwater wetlands. We present an approach to evaluate wetland condition consisting of: (1)
a stratified random sample representing the entire range of anthropogenic stress, (2) field data
representing a range of water depths within the wetlands sampled, (3) nonmetric
multidimensional scaling (MDS) to determine a biological condition gradient across the
wetlands sampled, (4) hierarchical clustering to interpret the condition results relative to
recognizable plant communities, (5) classification and regression tree (CART) analysis to
relate biological condition to natural and anthropogenic environmental drivers, and (6)
mapping the results to display their geographic distribution. We applied this approach to plant
species data collected at 90 wetlands of the U.S. Great Lakes coast that support a variety of
plant communities, reflecting the diverse physical environment and anthropogenic stressors
present within the region. Hierarchical cluster analysis yielded eight plant communities at a
minimum similarity of 25%. Wetlands that clustered botanically were often geographically
clustered as well, even though location was not an input variable in the analysis. The eight
vegetation clusters corresponded well with the MDS configuration of the data, in which the
first axis was strongly related (R2¼0.787, P , 0.001) with floristic quality index (FQI) and the
second axis was related to the Great Lake of occurrence. CART models using FQI and the
first MDS axis as the response variables explained 75% and 82% of the variance in the data,
resulting in 6–7 terminal groups spanning the condition gradient. Initial CART splits divided
the region based on growing degree-days and cumulative anthropogenic stress; only after
making these broad divisions were wetlands distinguished by more local characteristics.
Agricultural and urban development variables were important correlates of wetland biological
condition, generating optimal or surrogate splits at every split node of the MDS CART model.
Our findings provide a means of using vegetation to evaluate a range of wetland condition
across a broad and diverse geographic region.
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INTRODUCTION

The U.S. government collects data on the status and

trends of wetland area within the country, but no

comparable data currently exist for wetland quality.

Scientists and environmental managers acknowledge

that not all wetlands are of equal condition; some

wetlands are perceptibly better than others in terms of

their ecological functions and diversity of biota.

Recognizing the need to evaluate wetland quality in

the United States, the U.S. Environmental Protection

Agency is planning for a national survey of wetland

condition in 2011 (information available online).7

Assessment of vegetation is an important part of

evaluating wetland condition, but is complicated by the

variety of plant communities that are naturally present

in freshwater wetlands. Adjoining wetlands may contain

vastly different plant communities even in undisturbed

landscapes due to different edaphic conditions such as

soil type, water source, biogeochemistry, and depth and

duration of inundation; anthropogenic disturbances

superimpose additional stress on this already complex

set of vegetation drivers. Developing vegetation indica-

tors of condition capable of factoring out natural

vegetation variability is a challenge to evaluating
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wetland quality. Existing approaches include compari-

son with ‘‘reference’’ wetlands, or assigning a ‘‘coeffi-

cient of conservatism’’ to individual wetland plant

species to rank their fidelity to remnant natural habitats,

but both of these approaches involve some subjectivity.

We propose an alternative approach that ‘‘lets the

vegetation tell the story,’’ utilizing vegetation ordination

to generate a biological condition gradient (sensu Davies

and Jackson 2006) that allows comparison of wetlands

with vastly different plant communities spanning broad

geographic regions.

The combined information provided by an assem-

blage of plant species can often reveal more about

wetland condition than that provided by individual

species (Keddy 2000, Cronk and Fennessy 2001).

Freshwater wetland vegetation responds to the depth,

timing, and duration of inundation (Keddy and

Reznicek 1986, Toner and Keddy 1997, Whitehouse

and Bayley 2005, Hudon et al. 2006), soil pH (Nekola

2004), soil texture (Kirkman et al. 2000, De Steven and

Toner 2004), and soil and water fertility (Gaudet and

Keddy 1995, Templer et al. 1998, King et al. 2004).

Anthropogenic disturbances that alter these attributes,

either directly within wetlands or indirectly by off-site

water level or watershed alteration, can thereby alter

wetland plant community composition (Johnston 2003,

Zedler 2003, Houlahan et al. 2006, Craft et al. 2007).

Because plant communities encompass species with

different adaptations, ecological tolerances, and life

history strategies, the composition of plant communities

can reflect the biological integrity of the wetland, often

with great sensitivity (U.S. Environmental Protection

Agency 2002).

The contemporary statistical methods of nonmetric

multidimensional scaling (MDS) and classification and

regression trees (CART) can aid detection of ecological

communities and interpretation of their environmental

linkages. MDS (also abbreviated as NMS or NMDS) is

an ordination technique for constructing sample maps

whose interpoint distances have the same rank order as

the corresponding dissimilarities between samples. It is

superior to other ordination methods for community

data (Kenkel and Orloci 1986, Clarke and Warwick

2001) and has been successfully applied to wetland plant

communities in many locations (Grace et al. 2000, De

Steven and Toner 2004, Nekola 2004, Bowles et al. 2005,

Whitehouse and Bayley 2005, Mack et al. 2008). CART

is a nonparametric technique that is ideally suited for

complex ecological data with hierarchical structure, and

it can overcome the complications of categorical data

and nonlinear relationships (Breiman et al. 1984, De’ath

and Fabricius 2000). Physical parameters that are

known to affect wetland plant communities, such as

hydrogeomorphology and soil type, are usually catego-

rized as discrete classes that require nonparametric

statistical methods. CART can select from among a

large number of variables, both numerical and categor-

ical, those that are most important in determining the

outcome variable to be explained (Urban 2002). CART

analyses have been used to predict seasonal-wetland

abundance based on land type (Palik et al. 2003), relate

coastal urbanization to Phragmites australis abundance

and foliar nitrogen (King et al. 2007), model historical

changes in herbaceous wetland plant communities on

the St. Lawrence River (Hudon et al. 2005), and

evaluate nonlinear responses of wetland biota to

generalized stressor gradients (Brazner et al. 2007a,

Lougheed et al. 2007).

Our study area for developing this approach is the

U.S. Great Lakes coast, a region encompassing a variety

of wetland types and anthropogenic influences within its

1200-km span. The Great Lakes basin intercepts a range

of climatic conditions, with average annual precipitation

from 70 to 150 cm, and average annual maximum

temperature from 88 to 168C within the United States

(PRISM 2006a, b). Like many coasts, the Great Lakes

shoreline has been a magnet for human development

and has a long history of human use for transportation,

industry, and inhabitancy that affects its wetlands. The

vegetation diversity of Great Lakes coastal wetlands has

long been celebrated by naturalists (Voss 1978), and

contemporary Natural Features Inventories have done

much to describe it (Epstein et al. 2002, Albert 2003).

However, the diversity and dynamics of vegetation in

Great Lakes wetlands have deterred basinwide general-

izations about relationships between vegetation and

anthropogenic stress (Wilcox et al. 2002).

Previous studies of vegetation responses to anthropo-

genic stress in Great Lakes coastal wetlands have

typically focused on individual species rather than plant

communities (Chow-Fraser 2005, Herrick and Wolf

2005, Stanley et al. 2005, Wei and Chow-Fraser 2006,

Trebitz and Taylor 2007). This is a logical starting point

for studying plant–environment relationships, and our

own understanding of Great Lakes coastal wetlands has

benefitted from analyzing individual plant species as

indicators of wetland physical environment (Johnston et

al. 2007) and anthropogenic stress (Brazner et al. 2007a,

Frieswyk et al. 2007, Johnston et al. 2008). Most

quantitative studies of plant community–environment

relationships have considered only portions of the Great

Lakes, rather than the entire region (Gathman et al.

2005, Stanley et al. 2005). An important exception is an

analysis of 62 marshes on the Canadian side of the Great

Lakes by Lougheed and coworkers (2001), but that

study focused on macrophyte beds with standing water

above the soil surface, and did not consider herbaceous

wet meadows, fens, or bogs.

Our goal is to develop plant community metrics to

evaluate the condition of U.S. Great Lakes coastal

wetlands, using vegetation data that we collected at 90

wetlands for the Great Lakes Environmental Indicators

(GLEI) project (Johnston et al. 2007, Niemi et al. 2007).

Specific objectives are to: (1) define Great Lakes wetland

plant communities based on multivariate analyses and
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(2) relate those plant assemblages to anthropogenic and

physical environmental variables using CART analysis.

METHODS

Site selection and vegetation sampling

Ninety wetlands (‘‘sites’’) spread across the U.S. Great

Lakes coast (Fig. 1) were selected using an objective,

stratified random statistical design representing the

entire range of anthropogenic stress occurring along

the U.S. Great Lakes coast (Danz et al. 2005). Sampling

within study sites was conducted by visual observation

of plant taxa in 131 m plots distributed along randomly

placed transects. Transects were established with a

geographic information system (GIS) prior to field

campaigns, using a program called Sample (available

online)8 to randomize transect placement (Johnston et al.

2009). Each transect intersected a randomly selected

point generated by the Sample program, and was

oriented along the perceived water depth gradient.

Transect length and target number of sample plots were

determined in proportion to the size of the wetland to be

sampled (20 plots/60 ha, minimum transect length ¼ 40

m, minimum plots/site ¼ 8). Plot locations were

established in the field by dividing each transect into

20-m segments and randomly locating a plot in each

segment using a random number table. In all, 1963 plots

were sampled in the 90 wetlands studied. All vascular

plant species and large nonvascular species such as

Chara vulgaris L. and Sphagnum spp. were identified to

the lowest taxonomic division possible by trained

botanists who were tested annually to ensure consistency

of visual observations (see Plate 1). Plants were

identified using published taxonomic manuals (e.g.,

Chadde 1998), but the Interagency Taxonomic Infor-

mation System was used as the ultimate taxonomic

authority (taxonomic information available online).9

Percent cover was estimated visually for each taxon

according to modified Braun-Blanquet cover class

ranges (ASTM 1997): ,1%, 1% to ,5%, 5% to ,25%,

25% to ,50%, 50% to ,75%, 75% to 100%. Cover-class

midpoints were used to calculate average values for each

taxon at each site. Vegetation sampling was conducted

from 2001 to 2003 and was restricted to the months of

July and August to ensure that most of the vegetation

could be identified and peak annual growth observed.

Site characteristics and details of vegetation sampling

methods are described by Johnston et al. (2007, 2008).

Environmental data

Forty-four environmental variables were summarized

for each site, many of which were initially computed for

our prior publications (Table 1). These included several

integrated measures of watershed anthropogenic stress,

derived by principal components (PC) analysis of

multiple stressors of a common anthropogenic origin

(Danz et al. 2007, Johnston et al. 2009): agriculture

(PC1_AG), human population and development

(PC1_URB), atmospheric deposition (PC1_ATDEP),

point source pollution (PC1_NPDES), and the cumula-

tive stress index (CSI), which was a generalized stress

gradient derived from the preceding four PCs and land

cover. These integrated measures were derived from

existing geospatial data sources, but they have been

confirmed by field studies to be related to wetland water

quality (Trebitz et al. 2007, Morrice et al. 2008). In

addition, two integrated measures of watershed soil

characteristics were used, related to soil texture

(PC1_SOIL) and soil water availability, cation exchange

capacity, and organic matter content (PC2_SOIL; Danz

et al. 2005). The metrics were summarized within

watersheds that were specifically created by Hollenhorst

and coworkers (2007) for each wetland site (water-

shed_C, n ¼ 90) or for ‘‘segment-sheds,’’ lands draining

to a segment of shoreline containing the wetland site

(watershed_S, n ¼ 83), as noted in Table 1. Additional

watershed variables used included total nitrogen and

total phosphorus export from U.S. Geological Survey

hydrologic units (watershed_H, n ¼ 34) computed by

SPARROW surface water quality modeling (Smith et al.

1997), human population within wetland site-specific

watersheds calculated from U.S. Census data, and

cropland water erosion within wetland site-specific

watersheds calculated from National Resources Inven-

tory data (USDA 2000).

Several types of land use (row crops, development,

forest, and wetlands and inland water; Wolter et al.

2006) were summarized for buffer areas of different

widths (100, 500, 1000, 5000 m) around each wetland,

and for the entire watershed draining to each wetland.

The row crop and development buffers had previously

been developed to assess the spatial scale of influence of

anthropogenic disturbance on wetlands (Brazner et al.

2007b).

Two wetland hydrogeomorphic classifications were

used as categorical data (Table 1). The three GLEI

hydrogeomorphic classes (protected wetlands, river-

influenced wetlands, and open coast wetlands) were

applied as in Johnston et al. (2007). We also applied 12

hydrogeomorphic classes defined by Albert and cowork-

ers (2005) and mapped by the Great Lakes Coastal

Wetlands Consortium (available online).10 In addition,

each wetland was classified by its majority soil type

(sand, silt, clay, organic) based on field determinations

at each vegetation sample plot (Johnston et al. 2007)

and its Strahler (1957) stream order based on a modified

River Reach File 3 database provided by the U.S.

Environmental Protection Agency.

Two environmental variables described hydrologic

alterations within the wetlands studied. The hydrologic

8 hhttp://www.quantdec.com/samplei
9 hhttp://itis.govi 10 hhttp://www.glc.org/wetlands/i

October 2009 1741WETLAND PLANT COMMUNITY CONDITION



FIG. 1. Wetland study sites (solid circles) and locations of map extents along the U.S. Great Lakes coast, used in Figs. 3 and 9.

TABLE 1. Environmental variables used in CART (classification and regression tree) analysis of 90 wetland sites along the U.S.
Great Lakes coast.

Parameter Description
Units of
measure

Continuous or
categorical

(no. categories) Scale Source

LAT latitude decimal deg continuous
LON longitude decimal deg continuous
LAKE Great Lakes and Saginaw Bay unitless categorical (6)
STATE state unitless categorical (6)
GDD growing degree-days deg C continuous wetland McKenney et al. (2007)
HYG_GLEI hydrogeomorphic type unitless categorical (3) wetland Johnston et al. (2007)
HYG_GLC hydrogeomorphic type unitless categorical (12) wetland Albert et al. (2005)
WETL_SOIL sand, silt, clay, organic unitless categorical (4) wetland Johnston et al. (2007)
WETL_AREA wetland area ha continuous wetland Brazner et al. (2007b)
SHED_AREA watershed area ha continuous watershed Brazner et al. (2007b)
STRAHLER Strahler stream order unitless continuous watershed see Methods
DIKED presence/absence of dikes unitless categorical (2) wetland Johnston et al. (2008)
CSI cumulative stress index unitless continuous watershed Danz et al. (2007)
HMI hydrologic modification index m/ha continuous wetland Johnston et al. (2008)
POPU human population count continuous watershed see Methods
PC1_AG agriculture PC unitless continuous watershed Danz et al. (2007)
PC1_URB human population PC unitless continuous watershed Danz et al. (2007)
PC1_ATDEP atmospheric deposition PC unitless continuous watershed Danz et al. (2007)
PC1_NPDES point source PC unitless continuous watershed Danz et al. (2007)
PC1_SOIL soil texture unitless continuous watershed Danz et al. (2005)
PC2_SOIL soil water avail/CEC/organic matter unitless continuous watershed Danz et al. (2005)
EROS cropland water erosion kg�ha�1�yr�1 continuous watershed USDA (2000)
TN_export mean total nitrogen export kg/d continuous watershed Smith et al. (1997)
TP_export mean total phosphorus export kg/d continuous watershed Smith et al. (1997)
RC_100 row crops areal fraction continuous 100-m buffer Brazner et al. (2007b)
DEV_100 development areal fraction continuous 100-m buffer Brazner et al. (2007b)
FOR_100 forest areal fraction continuous 100-m buffer see Methods
WETW_100 wetlands and inland water areal fraction continuous 100-m buffer see Methods
RC_500 row crops areal fraction continuous 500-m buffer Brazner et al. (2007b)
DEV_500 development areal fraction continuous 500-m buffer Brazner et al. (2007b)
FOR_500 forest areal fraction continuous 500-m buffer see Methods
WETW_500 wetlands and inland water areal fraction continuous 500-m buffer see Methods
RC_1000 row crops areal fraction continuous 1000-m buffer Brazner et al. (2007b)
DEV_1000 development areal fraction continuous 1000-m buffer Brazner et al. (2007b)
FOR_1000 forest areal fraction continuous 1000-m buffer see Methods
WETW_1000 wetlands and inland water areal fraction continuous 1000-m buffer see Methods
RC_5000 row crops areal fraction continuous 5000-m buffer Brazner et al. (2007b)
DEV_5000 development areal fraction continuous 5000-m buffer Brazner et al. (2007b)
FOR_5000 forest areal fraction continuous 5000-m buffer see Methods
WETW_5000 wetlands and inland water areal fraction continuous 5000-m buffer see Methods
RC_shed row crops areal fraction continuous watershed Brazner et al. (2007b)
DEV_shed development areal fraction continuous watershed Brazner et al. (2007b)
FOR_shed forest areal fraction continuous watershed see Methods
WETW_shed wetlands and inland water areal fraction continuous watershed see Methods

Note: Key to abbreviations: PC, principal components; CEC, cation exchange capacity.
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modification index (HMI) was computed as the length

per unit wetland area of within-wetland features that
likely disrupt the natural flow and fluctuation of water

within wetlands, such as road beds, dikes, and ditches

(Bourdaghs et al. 2006, Johnston et al. 2008). The
presence or absence of dikes was also used as a separate

categorical variable.

A climate surface of average growing season growing
degree-days (GDD) for the period 1961–1990, interpo-

lated to a 30 arc second grid, was obtained from the

Canadian Forest Service (McKenney et al. 2007). Data
were extracted for each wetland study site by intersect-

ing their locations with the gridded climate data using

ArcMap version 9.2 (ESRI 2006).

Statistical analysis

A data matrix was constructed of taxa cover
(columns) by site (rows). Infrequently occurring species

were removed prior to statistical analysis (Clarke and
Warwick 2001); taxa were retained that occurred at

�10% of sites, plus taxa that occurred at fewer sites but

had relative percent cover .15% in any wetland. Of the
138 taxa used, 120 were identified to species and 18 were

identified to genus. The taxon, ‘‘invasive Typha,’’

included both Typha angustifolia and Typha 3 glauca
but did not include the native species Typha latifolia.

Square-root transformation was done to downweight

high abundance species, and similarity was computed
after Bray and Curtis (1957). Plant communities were

classified by agglomerative hierarchical clustering with

group-average linking based on Bray-Curtis similarities.
The SIMPER procedure (Clarke and Gorley 2006) was

used to determine taxa contributions to the average
similarity within a cluster and the contributions to the

average Bray-Curtis dissimilarity between pairs of

clusters. Nonmetric multidimensional scaling (MDS)
was used with the Bray-Curtis similarity data to ordinate

sites, using 25 restarts and a minimum stress of 0.01. All

plant community analyses were conducted with PRIM-
ER version 6 (Clarke and Gorley 2006).

The floristic quality index (FQI) was also computed

for each site as a widely tested metric of biological
condition (Lopez and Fennessy 2002, Bourdaghs et al.

2006, Mack et al. 2008). The FQI computation weights

plant species based on their coefficient of conservatism
(C value), a zero-to-10 ranking of a species’ fidelity to

remnant natural plant communities:

FQI ¼ C̄ 3
ffiffiffiffi

N
p

ð1Þ

where C̄ is mean coefficient of conservatism, and N is the
number of native species present (Swink and Wilhelm

1979). C values were obtained for Wisconsin, Michigan,
and Ohio (Herman et al. 2001, Bernthal 2003, Andreas

et al. 2004), and used to compute FQI values for

wetlands in those states. Ohio C values were also applied
to the one site in Pennsylvania (Presque Isle on Lake

Erie) and 13 sites in New York State, which lacks a

state-specific C value list. FQI was computed for each

sample plot and averaged by site so as to reduce

sampling area bias, after Bourdaghs et al. (2006).
Classification and regression trees (CART) were

constructed, using FQI and the first MDS axis values
as the response variables and the environmental

variables (Table 1) as potential predictor variables. We
used the recursive partitioning and regression trees

package (RPART version 3.1-39; Therneau and Atkin-
son 1997) in the statistical software R, version 2.7.0 (R
Development Core Team 2008), which is programmed

according to the algorithms suggested by Breiman et al.
(1984). RPART allows cross-validation runs on the data

to determine the optimally sized tree, selected as the sub-
tree that performs best on a validation set. We

performed a 10-fold cross-validation, where each run
consisted of 10 random divisions of the data into 90%

learning and 10% test sets. For each split we computed
the complexity parameter (cp), a measure of how much

additional accuracy a split must add to the entire tree to
warrant the additional complexity. Any split that did

not decrease the overall lack of fit by a factor of cp was
not attempted, meaning that the overall r2 must increase

by cp at each step. We determined the optimal tree size
from the table of cross-validation error values for

various tree lengths as the number of splits correspond-
ing to the minimum cross-validation error, and pruned
the tree to the cp value for this optimum. Output from

the summary function of RPART was examined to
evaluate surrogate split variables. A surrogate split best

reproduces the optimal split but on a different covariate.
Greater detail on CART and its application to

ecological data can be found in De’ath and Fabricius
(2000) and Urban (2002).

RESULTS

Plant community clusters

The hierarchical cluster analysis yielded eight plant
communities at a similarity level of 25%, each containing
one to 22 sites (Fig. 2). Plant communities were defined

by the species that contributed most to each cluster’s
similarity (Tables 2 and 3). The plant communities also

appeared to group geographically, even though location
was not an input variable in the analysis (Fig. 3).

The Grand Mere wetland (site 49, Fig. 3D), the first
community distinguished in the cluster analysis, was in a

class by itself. This site on the southeastern shore of
Lake Michigan was geomorphologically and hydrolog-

ically distinct from the other Great Lakes coastal sites,
consisting of a shallow lake behind a 43-m high sand

dune, with a narrow stream providing the only surface
water connection to Lake Michigan. The predominant

vegetation sampled consisted of submergent plants and
water lilies surrounded by emergent plants (Peltandra

virginica, Pontederia cordata, Schoenoplectus acutus) and
a floating mat of buttonbush shrubs (Cephalanthus

occidentalis; Table 3).
The next group separated by the cluster analysis

consisted of two sites adjacent to North Maumee Bay
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on western Lake Erie that were dominated by the

invasive common reed, Phragmites australis (sites 71

and 72, Fig. 3D). Although Phragmites occurred at

about one-third of the sites sampled throughout the

Great Lakes, these two wetlands were distinctive in

their abundance of Phragmites, which constituted 53%

and 64% of their average cover. Only two plant species

(Phragmites and Stuckenia pectinata) contributed to the

average similarity of this cluster, which was 48.7%

(Table 3).

The third group distinguished was ‘‘northern poor

fens,’’ wetlands vegetated by woolly-fruit sedge (Carex

lasiocarpa var. americana) and ericaceous shrubs grow-

ing on Sphagnum-covered organic soils. Species contrib-

uting to the similarity of this group included Sphagnum

moss, woolly-fruit sedge, common bogbean (Me-

nyanthes trifoliata), pitcher plant (Sarracenia purpurea),

and several short-stature shrubs: bog rosemary (An-

dromeda polifolia var. glaucophylla), leatherleaf (Cha-

maedaphne calyculata), and sweetgale (Myrica gale;

Table 2). Eight of the sites classified as northern poor

fens were on Lake Superior; the other two sites were at

the northern end of Lake Michigan (Fig. 3A, B). The

average similarity of northern poor fens was 48.6%,

comparable to the high similarity of the Phragmites

group despite the greater number of sites and species

contributing to similarity.

Sites in the ‘‘bluejoint/tussock sedge’’ group, named

for the two species that contributed most to the group’s

similarity (Calamagrostis canadensis and Carex stricta;

Table 2), were located primarily on northern Lakes

Huron and Michigan (Fig. 3B, D). A geographic outlier

included in this group was the Presque Isle site, a

recurved sandspit projecting into Lake Erie in northeast

Pennsylvania (site 77, Fig. 3D).

‘‘Burreed/lake sedge’’ (Sparganium eurycarpum and

Carex lacustris) marshes occurred almost exclusively on

Lake Superior (Fig. 3A), with one geographic outlier on

the Thunder Bay River wetland on northern Lake

Huron (site 60, Fig. 3D). Other species that contributed

to the similarity of the 18 sites in this large group

included common arrowhead (Sagittaria latifolia),

broadleaf cattail (Typha latifolia), marsh cinquefoil

(Comarum palustre), and two other sedges (Carex

FIG. 2. Dendrogram showing results of hierarchical clustering. The dashed line at 25% similarity is used to define the eight
broad plant community clusters.
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stricta, C. utriculata). Most of these sites were associated

with rivers.
‘‘Three-square rush marshes’’ consisted of sites

dominated by Schoenoplectus pungens var. pungens, the

species that contributed 31.5% to the similarity of this

group (Table 3). Six of the seven sites in this group were
in Lake Huron’s Saginaw Bay (sites 62–67, Fig. 3D); the

seventh site was Goose Bay on the northeast shore of

TABLE 2. Average percentage similarity across sites for taxa in plant communities of the northern
Great Lakes basin.

Species

Northern
poor fens
(n ¼ 10)

Bluejoint/tussock
sedge

(n ¼ 13)

Burreed/lake
sedge

(n ¼ 18)

Andromeda polifolia var. glaucophylla 7.3
Calamagrostis canadensis 27.2
Calla palustris 3.7
Campanula aparinoides 5.3
Carex lacustris 10.2
Carex lasiocarpa var. americana 19.3 7.1
Carex stricta 17.7 4.8
Carex utriculata 4.5
Chamaedaphne calyculata 7.0
Cladium mariscoides 3.2
Comarum palustre 5.5
Juncus nodosus 3.5
Menyanthes trifoliata 4.7
Myrica gale 15.1
Sagittaria latifolia 7.5
Sarracenia purpurea 4.3
Schoenoplectus tabernaemontani 6.3
Sparganium eurycarpum 13.0
Sphagnum spp. 12.1
Typha latifolia 6.2
Utricularia macrorhiza 3.0

Number of sites 10 13 18
Average similarity (%) 48.6 33.8 37.5

Note: Data are shown for taxa contributing 3.0% or more to average similarity.

TABLE 3. Average percentage similarity across sites for taxa in plant communities of the southern Great Lakes basin.

Species
Grand Mere

(n ¼ 1)
Phragmites
(n ¼ 2)

Three-square
rush (n ¼ 7)

Western cattail
(n ¼ 22)

Eastern cattail
(n ¼ 17)

Calamagrostis canadensis 3.1 9.4
Cephalanthus occidentalis 11.8
Ceratophyllum demersum 6.4
Chara vulgaris 15.3
Decodon verticillatus 3.0
Hydrocharis morsus-ranae 5.3
Impatiens capensis 10.9
Juncus balticus var. littoralis 6.4
Juncus nodosus 4.8
Leersia oryzoides 7.2
Lemna minor 12.2
Nuphar lutea ssp. pumila 6.7
Nymphaea odorata 20.3
Peltandra virginica 12.3
Phalaris arundinacea 6.1 3.1
Phragmites australis 85.5 3.8
Pontederia cordata 9.9
Sagittaria latifolia 4.8
Schoenoplectus acutus 17.3
Schoenoplectus pungens 31.5
Schoenoplectus tabernaemontani 5.0
Stuckenia pectinata 14.0 7.0
Invasive Typha 17.1 31.0
Typha latifolia 3.1
Urtica dioica 3.3
Utricularia macrorhiza 6.2

Number of sites 1 2 7 22 17
Average similarity (%) 48.7 39.0 35.4 32.9

Notes: Data are shown for taxa contributing 3.0% or more to average similarity. Grand Mere data are relative cover by species
contributing 3.0% or more to total cover.
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Lake Michigan (site 56, Fig. 3B). All seven sites had

similar geomorphology, consisting of open-coast wet-

lands where emergent plants grow out of shallow

lakebed that is relatively exposed to wave action.

The two largest groups were dominated by invasive

cattail taxa (Typha angustifolia and Typha 3 glauca).

Named ‘‘eastern cattail marshes’’ and ‘‘western cattail

marshes’’ due to their general geographic distribution,

they differed in associated species (Table 3). The western

cattail marshes included most of the wetlands on

southern Lake Michigan, plus four sites on Lake Erie.

The eastern cattail marshes included all 13 sites on Lake

Ontario, three sites on western Lake Erie, and the Big

Sable site on Lake Michigan (site 54, Fig. 3D). The Big

Sable site contained six sedge species and remnant

Sphagnum patches, yet it resembled the cattail-dominat-

ed wetlands of Lake Ontario more than its neighboring

wetlands along the eastern shore of Lake Michigan due

to extensive invasion by Typha.

A dissimilarity matrix showed the eight major plant

communities to be quite distinct, with average dissim-

ilarity values of 78% or more (Table 4). Not surprising-

ly, the two cattail groups were the most similar, and the

Grand Mere wetland was least similar to other cluster

groups.

The major plant communities varied significantly in

quality as measured by FQI (F6,82 ¼ 47.3, P , 0.001).

The poor fens had the highest average FQI, followed by

the bluejoint/tussock sedge and burreed/lake sedge

wetlands (Fig. 4). The remaining four plant communi-

ties, which included most of the wetlands sampled in the

southern portion of the Great Lakes coast, had the

lowest average FQI values but were statistically indis-

tinguishable on the basis of FQI (Fig. 4).

Slicing the hierarchical cluster analysis dendrogram at

a similarity level of 30% divided the two large cattail

marsh groups into five smaller groups (Table 5). The

western cattail marshes split geographically into ‘‘blue-

FIG. 3. Study sites by hierarchical cluster assignment: (A) western Lake Superior (sites 1–22); (B) eastern Lake Superior,
northern Lake Michigan, and northern Lake Huron (sites 23–47, 54–58); (C) Lake Ontario (sites 78–90); (D) eastern Lake
Michigan, Lake Huron, and Lake Erie (sites 27–30, 48–77).
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joint/cattail marshes’’ on Lake Michigan and ‘‘arrow-

head/Phragmites/cattail marshes’’ on Lake Erie; these

two groups contained a similar proportion of invasive

cattail but were distinguished from each other by

associated species. The eastern cattail marshes split into

three groups: ‘‘Magee Marsh’’ on Lake Erie (site 73),

‘‘duckweed/reed canarygrass/cattail marshes’’ on Lake

Ontario (sites 80, 84, 86, 87) and Lake Erie (sites 74 and

75), and ‘‘cattail-dominated marshes’’ on Lake Michigan

(site 54) and Lake Ontario (sites 78–79, 81–83, 85, 88–

90).

Our study sites contained three northern rich fens

(sites 58, 59, 61), a floristically unusual wetland

community that grows on calcareous alkaline soils in

northern Lakes Michigan and Huron. These wetlands

contained the calciphiles Argentina anserina, Chara

vulgaris, Carex viridula, Clinopodium arkansanum, Dasi-

phora floribunda, Dichanthelium acuminatum var. lindhei-

meri, Hypericum kalmianum, Lobelia kalmii, Oligoneuron

houghtonii, O. ohioensis, Parnassia glauca, Primula mis-

tassinica, and Triglochin maritima, but only the first two

species were sufficiently common to be included among

the 138 species used in this data analysis. These three

sites would have split out from other members of the

bluejoint/tussock sedge cluster had we sliced the

hierarchical cluster analysis dendrogram at a similarity

level of 30.2%, a threshold that also would have split the

Goose Bay wetland from the six three-square marshes in

Saginaw Bay, yielding a total of 13 clusters. However, we

opted for a lower similarity level (25%) that identified

fewer clusters.

Nonmetric multidimensional scaling

The most stable three-dimensional MDS configura-

tion was achieved with a stress of 0.16. Clarke and

Warwick (2001) advise that an MDS analysis with a

stress value of this magnitude is usable but should be

cross-checked against results from an alternative tech-

nique, and the MDS results agreed well with the results

of the hierarchical cluster analysis (Fig. 5). The first axis

(MDS1) separated the poor fens, bluejoint/tussock

sedge, and burreed/lake sedge wetlands (negative

coefficients) from the invasive-dominated Phragmites

and cattail marshes (positive coefficients). The second

axis (MDS2) separated the Phragmites, bluejoint/tus-

sock sedge meadows, three-square marshes, and western

cattail marshes (positive coefficients) from the poor fens,

burreed/lake sedge, and eastern cattail marshes (negative

coefficients). The third axis (not shown) distinguished

the Grand Mere site (MDS3 value¼ 1.68) from all other

sites (MDS3 values � 0.87).

We compared MDS1 values with existing indices

representing wetland vegetative condition (the floristic

quality index, FQI) and watershed anthropogenic stress

(the cumulative stress index, CSI). The strong inverse

linear regression (R2¼ 0.79, P , 0.001) between MDS1

and FQI indicated that MDS1 represented floristic

condition (Fig. 6). The relationship between MDS1

and CSI was weaker (R2¼ 0.65, P , 0.001) because CSI

values were bimodally clustered and strongly influenced

by lake of occurrence (Fig. 7). Lake Superior had

uniformly low CSI values (,1.8; low degree of

anthropogenic stress) and Lakes Ontario and Erie had

uniformly high CSI values (.2.5; high degree of

anthropogenic stress), whereas CSI values for Lakes

FIG. 4. Box plots summarizing FQI (floristic quality index)
values by hierarchical cluster. FQI values are calculated as in
Eq. 1. In each box plot, the heavy horizontal line crossing the
box is the median, the bottom and top of the box are the lower
and upper quartiles, and the whiskers are the minimum and
maximum values. Clusters with the same letter code are not
significantly different (Tukey multiple comparison of means, P
, 0.05).

TABLE 4. Average dissimilarity (%) between major plant communities identified.

Plant
community

Grand
Mere Phragmites

Northern
poor fens

Bluejoint/tussock
sedge

Three-square
rush

Burreed/lake
sedge

Western
cattail

Phragmites 93.86
Poor fen 98.43 97.88
Bluejoint/tussock 95.12 93.29 83.94
Three-square rush 96.32 85.02 94.72 79.81
Burreed/lake sedge 95.02 95.17 82.17 81.90 91.17
Western cattail 95.79 85.45 92.83 79.68 85.23 80.77
Eastern cattail 89.40 89.89 90.76 89.20 90.66 82.93 77.96
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Michigan and Huron spanned a broader range, reflect-

ing their north–south contrast in land development.

MDS1 was also highly correlated with several environ-

mental variables: GDD (r ¼ 0.80), PC1_AG (r ¼ 0.75),

and latitude (r ¼ �0.76). MDS2 differed with lake of

occurrence, being negative for most sites on Lakes

Superior and Ontario, positive for most sites on Lakes

Huron and Michigan, and wide-ranging (�0.71 to 0.89)

for sites on Lake Erie.

CART analysis

A classification and regression tree (CART) model

that used the first MDS axis as the response variable had

six terminal nodes (Fig. 8). The final CART solution

used a combination of variables representing regional

climate, watershed development, and wetland size. The

first split utilized the cumulative stress index, splitting

the data at CSI values above and below 1.72. Node 2

split the data by development (DEV_5000 , 3.9%),

resulting in two terminal groups, leaves A and B, which

had average MDS1 scores of �0.92 and �0.37,
respectively (Fig. 8). Node 3 split off the warmest sites

(GDD � 2422), and the resulting leaf F had the highest

average MDS1 scores (i.e., poorest quality wetlands),

containing all of the Lake Erie wetlands plus the Galien

River wetland at the southern extreme of Lake Michigan

(site 48, Fig. 3D). Node 6 split at PC1_URB values less

than �0.254, and the least urban sites from that split

terminated in leaf C. The final split (node 13) dif-

ferentiated wetlands by size: nine wetlands with an area

of 58 ha or more were placed in leaf D, while the

remaining 20 wetlands were placed in leaf E. A boxplot

showed good separation of average MDS1 values

among the six groups, with the only outlier being Magee

Marsh in leaf F (Fig. 8). The complete model had an r2

¼ 0.82.

The CART analysis done using FQI as the endpoint

yielded a model with r2¼ 0.75 that utilized only climatic

(GDD), physiographic (hydrogeomorphology, water-

shed soil texture), and forest cover variables (Table 6).

The first split, at a boundary of 1835 GDD, bisected

sites 43 and 44 on Lake Michigan and separated

Saginaw Bay sites (warmer than 1835 GDD) from

northern Lake Huron sites; all Lake Superior sites were

north of the 1835 GDD boundary, and all Lake Ontario

and Lake Erie sites were south of it. The group of

northern sites was subsequently split by geomorphology,

which separated protected wetlands into terminal leaf A.

The remaining northern sites were separated into those

with forest cover greater or less than 11% within the 500-

m buffer around the wetland. The group of 50 sites with

GDD �1835 was further split by GDD �2422, which

TABLE 5. Taxa contributing 3.0% or more to average similarity of cattail communities identified, with average percentage
similarity across sites.

Species

Western cattail marshes Eastern cattail marshes

Bluejoint/
cattail,

L. Michigan
(n ¼ 18)

Arrowhead/
Phragmites/

cattail, L. Erie
(n ¼ 4)

Cattail-
dominated
(n ¼ 10)

Duckweed/
reed canary
grass/cattail
(n ¼ 6)

Magee
Marsh,
L. Erie
(n ¼ 1)

Calamagrostis canadensis 12.8 4.7
Carex lacustris 4.7
Ceratophyllum demersum 3.4 10.1 6.2
Decodon verticillatus 3.4
Eleocharis erythropoda 3.0
Eleocharis palustris 3.0
Hydrocharis morsus-ranae 7.3
Impatiens capensis 11.5 3.2 4.4
Leersia oryzoides 6.2 6.0
Lemna minor 7.4 22.5
Lemna trisulca 4.0
Nelumbo lutea 13.7
Nymphaea odorata 3.1 3.6
Phalaris arundinacea 4.4 9.7 17.3
Phragmites australis 15.4
Polygonum amphibium 28.0
Pontederia cordata 9.0
Ricciocarpus natans 5.1
Sagittaria latifolia 25.0
Schoenoplectus tabernaemontani 4.1 5.0
Sparganium eurycarpum 7.6
Stuckenia pectinata 5.3
Thelypteris palustris 5.8
Invasive Typha 14.9 15.1 41.9 11.1
Urtica dioica 4.3
Utricularia macrorhiza 15.4

Number of sites 18 4 10 6 1
Average similarity (%) 39.5 45.4 43.5 37.0

Note: Magee Marsh data are relative cover by species contributing 3.0% or more to total cover.
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yielded a terminal leaf G identical to terminal leaf F in

the MDS1 model (western Lake Erie plus the Galien

River on Lake Michigan), which had the lowest average

FQI values. The GDD �1835 group with the highest

average FQI had watershed forest cover �38.3%; sites

with less forest cover were distinguished into groups of

coarser (PC1_SOIL greater than or equal to�0.206) vs.
finer-textured watershed soils (PC1_SOIL less than

�0.206).
We found similarities between the CART and

hierarchical clustering classifications at low values of

anthropogenic stress, even though we did not include

information about individual plant species in the CART

analysis. Leaf A of the MDS1 CART model contained

nine out of 10 northern poor fens, and leaf A of the FQI

CART model contained eight out of 10 poor fens. At

greater levels of anthropogenic stress, however, fewer

floristic and geographic similarities emerged between the

CART and hierarchical clustering classifications. The

MDS1 CART leaves D–F contained primarily Typha

wetlands, consistent with the positions of those com-

munity clusters relative to MDS axis 1 (Fig. 5). The

wetlands of Saginaw Bay and Lake Ontario, which were

respectively classified as three-square rush (Saginaw)

and eastern cattail marshes (Lake Ontario) by the 25%

similarity hierarchical clustering (Fig. 3C, D), were

FIG. 6. Inverse regression between FQI and MDS1; points are classified by hierarchical cluster.

FIG. 5. Scatterplot of sites relative to the first and second MDS (multidimensional scaling) axes. Wetland sites are coded by
hierarchical cluster.
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assigned to leaves C, D, and E by the MDS1 CART
analysis due to differing wetland sizes (node 13) and

levels of urban development (node 6). In contrast, all of

the western Lake Erie wetlands were included in leaf F

of the MDS1 model (leaf G of the FQI model) due to

their climate (�2422 GDD), despite being assigned to
three different floristic groups by the hierarchical

clustering analysis (Fig. 3D). Such differences in

classification were expected, given that different input

variables were used in the two classification procedures

(-

plant species cover for the hierarchical clustering

analysis and environmental variables for the CART).

Analysis of surrogate splits for the MDS1 model

identified several environmental variables that produced

nearly comparable results at the five split nodes (Table

7). The five surrogate splits at the first node had a high

degree of concordance with the optimal split (�92%),

indicating that they were all relatively interchangeable:

GDD, PC1_AG, LAT, EROS, and RC_5000. All of

these splits coincided with a geographic/climatic/dis-

FIG. 8. Classification and regression tree between site MDS1 scores and environmental variables, with box plots showing
MDS1 values for each terminal node group. Terminal nodes (‘‘leaves’’) are labeled with letter codes A–F; split nodes are identified
by the number in parentheses followed by the complexity parameter for that node. The outlier value in the box plot for terminal
node F is Magee Marsh (site 73).

FIG. 7. Scatterplot between CSI (cumulative stress index) and MDS1; points are classified by lake.
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turbance boundary separating northern and southern

coastal wetlands at ;458 latitude, a boundary that

affected both cultivated and natural vegetation (Fig. 9).

Wetlands north of that latitude had a shorter growing

season and were subject to less agricultural influence

(particularly from row crop agriculture) and cumulative

stress compared to wetlands below the boundary. At

node 2, the closest surrogate split was a variable

(DEV_1000) that was a spatial subset of the optimal

split (DEV_5000). At node 3, a surrogate split occurred

at 428 latitude, separating wetlands north of 428 from the

Lake Erie wetlands, many of which were diked and had

little forest within their 5000-m buffer (Table 7). At

node 6, the strongest surrogate variable was watershed

development (DEV_shed), which had a concordance of

91% with the optimal split (PC1_URB).

DISCUSSION

A unifying approach

Evaluating the existing condition of wetlands requires

a new, systematic approach that unifies plant commu-

nity analysis with methods to identify environmental

drivers that alter biological condition. The process that

we used to evaluate wetland condition and identify

environmental drivers consisted of several key steps: (1)

selecting sample wetlands using a stratified random

approach that is designed to represent the entire range of

anthropogenic stress (Danz et al. 2005), (2) collecting

field data that represent the range of water depths within

the wetlands sampled (Johnston et al. 2007), (3)

evaluating the field data using MDS to determine a

biological condition gradient across the wetlands sam-

pled, (4) hierarchical clustering to interpret the condi-

tion results relative to recognizable plant communities,

(5) analyzing with CART to relate biological condition

to natural and anthropogenic environmental drivers,

and (6) mapping the results to display their geographic

distribution. We recommend this unifying approach for

evaluating wetland biological condition and relating it

to environmental drivers.

MDS analysis is the backbone of the approach. In

contrast to the use of reference wetlands, in which a

wetland deemed to represent a relatively unaltered

condition is chosen for comparison with other wetlands

(Brinson and Rheinhardt 1996), the biological condition

gradient defined by the MDS is the reference used to

compare an individual wetland with all other wetlands

sampled. This eliminates the subjectivity involved in

choosing a reference wetland, which might not truly

represent pre-disturbance floristic conditions. In addi-

tion, our approach is more suitable for studies over

broad geographic regions than the reference approach.

Other authors have demonstrated the utility of MDS

with vegetation data for evaluating wetland condition,

but within much smaller geographic areas, such as the

wetlands in the Muskegon River watershed (Lougheed

TABLE 7. Top five surrogate splits for split nodes shown in Fig.
8, and their agreement with the optimal split.

Node Surrogate split Agreement

Node 1 (n ¼ 90) GDD , 1795 0.97
PC1_AG , 0.04 0.96
LAT � 45.08 0.94
EROS , 0.79 0.93
RC_5000 , 1% 0.92

Node 2 (n ¼ 36) DEV_1000 , 6% 0.83
HYG_GLC (BL, BSR, BSS,
LOE, RCD)�

0.72

DEV_500 , 10% 0.72
WETL_SOIL (organic) 0.69
PC2_SOIL , 0.89 0.69

Node 3 (n ¼ 54) LAT � 41.98 1.00
LAKE (Superior, Michigan,
Huron, Ontario)

0.96

FOR_5000 � 5% 0.93
DIKED (not) 0.91
STATE (MI lower peninsula,
NY, PA, WI)

0.89

Node 6 (n ¼ 44) DEV_shed , 6% 0.91
GDD , 1905 0.80
PC1_AG , 0.31 0.80
EROS , 1.66 0.80
WETW_5000 � 15% 0.80

Node 13 (n ¼ 29) CSI , 2.48 0.83
WETW_shed � 8% 0.83
PC1_SOIL � 0.60 0.79
WETW_500 � 32% 0.79
WETW_1000 � 16% 0.79

Notes: The split threshold shows variables that would go to
the left side of the split, with codes for variable categories in
parentheses. See Table 1 for a definition of parameters.

� Key to abbreviations: BL, barrier-protected beach lagoon;
BSR, barrier-protected ridge and swale complex; BSS, barrier-
protected sand spit swales; LOE, lacustrine open embayment;
RCD, riverine channel delta.

TABLE 6. CART (classification and regression tree) model using FQI as the endpoint value (r2¼ 0.75).

Leaf Characteristics
Mean
FQI n Site numbers

A GDD , 1835; HYG_GLEI ¼ Pw 20.0 13 6, 11, 13, 14, 17, 20, 22–24, 31, 57, 58, 61
B GDD , 1835; HYG_GLEI ¼ Rw, Cw; FOR_500 � 11% 15.8 18 1–5, 7–9, 12, 15, 16, 21, 25, 28–30, 33, 59
C GDD , 1835; HYG_GLEI ¼ Rw, Cw; FOR_500 , 11% 13.1 9 10, 18, 19, 26, 27, 32, 44, 56, 60
D GDD � 1835, GDD , 2422; FOR_shed � 38.3% 11.4 12 34, 35, 49, 54, 55, 82–88
E GDD � 1835, GDD , 2422; FOR_shed , 38.3%;

PC1_SOIL � �0.206
9.6 16 36–40, 43, 45, 47, 50–53, 62, 64, 67, 77

F GDD � 1835, GDD , 2422; FOR_shed , 38.3%;
PC1_SOIL , �0.206

7.2 12 41, 42, 46, 63, 65, 66, 78–81, 89, 90

G GDD � 1835, GDD � 2422 5.5 10 48, 68–76

Note: See Table 1 for a definition of parameters.
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et al. 2007), one of the Everglades’ Water Conservation

Areas (King et al. 2004), and the Ohio coast of Lake

Erie (Mack et al. 2008). Lougheed et al. (2007) also

recommended the use of MDS with diatom and

zooplankton data for evaluating wetland condition. In

order for the MDS analysis to yield condition informa-

tion, however, the wetland sample set must represent the

range of wetland condition; otherwise the MDS axes

may represent other environmental gradients. For

example, in several applications of MDS to relatively

undisturbed wetlands, the first MDS axis represented

gradients of elevation, soil chemistry, or moisture

(Grace et al. 2000, Nekola 2004, Whitehouse and Bayley

2005). The GLEI project’s approach of sample stratifi-

cation by GIS-derived anthropogenic stressors prior to

data collection worked well to ensure that the final

sample set represented the range of environmental

condition (Danz et al. 2005).

We used FQI as a basis for comparison with our MDS

condition axis because of its widespread implementation

and our own favorable evaluation of FQI (Bourdaghs et

al. 2006), but our work showed MDS to be superior to

FQI under certain circumstances. For example, the

three-square rush marshes had very similar FQI values,

7.3 to 10.3, representing only 13% of the range of FQI

values found in our study (Fig. 6). The same sites were

spread over MDS1 values (�0.60 to 0.38) that repre-

sented 36% of the range of MDS1 values observed, and

the CART analysis assigned them to four different

leaves, reflecting differences in their environmental

drivers. Follow-up visits to five of the Saginaw Bay

sites in 2005 showed that the three-square rush site

assigned to CART leaf D (Caseville, site 67) became

dominated by Phragmites, whereas sites assigned to the

less stressed CART leaf C (sites 63–66) were less affected

by Phragmites invasion (Tulbure 2008). This implies

that our unifying approach may be useful as a

forecasting tool, which could be tested in future

research.

FIG. 9. Map of sites by MDS1 CART (classification and regression tree) category. Uppercase letters in the figure key
correspond to leaves identified in Fig. 8. CSI is the cumulative stress index, and GDD is the growing degree-days.
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Despite its utility as an objective measure of wetland

condition for our purpose of classifying vegetation and

evaluating vegetation–environment linkages, MDS re-

quires analysis of data from multiple wetlands in order

to create the condition gradient, and must be recom-

puted as new wetlands are added. In contrast to an index

like the FQI, MDS cannot be used to calculate a

numeric score for an individual wetland that is

immediately interpretable as a wetland ranking (e.g.,

on a scale of 1 to 10); MDS values must be interpreted

relative to the scores of other wetlands. However, the

ability of MDS to objectively compare biological

condition across range of community types makes it a

powerful tool for geographically extensive wetland

evaluations.

Classification of Great Lakes wetland plant communities

A central theme of plant ecology concerns the

propensity of vegetation to organize in assemblages

along natural environmental gradients, but many

vegetation classification systems are geared toward

classifying the best remnant natural communities rather

than the broad spectrum of vegetation present (e.g.,

Comer et al. 2003), and wetland conservation plans tend

to focus on botanically charismatic communities that are

worthy of preservation (e.g., Nature Conservancy 2000,

Epstein et al. 2002). Although our study was not

designed to identify unusual wetlands, it did so when

wetlands had unusual assemblages of fairly common

species (e.g., Grand Mere, Magee Marsh) and when

wetlands were geographically separated from sibling

members of a community cluster (e.g., Goose Bay,

Presque Isle). These wetlands are known to be areas of

biodiversity significance (Nature Conservancy and

Nature Conservancy of Canada 2006), and both Grand

Mere and Presque Isle are National Natural Landmarks.

The eight plant communities that we identified were

relatively consistent with prior studies. A classification

of Great Lakes coastal wetlands by Albert and Minc

(2004) described eight classes based on a combination of

vegetation and geography that were similar but not

identical to our eight clusters. Differences were expected

because our hierarchical clustering was based solely on

floristics, not geography, and because our sample sites

encompassed a purposely wide range of wetland

condition. On the Canadian side of the Great Lakes,

Lougheed and coworkers (2001) used canonical corre-

spondence analysis (CCA) to analyze macrophyte–

environment relationships of 62 marshes with water

depths of 5 to 260 cm. Similar to our results, they found

that Typha marshes dominated low-latitude wetlands.

Their CCA distinguished two groups of Typha marshes

along a gradient of submergent vegetation richness and

density, as well as high-latitude ‘‘Scirpus sp.’’ (i.e.,

Schoenoplectus) marshes.

Exotic/invasive species are a major threat to biodi-

versity in the Great Lakes region (Nature Conservancy

2000). The invasion of wetlands by nonnative Typha and

other invasive species (Hydrocharis morsus-ranae, Pha-

laris arundinacea, Phragmites australis) in the warmer

southern portions of the Great Lakes has blurred the

boundaries among traditional plant communities. Prior

PLATE 1. Field assistant Cindy Williams prepares to observe plant cover at one of the plots in a Lake Erie coastal wetland.
Photo credit: L. Vaccaro.
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research by Great Lakes researchers has shown that

invasive taxa are promoted by anthropogenic distur-

bance (Brazner et al. 2007a, b, Trebitz and Taylor 2007).

We have also shown that species invasions can occur

very rapidly, on the order of years to decades in some

Great Lakes wetlands (Frieswyk and Zedler 2007,

Tulbure et al. 2007).

Because our wetland sampling strategy was statisti-

cally designed to select wetlands representing the full

range of anthropogenic disturbance along the U.S.

Great Lakes coast, our sample contained a large

proportion of relatively degraded wetlands. It was

therefore not surprising that 43% of our sites (39 out

of 90) were dominated by invasive cattail, a taxon that

usually exhibits a monotype form of dominance

(Frieswyk et al. 2007), which is an indicator of wetland

degradation (Vaccaro 2005, Frieswyk and Zedler 2007,

Johnston et al. 2007, Trebitz and Taylor 2007). Eastern

and western cattail marshes spanned a huge geographic

range (Fig. 3) and a wide range of floristic quality (Fig.

4). Finer hierarchical clustering levels sorted cattail

wetlands into geographic subgroups (Table 5), but those

subgroups did little to aid interpretation of wetland

condition. Hierarchical clustering analysis alone was

therefore inadequate for evaluating the condition of

cattail marshes, but MDS1 scores provided a suitable

metric of their biological condition (Fig. 6). The use of

MDS allowed us to collapse complex floristic data into a

single multivariate axis that identified biologically

meaningful condition, derived independently of envi-

ronmental parameters but clearly related to them.

Relationship of wetland types to ecoregions,

hydrogeomorphology, and disturbance

Our CART analysis allowed us to identify the

physical and anthropogenic environmental variables

that most influenced wetland condition across the U.S.

Great Lakes basin, but the choice of endpoints

influenced the results. The model that used the MDS1

endpoint was slightly more explanatory (r2¼ 0.82) than

the model using FQI (r2 ¼ 0.75), and the MDS1 model

relied on several variables related to anthropogenic

stress whereas the FQI model relied solely on climatic,

physiographic, and forest cover variables. By choosing

GDD as the variable on which to make the first split, the

FQI model immediately segregated sites based solely on

climate, with the northern 40 sites assigned to better-

condition classes (FQI model leaves A–C). Although

wetland condition is generally better in the northern

Great Lakes than in the southern Great Lakes, such is

not always the case. By selecting CSI for the first split,

the MDS1 model allowed us to identify outlier wetlands

of anomalously better (e.g., Presque Isle) or worse

condition (e.g., Prentice Park) relative to their geo-

graphic location. The CSI was highly correlated with

GDD (r ¼ �0.72) due to the greater agricultural and

urban development in the warmer, southern portion of

the Great Lakes, but was not in itself a climatic metric.

Thus, using MDS1 rather than FQI as the endpoint was

preferable for discerning human impacts.

The GLEI project had anticipated a north–south

division in wetland biota, and we divided the Great

Lakes basin into the Laurentian Mixed Forest (north-

ern) and Eastern Broadleaf Forest (southern; Keys et al.

1995) in our sampling design (Danz et al. 2005).

However, both of our CART analyses showed that the

ecoprovince boundary was too far south for coastal

wetland vegetation. The ecoprovince boundary placed

all of Wisconsin’s Green Bay wetlands (sites 34–41) in

the northern Laurentian Mixed Forest, but our CART

models placed them with more southerly groups (MDS1

model leaves C–E, FQI model leaves D–F). Such a

grouping is floristically consistent with our inclusion of

these wetlands in the western cattail cluster. The use of

predefined ecoprovince groupings to divide the data

would have misrepresented 16 of the 90 wetlands (sites

34–47, 54–55).

Only after making broad regional divisions were

wetlands distinguished by more local characteristics,

such as watershed development (MDS1 model nodes 2

and 6), wetland size (MDS1 model node 13), and forest

cover (FQI model). Forest cover can be interpreted as

the lack of recent anthropogenic disturbance, because

both agricultural and urban development tend to

displace forest cover within the Great Lakes basin

(Wolter et al. 2006), but the presence or absence of

forest per se is probably not a direct driver of wetland

condition.

The mapping of CART leaves in geographic space

helped to identify wetlands with plant assemblages or

MDS1 scores that were anomalous with their neighbors,

such as the Grand Mere and Presque Isle sites, distinct

from neighboring wetlands on both the hierarchical

cluster and CART maps (Figs. 3 and 9). The CART

map also identified the Prentice Park wetland near

Ashland, Wisconsin (site 20) and the Caseville, Michi-

gan wetland (site 67) as having higher MDS1 values

(i.e., worse condition) than those of adjoining wetlands,

even though the hierarchical clustering grouped them

floristically with their neighbors. Both sites had rela-

tively high urban development within their small (,1100

ha) watersheds, putting them at risk of degradation. The

Prentice Park wetland had high cover of Sagittaria

latifolia, Sparganium eurycarpum, and Utricularia mac-

rorhiza, individual species shown to significantly in-

crease with CSI on Lake Superior (Johnston et al. 2007),

whereas the Caseville wetland had very high cover of the

invasive Phragmites australis (average cover ¼ 35.6% of

plot area sampled). Thus, CART analysis and mapping

of wetland classes can aid detection of anomalous

condition, either positive or negative.

Much emphasis has recently been placed on the

relationship between hydrogeomorphology and wetland

vegetation (Brinson 1993, Keough et al. 1999, Albert et

al. 2005), but none of the optimal splits in our MDS

CART analysis used hydrogeomorphic variables. This is
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consistent with our prior finding that geographic rather

than geomorphic factors explained a greater proportion

of variance in the vegetation of Great Lakes coastal

wetlands (Brazner et al. 2007b). Geomorphology was

locally important in defining the Grand Mere and three-

square rush marsh hierarchical clusters, but our work

implies that the influence of geomorphology on vegeta-

tion cannot be generalized to the entire Great Lakes

basin.

Agricultural and urban development in watersheds

draining to wetlands has been implicated as causing

vegetation degradation (Lougheed et al. 2001, Houlahan

et al. 2006, King et al. 2007, Trebitz and Taylor 2007).

Development variables were important correlates of

wetland condition in our CART model, generating

optimal or surrogate splits at every split node. Land use

metrics that characterized entire watersheds (CSI,

PC1_URB, EROS) or very large buffers (DEV_5000,

FOR_5000, RC_5000) related better to wetland condi-

tion than did more proximal land uses, consistent with

the findings of Brazner et al. (2007b). Waterborne

nutrient and/or sediment inputs to the wetlands are

undoubtedly the real causes of degradation, rather than

land use per se, but we had no field-measured water

quality data to use as environmental variables. Land use

metrics have been shown to be suitable surrogates for

water quality (Craft et al. 2007, Trebitz et al. 2007,

Morrice et al. 2008).

Potential application

Environmental managers pressured by time con-

straints often seek evaluation methods that are rapid

and easy to implement, such as ‘‘Level 1’’ assessments

that utilize easily obtainable GIS and remote sensing

information to evaluate wetland condition. Our unified

approach is neither rapid nor simple, requiring intensive

fieldwork by scientists trained in botany, and support

from database managers, GIS technicians, and statisti-

cians. However, the ability of our approach to compare

wetland condition across the variety of wetland types

represented across the U.S. Great Lakes coastline has

considerable strength.

In our previous research, we evaluated the potential of

easily computed indicators such as species richness and

percentages of invasive taxa, native taxa, and wetland

obligate taxa (Brazner et al. 2007a, b), and we developed

new indicators utilizing selected plant species (Frieswyk

et al. 2007, Johnston et al. 2007, 2008). The approach

that we propose here is not an indicator metric, but a

way to evaluate wetland vegetation field data to

compare the ‘‘apples and oranges’’ of diverse wetland

types. Although our unified approach is computation-

ally more advanced than some existing indicators, we

believe that the superior results justify its application,

and we recommend that this unified approach be applied

to the data collected by the National Wetland Condition

Assessment.
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