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Abstract 

In this study, waste macadamia nut shells were investigated for potential use as a hard 

organic precursor for the production of a granular activated carbon material. The processing 

of the macadamia shells commenced with the carbonised of the shells under a nitrogen 

atmosphere. This was followed by the physical activation of the shells under a carbon dioxide 

atmosphere, which was carried out at different temperatures to investigate the effect of the 

activation temperature on pore formation. The pore structure and gold loading capacity of the 

synthesised activated carbons were investigated. The porous nature and surface structure of 

the macadamia shell based activated carbon were examined by Scanning Electron 

Microscopy (SEM) at various stages of manufacture. In addition, gold loading studies were 

carried out in conjunction with elemental mapping of the activated carbon surface to 

determine the gold adsorption sites. The studies have revealed that the macadamia shell based 



carbons, activated at higher temperatures have a gold loading capacity that is comparable to 

the commercially available coconut based activated carbons. 
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Introduction 

Activated carbons are highly porous carbonaceous materials with a unique set of properties; 

these consist of a well-developed reproducible microporous structure, a large internal surface 

area, a high degree of surface reactivity and adsorption capacity, which makes them effective 

and versatile adsorbents. They have a variety of engineered surface groups which can be 

employed in a number of specific applications ranging from purification, decolourisation and 

deodorisation, chlorine reduction, toxicity reduction, filtration, separation and concentration 

of recoverable materials (Gadkaree, 1997 and Hayashi et al., 2005). Major applications of 

activated carbons include gas separation and purification, solvent recovery, water treatment, 

food and food beverage processing, chemical and pharmaceutical processing, sewage 

treatment, gold recovery, catalysts and catalyst supports, water purification and gas–solid 

separation (Smisek and Cerny, 1970, El-Geundi, 1997 and Marsh, 2001). 

 

Materials that can produce activated carbons from plant origin include wood, peat, lignin, 

coal, vegetable waste from food processing, coconut shells, nut shells (almond, hazelnut, 

walnut, pecan and macadamia shells) and fruit stones (apricot, peach and cherry stones) 

(Gadkaree, 1997, Ahmadpour and Do, 1997, Khalili et al., 1999 and Tancredi et al., 2004). In 

addition, alternative sources ranging from bone, sugar and tyres to waste sludge or bio-solids 



produced at municipal or industrial wastewater treatment facilities can also be used as 

precursors for producing activated carbons (Teng et al., 1997, Khalili et al., 1999, Lartey et 

al., 1999, Martin et al., 2002 and Zabaniotou et al., 2004). On average, it takes approximately 

1 Mt of raw material to produce 0.4 Mt of activated carbon globally at the beginning of the 

21st century and the continuing demand for activated carbons will require more raw organic 

materials for processing (Marsh, 2001). 

 

In 1894, Johnson patented the process of gold recovery using wood charcoal from a cyanide 

leached solution, but it was not until the early 1950’s that Zadra et al. from the US Bureau of 

Mines developed the activated carbon based technology (Johnson, 1894 and Zadra et al., 

1952). The relative ease at which gold adsorption takes place onto activated carbon and the 

subsequent desorption has generated significant interest from both the scientific and 

industrial fields. In particular, the gold mining industry has effectively used activated carbons 

to extract gold (Au) from crushed ore to maximise extraction rates for many years and hence 

reduce processing costs. There are two activated carbon based technologies that are widely 

used in the gold industry, the first is carbon in pulp (CIP) process and the second is carbon in 

leach (CIL) process. Both technologies use activated carbon with an approximate surface area 

of 1000 m2/g produced from peat or coconut based carbon. This activated carbon is then used 

for the adsorption of Au (I), which is in the form of   ions that are present in the 

cyanide leach liquors that normally contain around 10 mg/L of Au (I) (Marsden and House, 

1993). Once the activated carbon is loaded with the Au (I) complex, it is separated from the 

pulp by screening, and then washed. It is then stripped of the Au complex in a hot caustic 

solution. This is followed by the electrowinning of the Au from the concentrated Au (I) 

solution and the recycling of carbon (reactivation). After regeneration (reactivation) cycle the 



carbon is ready for another Au loading process again, with this process continuing until the 

carbon material becomes unserviceable. The low capital and operating costs, in conjunction 

with the high selectivity of activated carbon towards Au, has made both the CIP and CIL 

processes a very attractive economical option for the gold industry (Muir, 1991 and Fleming, 

1998). This is clearly evident from the increase in annual carbon-based global gold 

production from 0% in the 1970s to 70% in 2000 (Fleming et al., 2011). 

 

For optimum performance in a gold recovery circuit, the activated carbon must possess 

important properties such as a high rate of adsorption, superior gold loading capacity, 

mechanically strong and have a high resistance to abrasion (Ladeira et al., 1993). The raw 

materials have an inherent structure, which also contributed to the overall adsorption activity 

of the activated carbon produced. These properties are controlled by the nature of the 

activating agent and the conditions of the activation process. Despite the large Au equilibrium 

adsorption capacity of activated carbon, which is dependent upon the surface area per unit 

mass and the surface structure of the carbon, the Au extraction rates are slow in both CIP and 

CIL processing plants because they are dependent on adsorption kinetics rather than 

equilibrium loading. Furthermore, increasing the Au loading on the activated carbon in a 

series of tanks during a continuous process operation progressively slows the rate of 

adsorption and results in an increase of soluble Au losses to the tailings. This problem can be 

solved by increasing the amount of activated carbon in each tank or by increasing the number 

of tanks used in the loading circuit (Fleming et al., 2011). In addition, the hardness and 

longevity of the activated carbon are also major factors, which can contribute to the loss of 

carbon during the process operation. The three major pathways in which carbon can be lost 

are: (i) wet attrition resulting from the agitated and abrasive pulp environment of the 

adsorption circuit, (ii) the transportation of carbon during screening, (iii) oxidation, burning 



and dry abrasion in the regeneration kiln. Also the industrial practice of conditioning fresh 

activated carbon using either tumbling or screening to remove undersized or imperfect 

particles before being introduced into the processing circuit can also contribute to carbon 

loss. Conditioning tends to minimise the possibility of gold being lost on undersized carbon 

particles within the circuit, which ultimately ends up in the tailings. Another important 

feature of carbons conditioning is that it often indicates how effective the production of the 

activated carbon was carried out by the manufacturer (Avraamides, 1989). 

 

With the increasing production of macadamia nuts globally, the disposal of waste shells has 

created a serious problem for the nut processing industry. Australia’s contribution to the 

global macadamia market was around 40%, which equates to 0.3 Mt of produce, with a 

market value of AUS$150 million. This production level is about twice that of Hawaii and 

South Africa combined. The trend in production figures clearly indicates a future increase of 

around 10% annually and the associated waste problem is also expected to increase (Rural 

Industries Research, 2009). Currently around 5 Mt of waste shells are annually used as fuel to 

produce electricity for plant operations in the Gympie region of Queensland, Australia, thus 

partially alleviating the waste problem (Ergon Energy, 2002). In an effort to reduce this 

problem, the macadamia shell has been effectively converted to an activated carbon and 

successfully used to remove organic contaminants in the primary stage molecular sieves and 

it has also been used for adsorption of aqueous Cu2+ ions (Nguyen and Do, 1995, Toles et al., 

1998, Wartelle et al., 2000 and Wartelle and Marshall, 2001). One important and attractive 

property of the macadamia shell is its high cracking pressure, which has the potential to 

produce a durable activated carbon for gold adsorption. 

 



The specific aims of this study were to first briefly review the carbon activation process and 

secondly investigate the possibility of using granular macadamia shells as an activated carbon 

source for Au absorption in an Au hydrometallurgical application. The experimental 

investigation started with producing granular, CO2 activated carbon derived from macadamia 

shells that were synthesised at several temperatures. Then the Brunauer, Emmett and Teller 

(BET) surface area and microstructure were evaluated. The granular activated carbon samples 

were then subjected to pre-abrasion, dry abrasion resistance and Au loading kinetics tests. 

The performance of the samples were investigated and compared to the commercially 

available coconut based (Haycarb) activated carbon. The activated carbon samples were also 

characterised using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis 

(EDAX) and then elemental mapping of the activated carbon was carried out to determine the 

location of the Au on the loaded samples. 

 

Carbon activation and gold adsorption – a brief review 

Activation process and mechanism 

The procedure for creating an activated carbon product is based on a two-step process, the 

first step is the carbonisation of the feedstock and the second step is the activation of the 

carbon material. The carbonisation step is performed by heating the organic raw feedstock 

material at temperatures below 800 °C in a continuous inert gas stream. This process 

eliminates any volatile components that are present and also promotes porosity within the 

material’s matrix. To improve the effectiveness of this process, usually commercial 

manufacturers employ a pre-treatment step before carbonisation which involves the feedstock 

being either impregnated or mixed with a dehydrating agent such as phosphoric acid, zinc 

chloride or sulphuric acid (Serrano et al., 2004 and MacDonald and Quinn, 1996). During the 



carbonisation step thermal decomposition of the carbonaceous material takes place which 

eliminates non-carbon species such as oxygen, hydrogen and nitrogen. The result of the 

thermal decomposition step is a carbonised mass with a rudimentary pore structure 

(Yehaskel, 1978 and Yalcin and Arol, 2002). The residual elementary carbon atoms of the 

carbonised mass are grouped into stacks of flat aromatic sheets that are cross-linked in a 

random manner. The free interstices between these irregular aromatic sheets maybe filled 

with tarry matter, products of decomposition, or partially blocked by disorganised carbon 

(Bansal et al., 1988). 

 

The activation step is usually carried out within the temperature range of 800–1100 °C in the 

presence of a suitable oxidising agent such as steam, carbon dioxide, atmospheric air or a 

combination of these gases (Zhang et al., 2004). In an industrial setting, the activating agent 

is usually a combination of flue gas, the CO2 source and steam (Bansal et al., 1988). The 

activation reaction occurs in two stages. In the first stage, the disorganised carbon is removed 

by exposing the aromatic sheets to the action of the activation agent, which is described by 

the endothermic reactions presented in Eqs. (1) and (2); (Bansal et al., 1988). The reaction by 

the steam reacting with the carbon surface produces carbon monoxide, which is then followed 

by the water to gas formation reaction Eq. (3), catalysed by the presence of the carbon 

surface. 

     (1) 

      (2) 

     (3) 



During the later stages of the activation process, the complete burnout of various 

carbonaceous compounds and non-organised carbons within the pore volumes and from the 

wall surfaces between adjacent pores produces a significant pore widening that result in the 

formation of large sized pores. In addition, the spaces between the aromatic sheets also 

become clear of the carbonaceous compounds and non-organised carbon to form a molecular 

dimensioned porous structure, which greatly increases the internal surface area (Martinez et 

al., 2006). Successful activation will produce a fine crystalline carbon product with an 

interleaved system of pores with a very large internal surface area, which is highly dependent 

on the processing conditions used and the original organic material matrix. However, the 

exact procedures and process operations used for the commercial production of activated 

carbons is a closely guarded secret by industrial manufacturers. 

 

The effect of temperature on the values of ΔHo, ΔGo and log K used in Eqs. (1), (2) and (3) is 

based on the HSC 6.1 software ( Roine, 2002). Although the endothermic reactions in Eqs. 

(1) and (2) become more favourable at higher temperatures with K = 100.2–102.7 at 700–

1200 °C, the exothermic reaction in Eq. (3) becomes less favourable with K = 100–10−0.4 in 

the same temperature range. Accordingly, the extent of activation will depend on the gas 

employed, the temperature range used, the reaction times and related rates ( Yalcin and Arol, 

2002). In addition, the factors that influence the pore volume, surface area and mean pore 

diameter are the rate of heating during carbonisation, the final temperature and the activation 

process time. When the degree of burn off is less than 50% a microporous structure is 

produced in the activated carbon, while a mixed porous structure is produced when the 

degree of burn off is between 50% and 75% ( Bansal et al., 1988). As a result, the different 

types of activated carbons can be engineered to suit a particular specific application ( 

McDougall et al., 1981 and Marsden and House, 1993). 



Pore structure 

X-ray diffraction studies have confirmed the existence of two basic activated carbon 

structures; the first consists of small regions of elementary crystallites composed of roughly 

parallel layers of hexagonally ordered atoms, while the second consists of a disordered, cross 

linked, spaced lattice of carbon hexagons (Marsden and House, 1993). The dimensions of the 

elementary carbon are dependent on activation temperatures, but they typically vary from 0.9 

to1.2 nm in height, 2.0 to 2.3 nm in width. The nano-crystallite structures are estimated to be 

approximately three layers high, with widths equivalent to the diameter of the carbon 

hexagons (McDougall and Hancock, 1980 and McDougall and Hancock, 1981). 

 

The pore size distribution of activated carbon can be classified into three groups. The groups 

are based on the size range of pore diameters found in activated carbon: the micropores are 

less than 2 nm in size, the transition pores or mesopores range in size from 2 nm to 50 nm 

and the macropores are greater than 50 nm (Dubinin, 1966). The porosity of activated carbon 

is a very important property since it greatly influences the adsorption of aurocyanide. The 

macropores provide passage to the micropores and access to the interior of the carbon matrix. 

The micropores created during the activation process are responsible for the very large 

surface area used for Au adsorption. Typically, activated carbons have BET surface areas in 

the range from 500 to 1400 m2/g and the relative (%) contribution of each pore structure to 

the total surface area and adsorption process vary in the order: macropores 

(∼0%) < mesopores (5%) ≪ micropores (95%) (Lartey et al., 1999). 

 

 



Gold adsorption mechanism 

In the case of Au adsorption on activated carbons there are three rate dependent diffusion 

mechanisms that have been proposed to account for the adsorption of Au based on contact 

time and gold loading. These mechanisms are: (i) film diffusion (mass transport), (ii) pore 

diffusion, and (iii) surface diffusion (Muir, 1982, Nicol et al., 1984a, Nicol et al., 1984b, 

Jones et al., 1988, Jones et al., 1989, Le Roux et al., 1991, Demopoulos and Chen, 2004, 

Pleysier et al., 2008 and Dai et al., 2008). The initial rate of Au cyanide adsorption is rapid, 

with adsorption occurring at the most accessible sites in the macropores and possibly the 

mesopores. Under these conditions the rate is controlled by the film diffusion (mass 

transport) of Au cyanide species onto the carbon surface. However, with time the diffusion 

rate decreases as equilibrium is approached. Once adsorption capacity has been achieved in 

the macropores and mesopores, a pseudo-equilibrium is established beyond which adsorption 

must take place in the micropores (Marsden and House, 1993). The diffusion of gold cyanide 

species onto the micropores structures within the carbon structure is a much slower process, 

since the boundary layer or film diffusion process is complicated by the length and 

tortuosities of the inherent pore structures. This phenomenon has been confirmed by detailed 

micro-tomography studies which indicate that there is poor diffusion of gold cyanide within 

micropores. The findings of these studies exclude the contribution made by pore diffusion to 

the rate limiting mechanisms and support a surface diffusion mechanism at higher gold 

loadings (Pleysier et al., 2008 and Dai et al., 2008). 

 

Gold adsorption sites 

Due to the rapid adoption of the carbon-based technology in the Au Industry, several studies 

have been conducted to elucidate the exact location of Au adsorption sites on activated 



carbon surfaces, producing differing results. Studies have found that the aurocyanide 

complex adsorbs onto the microporous structure of the activated carbon as an ion-pair 

 (Gross and Scott, 1927, Davidson, 1974, McDougall et al., 1981, Adams, 

1990, Adams et al., 1987, Adams et al., 1992 and Adams et al., 1995). Whilst the functional 

groups developed during the activation process are also responsible for the adsorption of the 

Au complex onto the carbon surface (Tsuchida and Muir, 1986a and Tsuchida and Muir, 

1986b). In addition, Mössbauer spectroscopy studies have supported the view that the 

aurocyanide anion adsorbs to the surface through one of the cyanide ligands attaching to the 

carbon substrate (Cashion et al., 1988 and Kongolo et al., 1990). Furthermore, to probe the 

exact chemical state of the adsorbate, both X-ray photoelectron spectroscopic (XPS) and infra 

red (IR) studies have indicated that the aurocyanide ion adsorbs onto small graphitic plates in 

the activated carbon as an intact complex ion with a partial transfer of electrons to the gold (I) 

ion (Klauber, 1991 and Ibrado and Fuerstenau, 1995). Other studies have focused on the 

activity and influence of the graphitic component using a 14C labelled aurocyanide on highly 

orientated pyrolytic graphite (HOPG), these studies revealed that Au adsorption 

predominantly occurred on edge planes (Sibrell and Miller, 1992). Similar studies of 

aurocyanide adsorption on HOPG in the presence of Ca2+ using novel in situ scanning 

tunnelling microscopy, was able to atomically resolved clusters of Au that were 

predominantly found on the graphite basal and edge planes ( Poinern and Thurgate, 2003). In 

addition, other atomically-sized filamentous structures have been located on the HOPG 

surface in contact with a Au cyanide solution (Poinern et al., 1998). 

 

 

 



Carbon activity and gold loading 

Carbon activity is a generic term used in industry to express the rate of Au cyanide adsorption 

onto an activated carbon substrate. This term determines the amount of carbon required in 

each adsorption tank, the contact time (controlled by the flow rates and tank size), gold 

inventory and overall plant efficiency (Fleming, 1982). Mathematically, Eqs. (4) and (5) can 

be used to determine the rate constant (k  ) and equilibrium constant (K  ), using batch 

experiments where the gold concentration is continuously changing. These constants can then 

be used in Eq. (6) to describe the rate of gold loading of the activated carbon in each stage of 

a typical CIP plant, where the gold concentration in solution is constant ( Fleming et al., 

1980, Nicol et al., 1984a, Nicol et al., 1984b and Fleming et al., 2011). 

        (4) 

        (5) 

        (6) 

         (7) 

        (8) 

where [Au]s   is the concentration of gold in solution at time t  , [Au]c   the 

concentration of gold on the carbon at time t  , [Au]s  ,0 the concentration of gold at t   = 0, 

[Au]c  ,0 the concentration of gold in the carbon at t   = 0, the change in gold loading 



onto carbon from time zero to t, Mc the mass of the carbon, Ms the mass of the solution, k, k′ 

the rate constant, K the equilibrium constant, n is the empirical constant. 

 

The carbon activity for Au adsorption can also be expressed by an empirical rate constant (k′) 

which is based on batch experiments and is presented in Eqs. (7) and (8). This is a common 

alternative approach used for the purpose of comparing different types of activated carbon, 

fouling of the activated carbon and the effect of dewatering reagents ( La Brooy and Bax, 

1985, La Brooy et al., 1986 and Salarirad and Behamfard, 2011). In addition, several studies 

of various kinetic models have confirmed that Eq. (7) is more than adequate to model 

experimental data over an 8 h period ( Le Roux et al., 1991). 

 

Experimental 

Materials 

All chemicals, including the gold complex [KAu(CN)2] were purchased from Sigma–Aldrich 

and used without further purification. The Suncoast Gold Macadamia Company, Queensland, 

Australia, supplied raw macadamia nutshells. The broken shell pieces were approximately 1 

to 2 cm in size and were manually cleaned to remove any remaining nut fragments and other 

contaminants. All aqueous solutions used throughout the process procedure were prepared 

using Milli-Q® water (18.3 MΩ cm−1). The gases used in processing the macadamia nut 

shells were high purity (AR Grade) nitrogen (N2) and carbon dioxide (CO2), which were 

used in the carbonisation and activation stages, respectively. 

 



Carbonisation and activation 

The cleaned shell pieces were placed into individual porcelain boats and weighed before 

being placed into the furnace for carbonisation (mass of macadamia shells was 608.83 g and 

the mass of coconut shells was 476.52 g). A continuous stream of N2 gas was then passed 

through the furnace, which was set to a thermal treatment temperature of 500 °C. Both sets of 

shells were heat treated in the furnace at the same time. After the shells were carbonised, they 

were then allowed to slowly cool down to room temperature in the N2 gas stream to ensure 

the integrity of the carbon produced. When the shells had cooled down to room temperature, 

they were then removed from the furnace and weighed to determine the mass loss (Table 1). 

After heat treatment the carbonised macadamia and coconut shells were then weighed out 

into 2 g samples and then placed into porcelain boats. A total of 60 boats were prepared, the 

number being equally split between the two materials. 

 

The activation step consisted of placing the porcelain boats and carbonised shells into a pre-

heated furnace. Activation was conducted at set temperatures ranging from 500 °C to 

1200 °C in the presence of a continuous stream of CO2 gas for 10 min. After thermal 

treatment, the activated carbon samples were then permitted to slowly cool down to room 

temperature in the CO2 gas stream to ensure the integrity of the activated product. 

 

Abrasion and surface area tests 

A standard industry based test (ASTM, 2011) was used to evaluate the abrasion properties of 

the granulated activated carbons produced. A dry 50 g sample of activated carbon was pre-

abraded for 10 min on a standard 1 mm mesh 200 mm diameter sieve using a 20 mm stainless 



steel ball and a sieve shaker (Ro-Tap). The oversized (+1 mm) carbon material was found to 

be 30 mg; this material was then subjected to a further 60 min of abrasion in the sieve shaker. 

The abrasion resistance was calculated by entering the mass of oversized carbon particles 

(mOversize) and the mass of the undersize particles (mUndersize) into Eq. (9). In addition, the 

activated carbon pore porosity and surface area measurements were performed using a 

Quantachrome Autosorb-1 Tristar V4 3000 analyser. 

    (9) 

Adsorption of gold cyanide 

A 1000 mg/L stock solution of [KAu(CN)2] was prepared and then the pH was adjusted to 

10.5. Then 1 g of activated carbon was placed into a 100 mL solution of the [KAu(CN)2] 

stock solution and was permitted to soak in the stirred solution. Subsequently over the next 8 

or 40 h 5 ml aliquots of the solution were regularly taken and examined to determine the 

concentration of residual Au (I) remaining in the solution. The aliquot samples were 

examined using inductively coupled plasma (ICP) analysis, which was performed using a 

Vista ICP-OES Varian System. In addition, a commercially available coconut based activated 

carbon (Haycarb) was also used in the adsorption tests as a control. The adsorption results of 

both the Haycarb and the macadamia shell derived granular activated carbon manufactured at 

various temperatures were analysed. 

 

SEM characterisation 

The porous nature and surface structure of the macadamia shell based activated carbons were 

examined at various stages of manufacture using Scanning Electron Microscopy (SEM). The 



samples were filtered, washed and then dried at 200 °C for 2 h before being examined using a 

Phillips XL-30 SEM operating with a 30 kV electron source. Unless otherwise stated, none of 

the samples were Au coated, since this would have interfered with the process of locating Au 

complexes on the sample surfaces. Furthermore, all energy dispersive X-ray analysis 

(EDAX) images and spectrum were produced by an Oxford Instruments EDS model 6650 

analyser using Inca software to determine the presence of Au complexes and other elements 

of interest 

 

Results and discussion 

4.1. Carbonisation 

Table 2 presents the results of the comparative study between carbonised macadamia and 

coconut shells. Under the same carbonising conditions, coconut shells and macadamia shells 

gave conversion yields of 23% and 32%, respectively. The results have demonstrated that the 

coconut shells contain large amounts of volatile, non-carbon species that decompose to give a 

lower carbon yield than carbonised macadamia. However, the carbonisation process alone 

does not give rise to a carbon product with a high adsorption capacity. It also depends on 

other properties such as a well-developed pore structure and a high BET surface area, which 

can greatly improve the adsorption capacity of the activated carbon, see Table 1. 

 

Activation and pore structure 

The SEM images of the activated macadamia shells produced at various temperatures ranging 

from 700 °C to 1000 °C in the presence of a CO2 gas atmosphere. The electron microscopy 

images presented in Fig. 1 reveal randomly distributed pore structures for activated 



macadamia and commercially available coconut based carbons. Interestingly, the BET 

surface areas for CO2 activated carbonised macadamia shells in the temperatures range from 

600 °C to 1100 °C are significantly lower than those of similarly activated coconut shells 

(Table 2). However, for activated carbonised macadamia shells there is generally an 

increasing trend in surface area with increasing activation temperature. Evidence of large 

internal surface areas in the microporous structures within the activated carbonised 

macadamia shells is presented in Fig. 1. The SEM image in Fig. 1b presents a cross section of 

an internal tubular structure and the presence of numerous inner micropores. Comparing the 

activated carbonised macadamia shell images presented in Fig. 1a and b with the images of 

activated coconut shells presented in Fig. 1c and d we can see that there is a highly 

microporous structures in both activated carbons which can provide the maximum number of 

possible Au loading sites. 

 

Table 2 presents values for surface area, micro-porosity, meso-porosity, total pore-volume, 

micropore volume and average pore diameter for both the activated macadamia shells and the 

activated coconut shells. The study indicates that the burn off rate of the reactive components 

present in the macadamia shell based carbon during the 10 min activation period is much 

faster at higher temperatures than those at lower temperatures. This results in a much larger 

surface area and significantly larger micro-porosity being produced at higher temperatures. It 

is also evident that micropores are far more dominant at the higher temperatures, while at 

lower temperatures with a lower burn off rate the mesopores are present in the carbon 

structure. Thus increasing the activation temperature increases the total pore volume and 

decreases the average pore diameter in the activated carbonised macadamia shells (Table 2). 



Carbonised macadamia shells activated at higher temperatures have a slightly larger average 

pore diameter than those of commercial available activated coconut shells (Table 2). This 

indicates that for both activated carbon materials the burn off of volatile materials at the 

respective activation temperatures only allows the formation of micropores and does not 

promote meso-pore or macropore formation. The ratio of micropore volume/total surface area 

in the temperature range from 600 °C to 1100 °C for activated carbonised macadamia shells 

calculated from results presented in Table 2 is between 0.87 and 0.97. This value is higher 

than those reported for steam/KOH activated fir woods or pistachio based carbons, which are 

between 0.70 and 0.94 (Wu et al., 2005). Likewise, the average pore diameter of activated 

carbonised macadamia shells is between 1.77 and 2.41 nm (see Table 2), which is generally 

smaller than those of steam/KOH activated fir woods or pistachio based carbons that are 

between 2.20 and 2.90 nm (Wu et al., 2005). 

 

The surface area results of the commercially available activated coconut shells are listed in 

Table 2. These results indicate that the activated coconut shells had the largest micropore 

area, the largest total internal surface area and the largest total pore volume of the activated 

carbons tested in this study. The commercially available activated coconut carbons are 

predominantly activated using steam, which may be responsible for the greater micro-

porosity. These results have clearly demonstrated that steam activated coconut carbons have a 

high adsorption capacity, and hence are extensively used by the Au industry. The presence of 

a large micropore area and a low meso-pore area indicates that the burn off of volatile 

components for these activated carbons is between 50% and 75% (Table 2). The significant 

difference in surface area between the two types of activated carbons presented in Table 2 

could be due to several factors employed by the commercial manufacturers of activated 

coconut shells. These factors include activation temperature, thermal treatment time, gaseous 



atmosphere (steam and/or CO2) used for activation and the pre-treatment of the carbonised 

coconut shells with dehydrating agents before activation (Section 2.1). 

 

Gold adsorption 

The results of the 8 h Au adsorption study involving both the activated carbonised 

macadamia shells and commercially available carbonised coconut shells are summarised for 

comparative purposes in Table 3. Fig. 2 presents the logarithmic plots of   as a 

function of time for both the activated carbonised macadamia shells and commercially 

available carbonised coconut shells. Both plots exhibit linear behaviour, with the values of k’ 

and n being based on the slopes and y-intercepts of the curves of best fit (Eq. (8)). These 

values are listed in Table 3; inspection of these values reveals that the macadamia based 

activated carbon n value is close to unity for activation temperatures in the range of 800–

1000 °C. The CO2 activated macadamia based k′ value reaches a maximum of 23.4 h−1 at 

1000 °C, while the activated coconut shell based carbon reached a maximum value at 

14.5 h−1. The increase in the k′ value with increasing activation temperature is generally 

consistent with the increase in surface area, see Table 2 and Table 3. A comparison of Au 

adsorption data is made between activated macadamia based carbon and coconut based 

carbon at the activation temperatures of 1000 °C and 1100 °C over a 40 h period in Fig. 3. 

The data indicates that the Au adsorption capacity of activated macadamia shell based carbon 

is comparable with that of activated coconut shell based carbon. 

 

A sample of Au loaded macadamia shell based carbon activated at 1000 °C was further 

analysed using SEM and EDAX. The SEM images are presented in Fig. 4a and b: while the 



EDAX analysis revealed the presence of Au on the loaded sample, see Fig. 4d, the absence of 

Au on the unloaded macadamia shell based carbon was confirmed in Fig. 4c. Furthermore, 

elemental mapping of the carbon surface and identification of Au sites were conducted on the 

Au loaded macadamia shell based carbon. The presence of adsorbed Au on the surface of the 

macadamia shell based carbon can be easily seen in the EDAX spectra, Fig. 4d. The Au 

deposits were not just restricted to the macroscopic features, which could be easily identified 

within the instrument resolution (1 mm to 0.5 μm), but they were widely distributed 

throughout the structure as seen in Fig. 5c. These results are consistent with micro-

tomography studies of Dai et al., which reveal a uniform distribution of Au throughout the 

carbon structure of activated carbon materials (Dai et al., 2008). 

 

Abrasion resistance 

Typical pre-abrasion test results for a good activated carbon are generally around 95–99%; 

however, values lower than 95% are generally considered of lower quality for use in most 

CIP processes. Abrasion percentage values between 89% and 92% are still considered to be 

reasonably satisfactory; while an abrasive percentage of 75% or less represents a 

softer/poorer quality activated carbon (Marsh, 2001). Pre-abrasion and dry abrasion test 

results for macadamia shell based and coconut based activated carbons carried out in this 

study are presented in Table 4. It demonstrates that in the case of CO2 activated macadamia 

shell based carbons, (activated at 800 °C) a softer than the commercially available steam 

activated coconut shell based carbon (Haycarb) is produced. The results also indicate that the 

preliminary preparation procedure used in the manufacture of the granular activated 

macadamia shell based carbon in this study requires further optimisation in order to improve 

the hardness of the carbon product and hence make it a commercially viable commodity. 



Conclusions 

This preliminary research project has revealed that activated macadamia shell based carbons 

have a strong affinity for the Au (I) complex and have the potential to adsorb significant 

levels, which makes this granular product comparable with the currently used coconut based 

adsorbents. Furthermore, if the naturally inherent higher strength of the macadamia shell, 

compared to the coconut shell, could be translated into an effective activated carbon product, 

(via optimisation of activation parameters) then the macadamia shell could be an attractive 

alternative or a complementary supplement to the coconut shell based carbons that is 

currently being used in the Au extraction industry. 
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Table 1. Carbonisation yields and BET surface areas of macadamia and coconut shells heat 
treated at 500 °C in N2 atmosphere. 

 

 

 

Carbon source Macadamia shells Coconut shells 

Before carbonisation (g) 608.83 476.52 

After carbonisation (g) 194.89 110.71 

Percentage yield (%) 32 23 

Surface area (m2/g) 190 ± 7.7 178 ± 7.7 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.  Effect of activation temperature on surface area, micro-porosity and volumetrics.a 

 

Temperature (°C) Area (m2/g)   Volume (cm3/g) Average pore 
diameter (nm) 

 Surface Micropore Mesopore Total pore Micropore  
600 173 ± 7.6 150 23 0.104 0.073 2.41 
700 467 ± 9.5 446 21 0.218 0.191 1.86 
800 421 ± 12.2 399 21 0.201 0.173 1.91 
900 465 ± 11.1 445 20 0.22 0.193 1.9 
1100 602 ± 14.8 583 18 0.277 0.25 1.84 
Commercialb 1000 908 ± 32 886 22 0.402 0.37 1.77 
Fir woodsc 780 1016-1064 

  
0.61-0.75 

 
2.3-2.9 

       
 

     

 
 
 

      

a This work unless stated otherwise. 
 
b Coconut based Haycarb. 
 
c Carbons from fir woods and pistachio shells activated by physical (steam) and chemical (KOH) process (Wu et al., 2005). 
       
 
       

       

       

       

       

       
 

 

 

 

 

 

 

 



Table 3. Effect of CO2-activation temperature on gold adsorption onto macadamia-based 
carbon. 

 

 

Time 
(h) CO2-activation temperature (°C) Commerciala 

1000 

 500 600 700 800 900 1000 1100 1200  
Residual gold concentration (mg/L) 
0 67 67 67 67 67 67 67 67 67 
1 65 65 63 62 58 54 58 59 58 
2 59.8 60.8 58.9 55.1 51.3 45.6 52.3 55.1 52.3 
3 58.5 58.5 55.8 53.1 46.8 41.4 48.6 50.4 48.6 
4 55.3 55.3 51 49.3 44.2 37.4 45.9 47.6 44.2 
5 52 52 48.8 46.4 38.4 32.8 42.4 44 40.8 
6 48 47.3 45 42.7 35.3 30 39 40.5 37.5 
7 44.8 44.1 41.3 38.5 31.5 26.6 35.7 37.1 33.6 
8 42.3 40.9 39 35.7 29.3 24.7 33.2 34.5 31.2 
Values of k’ and n(Eq. 8) 
log k′ 0.54 0.51 0.78 0.93 1.17 1.37 1.17 1.08 1.16 
k′ (h−1) 3.5 3.2 6 8.5 14.8 23.4 14.8 12 14.5 
N 1.35 1.41 1.17 1.09 1.01 0.93 0.89 0.94 0.96 
R2 0.98 0.99 1 0.98 0.99 0.99 0.99 0.99 0.99 

 

a Coconut based (Haycarb). 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Pre abrasion and dry abrasion resistance of activated carbon materials. 

 

Sample Particle size 
(mm) 

Pre dry abrasion 
percent 

Dry abrasion 
percentage 

Macadamia 
800 °C +1.00 mm 90 73 

Commerciala +1.00 mm 98 93 

    
           a Coconut based (Haycarb). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 1. SEM images of CO2 activated macadamia and commercially available coconut based 
carbons (activation temperature for both was 1000 °C): Macadamia (1a) 20 μm scale bar and 
(1b) 10 μm scale bar coconut (1c) 50 μm scale bar and (1d) 5 μm scale bar. 

 

 

 

 

 

 

 

 

 



Fig. 2. Comparison of logarithmic plots of   as a function of time for the 
macadamia-based granular carbon activated at 1000 °C (circles) and the coconut-based 
granular carbon (triangles) over a 8 h batch testing procedure (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 3. Variation of residual gold in solution and gold adsorbed on macadamia-based carbon 
activated at 1000 °C (circles), 1100 °C (squares) and commercial coconut-based activated 
carbon (triangles) over a 40 h batch testing procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 4. SEM and EDAX analysis of gold loading in a typical macadamia-based carbon: (a) 
SEM image of unloaded gold sample – 100 μm scale bar. (b) SEM image of gold loaded 
sample – 50 μm scale bar. (c) EDAX analysis of unloaded sample. (d) EDAX analysis of 
loaded sample. 

 

 

 

 

 

 

 

 



Fig. 5.  Gold loading in macadamia shell based carbon activated at 1000 °C in CO2 
atmosphere: (a) SEM image of unloaded gold sample – 100 μm scale bar. (b) Elemental 
mapping of carbon sample. (c) EDAX spectrum analysis of gold loaded sample. (d) 
Elemental mapping of carbon clearly showing the wide distribution of gold in the carbon 
matrix. 
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